1801
|
Hartmann J, Wagner KV, Liebl C, Scharf SH, Wang XD, Wolf M, Hausch F, Rein T, Schmidt U, Touma C, Cheung-Flynn J, Cox MB, Smith DF, Holsboer F, Müller MB, Schmidt MV. The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 2011; 62:332-9. [PMID: 21839098 DOI: 10.1016/j.neuropharm.2011.07.041] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
Chronic stress is increasingly considered to be a main risk factor for the development of a variety of psychiatric diseases such as depression. This is further supported by an impaired negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, which has been observed in the majority of depressed patients. The effects of glucocorticoids, the main hormonal endpoint of the HPA axis, are mediated via the glucocorticoid receptor (GR) and the mineralocorticoid receptor. The FK506-binding protein 51 (FKBP5), a co-chaperone of the Hsp90 and component of the chaperone-receptor heterocomplex, has been shown to reduce ligand sensitivity of the GR. This study aimed to investigate the function of FKBP5 as a possible mediator of the stress response system and its potential role in the development of stress-related diseases. Therefore, we assessed whether mice lacking the gene encoding FKBP5 (51KO mice) were less vulnerable to the adverse effects of three weeks of chronic social defeat stress. Mice were subsequently analyzed with regards to physiological, neuroendocrine, behavioral and mRNA expression alterations. Our results show a less vulnerable phenotype of 51KO mice with respect to physiological and neuroendocrine parameters compared to wild-type animals. 51KO mice demonstrated lower adrenal weights and basal corticosterone levels, a diminished response to a novel acute stimulus and an enhanced recovery, as well as more active stress-coping behavior. These results suggest an enhanced negative glucocorticoid feedback within the HPA axis of 51KO mice, possibly modulated by an increased sensitivity of the GR. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Jakob Hartmann
- Max Planck Institute of Psychiatry, RG Neurobiology of Stress, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1802
|
Dadomo H, Sanghez V, Di Cristo L, Lori A, Ceresini G, Malinge I, Parmigiani S, Palanza P, Sheardown M, Bartolomucci A. Vulnerability to chronic subordination stress-induced depression-like disorders in adult 129SvEv male mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1461-71. [PMID: 21093519 DOI: 10.1016/j.pnpbp.2010.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 12/19/2022]
Abstract
Exposure to stressful life events is intimately linked with vulnerability to neuropsychiatric disorders such as major depression. Pre-clinical animal models offer an effective tool to disentangle the underlying molecular mechanisms. In particular, the 129SvEv strain is often used to develop transgenic mouse models but poorly characterized as far as behavior and neuroendocrine functions are concerned. Here we present a comprehensive characterization of 129SvEv male mice's vulnerability to social stress-induced depression-like disorders and physiological comorbidities. We employed a well characterized mouse model of chronic social stress based on social defeat and subordination. Subordinate 129SvEv mice showed body weight gain, hyperphagia, increased adipose fat pads weight and basal plasma corticosterone. Home cage phenotyping revealed a suppression of spontaneous locomotor activity and transient hyperthermia. Subordinate 129SvEv mice also showed marked fearfulness, anhedonic-like response toward a novel but palatable food, increased anxiety in the elevated plus maze and social avoidance of an unfamiliar male mouse. A direct measured effect of the stressfulness of the living environment, i.e. the amount of daily aggression received, predicted the degree of corticosterone level and locomotor activity but not of the other parameters. This is the first study validating a chronic subordination stress paradigm in 129SvEv male mice. Results demonstrated remarkable stress vulnerability and establish the validity to use this mouse strain as a model for depression-like disorders.
Collapse
Affiliation(s)
- Harold Dadomo
- Department of Evolutionary and Functional Biology, University of Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1803
|
Olivier JDA, Blom T, Arentsen T, Homberg JR. The age-dependent effects of selective serotonin reuptake inhibitors in humans and rodents: A review. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1400-8. [PMID: 20883714 DOI: 10.1016/j.pnpbp.2010.09.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/07/2010] [Accepted: 09/15/2010] [Indexed: 01/27/2023]
Abstract
The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is widely prescribed for the treatment of depression and anxiety-related disorders. While extensive research has established that fluoxetine is safe for adults, safety is not guaranteed for (unborn) children and adolescents. Some clinical studies have reported adverse outcomes, such as premature birth, neonatal cardiovascular abnormalities, and pulmonary hypertension in children whose mothers used SSRIs during pregnancy. In addition, several reports show that adolescent fluoxetine treatment increases risk for suicidal behavior. Despite these studies, fluoxetine is not contraindicated in the treatment of depressed pregnant women and adolescents. Longitudinal research in humans is limited because of ethical reasons and time constraints, and to overcome these limitations, rodents are used to increase insight in the age-dependent effects of fluoxetine exposure. It has been established that neonatal and adolescent fluoxetine exposure leads to paradoxical anxiety- and depression-like features in later life of rats and mice, although in some studies adolescent fluoxetine exposure was without effects. These age-dependent outcomes of fluoxetine may be explained by serotonin's neurotrophic effects, which may vary according to the developmental stage of the brain due to epigenetic modifications. Here we review the existing evidence for the age-dependent effects of fluoxetine in humans and rodents, address the gaps in our current knowledge and propose directions for future research. Given the overlap between human and rodent findings, rodents provide heuristic value in further research on the age-dependent effects of SSRIs.
Collapse
Affiliation(s)
- J D A Olivier
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Dept. of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Grooteplein 21, 6525 GA Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
1804
|
Zoratto F, Berry A, Anzidei F, Fiore M, Alleva E, Laviola G, Macrì S. Effects of maternal L-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1479-92. [PMID: 21356262 DOI: 10.1016/j.pnpbp.2011.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 02/02/2023]
Abstract
Major depressive disorder (MDD), a pathology characterized by mood and neurovegetative disturbances, depends on a multi-factorial contribution of individual predisposition (e.g., diminished serotonergic transmission) and environmental factors (e.g., neonatal abuse or neglect). Despite its female-biased prevalence, MDD basic research has mainly focused on male rodents. Most of present models of depression are also devalued due to the fact that they typically address only one of the aforementioned pathogenetic factors. In this paper we first describe the basic principles behind mouse model development and evaluation and then articulate that current models of depression are intrinsically devalued due to poor construct and/or external validity. We then report a first attempt to overcome this limitation through the design of a mouse model in which the genetic and the environmental components of early risk factors for depression are mimicked together. Environmental stress is mimicked through the supplementation of corticosterone in the maternal drinking water while biological predisposition is mimicked through maternal access to an L-tryptophan (the serotonin precursor) deficient diet during the first week of lactation. CD1 dams and their offspring exposed to the L-tryptophan deficient diet (T) and to corticosterone (80mg/l; C) were compared to animal facility reared (AFR) subjects. T and C mice served as intermediate reference groups. Adolescent TC offspring, compared to AFR mice, showed decreased time spent floating in the forced-swim test and increased time spent in the open sectors of an elevated 0-maze. Adult TC offspring showed reduced preference for novelty, decreased breakpoints in the progressive ratio operant procedure and major alterations in central BDNF levels and altered HPA regulation. The route of administration and the possibility to control the independent variables predisposing to depressive-like symptoms disclose novel avenues towards the development of animal models with increased external and construct validity. Furthermore, the observation that, compared to adult subjects, adolescent mice display an opposite profile suggests that peri-pubertal developmental processes may interact with neonatal predispositions to calibrate the adult abnormal phenotype.
