1901
|
Daosukho C, Chen Y, Noel T, Sompol P, Nithipongvanitch R, Velez JM, Oberley TD, Clair DKS. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic Biol Med 2007; 42:1818-25. [PMID: 17512461 PMCID: PMC2151922 DOI: 10.1016/j.freeradbiomed.2007.03.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 11/28/2022]
Abstract
Cardiac injury is a major complication for oxidative-stress-generating anticancer agents exemplified by Adriamycin (ADR). Recently, several histone deacetylase inhibitors (HDACIs) including phenylbutyrate (PBA) have shown promise in the treatment of cancer with little known toxicity to normal tissues. PBA has been shown to protect against oxidative stress in normal tissues. Here, we examined whether PBA might protect heart against ADR toxicity in a mouse model. The mice were i.p. injected with ADR (20 mg/kg). PBA (400 mg/kg/day) was i.p. injected 1 day before and daily after the ADR injection for 2 days. We found that PBA significantly decreased the ADR-associated elevation of serum lactate dehydrogenase and creatine kinase activities and diminished ADR-induced ultrastructural damages of cardiac tissue by more than 70%. Importantly, PBA completely rescued ADR-caused reduction of cardiac functions exemplified by ejection fraction and fraction shortening, and increased cardiac manganese superoxide dismutase (MnSOD) protein and activity. Our results reveal a previously unrecognized role of HDACIs in protecting against ADR-induced cardiac injury and suggest that PBA may exert its cardioprotective effect, in part, by the increase of MnSOD. Thus, combining HDACIs with ADR could add a new mechanism to fight cancer while simultaneously decrease ADR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chotiros Daosukho
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
- Faculty of Medical Technology, Mahidol University, Bangkok, Thailand 10700
| | - Yumin Chen
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Teresa Noel
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Pradoldej Sompol
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Joyce M. Velez
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Terry D. Oberley
- Department of Pathology, University of Wisconsin, Madison, WI 53705, USA
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
1902
|
|
1903
|
Kuipers F, Stroeve JHM, Caron S, Staels B. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Curr Opin Lipidol 2007; 18:289-97. [PMID: 17495603 DOI: 10.1097/mol.0b013e3281338d08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Bile acids are amphiphilic molecules synthesized from cholesterol exclusively in the liver that are essential for effective absorption of dietary fat. In addition to this 'classical role', bile acids act as signalling molecules that control their own metabolism by activating the nuclear receptor, farnesoid X receptor. RECENT FINDINGS Recent work demonstrates that farnesoid X receptor exerts metabolic control beyond bile acid homeostasis, notably effects on HDL, triglyceride and glucose metabolism. Farnesoid X receptor influences insulin sensitivity of tissues that are not part of the enterohepatic circulation, for example, adipose tissue. Certain metabolic effects in the liver appear to be mediated via farnesoid X receptor-stimulated release of an intestinal growth factor. In addition, novel signalling pathways independent of farnesoid X receptor have been identified that may contribute to bile acid-mediated metabolic regulation. SUMMARY Farnesoid X receptor represents a potentially attractive target for treatment of various aspects of the metabolic syndrome and for prevention of atherosclerosis. Yet, in view of its pleiotropic effects and apparent species-specificity, it is evident that successful interference of the farnesoid X receptor signalling system will require the development of gene-specific and/or organ-specific farnesoid X receptor modulators and extensive testing in human models of disease.
Collapse
Affiliation(s)
- Folkert Kuipers
- Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, The Netherlands.
| | | | | | | |
Collapse
|
1904
|
|
1905
|
Martin FPJ, Dumas ME, Wang Y, Legido-Quigley C, Yap IKS, Tang H, Zirah S, Murphy GM, Cloarec O, Lindon JC, Sprenger N, Fay LB, Kochhar S, van Bladeren P, Holmes E, Nicholson JK. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 2007; 3:112. [PMID: 17515922 PMCID: PMC2673711 DOI: 10.1038/msb4100153] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/14/2007] [Indexed: 12/13/2022] Open
Abstract
Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by (1)H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography-mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level.
