1801
|
Chao HH, Hong HJ, Liu JC, Lin JW, Chen YL, Chiu WT, Wu CH, Shyu KG, Cheng TH. Leptin stimulates endothelin-1 expression via extracellular signal-regulated kinase by epidermal growth factor receptor transactivation in rat aortic smooth muscle cells. Eur J Pharmacol 2007; 573:49-54. [PMID: 17678888 DOI: 10.1016/j.ejphar.2007.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/16/2007] [Accepted: 06/20/2007] [Indexed: 11/30/2022]
Abstract
Obesity is a major risk factor for the development of hypertension. Recent studies have suggested that leptin, a 167-amino acid peptide hormone produced by white adipose tissue, is related to the pathogenesis of obesity-related hypertension. However, the signaling mechanisms underlying the effects of leptin remain to be extensively examined. In this study, we found that leptin induced extracellular signal-regulated kinase phosphorylation and endothelin-1 expression in rat aortic smooth muscle cells. Both PD98059 and U0126, inhibitors of the upstream activator of mitogen-activated protein kinase kinase, inhibited augmentation of endothelin-1 expression stimulated with leptin. Leptin induced significant tyrosine phosphorylation of epidermal growth factor receptor, which was significantly attenuated by two inhibitors, an epidermal growth factor receptor tyrosine kinase inhibitor, AG1478, and a broad-spectrum matrix metalloproteinase inhibitor, GM6001. This indicates that the pathway of epidermal growth factor receptor transactivation induced by leptin is dependent on proteolytically released epidermal growth factor receptor ligands. Pretreatment of cells with AG1478 significantly reduced the degree of phosphorylation of extracellular signal-regulated kinase and endothelin-1 expression. Our results reveal that epidermal growth factor receptor transactivation is involved in the leptin signaling pathway in vascular smooth muscle cells, which may be related to the increased risk of hypertension and other cardiovascular diseases in obese subjects.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Blotting, Northern
- Blotting, Western
- Butadienes/pharmacology
- Cells, Cultured
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Endothelin-1/genetics
- Endothelin-1/metabolism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Flavonoids/pharmacology
- Leptin/pharmacology
- Male
- Metalloendopeptidases/antagonists & inhibitors
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitriles/pharmacology
- Phosphorylation/drug effects
- Quinazolines
- RNA/genetics
- RNA/isolation & purification
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Transcriptional Activation/drug effects
- Tyrosine/metabolism
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Hung-Hsing Chao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
1802
|
Zhang Q, He F, Kuruba R, Gao X, Wilson A, Li J, Billiar TR, Pitt BR, Xie W, Li S. FXR-mediated regulation of angiotensin type 2 receptor expression in vascular smooth muscle cells. Cardiovasc Res 2007; 77:560-9. [PMID: 18006431 DOI: 10.1093/cvr/cvm068] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily and plays an important role in the pathogenesis of cardiovascular diseases via regulating the metabolism and transport of cholesterol. We and others have recently shown that FXR is also expressed in the vasculature, including endothelial cells and smooth muscle cells (SMC). However, the biological significance of FXR activation in SMC is still poorly understood. In this study, we examine the effect of FXR ligands on the angiotensin system in rat aortic SMC (RASMC), as angiotensin II (Ang II) signalling contributes to various types of vascular lesions by promoting cell growth of vascular SMC. METHODS AND RESULTS Treatment of RASMC with a FXR ligand showed no obvious effect on the expression of angiotensinogen, Ang II type 1 receptor (AT1R) or type 4 receptor (AT4R) but led to a significant increase in the expression of type 2 receptor (AT2R). FXR ligand treatment also resulted in an inhibition of Ang II-mediated extracellular signal-regulated kinase (ERK) activation and growth proliferation. Promoter reporter gene and electrophoretic mobility-shift assays suggest that FXR upregulates AT2R expression at a transcriptional level. Upregulation of AT2R appears to play a role in the FXR-mediated inhibition of ERK activation via upregulation of Rous sarcoma oncogene (Src) homology domain-containing tyrosine phosphatase 1 (SHP-1) because FXR-mediated upregulation of SHP-1 can be blocked by an AT2R antagonist and FXR-mediated ERK inactivation was significantly attenuated via treatment with either an AT2R antagonist or a SHP-1 inhibitor. CONCLUSION FXR in SMC may serve as a novel molecular target for modulating Ang II signalling in the vasculature.
Collapse
MESH Headings
- Angiotensin II/physiology
- Animals
- Cells, Cultured
- Chenodeoxycholic Acid/pharmacology
- DNA-Binding Proteins/physiology
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation
- Isoxazoles/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Promoter Regions, Genetic
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Qiuhong Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 639 Salk Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1803
|
Ruiz-Hurtado G, Fernández-Velasco M, Mourelle M, Delgado C. LA419, a novel nitric oxide donor, prevents pathological cardiac remodeling in pressure-overloaded rats via endothelial nitric oxide synthase pathway regulation. Hypertension 2007; 50:1049-56. [PMID: 17984372 DOI: 10.1161/hypertensionaha.107.093666] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Reduced endogenous NO production has been described in cardiovascular disorders as cardiac hypertrophy and heart failure. The therapy with conventional nitrates is limited by their adverse hemodynamic effects and drug tolerance. The novel NO donor LA419 has demonstrated important antithrombotic and anti-ischemic properties without those adverse effects. The aim of this study was to evaluate the effect of LA419 chronic treatment on cardiac hypertrophy development in a progressive model of left ventricular hypertrophy. Rats were randomly divided into 6 groups: sham and clip (euthanized 7 weeks after aortic stenosis), sham+vehicle, sham+LA419, clip+vehicle, and clip+LA419 (euthanized 14 weeks after the surgery and treated with vehicle or 30 mg/kg of LA419 once left ventricular hypertrophy was established). LA419 treatment for 7 weeks induced a marked reduction in the heart:body weight ratio (4.10+/-0.28 and 3.38+/-0.06 mg/g in clip+vehicle versus clip+LA419; P<0.001) and left ventricular diameter (11.96+/-0.25 and 9.90+/-0.20 mm in clip+vehicle versus clip+LA419; P<0.001) without modifying the high blood pressure observed in stenosed rats. Histological analysis revealed that LA419 attenuated myocardial and perivascular fibrosis observed in rats with pressure overload for 14 weeks. In addition, LA419 treatment restored endothelial NO synthase and caveolin-3 expression levels, enhanced the interaction between endothelial NO synthase and its positive regulator the heat shock protein 90, and re-established the normal cardiac content of cGMP in stenosed rats. Thus, LA419 prevented the progression to maladaptative cardiac hypertrophy in response to prolonged pressure overload through a mechanism that involved the re-establishment of the endothelial NO synthase signaling pathway.
Collapse
Affiliation(s)
- Gema Ruiz-Hurtado
- Consejo Superior de Investigaciones Científicas-Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
1804
|
Cullen JP, Morrow D, Jin Y, von Offenberg Sweeney N, Sitzmann JV, Cahill PA, Redmond EM. Resveratrol inhibits expression and binding activity of the monocyte chemotactic protein-1 receptor, CCR2, on THP-1 monocytes. Atherosclerosis 2007; 195:e125-33. [PMID: 17499741 PMCID: PMC2231518 DOI: 10.1016/j.atherosclerosis.2007.03.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 03/02/2007] [Accepted: 03/27/2007] [Indexed: 11/16/2022]
Abstract
UNLABELLED Monocyte chemotactic protein-1 and its receptor, CCR2, play a key role in atherosclerosis. We determined the effect of the polyphenol, resveratrol, on CCR2 and the mechanisms involved. Resveratrol treatment inhibited 125I-MCP-1 binding to THP-1 cells; 31, 56, 84% decrease for 10, 50 and 100 microM resveratrol, in the absence of any effect on receptor affinity. The inhibitory effect of resveratrol on 125I-MCP-1 binding to THP-1 cells and on CCR2 protein expression determined by FACS analysis was attenuated by treatment with L-NAME (NOS inhibitor), PD98059 (MAPK inhibitor) and LY294002 (PI3K inhibitor), whereas neither X/XO (reactive oxygen species generator) nor ICI182780 (estrogen receptor antagonist) had any effect. Concomitant with a decrease in CCR2 protein expression, resveratrol inhibited THP-1 CCR2 mRNA levels, in the absence of any effect on its stability; 26 and 45% inhibition at 10 and 50 microM resveratrol, respectively. This effect was not altered by co-treatment with L-NAME, PD98059 or ICI182780, but was potentiated by LY294002 and X/XO. CONCLUSIONS Resveratrol inhibits monocyte CCR2 binding activity in an NO-, MAPK- and PI3K-dependent manner, whereas it inhibits CCR2 mRNA in an NO- and MAPK-independent, PI3K-dependent manner. These inhibitory effects of resveratrol on chemokine receptor binding and expression may contribute, in part, to its cardiovascular protective activity in vivo.
Collapse
Affiliation(s)
- John P. Cullen
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - David Morrow
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - Ying Jin
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | | | | | - Paul A. Cahill
- Vascular Health Research Centre, Dublin City University, Dublin, Ireland
| | - Eileen M. Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
1805
|
Lin H, Hou CC, Cheng CF, Chiu TH, Hsu YH, Sue YM, Chen TH, Hou HH, Chao YC, Cheng TH, Chen CH. Peroxisomal proliferator-activated receptor-alpha protects renal tubular cells from doxorubicin-induced apoptosis. Mol Pharmacol 2007; 72:1238-1245. [PMID: 17671096 DOI: 10.1124/mol.107.037523] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a transcription factor and has been reported to inhibit cisplatin-mediated proximal tubule cell death. In addition, doxorubicin (Adriamycin)-induced nephrosis in rats is a commonly used experimental model for pharmacological studies of human chronic renal diseases. In this study, we investigated the protective effect of PPAR-alpha on doxorubicin-induced apoptosis and its detailed mechanism in NRK-52E cells and animal models. The mRNA level of PPAR-alpha was found to be reduced by doxorubicin treatment in NRK-52E cells. PPAR-alpha overexpression in NRK-52E cells significantly inhibited doxorubicin-induced apoptosis and the quantity of cleaved caspase-3. Endogenous prostacyclin (PGI(2)) augmentation, which has been reported to protect NRK-52E cells from doxorubicin-induced apoptosis, induced the translocation and activation of PPAR-alpha. The transformation of PPAR-alpha short interfering RNA was applied to silence the PPAR-alpha gene, which abolished the protective effect of PGI(2) augmentation in doxorubicin-treated cells. To confirm the protective role of PPAR-alpha in vivo, PPAR-alpha activator docosahexaenoic acid (DHA) was administered to doxorubicin-treated mice, and it has been shown to significantly reduce the doxorubicin-induced apoptotic cells in renal cortex. However, this protective effect of DHA did not exist in PPAR-alpha-deficient mice. In NRK-52E cells, the overexpression of PPAR-alpha elevated the activity of catalase and superoxide dismutase and inhibited doxorubicin-induced reactive oxygen species (ROS). PPAR-alpha overexpression also inhibited the doxorubicin-induced activity of nuclear factor-kappaB (NF-kappaB), which was associated with the interaction between PPAR-alpha and NF-kappaB p65 subunit as revealed in immunoprecipitation assays. Therefore, PPAR-alpha is capable of inhibiting doxorubicin-induced ROS and NF-kappaB activity and protecting NRK-52E cells from doxorubicin-induced apoptosis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, No 111, Sing-Lung Road, Sec. 3, Wen-Shan District, Taipei City 116, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1806
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|
1807
|
Ahn J, Lee H, Kim S, Ha T. Resveratrol inhibits TNF-alpha-induced changes of adipokines in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2007; 364:972-7. [PMID: 17967414 DOI: 10.1016/j.bbrc.2007.10.109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/18/2007] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is chronically elevated in adipose tissues of obese rodents and humans. Increased levels of TNF-alpha are implicated in the induction of atherogenic adipokines, such as plasminogen activator inhibitor -1 (PAI-1) and IL-6, and the inhibition of the anti-atherogenic adipokine, adiponectin. In this study, we investigated the effects of resveratrol on TNF-alpha-induced atherogenic changes of the adipokines in 3T3-L1 cells. Exposure to TNF-alpha for 24 h increased PAI-1 and IL-6 secretion and decreased adiponectin secretion. The mRNA expression of adipokines changed in parallel with mRNA expression. Resveratrol effectively reversed the secretion and mRNA expression of the atherogenic adipokines, PAI-1 and IL-6, induced by TNF-alpha. Decreased secretion levels and mRNA expression of adiponectin by TNF-alpha were also recovered by resveratrol treatment. Our results suggest that resveratrol may improve obesity-induced cardiovascular disease, particularly atherosclerosis, by attenuating the TNF-alpha-induced changes of adipokines.