Collapse
Affiliation(s)
- Francesca Zoratto
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
1805
|
Dagytė G, Den Boer JA, Trentani A. The cholinergic system and depression. Behav Brain Res 2011; 221:574-82. [PMID: 20170685 DOI: 10.1016/j.bbr.2010.02.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/10/2010] [Indexed: 01/07/2023]
|
1806
|
Tomfohr LM, Edwards KM, Dimsdale JE. Is obstructive sleep apnea associated with cortisol levels? A systematic review of the research evidence. Sleep Med Rev 2011; 16:243-9. [PMID: 21803621 DOI: 10.1016/j.smrv.2011.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 10/28/2022]
Abstract
The pathophysiology of obstructive sleep apnea (OSA) has been associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis; however a relationship between OSA and altered cortisol levels has not been conclusively established. We conducted a systematic review using the PRISMA Guidelines based on comprehensive database searches for 1) studies of OSA patients compared to controls in whom cortisol was measured and 2) studies of OSA patients treated with continuous positive airway pressure (CPAP) in whom cortisol was measured pre and post treatment. Five electronic databases were searched along with the reference lists of retrieved studies. The primary outcomes were 1) differences in cortisol between OSA and control subjects and 2) differences in cortisol pre-post CPAP treatment. Sampling methodology, sample timing and exclusion criteria were evaluated. Fifteen studies met the inclusion criteria. Heterogeneity of studies precluded statistical pooling. One study identified differences in cortisol between OSA patients and controls. Two studies showed statistically significant differences in cortisol levels pre-post CPAP. The majority of studies were limited by assessment of cortisol at a single time point. The available studies do not provide clear evidence that OSA is associated with alterations in cortisol levels or that treatment with CPAP changes cortisol levels. Methodological concerns such as infrequent sampling, failure to match comparison groups on demographic factors known to impact cortisol levels (age, body mass index; BMI), and inconsistent control of variables known to influence HPA function may have limited the results.
Collapse
Affiliation(s)
- Lianne M Tomfohr
- San Diego State University & University of California, San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, UCSD Mail Code 0804, La Jolla, CA, USA.
| | | | | |
Collapse
|
1807
|
Pryce CR, Azzinnari D, Spinelli S, Seifritz E, Tegethoff M, Meinlschmidt G. Helplessness: a systematic translational review of theory and evidence for its relevance to understanding and treating depression. Pharmacol Ther 2011; 132:242-67. [PMID: 21835197 DOI: 10.1016/j.pharmthera.2011.06.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/31/2023]
Abstract
Helplessness is a major concept in depression and a major theme in preclinical and clinical depression research. For example, in rodents and humans, the learned helplessness (LH) effect describes a specific deficit in behaviour to control aversive stimuli that is induced by prior exposure to uncontrollable aversive stimuli. The LH effect is objective and valid in that the cause of the behavioural deficit, namely uncontrollability, is clear; furthermore, the deficit induced is underlain by emotional, motivational and cognitive processes that are relevant to depression psychopathology. As a further example, helplessness, hopelessness, external locus of control and causal attribution are inter-related and major themes in psychological theories (primarily cognitive theories) of depression. Despite this broad interest in helplessness, it can be argued that its potential usefulness as a scientific and clinical concept has so far not been investigated optimally, including with respect to its application in research aimed at development of improved anti-depressant pharmacotherapy. The first aim of this review was to describe and integrate the psychological evidence and the neurobiological evidence for the LH effect in rodents and healthy humans and for helplessness in depressed patients. The second aim was to conduct three systematic reviews, namely of rodent studies of the LH effect, rodent studies of effects of psychopharmacological agents on the LH effect, and human studies of efficacy of pharmacotherapeutic and psychotherapeutic treatment on helplessness in depressed patients. With respect to the first aim, the major findings are: the specificity of the LH effect in otherwise non-manipulated rodents and healthy humans has been under-estimated, and the LH effect is a specific learned aversive uncontrollability (LAU) effect. There is theoretical and empirical support for a model in which a specific LAU effect induced by a life event of major emotional significance can function as an aetiological factor for generalised helplessness which can in turn function as an aetiological and maintenance factor for depression. However, to date such models have focused on cognitive mediating processes whereas it is emotional-motivational-cognitive processes (as proposed for the LAU effect) that need to be invoked and understood. The evidence is for analogous neural processes underlying the LAU effect in rodents and healthy humans and helplessness in depression, with the ventro-medial prefrontal cortex exhibiting aversive uncontrollability-dependent activity. With respect to the second aim, the major findings are: the LAU effect is demonstrated quite consistently using a number of different paradigms in rat but is poorly studied in mouse. The rat LAU effect can be reversed by chronic administration of monoamine reuptake inhibitors. The effects of antidepressants on human helplessness have been scarcely studied to-date. The major conclusion is that the LAU effect and generalised helplessness constitute major neuropsychological concepts of high value to future translational research aimed at increased understanding of depression and development of novel, improved antidepressant treatments.
Collapse
Affiliation(s)
- Christopher R Pryce
- Clinic for Affective Disorders, University Clinic of Psychiatry, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
1808
|
Trew JL. Exploring the roles of approach and avoidance in depression: an integrative model. Clin Psychol Rev 2011; 31:1156-68. [PMID: 21855826 DOI: 10.1016/j.cpr.2011.07.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/27/2022]
Abstract
Human behavior can be organized around two fundamental motivational principles: the desire to approach positive outcomes and the desire to avoid negative outcomes. Both approach and avoidance motivation are relevant to a range of psychopathology, including depression. However, with some notable exceptions, avoidance processes have been underemphasized in the literature on motivational processes in depression. This review will examine the roles that approach and avoidance play in depression and will present an integrative model of approach and avoidance processes in depression. Both approach deficits and avoidance motivation are argued to play a role in limiting positive experiences and reinforcement for non-depressed behavior, contributing to the onset and maintenance of depression. In addition, avoidance processes are argued to play a role in negative information processing biases that may increase vulnerability to the onset and recurrence of depression. Lastly, avoidance processes and dysregulation in the connections between the approach and avoidance systems may contribute to depression by promoting inappropriate perseveration in the pursuit of unattainable approach goals. Theoretical rationales and empirical evidence for each of these roles are presented. Understanding the roles that both approach and avoidance play in depression may help to inform current conceptualizations of depression and improve treatment outcomes.
Collapse
Affiliation(s)
- Jennifer L Trew
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada, V6T 1Z4.
| |
Collapse
|
1809
|
Bloem B, Xu L, Morava E, Faludi G, Palkovits M, Roubos EW, Kozicz T. Sex-specific differences in the dynamics of cocaine- and amphetamine-regulated transcript and nesfatin-1 expressions in the midbrain of depressed suicide victims vs. controls. Neuropharmacology 2011; 62:297-303. [PMID: 21803054 DOI: 10.1016/j.neuropharm.2011.07.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
An intriguing novel pathophysiological insight into mood disorders is the notion that one's metabolic status influences mood. In rodents, cocaine- and amphetamine-regulated transcript (CART) and nesfatin-1/NUCB2 have not only been implicated in metabolism, but in the pathobiology of anxiety and depressive-like behaviour, however they have not previously been investigated in depressed subjects. Both peptides are highly expressed in centrally projecting neurons in the Edinger-Westphal nucleus (EWcp) in the midbrain. The EWcp has been implicated in stress adaptation and stress-related mood disorders like major depressive disorder in a sex-specific manner. This is intriguing, given the fact that females have higher prevalence of mood disorders. Here, we hypothesized that the expression of CART and nesfatin-1 in EWcp would exhibit a sex-specific difference between depressed suicide victims vs. controls. We found that CART and nesfatin/NUCB2 colocalized in the human EWcp, and that CART mRNA content was much higher in both male (×3.8) and female (×5.9) drug-free suicide victims than in controls (persons who died without any diagnosed neurodegenerative or psychiatric disorder). Similarly, NUCB2 mRNA content was also higher (×1.8) in male suicides, whereas in female suicide victims, these contents were ×2.7 lower compared to controls. These observations are the first to show changes in the dynamics of CART and nesfatin/NUCB2 expressions in the midbrain of drug-free depressed suicide victims vs. controls. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Bernard Bloem
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
1810
|
Dreimüller N, Schlicht KF, Wagner S, Peetz D, Borysenko L, Hiemke C, Lieb K, Tadić A. Early reactions of brain-derived neurotrophic factor in plasma (pBDNF) and outcome to acute antidepressant treatment in patients with Major Depression. Neuropharmacology 2011; 62:264-9. [PMID: 21803060 DOI: 10.1016/j.neuropharm.2011.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/22/2011] [Accepted: 07/12/2011] [Indexed: 01/04/2023]
Abstract