Collapse
Affiliation(s)
- François-Pierre J Martin
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Marc-Emmanuel Dumas
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Yulan Wang
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Cristina Legido-Quigley
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Ivan K S Yap
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Huiru Tang
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Séverine Zirah
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Gerard M Murphy
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Olivier Cloarec
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - John C Lindon
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Norbert Sprenger
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Laurent B Fay
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Sunil Kochhar
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | - Elaine Holmes
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Jeremy K Nicholson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| |
Collapse
|
1906
|
Abstract
The endoplasmic reticulum (ER) is the site of folding for proteins that are resident in the ER or that are destined for the Golgi, endosomes, lysosomes, the plasma membrane, or secretion. Cotranslational addition of preassembled glucose(3)-mannose(9)-N-acetylglucosamine(2) core oligosaccharides (N-glycosylation) is a common event for polypeptides synthesized in this compartment. Protein-bound oligosaccharides are exposed to several ER glycanases that sequentially remove terminal glucose or mannose residues. Their activity must be tightly regulated because the N-glycan composition determines whether the associated protein is subjected to folding attempts in the ER lumen or whether it is retrotranslocated into the cytosol and degraded.
Collapse
Affiliation(s)
- Maurizio Molinari
- Institute for Research in Biomedicine, Via V. Vela 6, CH-6500 Bellinzona, Switzerland.
| |
Collapse
|
1907
|
van Lith M, Karala AR, Bown D, Gatehouse JA, Ruddock LW, Saunders PTK, Benham AM. A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol Biol Cell 2007; 18:2795-804. [PMID: 17507649 PMCID: PMC1949379 DOI: 10.1091/mbc.e07-02-0147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Glycoprotein folding is mediated by lectin-like chaperones and protein disulfide isomerases (PDIs) in the endoplasmic reticulum. Calnexin and the PDI homologue ERp57 work together to help fold nascent polypeptides with glycans located toward the N-terminus of a protein, whereas PDI and BiP may engage proteins that lack glycans or have sugars toward the C-terminus. In this study, we show that the PDI homologue PDILT is expressed exclusively in postmeiotic male germ cells, in contrast to the ubiquitous expression of many other PDI family members in the testis. PDILT is induced during puberty and represents the first example of a PDI family member under developmental control. We find that PDILT is not active as an oxido-reductase, but interacts with the model peptide Delta-somatostatin and nonnative bovine pancreatic trypsin inhibitor in vitro, indicative of chaperone activity. In vivo, PDILT forms a tissue-specific chaperone complex with the calnexin homologue calmegin. The identification of a redox-inactive chaperone partnership defines a new system of testis-specific protein folding with implications for male fertility.
Collapse
Affiliation(s)
- Marcel van Lith
- Department of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1908
|
Gregor MF, Hotamisligil GS. Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007; 48:1905-14. [PMID: 17699733 DOI: 10.1194/jlr.r700007-jlr200] [Citation(s) in RCA: 419] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the context of obesity and its related maladies, the adipocyte plays a central role in the balance, or imbalance, of metabolic homeostasis. An obese, hypertrophic adipocyte is challenged by many insults, including surplus energy, inflammation, insulin resistance, and considerable stress to various organelles. The endoplasmic reticulum (ER) is one such vital organelle that demonstrates significant signs of stress and dysfunction in obesity and insulin resistance. Under normal conditions, the ER must function in the unique and trying environment of the adipocyte, adapting to meet the demands of increased protein synthesis and secretion, energy storage in the form of triglyceride droplet formation, and nutrient sensing that are particular to the differentiated fat cell. When nutrients are in pathological excess, the ER is overwhelmed and the unfolded protein response (UPR) is activated. Remarkably, the consequences of UPR activation have been causally linked to the development of insulin resistance through a multitude of possible mechanisms, including c-jun N-terminal kinase activation, inflammation, and oxidative stress. This review will focus on the function of the ER under normal conditions in the adipocyte and the pathological effects of a stressed ER contributing to adipocyte dysfunction and a thwarted metabolic homeostasis.