Collapse
Affiliation(s)
- Jiyun Ahn
- Food Function Research Group, Korea Food Research Institute, 516, Baekhyun-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | | | | | | |
Collapse
|
1808
|
Nasrallah R, Clark J, Hébert RL. Prostaglandins in the kidney: developments since Y2K. Clin Sci (Lond) 2007; 113:297-311. [PMID: 17760567 DOI: 10.1042/cs20070089] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are five major PGs (prostaglandins/prostanoids) produced from arachidonic acid via the COX (cyclo-oxygenase) pathway: PGE(2), PGI(2) (prostacyclin), PGD(2), PGF(2alpha) and TXA(2) (thromboxane A(2)). They exert many biological effects through specific G-protein-coupled membrane receptors, namely EP (PGE(2) receptor), IP (PGI(2) receptor), DP (PGD(2) receptor), FP (PGF(2alpha) receptor) and TP (TXA(2) receptor) respectively. PGs are implicated in physiological and pathological processes in all major organ systems, including cardiovascular function, gastrointestinal responses, reproductive processes, renal effects etc. This review highlights recent insights into the role of each prostanoid in regulating various aspects of renal function, including haemodynamics, renin secretion, growth responses, tubular transport processes and cell fate. A thorough review of the literature since Y2K (year 2000) is provided, with a general overview of PGs and their synthesis enzymes, and then specific considerations of each PG/prostanoid receptor system in the kidney.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
1809
|
da Silva RF, Chambaz C, Stergiopulos N, Hayoz D, Silacci P. Transcriptional and post-transcriptional regulation of preproendothelin-1 by plaque-prone hemodynamics. Atherosclerosis 2007; 194:383-90. [PMID: 17324434 DOI: 10.1016/j.atherosclerosis.2007.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Plaque-prone areas are exposed to a particular hemodynamic environment characterized by a low mean shear stress value and a cyclic reversal flow. This mechanical environment, also termed oscillatory shear stress (OSS), induces the expression of several pro-atherogenic genes in the endothelial cells including the preproendothelin-1 (ppET-1) gene. The present paper investigates the molecular mechanisms of this induction. METHODS AND RESULTS Several deletional mutants of ppET-1 gene promoter were cloned upstream of a luciferase gene and transiently transfected in bovine arterial endothelial cells that were further exposed to plaque-prone hemodynamics. After 24h of flow exposure, analysis of the transfected cells showed that a proximal promoter of 156 base pairs length retained OSS responsiveness. Mutation of an activator protein-1 (AP-1) binding site present in this minimal promoter completely abolished its activation by OSS. Consistently, electrophoresis mobility shift assay revealed a sustained activation of AP-1 transcription factor in endothelial cells exposed to OSS. In addition to the transcriptional activation, we demonstrated that OSS also induces a stabilization of ppET-1mRNA through the 3'-untranslated region (3'-UTR) of this gene. Fluvastatin, a drug known to improve endothelial function, was shown to prevent OSS up-regulation of the ppET-1 gene expression. Under this flow condition, fluvastatin affects ppET-1 gene expression via inhibition of its promoter activity without affecting ppET-1mRNA stability. CONCLUSIONS The present study demonstrate that plaque-prone hemodynamic induces ppET-1 gene expression by both transcriptional and post-transcriptional mechanisms via an activation of AP-1 transcriptional factor and stabilization of mRNA. The transcriptional up-regulation of ppET-1 was shown to be fluvastatin sensitive.
Collapse
Affiliation(s)
- Rafaela Fernandes da Silva
- Laboratory of Hemodynamics and Cardiovascular Technology, Building AI 1232, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
1810
|
Abstract
Vitamin C is required for collagen synthesis and biosynthesis of certain hormones and recommended dietary intake levels are largely based these requirements. However, to function effectively as an antioxidant (or a pro-oxidant), relatively high levels of this vitamin must be maintained in the body. The instability of vitamin C combined with its relatively poor intestinal absorption and ready excretion from the body reduce physiological availability of this vitamin. This inability to maintain high serum levels of vitamin C may have serious health implications and is particularly relevant in the onset and progression of degenerative disease, such as cancer and cardiovascular disease (CVD), which have a strong contributing oxidative damage factor. In this review, we examine recent studies on the regulation of transport mechanisms for vitamin C, related clinical ramifications, and potential implications in high-dose vitamin C therapy. We also evaluate recent clinical and scientific evidence on the effects of this vitamin on cancer and CVD, with focus on the key mechanisms of action that may contribute to the therapeutic potential of this vitamin in these diseases. Several animal models that could be utilized to address unresolved questions regarding the feasibility of vitamin C therapy are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
1811
|
Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol 2007; 34:926-32. [PMID: 17645642 DOI: 10.1111/j.1440-1681.2007.04639.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Sickle cell disease (SCD) is an inherited disorder of haemoglobin synthesis that is associated with significant morbidity and mortality due to sequelae of episodic vaso-occlusive events: pain crises and multiorgan damage. The microvascular responses to the initiation, progression and resolution of vaso-occlusive events are consistent with an inflammatory phenotype as suggested by activation of multiple cell types, an oxidatively stressed environment and endothelial cell dysfunction. 2. Decreased anti-oxidant defences in SCD patients and mice are accompanied by activation of enzymatic (NADPH oxidase, xanthine oxidase) and non-enzymatic (sickle haemoglobin auto-oxidation) sources of reactive oxygen species. The resultant oxidative stress leads to dysfunction/activation of arteriolar and venular endothelial cells, resulting in impaired vasomotor function and blood cell-endothelial cell adhesion. 3. Changes in substrate and cofactor availability for endothelial cell nitric oxide synthase may underlie reactive oxygen- and nitrogen-induced events that contribute to SCD-induced vasculopathy. 4. The emerging role of reactive oxygen and nitrogen species in the pathogenesis of SCD provides a platform for the development of novel agents to treat this painful and lethal disease.
Collapse
Affiliation(s)
- Katherine C Wood
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | |
Collapse
|
1812
|
Benallaoua M, François M, Batteux F, Thelier N, Shyy JYJ, Fitting C, Tsagris L, Boczkowski J, Savouret JF, Corvol MT, Poiraudeau S, Rannou F. Pharmacologic induction of heme oxygenase 1 reduces acute inflammatory arthritis in mice. ACTA ACUST UNITED AC 2007; 56:2585-94. [PMID: 17665394 DOI: 10.1002/art.22749] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the consequences of pharmacologic up-regulation of heme oxygenase 1 (HO-1), and inhibition of HO-1 by injection of an anti-HO-1 small interfering RNA (siRNA), in vivo in the acute phase of a mouse model of nonautoimmune arthritis. METHODS In the K/BxN mouse serum transfer model, which mimics human inflammatory arthritis without lymphocyte influence, HO-1 was up-regulated by intraperitoneal injection of cobalt protoporphyrin IX (CoPP), a potent pharmacologic inducer, and was inhibited using a specific siRNA. The clinical progress of arthritis was monitored by measurement of paw thickness. Interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNFalpha), serum antioxidant, and nitric oxide (NO) levels, prostaglandin E(2) (PGE(2)) production, and matrix metalloproteinase 9 (MMP-9) activity were measured in serum. At the end of the experiments, joints were examined for immunohistopathologic changes. RESULTS Intraperitoneal injection of CoPP alleviated disease symptoms, such as joint swelling, cartilage degradation, and proliferation of inflammatory tissue in joints, in the acute phase of inflammatory arthritis. The CoPP-induced expression of HO-1 in the joints and liver was associated with marked decreases in IL-1beta, IL-6, and TNFalpha levels, PGE(2) secretion, and MMP-9 activity in serum, and with a marked increase in systemic antioxidant activity. In contrast, NO production in serum and inducible NO synthase expression in chondrocytes were not affected by HO-1 induction. Specific inhibition of HO-1 by in vivo delivery of anti-HO-1 siRNA repressed the protective effects. CONCLUSION Our data provide the first evidence that pharmacologically induced up-regulation of HO-1 triggers a robust protective antiinflammatory response in a model of nonautoimmune arthritis in mice. This suggests that exogenously induced HO-1 may have potential as therapy in the acute phase of inflammatory arthritis in humans.
Collapse
Affiliation(s)
- Mourad Benallaoua
- INSERM U 747, and Université Paris Descartes, 45 Rue des Saintes Pères, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1813
|
Zhang L, Rao F, Zhang K, Khandrika S, Das M, Vaingankar SM, Bao X, Rana BK, Smith DW, Wessel J, Salem RM, Rodriguez-Flores JL, Mahata SK, Schork NJ, Ziegler MG, O’Connor DT. Discovery of common human genetic variants of GTP cyclohydrolase 1 (GCH1) governing nitric oxide, autonomic activity, and cardiovascular risk. J Clin Invest 2007; 117:2658-71. [PMID: 17717598 PMCID: PMC1950457 DOI: 10.1172/jci31093] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 05/18/2007] [Indexed: 11/17/2022] Open
Abstract
GTP cyclohydrolase 1 (GCH1) is rate limiting in the provision of the cofactor tetrahydrobiopterin for biosynthesis of catecholamines and NO. We asked whether common genetic variation at GCH1 alters transmitter synthesis and predisposes to disease. Here we undertook a systematic search for polymorphisms in GCH1, then tested variants' contributions to NO and catecholamine release as well as autonomic function in twin pairs. Renal NO and neopterin excretions were significantly heritable, as were baroreceptor coupling (heart rate response to BP fluctuation) and pulse interval (1/heart rate). Common GCH1 variant C+243T in the 3'-untranslated region (3'-UTRs) predicted NO excretion, as well as autonomic traits: baroreceptor coupling, maximum pulse interval, and pulse interval variability, though not catecholamine secretion. In individuals with the most extreme BP values in the population, C+243T affected both diastolic and systolic BP, principally in females. In functional studies, C+243T decreased reporter expression in transfected 3'-UTRs plasmids. We conclude that human NO secretion traits are heritable, displaying joint genetic determination with autonomic activity by functional polymorphism at GCH1. Our results document novel pathophysiological links between a key biosynthetic locus and NO metabolism and suggest new strategies for approaching the mechanism, diagnosis, and treatment of risk predictors for cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Fangwen Rao
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Kuixing Zhang
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Srikrishna Khandrika
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Madhusudan Das
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Sucheta M. Vaingankar
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Xuping Bao
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Brinda K. Rana
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Douglas W. Smith
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Jennifer Wessel
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Rany M. Salem
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Juan L. Rodriguez-Flores
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Sushil K. Mahata
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Nicholas J. Schork
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Michael G. Ziegler
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Daniel T. O’Connor
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| |
Collapse
|
1814
|
Abstract
Despite the fact that septic patients exhibit altered cardiac function, it is not considered a major pathology during sepsis. Thus, the molecular mechanisms underlying sepsis-induced myocardial dysfunction have not been studied extensively. In a polymicrobial septic rat model, +dP/dt and -dP/dt on day 1 were not altered but found depressed later, i.e., at 3 and 7 days postsepsis. Diastolic dysfunction characterized by an elevation of the time constant of left ventricular relaxation, tau, was evident at 1, 3, and 7 days postsepsis. Recent data from our laboratory demonstrated that sepsis-induced cardiodynamic alterations correlated with upregulation of TNF receptor-associated death domain, Bax, Smac (both mitochondrial and cytosolic fractions), total nuclear factor kappaB expression, p38-mitogen-activated protein kinase and c-Jun N-terminal kinase phosphorylation, and cytochrome c levels in the rat heart at 3 and 7 days postsepsis. Data from various laboratories emphasized that molecular myocardial alteration, which occurs during early and late stages of sepsis, needs to be elucidated thoroughly. A poor understanding of myocardial signaling during early sepsis could be one of the main reasons for limited success of pharmacotherapeutic options for sepsis. We anticipate that an increased understanding of pathophysiological mechanisms leading to sepsis-induced myocardial dysfunction would generate new enthusiasm among various research groups in this area of research.