In Major Depressive Disorder, a growing data base suggests that the onset of antidepressants' action can be detected by improvement of depressive symptoms in the first 10-14 days of treatment. Previous studies showed that the mean concentration of the brain-derived neurotrophic factor (BDNF) in blood increases during antidepressant treatment and positively correlates with amelioration of MDD symptoms. We previously showed an association between very early changes of the serum BDNF concentration and treatment outcome (Tadić et al., 2011. Prog Neuropsychopharmacol Biol Psychiatry 35, 415-420). However, no study has yet investigated whether BDNF concentration in plasma increases in the early course of treatment and enables the prediction of final treatment outcome. The goal of this study was to investigate in MDD patients, whether the change of pBDNF in the early course of treatment is a specific and sensitive marker for final treatment outcome. For this purpose, we performed a naturalistic pilot study with 39 inpatients with MDD according to DSM-IV. Depression severity and pBDNF were measured in weekly intervals from baseline (EP) to endpoint (EP, max. week six) with the 21-item Hamilton Depression Rating Scale (HAMD-21) and enzyme-linked immunosorbent assay (ELISA), respectively. According to ROC-analysis, the best cut-off value for the prediction of response at EP is an increase of 338 pg/ml or 126%, respectively, of pBDNF between BL and day 7. The single markers pBDNF change and HAMD-21 improvement from BL-d7 predicted later treatment outcome with moderate to high sensitivity and specificity (pBDNF: 42% and 96%, resp.; HAMD improvement: 83% and 65%, resp.). The combined marker early pBDNF change plus HAMD-21 improvement at day 7 increased the specificity for response to 100%. Our data provide first preliminary evidence that an early change of pBDNF in conjunction with early improvement might be a peripheral marker predictive for treatment outcome in patients with MDD. This has to be confirmed in further investigations. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Nadine Dreimüller
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes-Gutenberg-University Mainz, Untere Zahlbacher Str. 8, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1811
|
Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 2011; 31:7521-6. [PMID: 21593336 DOI: 10.1523/jneurosci.6751-10.2011] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term effects of repetitive transcranial magnetic stimulation (rTMS) have been associated with neuroplasticity, but most physiological studies have evaluated only the immediate effects of the stimulation on neurochemical markers. Furthermore, although it is known that baseline excitability state plays a major role in rTMS outcomes, the role of spontaneous neural activity in metaplasticity has not been investigated. The first aim of this study was to evaluate and compare the long-term effects of high- and low-frequency rTMS on the markers of neuroplasticity such as BDNF and GluR1 subunit of AMPA receptor. The second aim was to assess whether these effects depend on spontaneous neural activity, by comparing the neurochemical alterations induced by rTMS in anesthetized and awake rats. Ten daily sessions of high- or low-frequency rTMS were applied over the rat brain, and 3 d later, levels of BDNF, GluR1, and phosphorylated GluR1 were assessed in the hippocampus, prelimbic cortex, and striatum. We found that high-frequency stimulation induced a profound effect on neuroplasticity markers; increasing them in awake animals while decreasing them in anesthetized animals. In contrast, low-frequency stimulation did not induce significant long-term effects on these markers in either state. This study highlights the importance of spontaneous neural activity during rTMS and demonstrates that high-frequency rTMS can induce long-lasting effects on BDNF and GluR1 which may underlie the clinical benefits of this treatment in neuroplasticity-related disorders.
Collapse
|
1812
|
Golden SA, Covington HE, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc 2011; 6:1183-91. [PMID: 21799487 DOI: 10.1038/nprot.2011.361] [Citation(s) in RCA: 1048] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major impediment to novel drug development has been the paucity of animal models that accurately reflect symptoms of affective disorders. In animal models, prolonged social stress has proven to be useful in understanding the molecular mechanisms underlying affective-like disorders. When considering experimental approaches for studying depression, social defeat stress, in particular, has been shown to have excellent etiological, predictive, discriminative and face validity. Described here is a protocol whereby C57BL/6J mice that are repeatedly subjected to bouts of social defeat by a larger and aggressive CD-1 mouse results in the development of a clear depressive-like syndrome, characterized by enduring deficits in social interactions. Specifically, the protocol consists of three important stages, beginning with the selection of aggressive CD-1 mice, followed by agonistic social confrontations between the CD-1 and C57BL/6J mice, and concluding with the confirmation of social avoidance in subordinate C57BL/6J mice. The automated detection of social avoidance allows a marked increase in throughput, reproducibility and quantitative analysis. This protocol is highly adaptable, but in its most common form it requires 3-4 weeks for completion.
Collapse
Affiliation(s)
- Sam A Golden
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
1813
|
Mice lacking urea transporter UT-B display depression-like behavior. J Mol Neurosci 2011; 46:362-72. [PMID: 21750947 DOI: 10.1007/s12031-011-9594-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/01/2011] [Indexed: 12/25/2022]
Abstract
Urea transporter B is one of urea transporters that selectively transport urea driven by urea gradient across membrane and expressed abundantly in brain. To determine the physiological role of UT-B in brain, UT-B localization, urea concentration, tissue morphology of brain, and behavioral phenotypes were studied in UT-B heterozygous mice via UT-B null mice. UT-B mRNA was expressed in olfactory bulb, cortex, caudate nucleus, hippocampus and hypothalamus of UT-B heterozygous mice. UT-B null mice exhibited depression-like behavior, with urea accumulation, nitric oxide reduction, and selective neuronal nitric oxide synthase level increase in hippocampus. After acute urea loading, the urea level increased, NO production decreased in hippocampus from both types of mice. Moreover, urea level was higher, and NO concentration was lower consistently in UT-B null hippocampus than that in heterozygous hippocampus. In vitro, 25 mM urea inhibited NO production too. Furthermore, UT-B knockout induced a long-lasting notable decrease in regional cerebral blood flow and altered morphology, such as loss of neurons in CA3 region, swelling, and membranous myelin-like structure formation within myelinated and unmyelinated fibers in hippocampus. These results suggest that urea accumulation in the hippocampus induced by UT-B deletion can cause depression-like behavior, which possibly attribute to disturbance in NOS/NO system.
Collapse
|
1814
|
Andrews PW, Kornstein SG, Halberstadt LJ, Gardner CO, Neale MC. Blue again: perturbational effects of antidepressants suggest monoaminergic homeostasis in major depression. Front Psychol 2011; 2:159. [PMID: 21779273 PMCID: PMC3133866 DOI: 10.3389/fpsyg.2011.00159] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/23/2011] [Indexed: 12/15/2022] Open
Abstract
Some evolutionary researchers have argued that current diagnostic criteria for major depressive disorder (MDD) may not accurately distinguish true instances of disorder from a normal, adaptive stress response. According to disorder advocates, neurochemicals like the monoamine neurotransmitters (serotonin, norepinephrine, and dopamine) are dysregulated in major depression. Monoamines are normally under homeostatic control, so the monoamine disorder hypothesis implies a breakdown in homeostatic mechanisms. In contrast, adaptationist hypotheses propose that homeostatic mechanisms are properly functioning in most patients meeting current criteria for MDD. If the homeostatic mechanisms regulating monoamines are functioning properly in these patients, then oppositional tolerance should develop with prolonged antidepressant medication (ADM) therapy. Oppositional tolerance refers to the forces that develop when a homeostatic mechanism has been subject to prolonged pharmacological perturbation that attempt to bring the system back to equilibrium. When pharmacological intervention is discontinued, the oppositional forces cause monoamine levels to overshoot their equilibrium levels. Since depressive symptoms are under monoaminergic control, this overshoot should cause a resurgence of depressive symptoms that is proportional to the perturbational effect of the ADM. We test this prediction by conducting a meta-analysis of ADM discontinuation studies. We find that the risk of relapse after ADM discontinuation is positively associated with the degree to which ADMs enhance serotonin and norepinephrine in prefrontal cortex, after controlling for covariates. The results are consistent with oppositional tolerance, and provide no evidence of malfunction in the monoaminergic regulatory mechanisms in patients meeting current diagnostic criteria for MDD. We discuss the evolutionary and clinical implications of our findings.
Collapse
Affiliation(s)
- Paul W. Andrews
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
- Department of Psychology, Neuroscience and Behaviour, McMaster UniversityHamilton, ON, Canada
| | - Susan G. Kornstein
- Department of Psychiatry, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Lisa J. Halberstadt
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Charles O. Gardner
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| |
Collapse
|
1815
|
Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol Psychiatry 2011; 16:714-28. [PMID: 20548294 DOI: 10.1038/mp.2010.64] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Corticotropin-releasing factor (CRF) has a key role in the central stress response, and altered levels of this neuropeptide are linked to stress-related psychopathologies such as anxiety and depression. These disorders are associated with the inability to properly regulate stress response, specifically following exposure to prolonged stressful stimuli. Therefore, the current study assessed the effects of prolonged and site-specific over-expression of CRF, which mimics the state of chronic production, in extended amygdala nuclei that are known to be involved in mediating anxiety-like states. We first constructed and generated lentiviruses that overexpress (OE) CRF in a robust and stable manner, and then generated two male mouse models continuously over-expressing CRF, either at the central nucleus of the amygdala (CeA), or at the dorsolateral subdivision of the bed nucleus of the stria terminalis (BNSTdl). After 4 months, behavioral assessments were conducted for anxiety and depressive indices on these mice. Surprisingly, prolonged CRF OE at the CeA attenuated stress-induced anxiety-like behaviors, whereas prolonged CRF OE in the BNSTdl increased depressive-like behaviors, without affecting anxiety levels. These results show possible differential roles for CRF expressed by distinct loci of the extended amygdala, in mediating stress-induced emotional behaviors.