Collapse
Affiliation(s)
- Margaret F Gregor
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
1909
|
Abstract
Insulin resistance is a nearly universal finding in morbid obesity. It may be compensated and latent or uncompensated with single or multiple clinical abnormalities. Although lifestyle interventions and medical measures alone may control most metabolic problems in the short term, the ultimate benefits of such an approach are usually limited by the complexity of available therapeutic regimens and the difficulty of maintaining full patient compliance. Many studies now document that bariatric surgery can effectively and safely control these complications in the short term and long term or even prevent their occurrence. Further investigations are needed to understand better the mechanisms involved and to define more clearly the appropriate indications and contraindications of the treatments proposed.
Collapse
Affiliation(s)
- Franco Folli
- Department of Medicine, Diabetes Division, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
1910
|
Rahman SM, Schroeder-Gloeckler JM, Janssen RC, Jiang H, Qadri I, Maclean KN, Friedman JE. CCAAT/enhancing binding protein beta deletion in mice attenuates inflammation, endoplasmic reticulum stress, and lipid accumulation in diet-induced nonalcoholic steatohepatitis. Hepatology 2007; 45:1108-17. [PMID: 17464987 DOI: 10.1002/hep.21614] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is characterized by steatosis, inflammation, and oxidative stress. To investigate whether the transcription factor CCAAT/Enhancer binding protein (C/EBPbeta) is involved in the development of NASH, C57BL/6J wild-type (WT) or C/EBPbeta knockout (C/EBPbeta-/-) mice were fed either a methionine and choline deficient (MCD) diet or standard chow. These WT mice fed a MCD diet for 4 weeks showed a 2- to 3-fold increase in liver C/EBPbeta messenger RNA and protein, along with increased expression of lipogenic genes peroxisome proliferators-activated receptor gamma and Fas. WT mice also showed increased levels of the endoplasmic reticulum stress pathway proteins phosphorylated eukaryotic translation initiation factor alpha, phosphorylated pancreatic endoplasmic reticulum kinase, and C/EBP homologous protein, along with inflammatory markers phosphorylated nuclear factor kappaB and phosphorylated C-jun N-terminal kinase compared to chow-fed controls. Cytochrome P450 2E1 protein and acetyl coA oxidase messenger RNA involved in hepatic lipid peroxidation were also markedly increased in WT MCD diet-fed group. In contrast, C/EBPbeta-/- mice fed a MCD diet showed a 60% reduction in hepatic triglyceride accumulation and decreased liver injury as evidenced by reduced serum alanine aminotransferase and aspartate aminotransferase levels, and by H&E staining. Immunoblots and real-time qPCR data revealed a significant reduction in expression of stress related proteins and lipogenic genes in MCD diet-fed C/EBPbeta-/- mice. Furthermore, circulating TNFalpha and expression of acute phase response proteins CRP and SAP were significantly lower in C/EBPbeta-/- mice compared to WT mice. Conversely, C/EBPbeta over-expression in livers of WT mice increased steatosis, nuclear factor-kappaB, and endoplasmic reticulum stress, similar to MCD diet-fed mice. CONCLUSION Taken together, these data suggest a previously unappreciated molecular link between C/EBPbeta, hepatic steatosis and inflammation and suggest that increased C/EBPbeta expression may be an important factor underlying events leading to NASH.
Collapse
Affiliation(s)
- Shaikh Mizanoor Rahman
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
1911
|
Bánhegyi G, Benedetti A, Csala M, Mandl J. Stress on redox. FEBS Lett 2007; 581:3634-40. [PMID: 17467703 DOI: 10.1016/j.febslet.2007.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 01/12/2023]
Abstract
Redox imbalance in the endoplasmic reticulum lumen is the most frequent cause of endoplasmic reticulum stress and consequent apoptosis. The mechanism involves the impairment of oxidative protein folding, the accumulation of unfolded/misfolded proteins in the lumen and the initiation of the unfolded protein response. The participation of several redox systems (glutathione, ascorbate, FAD, tocopherol, vitamin K) has been demonstrated in the process. Recent findings have attracted attention to the possible mechanistic role of luminal pyridine nucleotides in the endoplasmic reticulum stress. The aim of this minireview is to summarize the luminal redox systems and the redox sensing mechanisms of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, POB 260, Hungary.