Collapse
Affiliation(s)
- Avadhesh C Sharma
- Cardionome Laboratory, Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246, USA.
| |
Collapse
|
1815
|
Troncoso Brindeiro CM, da Silva AQ, Allahdadi KJ, Youngblood V, Kanagy NL. Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am J Physiol Heart Circ Physiol 2007; 293:H2971-6. [PMID: 17766485 PMCID: PMC3792788 DOI: 10.1152/ajpheart.00219.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In clinical studies, sleep apnea is associated with hypertension, oxidative stress, and increased circulating endothelin-1 (ET-1). We previously developed a model of sleep apnea by exposing rats to eucapnic intermittent hypoxia (IH-C) during sleep, which increases both blood pressure and plasma levels of ET-1. Because similar protocols in mice increase tissue and plasma markers of oxidative stress, we hypothesized that IH-C generation of reactive oxygen species (ROS) contributes to the development of ET-1-dependent hypertension in IH-C rats. To test this, male Sprague-Dawley rats were instrumented with indwelling blood pressure telemeters and drank either plain water or water containing the superoxide dismutase mimetic, Tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, 1 mM). Mean arterial pressure (MAP) and heart rate (HR) were recorded for 3 control days and 14 treatment days with rats exposed 7 h/day to IH-C or air/air cycling (Sham). On day 14, MAP in IH-C rats treated with Tempol (107 +/- 2.29 mmHg) was significantly lower than in untreated IH-C rats (118 +/- 9 mmHg, P < 0.05). Tempol did not affect blood pressure in sham-operated rats (Tempol = 101 +/- 3, water = 101 +/- 2 mmHg). Immunoreactive ET-1 was greater in plasma from IH-C rats compared with plasma from sham-operated rats but was not different from Sham in Tempol-treated IH-C rats. Small mesenteric arteries from IH-C rats but not Tempol-treated IH-C rats had increased superoxide levels as measured by ferric cytochrome c reduction, lucigenin signaling, and dihydroethidium fluorescence. The data show that IH-C increases ET-1 production and vascular ROS levels and that scavenging superoxide prevents both. Thus oxidative stress appears to contribute to increases in ET-1 production and elevated arterial pressure in this rat model of sleep apnea-induced hypertension.
Collapse
|
1816
|
Fu J, Tay SSW, Ling EA, Dheen ST. Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells. J Neurochem 2007; 103:1654-65. [PMID: 17727625 DOI: 10.1111/j.1471-4159.2007.04880.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro. NSCs were exposed to physiological d-glucose concentration (PG, 5 mmol/L), PG with l-glucose (25 mmol/L), or high d-glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy.
Collapse
Affiliation(s)
- Jiang Fu
- Molecular Neurobiology Laboratory, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
1817
|
Saiko P, Szakmary A, Jaeger W, Szekeres T. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 2007; 658:68-94. [PMID: 17890139 DOI: 10.1016/j.mrrev.2007.08.004] [Citation(s) in RCA: 328] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/09/2007] [Accepted: 08/13/2007] [Indexed: 01/30/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene; RV), a dietary constituent found in grapes and wine, exerts a wide variety of pharmacological activities. Because the grape skins are not fermented in the production process of white wines, only red wines contain considerable amounts of this compound. RV is metabolized into sulfated and glucuronidated forms within approximately 15min of entering the bloodstream, and moderate consumption of red wine results in serum levels of RV that barely reach the micromolar concentrations. In contrast, its metabolites, which may be the active principle, circulate in serum for up to 9h. RV has been identified as an effective candidate for cancer chemoprevention due its ability to block each step in the carcinogenesis process by inhibiting several molecular targets such as kinases, cyclooxygenases, ribonucleotide reductase, and DNA polymerases. In addition, RV protects the cardiovascular system by a large number of mechanisms, including defense against ischemic-reperfusion injury, promotion of vasorelaxation, protection and maintenance of intact endothelium, anti-atherosclerotic properties, inhibition of low-density lipoprotein oxidation, and suppression of platelet aggregation, thereby strongly supporting its role in the prevention of coronary disease. Promising data within the use of RV have also been obtained regarding progressive neurodegenerative maladies such as Alzheimer's, Huntington's, and Parkinson's diseases. Because neurotoxicity is often related to mitochondrial dysfunction and may be ameliorated through the inclusion of metabolic modifiers and/or antioxidants, RV may provide an alternative (and early) intervention approach that could prevent further damage. RV induces a multitude of effects that depend on the cell type (e.g., NF-kappaB modulation in cancer cells vs. neural cells), cellular condition (normal, stressed, or malignant), and concentration (proliferative vs. growth arrest), and it can have opposing activities. RV affects whole pathways and sets of intracellular events rather than a single enzyme and, therefore, may be an effective therapy to restore homoestasis. Nonetheless, the question of whether RV or its metabolites can accumulate to bioactive levels in target organs remains to be addressed.
Collapse
Affiliation(s)
- Philipp Saiko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, General Hospital of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | - Akos Szakmary
- Department of Medicine I, Division of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Thomas Szekeres
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, General Hospital of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
1818
|
Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007; 47:253-261. [PMID: 17433488 DOI: 10.1016/j.jhep.2007.02.008] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 02/01/2007] [Accepted: 02/14/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Flavonoids, including quercetin, have been reported to have potent hepatoprotective effects, which may be associated with HO-1 induction. However, since the effect and signaling pathway of quercetin involved in HO-1 induction against alcoholic liver damage are still not fully understood, this is the target of the present study. METHODS Human hepatocytes were incubated with ethanol (100 mM) and quercetin (10-200 microM), and cellular damage and HO-1 activity were measured. Nrf2 expression in cytosolic and nuclear fractions was studied following the incubation with MAPK inhibitor(s). RESULTS Ethanol exposure resulted in a sustained glutathione depletion, malondialdehyde elevation, and evident release of cellular LDH and AST. Quercetin exerted a dose-dependent protective effect against alcoholic oxidative stress, and increased the EC50 of ethanol by approx. 40%, which is parallel to HO-1 induction with quercetin. Zinc protoporphyrin-9 abrogated the protective effect and dramatically enhanced ethanol cytotoxicity. SB203580 (p38 inhibitor) and especially PD98059 (ERK inhibitor) blocked quercetin-derived HO-1 induction and Nrf2 translocation, and subsequently inhibited the quercetin-related protection. CONCLUSIONS HO-1 up-regulation by quercetin protected human hepatocytes from ethanol-induced oxidative stress. Among MAPK signaling pathways, p38 and ERK mediated quercetin-derived Nrf2 translocation into nuclei and subsequent induction of HO-1 activity, and the latter showed a stronger mediating effect.
Collapse
Affiliation(s)
- Ping Yao
- Department of General-, Visceral-, and Transplantation Surgery, Humboldt University, Charité, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
1819
|
Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007; 405:559-68. [PMID: 17456048 PMCID: PMC2267306 DOI: 10.1042/bj20061653] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 11/17/2022]
Abstract
The exposure to non-thermal microwave electromagnetic fields generated by mobile phones affects the expression of many proteins. This effect on transcription and protein stability can be mediated by the MAPK (mitogen-activated protein kinase) cascades, which serve as central signalling pathways and govern essentially all stimulated cellular processes. Indeed, long-term exposure of cells to mobile phone irradiation results in the activation of p38 as well as the ERK (extracellular-signal-regulated kinase) MAPKs. In the present study, we have studied the immediate effect of irradiation on the MAPK cascades, and found that ERKs, but not stress-related MAPKs, are rapidly activated in response to various frequencies and intensities. Using signalling inhibitors, we delineated the mechanism that is involved in this activation. We found that the first step is mediated in the plasma membrane by NADH oxidase, which rapidly generates ROS (reactive oxygen species). These ROS then directly stimulate MMPs (matrix metalloproteinases) and allow them to cleave and release Hb-EGF [heparin-binding EGF (epidermal growth factor)]. This secreted factor activates the EGF receptor, which in turn further activates the ERK cascade. Thus this study demonstrates for the first time a detailed molecular mechanism by which electromagnetic irradiation from mobile phones induces the activation of the ERK cascade and thereby induces transcription and other cellular processes.
Collapse
Key Words
- extracellular-signal-regulated kinase (erk)
- heparin-binding epidermal growth factor (hb-egf)
- matrix metalloproteinase (mmp)
- mobile phone irradiation
- nadh oxidase
- reactive oxygen species (ros)
- dpi, diphenyleneiodonium
- egf, epidermal growth factor
- egfr, egf receptor
- erk, extracellular-signal-regulated kinase
- fcs, fetal calf serum
- gpcr, g-protein-coupled receptor
- hb-egf, heparin-binding egf
- hsp, heat-shock protein
- jnk, c-jun n-terminal kinase
- mapk, mitogen-activated protein kinase
- mek, mapk/erk kinase
- mmp, matrix metalloproteinase
- nac, n-acetylcysteine
- pi3k, phosphoinositide 3-kinase
- pkc, protein kinase c
- ros, reactive oxygen species
- sapk, stress-activated protein kinase
Collapse
Affiliation(s)
- Joseph Friedman
- *Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Kraus
- *Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | - Rony Seger
- *Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
1820
|
Gao M, Kondo F, Murakami T, Xu JW, Ma N, Zhu X, Mori K, Ishida T. 1-Aminocyclopropanecarboxylic acid, an antagonist of N-methyl-D-aspartate receptors, causes hypotensive and antioxidant effects with upregulation of heme oxygenase-1 in stroke-prone spontaneously hypertensive rats. Hypertens Res 2007; 30:249-57. [PMID: 17510507 DOI: 10.1291/hypres.30.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1-Aminocyclopropanecarboxylic acid (ACPC) has been shown to protect neurons against glutamate-induced neurotoxicity by reducing N-methyl-D-aspartate (NMDA) receptor activation. Recent studies have demonstrated that several antagonists of NMDA receptors have important cardiovascular effects. In this study, we examined whether the cardiovascular effects of ACPC involve the role of heme oxygenase-1 (HO-1) and its antioxidant effect in stroke-prone spontaneously hypertensive rats (SHRSP). Male SHRSP were divided into two groups: a control group and an ACPC group administered ACPC at 50 mg/kg per day for 4 weeks by peritoneal injection. Systolic blood pressure (SBP) and mortality of stroke were significantly lower in the ACPC group than in the control group. Urinary Na(+) and Cl(-) excretion and plasma superoxide dismutase (SOD) activity were increased in the ACPC group. Western analysis detected proteins that were immunoreactive to anti-nitrotyrosine antibody and showed lower levels of expression in the cerebral cortex compared to that in the control group. Immunohistochemical analysis revealed that 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the hippocampus and cerebral cortex was reduced in the ACPC group. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) showed that administration of ACPC also significantly decreased the expression of neuronal nitric oxide synthase (nNOS) mRNA in the hippocampus and endotherial nitric oxide synthase (eNOS) mRNA in the cerebral cortex, and drastically increased HO-1 mRNA in the cerebral cortex. Enhanced HO-1 staining on sections from the hippocampus and cerebral cortex was observed in the ACPC group. These data suggest that the normalization by ACPC of blood pressure elevation and mortality of stroke involves induction of the expression of HO-1, which exerts antioxidant and vascular relaxation effects, in SHRSP.