Collapse
|
1816
|
Kas MJH, Krishnan V, Gould TD, Collier DA, Olivier B, Lesch KP, Domenici E, Fuchs E, Gross C, Castrén E. Advances in multidisciplinary and cross-species approaches to examine the neurobiology of psychiatric disorders. Eur Neuropsychopharmacol 2011; 21:532-44. [PMID: 21237620 DOI: 10.1016/j.euroneuro.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 01/03/2023]
Abstract
Current approaches to dissect the molecular neurobiology of complex neuropsychiatric disorders such as schizophrenia and major depression have been rightly criticized for failing to provide benefits to patients. Improving the translational potential of our efforts will require the development and refinement of better disease models that consider a wide variety of contributing factors, such as genetic variation, gene-by-environment interactions, endophenotype or intermediate phenotype assessment, cross species analysis, sex differences, and developmental stages. During a targeted expert meeting of the European College of Neuropsychopharmacology (ECNP) in Istanbul, we addressed the opportunities and pitfalls of current translational animal models of psychiatric disorders and agreed on a series of core guidelines and recommendations that we believe will help guiding further research in this area.
Collapse
Affiliation(s)
- Martien J H Kas
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1817
|
Whitaker KW, Neumeister H, Huffman LS, Kidd CE, Preuss T, Hofmann HA. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J Neurophysiol 2011; 106:127-37. [DOI: 10.1152/jn.01126.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Social life affects brain function at all levels, including gene expression, neurochemical balance, and neural circuits. We have previously shown that in the cichlid fish Astatotilapia burtoni brightly colored, socially dominant (DOM) males face a trade-off between reproductive opportunities and increased predation risk. Compared with camouflaged subordinate (SUB) males, DOMs exposed to a loud sound pip display higher startle responsiveness and increased excitability of the Mauthner cell (M-cell) circuit that governs this behavior. Using behavioral tests, intracellular recordings, and single-cell molecular analysis, we show here that serotonin (5-HT) modulates this socially regulated plasticity via the 5-HT receptor subtype 2 (5-HTR2). Specifically, SUBs display increased sensitivity to pharmacological manipulation of 5-HTR2 compared with DOMs in both startle-escape behavior and electrophysiological properties of the M-cell. Immunohistochemistry showed serotonergic varicosities around the M-cells, further suggesting that 5-HT impinges directly onto the startle-escape circuitry. To determine whether the effects of 5-HTR2 are pre- or postsynaptic, and whether other 5-HTR subtypes are involved, we harvested the mRNA from single M-cells via cytoplasmic aspiration and found that 5-HTR subtypes 5A and 6 are expressed in the M-cell. 5-HTR2, however, was absent, suggesting that it affects M-cell excitability through a presynaptic mechanism. These results are consistent with a role for 5-HT in modulating startle plasticity and increase our understanding of the neural and molecular basis of a trade-off between reproduction and predation.
Collapse
Affiliation(s)
- K. W. Whitaker
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Army Research Laboratory, Aberdeen Proving Grounds, Maryland
| | - H. Neumeister
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - L. S. Huffman
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | | | - T. Preuss
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - H. A. Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
1818
|
Shishkina GT, Kalinina TS, Berezova IV, Dygalo NN. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior. Neuropharmacology 2011; 62:177-83. [PMID: 21740920 DOI: 10.1016/j.neuropharm.2011.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 11/27/2022]
Abstract
Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Galina T Shishkina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
1819
|
Abstract
The neurogenesis hypothesis of depression was originally formed upon the demonstration that stress impacts levels of adult neurogenesis in the hippocampus. Since then much work has established that newborn neurons in the dentate gyrus are required for mediating some of the beneficial effects of antidepressant treatment. Recent studies combining behavioral, molecular and electrophysiological approaches have attempted to make sense of the role young neurons play in modulating mood by demonstrating a potential role in regulating the circuitry in the brain that underlies depression. Here we discuss the work that led to the neurogenesis hypothesis of depression, and the subsequent studies that have sought to test this hypothesis. We also discuss different animal models of depression that have been used to test the role of neurogenesis in mediating the antidepressant response.
Collapse
|
1820
|
Schlaepfer TE, Bewernick B, Kayser S, Lenz D. Modulating affect, cognition, and behavior - prospects of deep brain stimulation for treatment-resistant psychiatric disorders. Front Integr Neurosci 2011; 5:29. [PMID: 21738500 PMCID: PMC3125515 DOI: 10.3389/fnint.2011.00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022] Open
Abstract
Most patients suffering from psychiatric disorders respond to combinations of psycho- and psychopharmacotherapy; however there are patients who profit little if anything even after many years of treatment. Since about a decade different modalities of targeted neuromodulation – among them most prominently – deep brain stimulation (DBS) – are being actively researched as putative approaches to very treatment-resistant forms of those disorders. Recently, promising pilot data have been reported both for major depression (MD) and obsessive–compulsive disorder (OCD). Given the fact that patients included in DBS studies had been treated unsuccessfully for many years with conventional treatment methods, renders these findings remarkable. Remarkable is the fact, that in case of the long-term studies underway for MD, patients show a stable response. This gives hope to a substantial percentage of therapy–resistant psychiatric patients requiring new therapy approaches. There are no fundamental ethic objections to its use in psychiatric disorders, but until substantial clinical data is available, mandatory standards are needed. DBS is a unique and very promising method for the treatment of therapy–resistant psychiatric patients. The method allows manipulating pathological neuronal networks in a very precise way.
Collapse
Affiliation(s)
- Thomas E Schlaepfer
- Brain Stimulation Group, Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| | | | | | | |
Collapse
|
1821
|
Cognitive and neurochemical alterations in hyperhomocysteinemic rat. Neurol Sci 2011; 33:39-43. [DOI: 10.1007/s10072-011-0645-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/23/2011] [Indexed: 12/22/2022]
|
1822
|
|
1823
|
Animal model and neurobiology of suicide. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:818-30. [PMID: 21354241 DOI: 10.1016/j.pnpbp.2010.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 11/20/2022]
Abstract
Animal models are formidable tools to investigate the etiology, the course and the potential treatment of an illness. No convincing animal model of suicide has been produced to date, and despite the intensive study of thousands of animal species naturalists have not identified suicide in nonhuman species in field situations. When modeling suicidal behavior in the animal, the greatest challenge is reproducing the role of will and intention in suicide mechanics. To overcome this limitation, current investigations on animals focus on every single step leading to suicide in humans. The most promising endophenotypes worth investigating in animals are the cortisol social-stress response and the aggression/impulsivity trait, involving the serotonergic system. Astroglia, neurotrophic factors and neurotrophins are implied in suicide, too. The prevention of suicide rests on the identification and treatment of every element increasing the risk.