| | | | | | | |
Collapse
|
1912
|
Loging W, Harland L, Williams-Jones B. High-throughput electronic biology: mining information for drug discovery. Nat Rev Drug Discov 2007; 6:220-30. [PMID: 17330071 DOI: 10.1038/nrd2265] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The vast range of in silico resources that are available in life sciences research hold much promise towards aiding the drug discovery process. To fully realize this opportunity, computational scientists must consider the practical issues of data integration and identify how best to apply these resources scientifically. In this article we describe in silico approaches that are driven towards the identification of testable laboratory hypotheses; we also address common challenges in the field. We focus on flexible, high-throughput techniques, which may be initiated independently of 'wet-lab' experimentation, and which may be applied to multiple disease areas. The utility of these approaches in drug discovery highlights the contribution that in silico techniques can make and emphasizes the need for collaboration between the areas of disease research and computational science.
Collapse
Affiliation(s)
- William Loging
- Computational Biology Group, Pfizer, Groton, Connecticut, USA.
| | | | | |
Collapse
|
1913
|
Cariou B, Staels B. FXR: a promising target for the metabolic syndrome? Trends Pharmacol Sci 2007; 28:236-43. [PMID: 17412431 DOI: 10.1016/j.tips.2007.03.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 02/12/2007] [Accepted: 03/21/2007] [Indexed: 12/23/2022]
Abstract
The metabolic syndrome is an insulin-resistant state that is characterized by a cluster of cardiovascular risk factors, including abdominal obesity, hyperglycemia, elevated blood pressure and combined dyslipidemia. In this review, we discuss the role of the bile-acid-activated farnesoid X receptor (FXR) in the modulation of the metabolic syndrome. Owing to its regulatory actions in lipid and glucose homeostasis, FXR is a potential pharmacological target. Moreover, the observation that FXR also influences endothelial function and atherosclerosis indicates a regulatory role in the cardiovascular complications that are associated with the metabolic syndrome. The pharmacological activation of FXR leads to a complex response that integrates beneficial actions and potentially undesirable side-effects. Thus, the identification of selective FXR modulators (selective bile acid receptor modulators) is required for the development of compounds that can be used to treat the metabolic syndrome.
Collapse
Affiliation(s)
- Bertrand Cariou
- Centre Hospitalier Universitaire Hôtel-Dieu, Nantes 44093, France.
| | | |
Collapse
|
1914
|
Abstract
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following the transport step. The principal glucose transporter protein that mediates this uptake is GLUT4, which plays a key role in regulating whole body glucose homeostasis. This review focuses on recent advances on the biology of GLUT4.