Collapse
Affiliation(s)
- Ming Gao
- Faculty of Pharmaceutical Science, School of Human Environmental Science, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
1821
|
Bouallegue A, Daou GB, Srivastava AK. Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. Am J Physiol Heart Circ Physiol 2007; 293:H2072-9. [PMID: 17644565 DOI: 10.1152/ajpheart.01097.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), in addition to its vasodilator action, has also been shown to antagonize the mitogenic and hypertrophic responses of growth factors and vasoactive peptides such as endothelin-1 (ET-1) in vascular smooth muscle cells (VSMCs). However, the mechanism by which NO exerts its antimitogenic and antihypertrophic effect remains unknown. Therefore, the aim of this study was to determine whether NO generation would modify ET-1-induced signaling pathways involved in cellular growth, proliferation, and hypertrophy in A-10 VSMCs. Treatment of A-10 VSMCs with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP), two NO donors, attenuated the ET-1-enhanced phosphorylation of several key components of growth-promoting and hypertrophic signaling pathways such as ERK1/2, PKB, and Pyk2. On the other hand, inhibition of the endogenous NO generation with N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, increased the ET-1-induced phosphorylation of these signaling components. Since NO mediates its effect principally through a cGMP-soluble guanylyl cyclase (sGC) pathway, we investigated the role of these molecules in NO action. 8-Bromoguanosine 3',5'-cyclic monophosphate, a nonmetabolizable and cell-permeant analog of cGMP, exhibited a effect similar to that of SNAP and SNP. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of sGC, reversed the inhibitory effect of NO on ET-1-induced responses. SNAP treatment also decreased the protein synthesis induced by ET-1. Together, these data demonstrate that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB, and Pyk2 and also antagonized the hypertrophic effects of ET-1. It may be suggested that NO-induced generation of cGMP contributes to the inhibition of ET-1-induced mitogenic and hypertrophic responses in VSMCs.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/embryology
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/metabolism
- Cell Proliferation
- Cells, Cultured
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/metabolism
- Cyclic GMP/pharmacology
- Dose-Response Relationship, Drug
- Endothelin-1/metabolism
- Enzyme Inhibitors/pharmacology
- Focal Adhesion Kinase 2/metabolism
- Guanylate Cyclase/antagonists & inhibitors
- Guanylate Cyclase/metabolism
- Hypertrophy/enzymology
- Hypertrophy/metabolism
- Leucine/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Nitroprusside/pharmacology
- Oxadiazoles/pharmacology
- Phosphorylation
- Protein Biosynthesis
- Proto-Oncogene Proteins c-akt/metabolism
- Quinoxalines/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Signal Transduction
- Soluble Guanylyl Cyclase
Collapse
Affiliation(s)
- Ali Bouallegue
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Technopole Angus Campus, and Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
1822
|
Ji H, Zheng W, Menini S, Pesce C, Kim J, Wu X, Mulroney SE, Sandberg K. Female protection in progressive renal disease is associated with estradiol attenuation of superoxide production. ACTA ACUST UNITED AC 2007; 4:56-71. [PMID: 17584628 DOI: 10.1016/s1550-8579(07)80009-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND Several types of renal disease progress at a faster rate in men compared with women, but the reasons for this sex difference are not well understood. Chronic renal disease is associated with elevated levels of toxic reactive oxygen species (ROS). Superoxide, the major ROS in the kidney, is generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. OBJECTIVE To determine if female protection from renal disease progression is consistent with 17beta-estradiol (E2) attenuation of superoxide production, this study was conducted to assess superoxide production in the renal cortex of male and female control and renal wrap (RW) rats, as well as in ovariectomized rats treated with vehicle or E2. METHODS Sprague-Dawley rats were divided into 2 sham operation male (Sham-M) and female (Sham-F) control groups, and 4 RW hypertensive groups: RW-M; RW-F; RW ovariectomized females treated with vehicle (RW-OVX); and RW ovariectomized females treated with E2, supplied as a 0.24 mg/60-day release pellet (RW-OVX+E2). All groups were maintained on a high-sodium (4% NaCl) diet for 6 weeks. RESULTS Mean (SEM) markers of renal injury and oxidative stress, including urinary protein (mg/24 h: RW-M, 298 [31] vs RW-F, 169 [22]; P < 0.001), microalbuminuria (RW/Sham arbitrary units [AU]/24 h: M, 8.78 [0.58] vs F, 4.31 [1.0]; P < 0.005), and malondialdehyde (nmol/24 h: RW-M, 167 [23] vs RW-F, 117 [8.5]; P < 0.05) levels, as well as mean glomerular volume (microm3 x 10(6): RW-M, 2.25 [0.16] vs RW-F, 1.25 [0.04]; P < 0.001) and the glomerulosclerotic index (AU: RW-M, 2.64 [0.19] vs RW-F, 1.10 [0.09]; P < 0.001) were greater in both control and RW males compared with females in the same treatment groups. Though RW surgery increased mean arterial pressure in both male and female rats, no sex difference was observed. Under these conditions, mean (SEM) renal cortical NADPH oxidase activity was 1.3-fold higher in RW males compared with RW females (relative light units [RLU]/180 sec: RW-M, 4080 [240] vs RW-F, 3200 [260]; P < 0.05). Ovariectomy increased NADPH oxidase activity by 1.4-fold (RLU/180 sec: RW-OVX, 4520 [184]; P < 0.01) under conditions in which the mean glomerular volume and glomerulosclerotic index were both increased by 1.5-fold, whereas E2 replacement (RLU/180 sec: RW-OVX+E2, 2745 [440]) prevented these effects. Furthermore, the effects on NADPH oxidase activity were mirrored by changes in the protein abundance of NADPH oxidase subunit p22P(phox). CONCLUSION These results suggest that E2 protects the female kidney in part by attenuating injury-induced increases in renal superoxide production.
Collapse
Affiliation(s)
- Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1823
|
Murillo M, Carmona-Cuenca I, del Castillo G, Ortiz C, Roncero C, Sánchez A, Fernández M, Fabregat I. Activation of NADPH oxidase by transforming growth factor-beta in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-kappaB-dependent mechanism. Biochem J 2007; 405:251-9. [PMID: 17407446 PMCID: PMC1904531 DOI: 10.1042/bj20061846] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The TGF-beta (transforming growth factor-beta) induces survival signals in foetal rat hepatocytes through transactivation of EGFR (epidermal growth factor receptor). The molecular mechanism is not completely understood, but both activation of the TACE (tumour necrosis factor alpha-converting enzyme)/ADAM17 (a disintegrin and metalloproteinase 17; one of the metalloproteases involved in shedding of the EGFR ligands) and up-regulation of TGF-alpha and HB-EGF (heparin-binding epidermal growth factor-like growth factor) appear to be involved. In the present study, we have analysed the molecular mechanisms that mediate up-regulation of the EGFR ligands by TGF-beta in foetal rat hepatocytes. The potential involvement of ROS (reactive oxygen species), an early signal induced by TGF-beta, and the existence of an amplification loop triggered by initial activation of the EGFR, have been studied. Results indicate that DPI (diphenyleneiodonium) and apocynin, two NOX (NADPH oxidase) inhibitors, and SB431542, an inhibitor of the TbetaR-I (TGF-beta receptor I), block up-regulation of EGFR ligands and Akt activation. Different members of the NOX family of genes are expressed in hepatocytes, included nox1, nox2 and nox4. TGF-beta up-regulates nox4 and increases the levels of Rac1 protein, a known regulator of both Nox1 and Nox2, in a TbetaR-I-dependent manner. TGF-beta mediates activation of the nuclear factor-kappaB pathway, which is inhibited by DPI and is required for up-regulation of TGF-alpha and HB-EGF. In contrast, EGFR activation is not required for TGF-beta-induced up-regulation of those ligands. Considering previous work that has established the role of ROS in apoptosis induced by TGF-beta in hepatocytes, the results of the present study indicate that ROS might mediate both pro- and anti-apoptotic signals in TGF-beta-treated cells.
Collapse
Affiliation(s)
- Miguel M. Murillo
- *Fundació Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centre d'Oncologia Molecular, L'Hospitalet, Barcelona, Spain
- †Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Carmona-Cuenca
- †Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Gaelle del Castillo
- †Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Conrad Ortiz
- *Fundació Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centre d'Oncologia Molecular, L'Hospitalet, Barcelona, Spain
| | - César Roncero
- †Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Aránzazu Sánchez
- †Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Margarita Fernández
- †Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Fabregat
- *Fundació Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centre d'Oncologia Molecular, L'Hospitalet, Barcelona, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
1824
|
Zhou L, Shao Y, Huang Y, Yao T, Lu LM. 17β-Estradiol inhibits angiotensin II-induced collagen synthesis of cultured rat cardiac fibroblasts via modulating angiotensin II receptors. Eur J Pharmacol 2007; 567:186-92. [PMID: 17511985 DOI: 10.1016/j.ejphar.2007.03.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 02/03/2023]
Abstract
Circulating endogenous estrogen is considered to be cardiovascular protective, but the underlying mechanisms remain obscure. The cardiac fibroblasts, the most abundant cell type present in the heart, are responsible for the deposition of extracellular matrix. Angiotensin II has been known to stimulate cardiac collagen gene expression. The present study was designed to investigate the effect of 17beta-estradiol on the angiotensin II-induced proliferation and collagen synthesis in cultured cardiac fibroblasts by using real-time polymerase chain reaction (PCR), Western blot and 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide proliferation assay. Angiotensin II increased the cell proliferation and synthesis of collagen types I and III. Angiotensin II up-regulated the gene expression of the angiotensin AT(1) receptor and down-regulated the gene expression of the angiotensin AT(2) receptor in cardiac fibroblasts. The effects of angiotensin II was abolished by the angiotensin AT(1) receptor antagonist, losartan, but not by the angiotensin AT(2) receptor antagonist, PD 123319. 17beta-estradiol prevented increases in proliferation and attenuated the collagen synthesis in response to angiotensin II. The increased AT(1) receptor mRNA levels and decreased AT(2) receptor mRNA levels were partially reversed by 17beta-estradiol treatment. In conclusion, the down-regulation of angiotensin AT(1) receptor expression and function is likely to be an important mechanism accounting for the inhibitory effect of 17beta-estradiol on angiotensin II-stimulated proliferation and collagen synthesis in cardiac fibroblasts. This effect may confer at least in part the cardiac protective action of 17beta-estradiol under pathological conditions with increased activity of the rennin-angiotensin system.
Collapse
MESH Headings
- Angiotensin II/antagonists & inhibitors
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen/biosynthesis
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fulvestrant
- Heart/drug effects
- Imidazoles/pharmacology
- Indicators and Reagents
- Losartan/pharmacology
- Myocardium/cytology
- Myocardium/metabolism
- Pyridines/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Li Zhou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
1825
|
Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 2007; 113:47-63. [PMID: 17555404 DOI: 10.1042/cs20070108] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
NO produced by eNOS (endothelial nitric oxide synthase) is a key mediator of vascular homoeostasis. NO bioavailability is reduced early in vascular disease states, such as hypercholesterolaemia, diabetes and hypertension, and throughout the progression of atherosclerosis. This is a result of both reduced NO synthesis and increased NO consumption by reactive oxygen species. eNOS enzymatic activity appears to be determined by the availability of its cofactor BH4 (tetrahydrobiopterin). When BH4 levels are adequate, eNOS produces NO; when BH4 levels are limiting, eNOS becomes enzymatically uncoupled and generates superoxide, contributing to vascular oxidative stress and endothelial dysfunction. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus oxidative degradation in dysfunctional endothelium. Augmenting vascular BH4 levels by pharmacological supplementation, by enhancing the rate of de novo biosynthesis or by measures to reduce BH4 oxidation have been shown in experimental studies to enhance NO bioavailability. Thus BH4 represents a potential therapeutic target for preserving eNOS function in vascular disease.