Collapse
|
1824
|
Coque L, Mukherjee S, Cao JL, Spencer S, Marvin M, Falcon E, Sidor MM, Birnbaum SG, Graham A, Neve RL, Gordon E, Ozburn AR, Goldberg MS, Han MH, Cooper DC, McClung CA. Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockΔ19 mouse model of mania. Neuropsychopharmacology 2011; 36:1478-88. [PMID: 21430648 PMCID: PMC3096816 DOI: 10.1038/npp.2011.33] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium has been used extensively for mood stabilization, and it is particularly efficacious in the treatment of bipolar mania. Like other drugs used in the treatment of psychiatric diseases, it has little effect on the mood of healthy individuals. Our previous studies found that mice with a mutation in the Clock gene (ClockΔ19) have a complete behavioral profile that is very similar to human mania, which can be reversed with chronic lithium treatment. However, the cellular and physiological effects that underlie its targeted therapeutic efficacy remain unknown. Here we find that ClockΔ19 mice have an increase in dopaminergic activity in the ventral tegmental area (VTA), and that lithium treatment selectively reduces the firing rate in the mutant mice with no effect on activity in wild-type mice. Furthermore, lithium treatment reduces nucleus accumbens (NAc) dopamine levels selectively in the mutant mice. The increased dopaminergic activity in the Clock mutants is associated with cell volume changes in dopamine neurons, which are also rescued by lithium treatment. To determine the role of dopaminergic activity and morphological changes in dopamine neurons in manic-like behavior, we manipulated the excitability of these neurons by overexpressing an inwardly rectifying potassium channel subunit (Kir2.1) selectively in the VTA of ClockΔ19 mice and wild-type mice using viral-mediated gene transfer. Introduction of this channel mimics the effects of lithium treatment on the firing rate of dopamine neurons in ClockΔ19 mice and leads to a similar change in dopamine cell volume. Furthermore, reduction of dopaminergic firing rates in ClockΔ19 animals results in a normalization of locomotor- and anxiety-related behavior that is very similar to lithium treatment; however, it is not sufficient to reverse depression-related behavior. These results suggest that abnormalities in dopamine cell firing and associated morphology underlie alterations in anxiety-related behavior in bipolar mania, and that the therapeutic effects of lithium come from a reversal of these abnormal phenotypes.
Collapse
Affiliation(s)
- Laurent Coque
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390-9070, USA.
| | - Shibani Mukherjee
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jun-Li Cao
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA,Department of Psychology and Neuroscience, University of Colorado,Boulder, CO, USA
| | - Sade Spencer
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marian Marvin
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Edgardo Falcon
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michelle M Sidor
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ami Graham
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth Gordon
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angela R Ozburn
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew S Goldberg
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA,Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ming-Hu Han
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA,Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | - Donald C Cooper
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA,Department of Psychology and Neuroscience, University of Colorado,Boulder, CO, USA
| | - Colleen A McClung
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA,Department of Psychiatry, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA. Tel: +1 214 648 4129; Fax: +1 214 648 5599; E-mail:
| |
Collapse
|
1825
|
Scaini G, Maggi DD, De-Nês BT, Gonçalves CL, Ferreira GK, Teodorak BP, Bez GD, Ferreira GC, Schuck PF, Quevedo J, Streck EL. Activity of mitochondrial respiratory chain is increased by chronic administration of antidepressants. Acta Neuropsychiatr 2011; 23:112-8. [PMID: 26952897 DOI: 10.1111/j.1601-5215.2011.00548.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Depressive disorders, including major depression, are serious and disabling for affected patients. Although the neurobiological understanding of major depressive disorder focuses mainly on the monoamine hypothesis, the exact pathophysiology of depression is not fully understood. METHODS Animals received daily intra-peritoneal injections of paroxetine (10 mg/kg), nortriptyline (15 mg/kg) or venlafaxine (10 mg/kg) in 1.0 ml/kg volume for 15 days. Twelve hours after the last injection, the rats were killed by decapitation, where the brain was removed and homogenised. The activities of mitochondrial respiratory chain complexes in different brain structures were measured. RESULTS We first verified that chronic administration of paroxetine increased complex I activity in prefrontal cortex, hippocampus, striatum and cerebral cortex. In addition, complex II activity was increased by the same drug in hippocampus, striatum and cerebral cortex and complex IV activity in prefrontal cortex. Furthermore, chronic administration of nortriptyline increased complex II activity in hippocampus and striatum and complex IV activity in prefrontal cortex, striatum and cerebral cortex. Finally, chronic administration of venlafaxine increased complex II activity in hippocampus, striatum and cerebral cortex and complex IV activity in prefrontal cortex. CONCLUSION On the basis of the present findings, it is tempting to speculate that an increase in brain energy metabolism by the antidepressant paroxetine, nortriptyline and venlafaxine could play a role in the mechanism of action of these drugs. These data corroborate with other studies suggesting that some antidepressants modulate brain energy metabolism.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora D Maggi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna T De-Nês
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gabriela K Ferreira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Brena P Teodorak
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gisele D Bez
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Patricia F Schuck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
| | - Emilio L Streck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
1826
|
Involvement of serotonergic system in the antidepressant-like effect of piperine. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1144-7. [PMID: 21477634 DOI: 10.1016/j.pnpbp.2011.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/23/2022]
Abstract
Piperine is a major alkaloid of black pepper (Piper nigrum Linn.) and long pepper (P. longum Linn.), and its antidepressant-like effect has been previously demonstrated. The purpose of this study was to explore the possible contribution of the serotonergic system in the antidepressant-like effect of piperine in mice. The results showed that piperine significantly reduced the immobility time in the forced swim test and tail suspension test in mice. The anti-immobility effect of piperine in the forced swim test and tail suspension test was completely abolished by pre-treating the mice with pCPA (an inhibitor of 5-HT synthesis). Piperine treatment also significantly potentiated the number of head-twitches of mice induced by 5-HTP (a metabolic precursor to 5-HT). In addition, the neurochemical assays showed that piperine produced a marked increase of 5-HT level in both the hippocampus and frontal cortex of mice. Taken together, these results clearly suggest that the antidepressant-like effect of piperine is mediated via the serotonergic system by enhancing 5-HT content in mouse brain.
Collapse
|
1827
|
Johansson V, Garwicz M, Kanje M, Röcklinsberg H, Schouenborg J, Tingström A, Görman U. Beyond Blind Optimism and Unfounded Fears: Deep Brain Stimulation for Treatment Resistant Depression. NEUROETHICS-NETH 2011. [DOI: 10.1007/s12152-011-9112-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
1828
|
Johansson V, Garwicz M, Kanje M, Schouenborg J, Tingström A, Görman U. Authenticity, depression, and deep brain stimulation. Front Integr Neurosci 2011; 5:21. [PMID: 21647398 PMCID: PMC3102217 DOI: 10.3389/fnint.2011.00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/09/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Veronica Johansson
- Department of Experimental Medical Science, Neuronano Research Center, Lund University Lund, Sweden
| | | | | | | | | | | |
Collapse
|
1829
|
Satterthwaite TD, Wolf DH, Pinkham AE, Ruparel K, Elliott MA, Valdez JN, Overton E, Seubert J, Gur RE, Gur RC, Loughead J. Opposing amygdala and ventral striatum connectivity during emotion identification. Brain Cogn 2011; 76:353-63. [PMID: 21600684 DOI: 10.1016/j.bandc.2011.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 04/04/2011] [Accepted: 04/18/2011] [Indexed: 12/24/2022]
Abstract
Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anticorrelation between the amygdala and the ventral striatum/ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification.
Collapse
|
1830
|
Abstract
Depression is highly common throughout the life course and dementia is common in late life. Depression has been linked with dementia, and growing evidence implies that the timing of depression may be important in defining the nature of this association. In particular, earlier-life depression (or depressive symptoms) has consistently been associated with a more than twofold increase in dementia risk. By contrast, studies of late-life depression and dementia risk have been conflicting; most support an association, yet the nature of this association (for example, if depression is a prodrome or consequence of, or risk factor for dementia) remains unclear. The likely biological mechanisms linking depression to dementia include vascular disease, alterations in glucocorticoid steroid levels and hippocampal atrophy, increased deposition of amyloid-β plaques, inflammatory changes, and deficits of nerve growth factors. Treatment strategies for depression could interfere with these pathways and alter the risk of dementia. Given the projected increase in dementia incidence in the coming decades, understanding whether treatment for depression alone, or combined with other regimens, improves cognition is of critical importance. In this Review, we summarize and analyze current evidence linking late-life and earlier-life depression and dementia, and discuss the primary underlying mechanisms and implications for treatment.