Collapse
Affiliation(s)
- Shaohui Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
1915
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2007; 14:170-96. [PMID: 17940437 DOI: 10.1097/med.0b013e3280d5f7e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1916
|
Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007; 117:739-45. [PMID: 17318260 PMCID: PMC1797607 DOI: 10.1172/jci30400] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/03/2007] [Indexed: 12/25/2022] Open
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCepsilon, but not other isoforms of PKC, is activated. To determine whether PKCepsilon plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCepsilon and subjected them to 3 days of high-fat feeding. Knocking down PKCepsilon expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCepsilon associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCepsilon plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhen-Xiang Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amy Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sara A. Beddow
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John G. Geisler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xian-man Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brett P. Monia
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sanjay Bhanot
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
1917
|
Chu WS, Das SK, Wang H, Chan JC, Deloukas P, Froguel P, Baier LJ, Jia W, McCarthy MI, Ng MC, Damcott C, Shuldiner AR, Zeggini E, Elbein SC. Activating transcription factor 6 (ATF6) sequence polymorphisms in type 2 diabetes and pre-diabetic traits. Diabetes 2007; 56:856-62. [PMID: 17327457 PMCID: PMC2672156 DOI: 10.2337/db06-1305] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Activating transcription factor 6 (ATF6) is located within the region of linkage to type 2 diabetes on chromosome 1q21-q23 and is a key activator of the endoplasmic reticulum stress response. We evaluated 78 single nucleotide polymorphisms (SNPs) spanning >213 kb in 95 people, from which we selected 64 SNPs for evaluation in 191 Caucasian case subjects from Utah and between 165 and 188 control subjects. Six SNPs showed nominal associations with type 2 diabetes (P = 0.001-0.04), including the nonsynonymous SNP rs1058405 (M67V) in exon 3 and rs11579627 in the 3' flanking region. Only rs1159627 remained significant on permutation testing. The associations were not replicated in 353 African-American case subjects and 182 control subjects, nor were ATF6 SNPs associated with altered insulin secretion or insulin sensitivity in nondiabetic Caucasian individuals. No association with type 2 diabetes was found in a subset of 44 SNPs in Caucasian (n = 2,099), Pima Indian (n = 293), and Chinese (n = 287) samples. Allelic expression imbalance was found in transformed lymphocyte cDNA for 3' untranslated region variants, thus suggesting cis-acting regulatory variants. ATF6 does not appear to play a major role in type 2 diabetes, but further work is required to identify the cause of the allelic expression imbalance.
Collapse
Affiliation(s)
- Winston S. Chu
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Swapan Kumar Das
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Hua Wang
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Juliana C. Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region (SAR), China
| | | | - Philippe Froguel
- Institut de Biologie de Lille, Lille, France
- Faculty of Life Sciences, Imperial College, London, U.K
| | - Leslie J. Baier
- Phoenix Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiaotong University No. 6 People’s Hospital, Shanghai, China
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism and Wellcome Trust Centre for Human Genetics, University of Oxford, U.K
| | - Maggie C.Y. Ng
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region (SAR), China
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Coleen Damcott
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eleftheria Zeggini
- Oxford Centre for Diabetes, Endocrinology and Metabolism and Wellcome Trust Centre for Human Genetics, University of Oxford, U.K
| | - Steven C. Elbein
- Division of Endocrinology, Department of Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
1918
|
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease and its subset nonalcoholic steatohepatitis represent the liver manifestations of insulin resistance. This review briefly summarizes advances in our understanding of the pathogenesis of nonalcoholic fatty liver disease and its prevalence, natural history and treatment. RECENT FINDINGS The recognition of the role the renin-angiotensin system in promoting insulin resistance is worth noting because of available drugs. Endoplasmic reticulum stress has also become a recent target of investigation because endoplasmic reticulum stress is common in obesity, diabetes and various forms of liver disease including nonalcoholic fatty liver disease. Endoplasmic reticulum stress may be responsible for activation of c-Jun kinase, a process that may cause the hepatocellular injury in nonalcoholic steatohepatitis. Progress has also been made in estimating the prevalence of nonalcoholic fatty liver disease in adults and children. Patients enrolled in the Dallas Heart Study were found to have a 33% prevalence of nonalcoholic fatty liver disease and children dying of accidental deaths in San Diego were found to have a 13% prevalence of nonalcoholic fatty liver disease. Because about 10% of people with nonalcoholic fatty liver disease are at risk for progressive fibrosis, the burden of this disease is now quite substantial. SUMMARY Incremental progress in understanding nonalcoholic fatty liver disease and nonalcoholic steatohepatitis promises to lead to new therapeutic options for this common disease.