Collapse
Affiliation(s)
- Tim S Schmidt
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
1826
|
Chen S, Khan ZA, Karmazyn M, Chakrabarti S. Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy. Diabetes Metab Res Rev 2007; 23:356-67. [PMID: 17024690 DOI: 10.1002/dmrr.689] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cardiac hypertrophy is a key structural feature of diabetic cardiomyopathy. Previous studies have shown that diabetes-induced endothelin-1 (ET-1) and sodium hydrogen exchanger-1 (NHE-1) mediate structural and functional deficits in the heart. In order to gain a mechanistic understanding of the role of ET-1 and NHE-1 in cardiomyocyte hypertrophy, we have utilized an in vitro endothelial-myocyte co-culture system to reveal cellular interactions that may arbitrate cardiomyocyte deficits in diabetes. METHODS AND RESULTS Rat ventricular cardiomyocytes were cultured in high glucose levels, which caused cellular hypertrophy. Hypertrophic markers, atrial natruritic peptide (ANP) and angiotensinogen (Agt), as well as inducible nitric oxide synthase (iNOS) were upregulated by high glucose. Treatment of cells with ET antagonist bosentan and NHE-1 inhibitor cariporide prevented glucose-induced cardiomyocyte hypertrophy and expression of ANP, Agt, and iNOS. Bosentan and cariporide treatment of cardiomyocytes co-cultured with endothelial cells produced a more pronounced normalization of glucose-induced changes as compared to cardiomyocyte cultured alone. To further explore the signaling mechanisms involved, we investigated the mitogen activated protein kinase (MAPK) pathway and its cross-interaction with signaling proteins known to be altered in diabetes. Our results indicate that MAPK activation is associated with cardiomyocyte hypertrophy and is inhibited by bosentan, cariporide, as well as protein kinase C inhibiton. Furthermore, MAPK activation was found to be upstream of the transcription factors, nuclear factor-kappaB and activating protein-1. CONCLUSION These results demonstrate that ET-1 and NHE-1 may mediate cardiomyocyte hypertrophy via MAPK activation and provide an insight into the pathogenesis of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, University of Western Ontario, Ontario, Canada
| | | | | | | |
Collapse
|
1827
|
Yang X, Lee PJ, Long L, Trembath RC, Morrell NW. BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. Am J Respir Cell Mol Biol 2007; 37:598-605. [PMID: 17600318 DOI: 10.1165/rcmb.2006-0360oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional cytokines, which play a key role in vascular development and remodeling. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has been shown to be protective against vascular and lung injury. In a microarray study, we identified HO-1 as a major target of BMP4 signaling in human pulmonary artery smooth muscle cells (PASMCs), and confirmed the induction of HO-1 mRNA and protein by RT-PCR and Western blotting, respectively. Immunoblotting demonstrated that incubation of PASMCs with BMP4 rapidly phosphorylated Smad1/5 and activated the mitogen-activated protein kinases, p38(MAPK) and ERK1/2, in PASMCs, but not JNK. Using pathway selective inhibitors, the induction of HO-1 mRNA and protein was shown to be dependent on activation of p38(MAPK). Induction was independent of Smad1/5 signaling, since HO-1 mRNA and protein induction was intact in PASMCs harboring mutations in the kinase domain of BMP type II receptor, with disrupted Smad signaling. In addition, adenoviral transfection of kinase-deficient BMPR-II also failed to inhibit BMP4-induced HO-1 expression. In functional studies, the HO-1 inhibitor, ZnPP-IX, partly reversed the growth-inhibitory effects of BMP4, and overexpression of HO-1 in PASMCs inhibited serum-stimulated [3H]-thymidine incorporation. Taken together, these findings show that HO-1 is an important Smad-independent target of BMP signaling in vascular smooth muscle. Inhibition of HO-1 function or expression will further increase the proproliferative capacity of BMPR-II-deficient PASMCs and may thus represent a potential "second hit" necessary for disease manifestation.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Medicine, University of Cambridge, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
1828
|
Azar ZM, Mehdi MZ, Srivastava AK. Insulin-like growth factor type-1 receptor transactivation in vasoactive peptide and oxidant-induced signaling pathways in vascular smooth muscle cells. Can J Physiol Pharmacol 2007; 85:105-11. [PMID: 17487250 DOI: 10.1139/y06-101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transactivation of epidermal growth factor receptor (EGFR) is a well-documented mechanism by which vasoactive peptides and H2O2 elicit their cellular responses. However, a role for the insulin-like growth factor type-1 receptor (IGF-1R) transactivation in mediating the effects of angiotensin II (Ang II) and H2O2 in vascular smooth muscle cells from different artery types have also been recently recognized. By using a series of pharmacological inhibitors of various growth factor receptor tyrosine kinases and a direct analysis of the phosphorylation status of the beta-subunit of IGF-1R, a requirement of this growth factor receptor in Ang II and H2O2 response has been demonstrated. This review discusses some of the studies that highlight the importance of IGF-1R transactivation in mediating Ang II- and H2O2-induced mitogen-activated protein kinase and protein kinase B signaling pathways.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Arteries/metabolism
- Humans
- Hydrogen Peroxide/pharmacology
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidants/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Vasoconstrictor Agents/metabolism
Collapse
Affiliation(s)
- Zeina M Azar
- Montreal Diabetes Research Centre, Centre hospitalier de l'Université de Montréal (CHUM)- Angus Campus and Department of Medicine, Université de Montréal, 2901, Rachel East, Montreal, QC H1W 4A4, Canada
| | | | | |
Collapse
|
1829
|
Wang LS, Tang NP, Zhu HJ, Zhou B, Yang L, Wang B. Endothelin-converting enzyme-1b C-338A polymorphism is associated with the increased risk of coronary artery disease in Chinese population. Clin Chim Acta 2007; 384:75-9. [PMID: 17618613 DOI: 10.1016/j.cca.2007.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Endothelin-converting enzyme-1 (ECE-1), the key enzyme responsible for endothelin-1 generation, has been linked to coronary artery disease (CAD). Recently, a genetic polymorphism (ECE-1b C-338A) located in ECE-1 gene promoter was identified. However, it is unclear whether this polymorphism is associated with the risk of CAD. METHODS We conducted a study with CAD patients and controls matched by age and sex to examine the prevalence of ECE-1b C-338A polymorphism in CAD. RESULTS The frequencies of ECE-1b-338CC, CA, and AA genotypes in cases (40.1%, 42.2%, and 17.7%) were significantly different from those of controls (50.6%, 40.5%, and 8.9%, chi2=9.989, P=0.007). Subjects with the variant genotypes (CA+ AA) had a 58% increased risk of CAD relative to CC carriers (adjusted OR=1.58, 95% CI=1.07-2.32). Furthermore, the adjusted OR of AA genotype for CAD was 2.33 (95% CI=1.25-4.35). In stratified analyses, the A allele was significantly associated with increased risk of CAD in female (adjusted OR=2.86, 95% CI=1.40-5.84) and subjects with age >or= 64 y (adjusted OR=2.96, 95% CI=1.73-5.08). Moreover, the frequency of patients with variant genotypes increased gradually from single- to triple-vessel disease although without statistical significance (P=0.069 for trend). CONCLUSION Our results suggested that ECE-1b-338C to A variant might be associated with increased risk of CAD in Chinese population.
Collapse
Affiliation(s)
- Lian-Sheng Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | | | | | | | | | | |
Collapse
|
1830
|
Yogi A, Callera GE, Montezano ACI, Aranha AB, Tostes RC, Schiffrin EL, Touyz RM. Endothelin-1, but not Ang II, activates MAP kinases through c-Src independent Ras-Raf dependent pathways in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2007; 27:1960-7. [PMID: 17569879 DOI: 10.1161/atvbaha.107.146746] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelin-1 (ET-1) and angiotensin II (Ang II) activate common signaling pathways to promote changes in vascular reactivity, remodeling, inflammation, and oxidative stress. Here we sought to determine whether upstream regulators of mitogen-activated protein kinases (MAPKs) are differentially regulated by ET-1 and Ang II focusing on the role of c-Src and the small GTPase Ras. METHODS AND RESULTS Mesenteric vascular smooth muscle cells (VSMCs) from mice with different disruption levels in the c-Src gene (c-Src(+/-) and c-Src(-/-)) and wild-type (c-Src(+/+)) were used. ET-1 and Ang II induced extracellular signal-regulated kinase (ERK) 1/2, SAPK/JNK, and p38MAPK phosphorylation in c-Src(+/+) VSMCs. In VSMCs from c-Src(+/-) and c-Src(-/-), Ang II effects were blunted, whereas c-Src deficiency had no effect in ET-1-induced MAPK activation. Ang II but not ET-1 induced c-Src phosphorylation in c-Src(+/+) VSMCs. Activation of c-Raf, an effector of Ras, was significantly increased by ET-1 and Ang II in c-Src(+/+) VSMCs. Ang II but not ET-1-mediated c-Raf phosphorylation was inhibited by c-Src deficiency. Knockdown of Ras by siRNA inhibited both ET-1 and Ang II-induced MAPK phosphorylation. CONCLUSIONS Our data indicate differential regulation of MAPKs by distinct G protein-coupled receptors. Whereas Ang II has an obligatory need for c-Src, ET-1 mediates its actions through a c-Src-independent Ras-Raf-dependent pathway for MAPK activation. These findings suggest that Ang II and ET-1 can activate similar signaling pathways through unrelated mechanisms. MAP kinases are an important point of convergence for Ang II and ET-1.
Collapse
Affiliation(s)
- A Yogi
- Kidney Research Centre, University of Ottawa/Ottawa Health Research Institute, 451 Smyth Rd, Ottawa, ON, KIH 8M5
| | | | | | | | | | | | | |
Collapse
|
1831
|
Li H, Zhang H, Hancox J, Kozlowski R. An outwardly rectifying anionic background current in atrial myocytes from the human heart. Biochem Biophys Res Commun 2007; 359:765-70. [PMID: 17560943 PMCID: PMC1899526 DOI: 10.1016/j.bbrc.2007.05.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 11/11/2022]
Abstract
This report describes a hitherto unreported anionic background current from human atrial cardiomyocytes. Under whole-cell patch-clamp with anion-selective conditions, an outwardly rectifying anion current (IANION) was observed, which was larger with iodide than nitrate, and with nitrate than chloride as charge carrier. In contrast with a previously identified background anionic current from small mammal cardiomyocytes, IANION was not augmented by the pyrethroid tefluthrin (10 μM); neither was it inhibited by hyperosmolar external solution nor by DIDS (200 μM); thus IANION was not due to basal activity of volume-sensitive anion channels. IANION was partially inhibited by the Cl− channel blockers NPPB (50 μM) and Gly H-101 (30 μM). Incorporation of IANION into a human atrial action potential (AP) simulation led to depression of the AP plateau, accompanied by alterations to plateau inward calcium current, and to AP shortening at 50% but not 90% of complete repolarization, demonstrating that IANION can influence the human atrial AP profile.