Collapse
|
1831
|
Lazary J, Juhasz G, Hunyady L, Bagdy G. Personalized medicine can pave the way for the safe use of CB1 receptor antagonists. Trends Pharmacol Sci 2011; 32:270-80. [DOI: 10.1016/j.tips.2011.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/14/2011] [Accepted: 02/18/2011] [Indexed: 12/15/2022]
|
1832
|
Juhasz G, Dunham JS, McKie S, Thomas E, Downey D, Chase D, Lloyd-Williams K, Toth ZG, Platt H, Mekli K, Payton A, Elliott R, Williams SR, Anderson IM, Deakin JFW. The CREB1-BDNF-NTRK2 pathway in depression: multiple gene-cognition-environment interactions. Biol Psychiatry 2011; 69:762-71. [PMID: 21215389 DOI: 10.1016/j.biopsych.2010.11.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/01/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND The neuroplastic pathway, which includes cyclic adenosine monophosphate response element-binding protein 1 (CREB1), brain-derived neurotrophic factor (BDNF), and its receptor (neurotrophic tyrosine kinase receptor, type 2 [NTRK2]), plays a crucial role in the adaptation of brain to stress, and thus variations of these genes are plausible risk factors for depression. METHODS A population-based sample was recruited, subsets of which were interviewed and underwent functional magnetic resonance imaging. We investigated the association of nine polymorphisms throughout the CREB1-BDNF-NTRK2 pathway with lifetime depression, rumination, current depression severity, negative life events, and sad face emotion processing in a three-level design. RESULTS In the population study, BDNF-rs6265 and CREB1-rs2253206 major alleles were significantly associated with rumination and through rumination with current depression severity. However, childhood adversity increased the risk of lifetime depression in the minor allele carriers of BDNF-rs6265 and CREB1-rs2253206 and in alleles of six other single nucleotide polymorphisms (SNPs). We validated our findings in the interviewed subjects using structural equation modeling. Finally, using functional magnetic resonance imaging, we found that viewing sad faces evoked greater activity in depression-related areas in healthy control subjects possessing the minor alleles of BDNF-rs6265 and CREB1-rs2253206. CONCLUSIONS Genetic variation associated with reduced function in the CREB1-BDNF-NTRK2 pathway has multiple, sometimes opposing, influences on risk mechanisms of depression, but almost all the SNPs studied amplified the effect of childhood adversity. The use of cognitive and neural intermediate phenotypes together with a molecular pathway approach may be critical to understanding how genes influence risk of depression.
Collapse
Affiliation(s)
- Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1833
|
Kao CF, Fang YS, Zhao Z, Kuo PH. Prioritization and evaluation of depression candidate genes by combining multidimensional data resources. PLoS One 2011; 6:e18696. [PMID: 21494644 PMCID: PMC3071871 DOI: 10.1371/journal.pone.0018696] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/08/2011] [Indexed: 12/22/2022] Open
Abstract
Background Large scale and individual genetic studies have suggested numerous susceptible genes for depression in the past decade without conclusive results. There is a strong need to review and integrate multi-dimensional data for follow up validation. The present study aimed to apply prioritization procedures to build-up an evidence-based candidate genes dataset for depression. Methods Depression candidate genes were collected in human and animal studies across various data resources. Each gene was scored according to its magnitude of evidence related to depression and was multiplied by a source-specific weight to form a combined score measure. All genes were evaluated through a prioritization system to obtain an optimal weight matrix to rank their relative importance with depression using the combined scores. The resulting candidate gene list for depression (DEPgenes) was further evaluated by a genome-wide association (GWA) dataset and microarray gene expression in human tissues. Results A total of 5,055 candidate genes (4,850 genes from human and 387 genes from animal studies with 182 being overlapped) were included from seven data sources. Through the prioritization procedures, we identified 169 DEPgenes, which exhibited high chance to be associated with depression in GWA dataset (Wilcoxon rank-sum test, p = 0.00005). Additionally, the DEPgenes had a higher percentage to express in human brain or nerve related tissues than non-DEPgenes, supporting the neurotransmitter and neuroplasticity theories in depression. Conclusions With comprehensive data collection and curation and an application of integrative approach, we successfully generated DEPgenes through an effective gene prioritization system. The prioritized DEPgenes are promising for future biological experiments or replication efforts to discoverthe underlying molecular mechanisms for depression.
Collapse
Affiliation(s)
- Chung-Feng Kao
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Sheng Fang
- Institute of Clinical Medicine, School of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Zhongming Zhao
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
1834
|
Savignac HM, Dinan TG, Cryan JF. Resistance to early-life stress in mice: effects of genetic background and stress duration. Front Behav Neurosci 2011; 5:13. [PMID: 21519375 PMCID: PMC3075880 DOI: 10.3389/fnbeh.2011.00013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/03/2011] [Indexed: 12/11/2022] Open
Abstract
Early-life stress can induce marked behavioral and physiological impairments in adulthood including cognitive deficits, depression, anxiety, and gastrointestinal dysfunction. Although robust rat models of early-life stress exist there are few established effective paradigms in the mouse. Genetic background and protocol parameters used are two critical variables in such model development. Thus we investigated the impact of two different early-life stress protocols in two commonly used inbred mouse strains. C57BL/6 and innately anxious BALB/c male mice were maternally deprived 3 h daily, either from postnatal day 1 to 14 (protocol 1) or 6 to 10 (protocol 2). Animals were assessed in adulthood for cognitive performance (spontaneous alternation behavior test), anxiety [open-field, light/dark box (L/DB), and elevated plus maze (EPM) tests], and depression-related behaviors (forced swim test) in addition to stress-sensitive physiological changes. Overall, the results showed that early-life stressed mice from both strains displayed good cognitive ability and no elevations in anxiety. However, paradoxical changes occurred in C57BL/6 mice as the longer protocol (protocol 1) decreased anxiety in the L/DB and increased exploration in the EPM. In BALB/c mice there were also limited effects of maternal separation with both separation protocols inducing reductions in stress-induced defecation and protocol 1 reducing the colon length. These data suggest that, independent of stress duration, mice from both strains were on the whole resilient to the maladaptive effects of early-life stress. Thus maternal separation models of brain–gut axis dysfunction should rely on either different stressor protocols or other strains of mice.
Collapse
Affiliation(s)
- Hélène M Savignac
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland
| | | | | |
Collapse
|
1835
|
The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience 2011; 180:9-18. [DOI: 10.1016/j.neuroscience.2011.02.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 01/10/2023]
|
1836
|
The double edged sword of neural plasticity: increasing serotonin levels leads to both greater vulnerability to depression and improved capacity to recover. Psychoneuroendocrinology 2011; 36:339-51. [PMID: 20875703 DOI: 10.1016/j.psyneuen.2010.08.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/27/2010] [Accepted: 08/29/2010] [Indexed: 12/21/2022]
Abstract
Major depression is a chronic, recurring and potentially life-threatening illness that affects up to 10% of the population worldwide. Pharmacological and genetic studies highlight the serotonergic system as being a key player in the disorder. However, despite drugs designed to boost serotonin transmission represent the first line of therapy for depression, the role of this system still remains elusive. Here, I propose a new theoretical framework, the undirected susceptibility to change model, potentially accounting for the experimental and clinical results concerning the role of this neurotransmitter in depression. Since the capacity of the individual to change its physiology and behavior according to the environment is dependent on neural plasticity which, in turn, is controlled by serotonin, I assume that changes in the levels of serotonin affect the sensitivity to the environment. Consequently, the undirected susceptibility to change model predicts that an increase of serotonin levels, for instance induced through selective serotonin reuptake inhibitor (SSRI) administration, does not affect mood per se, but--acting as a catalyzer--enhances neural plasticity and, thus, the effects of the environment on mood. However, since the environment can be either supportive or adverse, its effects can be beneficial or detrimental. Therefore enhancing the serotonin system can increase the likelihood both of developing the psychopathology and recovering from it. This model, on the one hand, suggests an explanation for the limited SSRI efficacy described in clinical studies and allows apparently contradictory data to be reconciled; on the other, it describes neural plasticity as a double edged sword that, according to the quality of the environment, may have either positive or negative consequences.
Collapse
|
1837
|
Abstract
Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. In this review, we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and by alterations in the subunit composition of the principal receptors (GABA(A) receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that suggests that GABA has a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs (ADs) designed to alter monoaminergic transmission and nonpharmacological therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission has an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Finally, comparatively modest deficits in GABAergic transmission in GABA(A) receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical and neuroendocrine phenotypes, as well as AD response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.