Collapse
Affiliation(s)
- Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University Liver Center, St. Louis, Missouri 63110, USA.
| |
Collapse
|
1919
|
Hetz C, Castilla J, Soto C. Perturbation of endoplasmic reticulum homeostasis facilitates prion replication. J Biol Chem 2007; 282:12725-33. [PMID: 17329244 PMCID: PMC2804266 DOI: 10.1074/jbc.m611909200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative disorders characterized by the accumulation of an abnormally folded form of the prion protein (PrP), termed PrP(Sc). Prion replication triggers endoplasmic reticulum (ER) stress, neuronal dysfunction, and apoptosis. In this study we analyze the effect of perturbations in ER homeostasis on PrP biochemical properties and prion replication. ER stress led to the generation of a mis-folded PrP isoform, which is detergent-insoluble and protease-sensitive. To understand the mechanism by which ER stress generates PrP misfolding, we assessed the contribution of different signaling pathways implicated in the unfolded protein response. Expression of a dominant negative form of IRE1 alpha or XBP-1 significantly increased PrP aggregation, whereas overexpression of ATF4 or an active mutant form of XBP-1 and ATF6 had the opposite affect. Analysis of prion replication in vitro revealed that the PrP isoform generated after ER stress is more efficiently converted into PrP(Sc) compared with the protein extracted from untreated cells. These findings indicate that ER-damaged cells might be more susceptible to prion replication. Because PrP(Sc) induces ER stress, our data point to a vicious cycle accelerating prion replication, which may explain the rapid progression of the disease.
Collapse
Affiliation(s)
- Claudio Hetz
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | |
Collapse
|
1920
|
Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007. [PMID: 17318260 DOI: 10.1172/jci3040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCepsilon, but not other isoforms of PKC, is activated. To determine whether PKCepsilon plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCepsilon and subjected them to 3 days of high-fat feeding. Knocking down PKCepsilon expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCepsilon associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCepsilon plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1921
|
Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007. [PMID: 17318260 DOI: 10.1172/jci130400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCepsilon, but not other isoforms of PKC, is activated. To determine whether PKCepsilon plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCepsilon and subjected them to 3 days of high-fat feeding. Knocking down PKCepsilon expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCepsilon associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCepsilon plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1922
|
Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007; 19:142-9. [PMID: 17303404 DOI: 10.1016/j.ceb.2007.02.001] [Citation(s) in RCA: 802] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/05/2007] [Indexed: 11/18/2022]
Abstract
The c-Jun NH(2)-terminal kinases (JNKs) are an evolutionarily conserved sub-group of mitogen-activated protein (MAP) kinases. Recent studies have improved our understanding of the physiological function of the JNK pathway. Roles of novel molecules that participate in the JNK pathway have been defined and new insight into the role of JNK in survival signaling, cell death, cancer and diabetes has been achieved.
Collapse
Affiliation(s)
- Claire R Weston
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
1923
|
Abstract
Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics & Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
1924
|
Hansen PA, Waheed A, Corbett JA. Chemically chaperoning the actions of insulin. Trends Endocrinol Metab 2007; 18:1-3. [PMID: 17116401 DOI: 10.1016/j.tem.2006.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 10/24/2006] [Accepted: 11/09/2006] [Indexed: 11/19/2022]
Abstract
The role of inflammation as a mediator of insulin resistance in type 2 diabetes and obesity has been a major focus of studies over the past ten years. In mouse models of obesity and type 2 diabetes, the development of insulin resistance correlates with elevated levels of endoplasmic reticulum stress and induction of the unfolded protein response. Activation of N-terminal C-Jun kinase is known to be associated with unfolded protein response activation, and has been shown to participate in the inhibition of insulin action by stimulating serine phosphorylation of the insulin receptor substrate 1, an event that attenuates insulin signaling. 'Chemical chaperones' are small molecules that have been shown to attenuate unfolded protein response activation. The exciting new findings of Ozcan et al. indicate that chemical chaperones improve glucose tolerance and insulin action in a mouse model of type 2 diabetes. These findings offer a potential new target for therapeutic strategies designed to improve insulin action and glucose tolerance in diabetic individuals.
Collapse
Affiliation(s)
- Polly A Hansen
- E.A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, St Louis, MO 63104, USA
| | | | | |
Collapse
|
1925
|
Kaneto H. Stress and Type 2 diabetes. Expert Rev Endocrinol Metab 2006; 1:701-703. [PMID: 30754149 DOI: 10.1586/17446651.1.6.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hideaki Kaneto
- a Osaka University Graduate School of Medicine, Department of Internal Medicine and Therapeutics, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|