Collapse
Affiliation(s)
- H. Li
- Department of Pharmacology, Bristol Heart Institute, School of Medical Sciences, The University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - H. Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester M60 1QD, UK
| | - J.C. Hancox
- Department of Physiology, Bristol Heart Institute, School of Medical Sciences, The University of Bristol, University Walk, Bristol BS8 1TD, UK
- Corresponding authors.
| | - R.Z. Kozlowski
- Department of Pharmacology, Bristol Heart Institute, School of Medical Sciences, The University of Bristol, University Walk, Bristol BS8 1TD, UK
- Corresponding authors.
| |
Collapse
|
1832
|
Liu Y, Li M, Warburton RR, Hill NS, Fanburg BL. The 5-HT transporter transactivates the PDGFbeta receptor in pulmonary artery smooth muscle cells. FASEB J 2007; 21:2725-34. [PMID: 17504974 DOI: 10.1096/fj.06-8058com] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serotonin (5-HT) stimulates smooth muscle cell growth through 5-HT receptors and the 5-HT transporter (5-HTT), and has been associated with pulmonary hypertension (PH). Platelet-derived growth factor receptors (PDGFR) have also been associated with PH. We present evidence for the first time that 5-HT transactivates PDGFRbeta through the 5-HTT in pulmonary artery (PA) SMCs. Inhibition of PDGFR kinase with imatinib or AG1296 blocks 5-HT-stimulated PDGFRbeta phosphorylation. 5-HTT inhibitors and the Na+/K+-ATPase inhibitor ouabain, but not 5-HT2 and 5-HT1B/1D receptor inhibitors, block PDGFRbeta activation by 5-HT. Notably, 5-HTT binds the PDGFRbeta upon 5-HT stimulation and the 5-HTT inhibitor fluoxetine blocks both the binding and PDGDRbeta activation. Activation of PDGFRbeta may occur through oxidation of a catalytic cysteine of tyrosine phosphatase. 5-HT-activated PDGFRbeta phosphorylation is blocked by the antioxidant N-acetyl-L-cysteine and the NADPH oxidase inhibitor, DPI. Inhibition of PDGFR kinase with imatinib or AG1296 significantly inhibits SMC proliferation and migration induced by 5-HT in vitro. Infusion of 5-HT by miniosmotic pumps enhances PDGFRbeta activation in mouse lung in vivo. In summary, these results demonstrate that 5-HT transactivates PDGFRbeta in PASMCs leading to SMC proliferation and migration, and may be an important signaling pathway in the production of PH in vivo.
Collapse
Affiliation(s)
- Yinglin Liu
- Pulmonary, Critical Care and Sleep Division, Tufts-New England Medical Center, 750 Washington St., Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
1833
|
van Deel ED, Merkus D, van Haperen R, de Waard MC, de Crom R, Duncker DJ. Vasomotor control in mice overexpressing human endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 2007; 293:H1144-53. [PMID: 17496213 DOI: 10.1152/ajpheart.00773.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) plays a key role in regulating vascular tone. Mice overexpressing endothelial NO synthase [eNOS-transgenic (Tg)] have a 20% lower systemic vascular resistance (SVR) than wild-type (WT) mice. However, because eNOS enzyme activity is 10 times higher in tissue homogenates from eNOS-Tg mice, this in vivo effect is relatively small. We hypothesized that the effect of eNOS overexpression is attenuated by alterations in NO signaling and/or altered contribution of other vasoregulatory pathways. In isoflurane-anesthetized open-chest mice, eNOS inhibition produced a significantly greater increase in SVR in eNOS-Tg mice compared with WT mice, consistent with increased NO synthesis. Vasodilation to sodium nitroprusside (SNP) was reduced, whereas the vasodilator responses to phosphodiesterase-5 blockade and 8-bromo-cGMP (8-Br-cGMP) were maintained in eNOS-Tg compared with WT mice, indicating blunted responsiveness of guanylyl cyclase to NO, which was supported by reduced guanylyl cyclase activity. There was no evidence of eNOS uncoupling, because scavenging of reactive oxygen species (ROS) produced even less vasodilation in eNOS-Tg mice, whereas after eNOS inhibition the vasodilator response to ROS scavenging was similar in WT and eNOS-Tg mice. Interestingly, inhibition of other modulators of vascular tone [including cyclooxygenase, cytochrome P-450 2C9, endothelin, adenosine, and Ca-activated K(+) channels] did not significantly affect SVR in either eNOS-Tg or WT mice, whereas the marked vasoconstrictor responses to ATP-sensitive K(+) and voltage-dependent K(+) channel blockade were similar in WT and eNOS-Tg mice. In conclusion, the vasodilator effects of eNOS overexpression are attenuated by a blunted NO responsiveness, likely at the level of guanylyl cyclase, without evidence of eNOS uncoupling or adaptations in other vasoregulatory pathways.
Collapse
Affiliation(s)
- Elza D van Deel
- Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
1834
|
Abstract
BACKGROUND Myosin-induced autoimmune myocarditis of rats is a model of human dilated cardiomyopathy. Resveratrol is a natural polyphenol found in grapes and wine that is reported to have cardioprotective and immunomodulatory effects. METHODS AND RESULTS To examine the effect of resveratrol on myocarditis, vehicle or resveratrol (50 mg/kg per day) was administered to cardiac myosin immunized rats 1 day before the immunization. At 14 days after immunization, resveratrol had preserved cardiac function of myosin-immunized rats according to echocardiographic analysis. The heart weight/tibial length ratio of vehicle-treated myosin-immunized rats was increased by 1.8-fold compared with unimmunized rats, and resveratrol attenuated the heart weight increase. Resveratrol significantly decreased cellular infiltration, fibrosis, and expression of inflammatory cytokines in the myocardium. Expressions of antioxidant genes were increased in myosin-immunized hearts, and resveratrol decreased those expressions. Resveratrol also attenuated myocarditis 21 days after immunization. SIRT1, a potential effector of resveratrol, was increased in the myocardium of myosin-immunized rats compared with unimmunized rats. The SIRT1 protein was localized mainly in infiltrating mononuclear cells. CONCLUSIONS Resveratrol significantly ameliorated myocardial injury and preserved cardiac function in a rat model of autoimmune myocarditis. Resveratrol may be a therapeutic modality for myocarditis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Department of Internal Medicine and Cardiology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | |
Collapse
|
1835
|
Xu D, Zhang S, Foster DJR, Wang J. THE EFFECTS OF ISOSTEVIOL AGAINST MYOCARDIUM INJURY INDUCED BY ISCHAEMIA?REPERFUSION IN THE ISOLATED GUINEA PIG HEART. Clin Exp Pharmacol Physiol 2007; 34:488-93. [PMID: 17439420 DOI: 10.1111/j.1440-1681.2007.04599.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. This study aimed to investigate the protective effects of isosteviol against myocardial ischaemia-reperfusion (IR) injury and its effects on mitochondrial adenosine triphosphate (ATP)-sensitive potassium channel (mitoK(ATP)) activity in vitro. 2. Groups of eight guinea pigs were treated as follows: constant perfusion control (PC), IR control, ischaemic preconditioning (IPC) + IR, isosteviol (50, 250 or 500 nmol) + IR, 5-hydroxydecanoate acid (5-HD) (5 micromol) + isosteviol (500 nmol) + IR. The guinea pig heart was isolated and perfused in Langendorff mode with modified Tyrode solution at a flow rate of 10 mL/min. Ischaemia was introduced for 30 min followed by reperfusion for 20 min. Cardiac function, coronary arterial flow rate, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in the perfusate were measured prior to ischaemia and at the end of reperfusion. 3. There were no significant (P > 0.05) changes in cardiac function or markers of cell damage (i.e. activities of LDH and CK) in the PC group. In contrast, cardiac function was adversely affected in the IR group, with significant (P < 0.05) decreases in left ventricular developing pressure (LVDevP), dP/dt(max) and dP/dt(min) compared with baseline and the PC group. In addition, there were increases in activity of LDH (20%) and CK (67%) compared with baseline and the PC group. 4. Ischaemic preconditioning and pretreatment with isosteviol, at all dose levels, resulted in a significant (P < 0.05) attenuation of IR injury. Lactate dehydrogenase and CK activities were not significantly (P < 0.05) different compared with baseline. Isosteviol did not increase coronary flow, suggesting that the protective effect of isosteviol on the myocardium was not mediated by dilation of the coronary blood vessels. 5. Pretreatment with the mitoK(ATP) blocker 5-HD partially antagonized the effects of 500 nmol isosteviol, with a statistically significant attenuation of its protective effects on HR, LVDevP, dP/dt(max) and dP/dt(min) compared with isosteviol alone pretreatment. 6. The IR injury on the Langendorff perfused guinea pig heart was alleviated by isosteviol, which appears to mediate its effects through mitoK(ATP) channels. Future research might aim to investigate the interaction of isosteviol with mitoK(ATP) channels in order to clarify its mechanism of action.
Collapse
Affiliation(s)
- Deyi Xu
- Department of Pharmacology, Southeast University, Nanjing, China
| | | | | | | |
Collapse
|
1836
|
Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 2007. [PMID: 17002597 DOI: 10.1146/annurev.pharmtox.47.120505.105134.contrasting] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
First identified as a powerful vasoconstrictor, endothelin has an extremely diverse set of actions that influence homeostatic mechanisms throughout the body. Two receptor subtypes, ET(A) and ET(B), which usually have opposing actions, mediate the actions of endothelin. ET(A) receptors function to promote vasoconstriction, growth, and inflammation, whereas ET(B) receptors produce vasodilation, increases in sodium excretion, and inhibit growth and inflammation. Potent and selective receptor antagonists have been developed and have shown promising results in the treatment of cardiovascular diseases such as pulmonary arterial hypertension, acute and chronic heart failure, hypertension, renal failure, and atherosclerosis. However, results are often contradictory and complicated because of the tissue-specific vasoconstrictor actions of ET(B) receptors and the fact that endothelin is an autocrine and paracrine factor whose activity is difficult to measure in vivo. Considerable questions remain regarding whether ET(A)-selective or nonselective ET(A)/ET(B) receptor antagonists would be useful in a range of clinical settings.
Collapse
Affiliation(s)
- Markus P Schneider
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
1837
|
Nana-Sinkam SP, Lee JD, Sotto-Santiago S, Stearman RS, Keith RL, Choudhury Q, Cool C, Parr J, Moore MD, Bull TM, Voelkel NF, Geraci MW. Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am J Respir Crit Care Med 2007; 175:676-85. [PMID: 17255567 PMCID: PMC1899287 DOI: 10.1164/rccm.200605-724oc] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 01/19/2007] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Impaired endothelial cell-dependent vasodilation, inflammation, apoptosis, and proliferation are manifestations of endothelial dysfunction in chronic obstructive pulmonary disease (COPD). Prostacyclin (PGI(2)) is a major product of the cyclooxygenase pathway with potent vasodilatory and antimitogenic properties and may be relevant to endothelial dysfunction in COPD. OBJECTIVES To determine if PGI(2) expression is altered in smoking-related lung disease and if it may be protective in COPD-associated endothelial dysfunction. METHODS We evaluated, by immunohistochemistry, Western blotting, and polymerase chain reaction, human emphysema tissue compared with normal tissue for expression of prostacyclin synthase (PGI(2)S). We examined the effects of cigarette smoke extract (CSE) and aldehyde components on eicosanoid expression in primary human pulmonary microvascular endothelial cells. Finally, we used a murine model of lung-specific PGI(2)S overexpression and in vitro studies to determine if PGI(2) expression has protective effects on cigarette smoke-induced endothelial apoptosis. MEASUREMENTS AND MAIN RESULTS Human emphysema lung tissue exhibited lower PGI(2)S expression within the pulmonary endothelium than in normal lung. In vitro studies demonstrated that CSE, and in particular the alpha,beta unsaturated aldehyde acrolein, suppressed PGI(2)S gene expression, whereas CSE significantly induced the upstream mediators COX-2 and cytosolic phospholipase A2 in human pulmonary microvascular endothelial cells. Mice with lung-specific PGI(2)S overexpression exhibited less endothelial apoptosis after chronic smoke exposure. In vitro, iloprost exhibited protective effects on CSE-induced apoptosis. CONCLUSIONS PGI(2) has protective effects in the pulmonary vasculature after acute and chronic cigarette smoke exposure. An imbalance in eicosanoid expression may be important to COPD-associated endothelial dysfunction.