Collapse
|
1838
|
Tadić A, Wagner S, Schlicht KF, Peetz D, Borysenko L, Dreimüller N, Hiemke C, Lieb K. The early non-increase of serum BDNF predicts failure of antidepressant treatment in patients with major depression: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:415-20. [PMID: 20732374 DOI: 10.1016/j.pnpbp.2010.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/09/2010] [Accepted: 08/15/2010] [Indexed: 01/22/2023]
Abstract
In the treatment of patients with major depressive disorder (MDD), early non-improvement of symptoms after initiation of antidepressant treatment is a highly sensitive and specific marker for final treatment failure. On the other hand, meta-analyses of clinical studies investigating serum BDNF (sBDNF) concentration before and after antidepressant treatment showed an increase of sBDNF during treatment, which was correlated with amelioration of depressive symptoms. No study has yet investigated the predictive value of early changes of sBDNF for final treatment outcome of the individual patient. The aim of this study was to investigate in patients with MDD, whether i) the non-increase of sBDNF in the early course of treatment is a specific and sensitive marker for final treatment failure, ii) whether the sensitivity and specificity of early non-improvement for treatment failure can be increased by combining it with the marker "early non-increase of sBDNF". For this purpose, we performed a pilot study with 41 inpatients with MDD according to DSM-IV, who were treated in a naturalistic setting. Depression severity and sBDNF were measured in weekly intervals from baseline to week six with the 21-item Hamilton Depression Rating Scale (HAMD-21) and ELISA, respectively. The individual markers sBDNF non-increase and HAMD-21 non-improvement from baseline to day 7 or 14 predicted later non-response and non-remission with moderate to high specificity. The combined marker sBDNF non-increase plus HAMD-21 non-improvement at day 14 increased the specificity for non-response and non-remission to 100%. Our data provide the first evidence that the absence of an early increase of sBDNF in conjunction with early non-improvement might be a highly specific peripheral marker predictive for treatment failure in patients with MDD. If replicated, this combined marker could be considered useful for prospective confirmatory trials in patients with MDD.
Collapse
Affiliation(s)
- André Tadić
- Department of Psychiatry and Psychotherapy, University Medical Centre Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1839
|
Abstract
Some adults fail to adapt to chronic stress, developing symptoms of depression and anxiety. In this issue of Neuron, Uchida and colleagues link maladaptive stress responses to GDNF through a comprehensive investigation of the neurotrophic factor's regulation. Further, this study is an excellent example for investigators interested in neuroepigenetics research.
Collapse
Affiliation(s)
- Courtney A Miller
- Department of Metabolism & Aging, Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33459, USA.
| |
Collapse
|
1840
|
Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 2011; 470:535-9. [PMID: 21350486 PMCID: PMC3285101 DOI: 10.1038/nature09742] [Citation(s) in RCA: 468] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.
Collapse
|
1841
|
Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. [miR-16 - a key for adaptive responses of neurons to fluoxetine]. Med Sci (Paris) 2011; 27:128-31. [PMID: 21382318 DOI: 10.1051/medsci/2011272128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
1842
|
Singewald GM, Rjabokon A, Singewald N, Ebner K. The modulatory role of the lateral septum on neuroendocrine and behavioral stress responses. Neuropsychopharmacology 2011; 36:793-804. [PMID: 21160468 PMCID: PMC3055728 DOI: 10.1038/npp.2010.213] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The lateral septum (LS) has been shown to have a key role in emotional processes and stress responses. However, the exact role of the LS on stress modulation is not clear, as previous lesion studies mostly used electrolytic lesions, thereby destroying the whole septal area, including medial components and/or fibers of passage. The aim of the present study was therefore, to investigate the effects of selective excitotoxic ablation of the LS on neuroendocrine and behavioral stress responses in rats. Bilateral ibotenic acid lesions of the LS increased hypothalamo-pituitary-adrenocortical (HPA) axis responses to forced swim stress indicated by enhanced plasma ACTH and corticosterone responses and higher stress-induced c-Fos-like immunoreactivity in the paraventricular hypothalamic nucleus. Moreover, LS-lesioned animals showed a more passive coping style in the forced swim test indicated by increased floating and reduced struggling/swimming behavior compared with sham-lesioned controls. Interestingly, intraseptal corticosteroid receptor blockade modulated behavioral stress coping but failed to change HPA axis stress responses. Further experiments aimed at elucidating underlying neurochemical mechanisms revealed that intraseptal administration of the selective 5-HT(1A) receptor antagonist WAY-100635 increased and prolonged stress-induced ACTH and corticosterone levels mimicking lesion effects, while the agonist 8-OH-DPAT suppressed HPA axis activity facilitating the inhibitory role of the LS. In addition, 8-OH-DPAT-injected animals showed increased active and decreased passive coping strategies during forced swimming suggesting antidepressant efficacy. Taken together, our data suggest that the LS promotes active stress coping behavior and is involved in a HPA-inhibitory mechanism that is at least in part mediated by septal 5-HT(1A) receptors and does not involve a glucocorticoid mediated feedback mechanism.
Collapse
Affiliation(s)
- Georg M Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Alesja Rjabokon
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innsbruck, Austria,Leopold-Franzens-University of Innsbruck, Department of Pharmacology and Toxicology, Peter Mayr-Street1, Innsbruck A-6020, Austria, Tel: +43 512 507 5623, Fax: +43-512-507-2760, E-mail:
| |
Collapse
|
1843
|
Modeling treatment-resistant depression. Neuropharmacology 2011; 61:408-13. [PMID: 21356220 DOI: 10.1016/j.neuropharm.2011.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/31/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
Abstract
Depression is a polygenic and highly complex psychiatric disorder that is currently a major burden on society. Depression is highly heterogeneous in presentation and frequently exhibits high comorbidity with other psychiatric and somatic disorders. Commonly used treatments, such as selective serotonin reuptake inhibitors (SSRIs), are not ideal since only a subset of patients achieve remission. In addition, the reason why some individuals respond to SSRIs while others don't are unknown. Here we begin to ask what the basis of treatment resistance is, and propose new strategies to model this phenomenon in animals. We focus specifically on animal models that offer the appropriate framework to study treatment resistance with face, construct and predictive validity.
Collapse
|
1844
|
Kitamura S, Hida A, Watanabe M, Enomoto M, Aritake-Okada S, Moriguchi Y, Kamei Y, Mishima K. Evening preference is related to the incidence of depressive states independent of sleep-wake conditions. Chronobiol Int 2011; 27:1797-812. [PMID: 20969524 DOI: 10.3109/07420528.2010.516705] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although evening preference has recently been identified as a risk factor for depression, it has not been substantiated whether evening preference is a direct risk factor for depressive states, or if it is associated secondarily through other factors, such as delayed sleep timing and shortened sleep duration. The objective of this study is to investigate associations in Japanese adult subjects between evening preference and incidence of depressive states, adjusting for various sleep parameters related to depressive states. The Morningness-Eveningness Questionnaire (MEQ), the Pittsburgh Sleep Quality Index (PSQI), and the Center for Epidemiologic Studies Depression Scale (CES-D) were administered to 1170 individuals (493 males/677 females; mean and range 38.5 and 20-59 yrs) to assess their diurnal preferences, sleeping states, and presence of depression symptoms. Subjects were classified into five chronotypes based on MEQ scores. Evening preference was associated with delayed sleep timing, shortened sleep duration, deteriorated subjective sleep quality, and worsened daytime sleepiness. Logistic regression analysis demonstrated that the extreme evening type (odds ratio [OR] = 1.926, p = .018) was associated with increased incidence of depressive states and that the extreme morning type (OR = 0.342, p = .038) was associated with the decreased incidence of depressive states, independent of sleep parameters, such as nocturnal awakening (OR = 1.844, p < .001), subjective sleep quality (OR = 2.471, p < .001), and daytime sleepiness (OR = 1.895, p = .001). However, no significant associations were observed between the incidence of depressive states and sleep duration, sleep timing, and sleep debt (levels of insufficient sleep). Although the findings of this study do not demonstrate a causative relationship between evening preference and depression, they do suggest the presence of functional associations between mood adjustment and biological clock systems that regulate diurnal preference. They also suggest that evening preference might increase susceptibility to the induction of mood disorders.
Collapse
Affiliation(s)
- Shingo Kitamura
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1845
|
Bennett MR. The prefrontal-limbic network in depression: Modulation by hypothalamus, basal ganglia and midbrain. Prog Neurobiol 2011; 93:468-87. [PMID: 21349315 DOI: 10.1016/j.pneurobio.2011.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/07/2023]
Abstract
The anterior cingulate cortex, amygdala and hippocampus form part of an interconnected prefrontal neocortical and limbic archicortical network that is dysregulated in major depressive disorders (MDD). Modulation of this prefrontal-limbic network (PLN) is principally through the hypothalamus, basal ganglia and midbrain. Here the likely mechanisms by which these modulations are affected are described and the implications of their failure for depression associated with suicidal diathesis, late-life and psychoses discussed.
Collapse
Affiliation(s)
- M R Bennett
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
1846
|
Miyagawa K, Tsuji M, Fujimori K, Saito Y, Takeda H. Prenatal stress induces anxiety-like behavior together with the disruption of central serotonin neurons in mice. Neurosci Res 2011; 70:111-7. [PMID: 21320553 DOI: 10.1016/j.neures.2011.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/19/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
Most pregnant women are at risk of showing some emotional abnormality, since some biological functions such as hormonal systems may dramatically change in pregnancy. Some of them may be exposed to strong stress as hesitation of positive drug therapies because of worries regarding adverse effects on the embryo. A growing body of evidence suggests that prenatal stress increases the vulnerability to neuropsychiatric disorders, including depression and anxiety. However, the mechanisms involved are still unknown. To clarify the influence of exposure to prenatal stress on emotional development, we examined behavioral responses in offspring exposed to weak- or strong-prenatal restraint stress. We found that offspring that had been exposed to strong stress displayed anxiety-like behavior as determined by the elevated plus-maze test. It has been widely accepted that central serotonin (5-hydroxytryptamine; 5-HT) neurons play a critical role in emotional behaviors. Immunohistochemical studies showed that exposure to strong-prenatal restraint stress increased the expression of 5-HT-positive cells in the dorsal raphe nuclei in mice. Moreover, under these conditions, tryptophan hydroxylase-like immunoreactivities were also dramatically increased. In contrast, these behavioral and neurochemical abnormalities were not observed in offspring that had been exposed to weak-prenatal restraint stress. These findings indicate that exposure to excessive prenatal stress induces anxiety-like behavior together with disruption of the development of 5-HT neurons in mice.
Collapse
Affiliation(s)
- Kazuya Miyagawa
- Division of Pharmacology, Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanamaru, Ohtawara, Tochigi 324-8501, Japan
| | | | | | | | | |
Collapse
|
1847
|
Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology (Berl) 2011; 213:547-53. [PMID: 20480149 PMCID: PMC3139174 DOI: 10.1007/s00213-010-1881-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/04/2010] [Indexed: 01/19/2023]
Abstract
RATIONALE Although serotonin (5-HT) dysregulation is implicated in the pathophysiology of major depressive disorder (MDD), the role of specific receptor subtypes remains to be elucidated. Emerging preclinical research suggests an important role for the 5-HT(1B) receptor in behavioral regulation and depressive phenotypes. In particular, 5-HT(1B) heteroreceptors located within the striatum have been shown to play an essential role in antidepressant action. OBJECTIVES The objective of this study was to determine 5-HT(1B) receptor binding potential (BP (ND)) in the region of the ventral striatum/ventral pallidum (VS/VP) in individuals with MDD and healthy control participants. METHODS Ten participants with MDD (30.8 ± 9.5 years, five men/five women) in a current major depressive episode (MDE) and ten healthy control participants (30.7 ± 10.5 years, five men/five women) underwent positron emission tomography (PET) scanning with the selective 5-HT(1B) receptor radioligand [(11)C]P943. RESULTS Within the VS/VP region of interest, [(11)C]P943 BP (ND) was significantly reduced in the MDD group compared with the healthy control group (1.37 ± 0.13 and 1.68 ± 0.16, respectively; 18.7% between-group difference; p < 0.001). CONCLUSIONS Consistent with preclinical and postmortem data, our findings suggest abnormally reduced function of VS/VP 5-HT(1B) receptors in humans with MDD. Abnormal 5-HT(1B) heteroreceptor function may contribute to dysfunctional reward signaling within the striatum, including the nucleus accumbens, via interaction with dopamine, γ-amino-butyric acid, or glutamate systems. Our findings suggest reduced 5-HT(1B) receptor signaling in the VS/VP in MDD and contribute to the therapeutic rationale for testing 5-HT(1B) agonists as a novel class of antidepressants.
Collapse
|
1848
|
Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA, Lawson WB, DePaulo JR, Gejman PV, Sanders AR, Johnson JK, Adams P, Chaudhury S, Jancic D, Evgrafov O, Zvinyatskovskiy A, Ertman N, Gladis M, Neimanas K, Goodell M, Hale N, Ney N, Verma R, Mirel D, Holmans P, Levinson DF. Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 2011; 16:193-201. [PMID: 20125088 PMCID: PMC6486400 DOI: 10.1038/mp.2009.124] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 01/07/2023]
Abstract
A genome-wide association study was carried out in 1020 case subjects with recurrent early-onset major depressive disorder (MDD) (onset before age 31) and 1636 control subjects screened to exclude lifetime MDD. Subjects were genotyped with the Affymetrix 6.0 platform. After extensive quality control procedures, 671 424 autosomal single nucleotide polymorphisms (SNPs) and 25 068 X chromosome SNPs with minor allele frequency greater than 1% were available for analysis. An additional 1 892 186 HapMap II SNPs were analyzed based on imputed genotypic data. Single-SNP logistic regression trend tests were computed, with correction for ancestry-informative principal component scores. No genome-wide significant evidence for association was observed, assuming that nominal P<5 × 10(-8) approximates a 5% genome-wide significance threshold. The strongest evidence for association was observed on chromosome 18q22.1 (rs17077540, P=1.83 × 10(-7)) in a region that has produced some evidence for linkage to bipolar-I or -II disorder in several studies, within an mRNA detected in human brain tissue (BC053410) and approximately 75 kb upstream of DSEL. Comparing these results with those of a meta-analysis of three MDD GWAS data sets reported in a companion article, we note that among the strongest signals observed in the GenRED sample, the meta-analysis provided the greatest support (although not at a genome-wide significant level) for association of MDD to SNPs within SP4, a brain-specific transcription factor. Larger samples will be required to confirm the hypothesis of association between MDD (and particularly the recurrent early-onset subtype) and common SNPs.
Collapse
Affiliation(s)
- J Shi
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1849
|
Alexander B, Warner-Schmidt J, Eriksson T, Tamminga C, Arango-Lievano M, Arango-Llievano M, Ghose S, Vernov M, Stavarache M, Stavarche M, Musatov S, Flajolet M, Svenningsson P, Greengard P, Kaplitt MG. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2011; 2:54ra76. [PMID: 20962330 DOI: 10.1126/scitranslmed.3001079] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The etiology of major depression remains unknown, but dysfunction of serotonergic signaling has long been implicated in the pathophysiology of this disorder. p11 is an S100 family member recently identified as a serotonin 1B [5-hydroxytryptamine 1B (5-HT(1B))] and serotonin 4 (5-HT(4)) receptor-binding protein. Mutant mice in which p11 is deleted show depression-like behaviors, suggesting that p11 may be a mediator of affective disorder pathophysiology. Using somatic gene transfer, we have now identified the nucleus accumbens as a key site of p11 action. Reduction of p11 with adeno-associated virus (AAV)-mediated RNA interference in the nucleus accumbens, but not in the anterior cingulate, of normal adult mice resulted in depression-like behaviors nearly identical to those seen in p11 knockout mice. Restoration of p11 expression specifically in the nucleus accumbens of p11 knockout mice normalized depression-like behaviors. Human nucleus accumbens tissue shows a significant reduction of p11 protein in depressed patients when compared to matched healthy controls. These results suggest that p11 loss in rodent and human nucleus accumbens may contribute to the pathophysiology of depression. Normalization of p11 expression within this brain region with AAV-mediated gene therapy may be of therapeutic value.
Collapse
Affiliation(s)
- Brian Alexander
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1850
|
Abstract
Anxiety disorders comprise the most prevalent mental health disorders among children and adults. Psychotherapy and pharmacotherapy are effective in improving clinical impairments from anxiety disorders and maintaining these improvements. This article discusses how to obtain a suitable diagnosis for anxiety disorders in youth for implementing appropriate treatments, focusing on the evidence base for pharmacologic treatment. Clinical guidelines are discussed, including Food and Drug Administration indications and off-label use of medications, and considerations for special populations and youth with comorbidities are highlighted. Findings suggest moderate effectiveness of medication, particularly selective serotonin reuptake inhibitors, in the treatment of anxiety disorders in youth.
Collapse
|