Collapse
Affiliation(s)
- S Patrick Nana-Sinkam
- The Ohio State University, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, 201 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1838
|
Clerk A, Kemp TJ, Zoumpoulidou G, Sugden PH. Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiol Genomics 2007; 29:118-27. [PMID: 17148688 DOI: 10.1152/physiolgenomics.00168.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High levels of oxidative stress promote cardiac myocyte death, though lower levels are potentially cytoprotective/anabolic. We examined the changes in gene expression in rat neonatal cardiac myocytes exposed to apoptotic (0.2 mM) or nontoxic (0.04 mM) concentrations of H2O2(2, 4, or 24 h) using Affymetrix microarrays. Using U34B arrays, we identified a ubiquitously expressed, novel H2O2-responsive gene [putative peroxide-inducible transcript 1 (Perit1)], which generates two alternatively spliced transcripts. Using 230 2.0 arrays, H2O2(0.04 mM) promoted significant changes in expression of only 32 genes, all of which were seen with 0.2 mM H2O2. We failed to detect any increase in the rate of protein synthesis in cardiac myocytes exposed to <0.1 mM H2O2, further suggesting that global, low concentrations of H2O2are not anabolic in this system. H2O2(0.2 mM) promoted significant ( P < 0.05, >1.75-fold) changes in expression of 649 mRNAs and 187 RNAs corresponding to no established gene. Of the mRNAs, 114 encoded transcriptional regulators including Krüppel-like factors (Klfs). Quantitative PCR independently verified the changes in Klf expression. Thus, H2O2-induced cardiac myocyte apoptosis is associated with dynamic changes in gene expression. The expression of these genes and their protein products potentially influences the progression of the apoptotic response.
Collapse
Affiliation(s)
- Angela Clerk
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | | | | | |
Collapse
|
1839
|
Reyes-Martin P, Alique M, Parra T, Hornedo JPD, Lucio-Cazana J. Cyclooxygenase-independent inhibition of H2O2-induced cell death by S-ketoprofen in renal cells. Pharmacol Res 2007; 55:295-302. [PMID: 17291778 DOI: 10.1016/j.phrs.2006.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 01/15/2023]
Abstract
The stress response of the distal tubule to oxidative attack may be relevant to recovery from acute renal failure. In distal tubular Madin-Darby cells (MDCK), H(2)O(2) induced up-regulation of cyclooxygenases (COX-1 and COX-2), prostaglandin-E(2) production and caspase-independent cell death. Cell death was inhibited by S-ketoprofen, but not by the much weaker COX inhibitor R-ketoprofen. Interestingly, we identified 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)), a peroxisome-proliferator activated receptor-gamma agonist, as a lethal prostaglandin whose effect was reproduced by the PPAR-gamma agonist ciglitazone. Nevertheless, H(2)O(2)-induced cell death was unaffected by other non-steroidal anti-inflammatory drugs (NSAIDs) or all-trans-retinoic acid. Moreover, c-Jun-N-terminal kinase inhibitor SP600125 prevented 15-deoxy-Delta(12,14)-PGJ(2)-induced cell death, but not H(2)O(2)-induced cell death. PPAR-gamma antagonist GW9662 showed no affect on the cell death. These results indicated that protection by S-ketoprofen was COX-independent and PPARgamma independent. Moreover, the IC(50) value of the action of S-ketoprofen for the inhibition of H(2)O(2)-induced MDCK cell death ( approximately equal 140microM) was much higher than the IC(50) value for the inhibition of COX-1 and COX-2 activities ( approximately equal 1microM). Further design of S-ketoprofen derivatives devoid of COX inhibitory activity will give opportunity to protect the kidney against oxidative attack while avoiding unwanted effects of NSAID.
Collapse
|
1840
|
Nurkiewicz TR, Boegehold MA. High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1550-6. [PMID: 17138723 DOI: 10.1152/ajpregu.00703.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle arterioles of normotensive rats fed a high salt diet, the bioavailability of endothelium-derived nitric oxide (NO) is reduced by superoxide anion. Because the impact of dietary salt on resistance vessels in other species is largely unknown, we investigated endothelium-dependent dilation and oxidant activity in spinotrapezius muscle arterioles of C57BL/6J mice fed normal (0.45%, NS) or high salt (7%, HS) diets for 4 wk. Mean arterial pressure in HS mice was not different from that in NS mice, but the magnitude of arteriolar dilation in response to different levels of ACh was 42–57% smaller in HS mice than in NS mice. Inhibition of nitric oxide synthase (NOS) with NG monomethyl l-arginine (l-NMMA) significantly reduced resting diameters and reduced responses to ACh (by 45–63%) in NS mice but not in HS mice. Arteriolar wall oxidant activity, as assessed by tetranitroblue tetrazolium reduction or hydroethidine oxidation, was greater in HS mice than in NS mice. Exposure to the superoxide scavenger 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO) + catalase reduced this oxidant activity to normal and restored normal arteriolar responsiveness to ACh in HS mice but had no effect in NS mice. l-NMMA also restored arteriolar oxidant activity to normal in HS mice. ACh further increased arteriolar oxidant activity in HS mice but not in NS mice, and this effect was prevented with l-NMMA. These data suggest that a high salt diet promotes increased generation of superoxide anion from NOS in the murine skeletal muscle microcirculation, thus impairing endothelium-dependent dilation through reduced NO bioavailability.
Collapse
Affiliation(s)
- Timothy R Nurkiewicz
- Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, PO Box 9105, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506-9105, USA
| | | |
Collapse
|
1841
|
Mokni M, Elkahoui S, Limam F, Amri M, Aouani E. Effect of Resveratrol on Antioxidant Enzyme Activities in the Brain of Healthy Rat. Neurochem Res 2007; 32:981-7. [PMID: 17401679 DOI: 10.1007/s11064-006-9255-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
We have studied the effect of resveratrol on lipoperoxidation and antioxidant enzyme activity level in the brain of healthy rats. When intraperitoneally administered, resveratrol significantly and dose dependently decreased brain malondialdehyde level. Resveratrol also increased in a dose-dependent way brain superoxide dismutase, catalase and peroxidase activities. Optimal effect on antioxidant enzyme and lipoperoxidation products were obtained with resveratrol concentration of 12.5 mg/kg body wt. Native polyacrylamide gel electrophoresis analysis of antioxidant isoenzymes revealed that resveratrol up regulated at least two acidic superoxide dismutase isoforms called A(1) and A(2), two basic isoforms called B(1) and B(2). Resveratrol also up regulated two catalase isoforms and a broad peroxidase band corresponding to several isoforms. All these findings suggest that resveratrol is able to cross the blood brain barrier and exerts potent antioxidant features. Resveratrol also exerts neuroprotective properties by up regulating several detoxifying enzymes, most of which are iron proteins.
Collapse
Affiliation(s)
- Meherzia Mokni
- Laboratoire de Physiologie de la Nutrition, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
1842
|
Liu DD, Hsu YH, Chen HI. Endotoxin-induced acute lung injury is enhanced in rats with spontaneous hypertension. Clin Exp Pharmacol Physiol 2007; 34:61-9. [PMID: 17201737 DOI: 10.1111/j.1440-1681.2007.04526.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Acute lung injury (ALI), or acute respiratory distress syndrome, is a major cause of mortality in endotoxaemia. The present study tested whether the endotoxaemia-induced changes and associated ALI were enhanced in rats with established hypertension and to examine the possible mechanisms involved. 2. Fifty spontaneously hypertensive rats (SHR) and the same number of normotensive Wistar Kyoto (WKY) rats, aged 12-15 weeks, were used. The experiments were performed in conscious, unanaesthetized rats. Endotoxaemia was produced by intravenous lipopolysaccharide (LPS; 10 mg/kg). N(G)-Nitro-L-arginine methyl ester (L-NAME; 10 mg/kg, i.v.), L-N(6)-(1-iminoethyl)-lysine (L-Nil; 5 mg/kg, i.v.) and 3-morpholinosydnonimine (SIN-1; 5 mg/kg, i.v.) were given 5 min before LPS to observe the effects of nitric oxide synthase (NOS) inhibition and nitric oxide (NO) donation. 3. We monitored arterial pressure and heart rate and evaluated ALI by determining the lung weight/bodyweight ratio, lung weight gain, leakage of Evans blue dye, the protein concentration in bronchoalveolar lavage and histopathological examination. Plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines, including tumour necrosis factor-alpha and interleukin-1beta, and lung tissue cGMP were determined. Expression of mRNA for inducible and endothelial NOS was examined using reverse transcription-polymerase chain reaction. 4. Lipopolysaccharide caused systemic hypotension, ALI and increases in plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines and lung cGMP content. The LPS-induced changes were greater in SHR than in WKY rats. Pretreatment with L-NAME or L-Nil attenuated, whereas the NO donor SIN-1 aggravated, the endotoxin-induced changes. 5. In conclusion, rats with genetic hypertension are more susceptible to endotoxaemia and this results in a greater extent of ALI compared with normotensive WKY rats.
Collapse
Affiliation(s)
- Demeral D Liu
- Department of Dentistry, Tzu Chi Hospital and University Hualien, Taiwan
| | | | | |
Collapse
|
1843
|
Huan J, Martuseviciene G, Olgaard K, Lewin E. Calcium-sensing receptor and recovery from hypocalcaemia in thyroparathyroidectomized rats. Eur J Clin Invest 2007; 37:214-21. [PMID: 17359489 DOI: 10.1111/j.1365-2362.2007.01770.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Plasma ionized calcium (p-Ca(2+)) is kept within a very narrow range and deviations are rapidly corrected by flux of Ca(2+) between extracellular fluid and the labile calcium pool at the quiescent bone surface. The calcium sensing at the bone surface represents a physiological interesting model for the rapid minute-to-minute regulation of p-Ca(2+). Our aim was to study whether the calcium-sensing receptor (CaR) has a role in the rapid recovery of p-Ca(2+) from acute induced hypocalcaemia. MATERIAL AND METHODS Male Wistar rats were thyroparathyroidectomized (TPTX). Acute hypocalcaemia in the animals was induced by infusion of EGTA (40-50 mM EGTA, 3.0 mL h(-1) for 30 min). Thereafter the recovery of p-Ca(2+) was followed. Vehicle or the CaR activators, R-568 (2 mg as a bolus twice) or gentamycin were administrated intravenously. RESULTS EGTA infusion resulted in significantly lower nadir of hypocalcaemia in R-568- or gentamycin-treated rats compared to vehicle-treated rats (P < 0.01). During recovery phase p-Ca(2+) remained significantly lower in R-568 rats (P < 0.001). As such p-Ca(2+) levels recovered to basal levels in the vehicle group within 70 min after stopping EGTA, while R-568 or gentamycin rats remained significantly hypocalcaemic. CONCLUSIONS The CaR activators R-568 and gentamycin, both significantly delayed the recovery of p-Ca(2+) from acute EGTA-induced hypocalcaemia in TPTX rats. This novel finding suggests the existence of calcium sensing by bone of importance for the rapid minute-to-minute regulation of p-Ca(2+).
Collapse
Affiliation(s)
- J Huan
- Nephrological Department P, Rigshospitalet and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
1844
|
Yamamizu K, Shinozaki K, Ayajiki K, Gemba M, Okamura T. Oral administration of both tetrahydrobiopterin and L-arginine prevents endothelial dysfunction in rats with chronic renal failure. J Cardiovasc Pharmacol 2007; 49:131-9. [PMID: 17414224 DOI: 10.1097/fjc.0b013e31802f9923] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the mechanism of endothelial dysfunction in chronic renal failure (CRF), with reference to NO synthase. CRF was induced by 5/6 nephrectomy in rats. Either L-arginine (1.25 g/L in drinking water), tetrahydrobiopterin (BH4, 10 mg/kg per day in food), or a combination of the 2 were orally administered to CRF rats for 9 weeks. CRF rats showed elevation of systolic blood pressure compared with sham-operated rats. Endothelium-dependent relaxation induced by acetylcholine or A23187 in the isolated aorta was significantly reduced, and in vitro treatment with L-arginine, BH4, or superoxide dismutase restored the relaxation. Aortic segments from CRF rats showed significantly higher superoxide production in response to A23187, which was inhibited by L-NAME. Plasma concentrations of asymmetric dimethylarginine and symmetric dimethylarginine were higher in CRF rats. These changes in CRF rats were totally or partially decreased by L-arginine or BH4 supplementation in vivo. Interestingly, the combined treatment showed additive effects in certain parameters. These results suggest that vascular disorders in CRF rats may be partly due to NOS uncoupling caused by a relative deficiency of BH4 and partially due to accumulation of endogenous inhibitors of NOS and L-arginine uptake, resulting in the decrease of NO production and the increase of reactive oxygen species.
Collapse
Affiliation(s)
- Kohei Yamamizu
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|
1845
|
Cao J, Chen G, Du Y, Hou F, Tian Y. Determination of Dissociation Constants of Resverastrol and Polydatin by Capillary Zone Electrophoresis. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070600674877] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jia Cao
- a College of Life Science , Agricultural University of Hebei , Baoding, P. R. China
| | - Guan‐Hua Chen
- a College of Life Science , Agricultural University of Hebei , Baoding, P. R. China
| | - Yu‐Shan Du
- a College of Life Science , Agricultural University of Hebei , Baoding, P. R. China
| | - Fang‐Fei Hou
- a College of Life Science , Agricultural University of Hebei , Baoding, P. R. China
| | - Yi‐Ling Tian
- a College of Life Science , Agricultural University of Hebei , Baoding, P. R. China
| |
Collapse
|
1846
|
Karatzi K, Papamichael C, Karatzis E, Papaioannou TG, Voidonikola PT, Lekakis J, Zampelas A. Acute Smoking Induces Endothelial Dysfunction in Healthy Smokers. Is This Reversible by Red Wine's Antioxidant Constituents? J Am Coll Nutr 2007; 26:10-5. [PMID: 17353578 DOI: 10.1080/07315724.2007.10719580] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Acute smoking causes endothelial dysfunction through impairment of nitric oxide (NO) production, or increased oxidative stress, but the exact mechanism still needs to be elucidated. In healthy non-smokers acute endothelial dysfunction caused by smoking one cigarette was counterbalanced by red wine's antioxidants. The aim of the present study is to investigate whether red wine's antioxidant substances could counteract the acute endothelial dysfunction induced by acute cigarette smoking in healthy smokers as well. METHODS Twenty healthy volunteers (12 males) participated in a double-blind, cross-over study, comprised of three study days. All subjects either smoked one cigarette, or smoked and drank 250 ml of red wine, or smoked and drank 250 ml of dealcoholized red wine in each one of the study days. Flow mediated dilatation (FMD) was measured at fast and 30, 60 and 90 minutes after each trial. RESULTS Smoking one cigarette induced a significant decrease in FMD (p < 0.001), which remained significant 30 (p < 0.001), and 60 (p = 0.003) minutes after the end of smoking. FMD remained statistically unchanged after consumption of either regular red wine, or dealcoholized red wine together with smoking. CONCLUSIONS The observed endothelial dysfunction following smoking of one cigarette was counterbalanced by consumption of either red wine or dealcoholized red wine in healthy smokers. It is possible that acute endothelial dysfunction caused by smoking could be attributed to increased oxidative stress and red wine's antioxidants counteract these acute effects of smoke on endothelium.
Collapse
Affiliation(s)
- Kalliopi Karatzi
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece, El. Venizelou 70, Athens 17671, GREECE
| | | | | | | | | | | | | |
Collapse
|
1847
|
Cheng M, Lee SST, Cheung WT. Dual effect of endothelin 1 on angiotensin II-potentiated purinergic neurotransmission in prostatic rat vas deferens. Eur J Pharmacol 2007; 557:204-11. [PMID: 17196586 DOI: 10.1016/j.ejphar.2006.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/06/2006] [Accepted: 11/16/2006] [Indexed: 11/16/2022]
Abstract
Angiotensin and endothelin are vasoactive peptides with neuromodulatory effect, however their interactions in facilitating neurotransmission are largely unknown. In the present study, effort was made to examine how endothelin 1 modulates angiotensin II-potentiated purinergic neurotransmission in prostatic rat vas deferens. Both peptides facilitated field-stimulated muscle contraction in a concentration-dependent manner with Kd values of 16.97+/-6.47 and 2.46+/-0.83 nM for angiotensin II and endothelin 1, respectively. Hill plot analysis gave Hill constants of 0.91+/-0.15 and 0.97+/-0.26 for angiotensin II and endothelin 1, respectively. Correlation analysis indicated that the extent of potentiation by angiotensin II, but not endothelin 1, was proportional to the basal field-stimulated muscle contraction. In the presence of low concentrations of endothelin 1 (< or = 3 nM), angiotensin II-potentiated field-stimulated contraction was further enhanced by endothelin. However, in the presence of high concentrations of endothelin 1 (> or = 10 nM), a much increased basal field-stimulated contraction was observed, and the addition of angiotensin II did not elicit any further enhancement in the contractile response. Intriguingly, after prolonged exposure of prostatic rat vas deferens to a high concentration of endothelin 1, the addition of angiotensin II induced a refractory response to field-stimulation. Taken together, our result indicated that endothelin 1 augmented angiotensin II-facilitated purinergic neurotransmission in prostatic rat vas deferens at low concentrations, but inhibited gradually at high concentrations.
Collapse
Affiliation(s)
- Man Cheng
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
1848
|
Duda M, Konior A, Klemenska E, Beresewicz A. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. J Mol Cell Cardiol 2007; 42:400-10. [PMID: 17156794 DOI: 10.1016/j.yjmcc.2006.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/25/2006] [Indexed: 02/07/2023]
Abstract
The hypothesis was tested that endothelin-1 (ET-1)-induced superoxide (O(2)(-)) generation mediates post-ischemic coronary endothelial injury, that ischemic preconditioning (IPC) affords endothelial protection by preventing post-ischemic ET-1, and thus O(2)(-), generation, and that opening of the mitochondrial ATP-dependent potassium channel (mK(ATP)) triggers the mechanism of IPC. Furthermore, the study was aimed at identifying the source of O(2)(-) mediating the endothelial injury. Langendorff-perfused guinea-pig hearts were subjected either to 30 min ischemia/35 min reperfusion (IR) or were preconditioned prior to IR with three cycles of either 5 min ischemia/5 min reperfusion or 5 min infusion/5 min washout of mK(ATP) opener diazoxide (0.5 mM). Coronary flow responses to acetylcholine (ACh) served as a measure of endothelium-dependent vascular function. Myocardial outflow of ET-1 and O(2)(-) and functional recoveries were followed during reperfusion. NADPH oxidase and xanthine oxidase (XO) activities were measured in cardiac homogenates. IR augmented ET-1 and O(2)(-) outflow and impaired ACh response. All these effects were attenuated or prevented by IPC and diazoxide, and 5-hydroxydecanoate (a selective mK(ATP) blocker) abolished the effects of IPC and diazoxide. Superoxide dismutase and tezosentan (a mixed ET-1-receptor antagonist) mimicked the effects of IPC, although they had no effect on the ET-1 generation. IR augmented also the activity of NADPH oxidase and XO. Apocynin treatment, that resulted in NADPH oxidase inhibition, prevented XO activation and O(2)(-) generation in IR hearts. The inhibition of XO, either by allopurinol or feeding the animals with tungsten-enriched chow, prevented post-ischemic O(2)(-) generation, although these interventions had no effect on the NADPH activity. In addition, the post-ischemic activation of NADPH oxidase and XO, and O(2)(-) generation were prevented by IPC, tezosentan, thenoyltrifluoroacetone (mitochondrial complex II inhibitor), and tempol (cell-membrane permeable O(2)(-) scavenger). In guinea-pig heart: (i) ET-1-induced O(2)(-) generation mediates post-ischemic endothelial dysfunction; (ii) IPC and diazoxide afford endothelial protection by attenuating the ET-1, and thus O(2)(-) generation, and the mK(ATP) opening triggers the protection; (iii) the NADPH oxidase maintains the activity of XO, and the XO-derived O(2)(-) mediates the endothelial injury, and (iv) ET-1 and O(2)(-) (probably of mitochondrial origin) are upstream activators of the NADPH oxidase-XO cascade, and IPC prevents the cascade activation and the endothelial dysfunction by preventing the ET-1 generation.
Collapse
Affiliation(s)
- Monika Duda
- Department of Clinical Physiology, Postgraduate Medical School, Marymoncka 99, 01-813 Warsaw, Poland
| | | | | | | |
Collapse
|
1849
|
Förstermann U. Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem 2007; 387:1521-33. [PMID: 17132097 DOI: 10.1515/bc.2006.190] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial NO synthase (eNOS) is the predominant enzyme responsible for vascular NO synthesis. A functional eNOS transfers electrons from NADPH to its heme center, where L-arginine is oxidized to L-citrulline and NO. Common conditions predisposing to atherosclerosis, such as hypertension, hypercholesterolemia, diabetes mellitus and smoking, are associated with enhanced production of reactive oxygen species (ROS) and reduced amounts of bioactive NO in the vessel wall. NADPH oxidases represent major sources of ROS in cardiovascular pathophysiology. NADPH oxidase-derived superoxide avidly interacts with eNOS-derived NO to form peroxynitrite (ONOO(-)), which oxidizes the essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). As a consequence, oxygen reduction uncouples from NO synthesis, thereby rendering NOS to a superoxide-producing pro-atherosclerotic enzyme. Supplementation with BH(4) corrects eNOS dysfunction in several animal models and in patients. Administration of high local doses of the antioxidant L-ascorbic acid (vitamin C) improves endothelial function, whereas large-scale clinical trials do not support a strong role for oral vitamin C and/or E in reducing cardiovascular disease. Statins, angiotensin-converting enzyme inhibitors and AT1 receptor blockers have the potential of reducing vascular oxidative stress. Finally, novel approaches are being tested to block pathways leading to oxidative stress (e.g. protein kinase C) or to upregulate antioxidant enzymes.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany.
| |
Collapse
|
1850
|
Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem 2007; 101:566-76. [PMID: 17250680 DOI: 10.1111/j.1471-4159.2006.04393.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Oxidative stress is a major underlying cause of neurodegenerative and neuroinflammatory disorders and BBB injury associated with them. Using human BMVEC grown on porous membranes covered with basement membrane (BM) matrix (BBB models), we demonstrated that reactive oxygen species (ROS) augmented permeability and monocyte migration across BBB. ROS activated matrix metalloproteinases (MMP-1, -2, and -9) and decreased tissue inhibitors of MMPs (TIMP-1 and -2) in a protein tyrosine kinase (PTK)-dependent manner. Increase in MMPs and PTK activities paralleled degradation of BM protein and enhanced tyrosine phosphorylation of tight junction (TJ) protein. These effects and enhanced permeability/monocyte migration were prevented by inhibitors of MMPs, PTKs, or antioxidant suggesting that oxidative stress caused BBB injury via degradation of BM protein by activated MMPs and by PTK-mediated TJ protein phosphorylation. These findings point to new therapeutic interventions ameliorating BBB dysfunction in neurological disorders such as stroke or neuroinflammation.
Collapse
Affiliation(s)
- James Haorah
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA.
| | | | | | | | | | | |
Collapse
|