151
|
Saleh MM, El-Moselhy T, El-Bastawissy E, Ibrahim MAA, Sayed SRM, Hegazy MEF, Efferth T, Jaragh-Alhadad LA, Sidhom PA. The mystery of titan hunter: Rationalized striking of the MAPK pathway via Newly synthesized 6-Indolylpyridone-3-Carbonitrile derivatives. Eur J Med Chem 2023; 259:115675. [PMID: 37506545 DOI: 10.1016/j.ejmech.2023.115675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
MAPK pathway sparkles with RTK activation, passes through subsequent downstream RAS-RAF-MEK-ERK signaling cascades, with consequent direct and indirect CDK4/6 signaling activation, and ends with cell survival, division, and proliferation. However, the emergence of anomalies such as mutations or overexpression in one or more points of the pathway could lead to cancer development and drug resistance. Therefore, designing small inhibitors to strike multitudinous MAPK pathway steps could be a promising synergistic strategy to confine cancer. In this study, twelve 6-indolylpyridone-3-carbonitrile candidates were synthesized and assessed in vitro for antineoplastic activity using four cancer cell lines. The initial antiproliferative screening revealed that compounds 3g, 3h, and 3i were the most potent candidates (GI% Avg = 70.10, 73.94, 74.33%, respectively) compared to staurosporine (GI% Avg = 70.99%). The subsequent safety and selectivity assessment showed that 3h exhibited sub-micromolar inhibition against lung cancer cells (HOP-92 GI50 = 0.75 μM) and 13.7 times selectivity toward cancerous cells over normal cells. As a result, 3h was nominated for deep mechanistic studies which evidenced that compound 3h impressively blocks multiple keystones of the MAPK pathway with nanomolar potency (EGFRWT IC50 = 281 nM, c-MET IC50 = 205 nM, B-RAFWT IC50 = 112 nM, and CDK4/6 IC50 = 95 and 184 nM, respectively). Surprisingly, 3h showed a remarkable potency against mutated EGFR and B-RAF, being 4 and 1.3 more selective to the mutated enzymes over the wild-type forms (EGFRT790M IC50 = 69 nM and B-RAFV600E IC50 = 83 nM). Ultimately, combined molecular docking and molecular dynamics (MD) calculations were executed to inspect the mode of binding and the complex stability of 3h towards the keystones of the MAPK pathway.
Collapse
Affiliation(s)
- Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| | - Tarek El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Eman El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Center, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| |
Collapse
|
152
|
Huang X, Li L, Chen Z, Yu H, You X, Kong N, Tao W, Zhou X, Huang J. Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302431. [PMID: 37231939 DOI: 10.1002/adma.202302431] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Ocular bacterial infection is a prevalent cause of blindness worldwide, with substantial consequences for normal human life. Traditional treatments for ocular bacterial infections areless effective, necessitating the development of novel techniques to enable accurate diagnosis, precise drug delivery, and effective treatment alternatives. With the rapid advancement of nanoscience and biomedicine, increasing emphasis has been placed on multifunctional nanosystems to overcome the challenges posed by ocular bacterial infections. Given the advantages of nanotechnology in the biomedical industry, it can be utilized to diagnose ocular bacterial infections, administer medications, and treat them. In this review, the recent advancements in nanosystems for the detection and treatment of ocular bacterial infections are discussed; this includes the latest application scenarios of nanomaterials for ocular bacterial infections, in addition to the impact of their essential characteristics on bioavailability, tissue permeability, and inflammatory microenvironment. Through an in-depth investigation into the effect of sophisticated ocular barriers, antibacterial drug formulations, and ocular metabolism on drug delivery systems, this review highlights the challenges faced by ophthalmic medicine and encourages basic research and future clinical transformation based on ophthalmic antibacterial nanomedicine.
Collapse
Affiliation(s)
- Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Luoyuan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Haoyu Yu
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| |
Collapse
|
153
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Kahnamoui S, Xiang B, Halayko AJ, Dolinsky VW, Pascoe CD, Jones MJ. Early-life exposure to cigarette smoke primes lung function and DNA methylation changes at Cyp1a1 upon exposure later in life. Am J Physiol Lung Cell Mol Physiol 2023; 325:L552-L567. [PMID: 37642652 PMCID: PMC11068412 DOI: 10.1152/ajplung.00192.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Prenatal and early-life exposure to cigarette smoke (CS) has repeatedly been shown to induce stable, long-term changes in DNA methylation (DNAm) in offspring. It has been hypothesized that these changes might be functionally related to the known outcomes of prenatal and early-life CS exposure, which include impaired lung development, altered lung function, and increased risk of asthma and wheeze. However, to date, few studies have examined DNAm changes induced by prenatal CS in tissues of the lung, and even fewer have attempted to examine the specific influences of prenatal versus early postnatal exposures. Here, we have established a mouse model of CS exposure which isolates the effects of prenatal and early postnatal CS exposures in early life. We have used this model to measure the effects of prenatal and/or postnatal CS exposures on lung function and immune cell infiltration as well as DNAm and expression of Cyp1a1, a candidate gene previously observed to demonstrate DNAm differences on CS exposure in humans. Our study revealed that exposure to CS prenatally and in the early postnatal period causes long-lasting differences in offspring lung function, gene expression, and lung Cyp1a1 DNAm, which wane over time but are reestablished on reexposure to CS in adulthood. This study creates a testable mouse model that can be used to investigate the effects of prenatal and early postnatal CS exposures and will contribute to the design of intervention strategies to mediate these detrimental effects.NEW & NOTEWORTHY Here, we isolated effects of prenatal from early postnatal cigarette smoke and showed that exposure to cigarette smoke early in life causes changes in offspring DNA methylation at Cyp1a1 that last through early adulthood but not into late adulthood. We also showed that smoking in adulthood reestablished these DNA methylation patterns at Cyp1a1, suggesting that a mechanism other than DNA methylation results in long-term memory associated with early-life cigarette smoke exposures at this gene.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bo Xiang
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
154
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
155
|
Wu KY, Brister D, Bélanger P, Tran SD. Exploring the Potential of Nanoporous Materials for Advancing Ophthalmic Treatments. Int J Mol Sci 2023; 24:15599. [PMID: 37958583 PMCID: PMC10650608 DOI: 10.3390/ijms242115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The landscape of ophthalmology is undergoing significant transformations, driven by technological advancements and innovations in materials science. One of the advancements in this evolution is the application of nanoporous materials, endowed with unique physicochemical properties ideal for a variety of ophthalmological applications. Characterized by their high surface area, tunable porosity, and functional versatility, these materials have the potential to improve drug delivery systems and ocular devices. This review, anchored by a comprehensive literature focusing on studies published within the last five years, examines the applications of nanoporous materials in ocular drug delivery systems (DDS), contact lenses, and intraocular lenses. By consolidating the most current research, this review aims to serve as a resource for clinicians, researchers, and material scientists engaged in the rapidly evolving field of ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Danielle Brister
- College of Public Health, National Taiwan University (NTU), Taipei 106319, Taiwan
| | - Paul Bélanger
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
156
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
157
|
Uner B, Durgun ME, Ozdemir S, Tas C, Uner M, Ozsoy Y. Determination of the Toxicity Preferences of Ocular Drug Delivery System by Comparing Two Different Toxicity Bioassays. Assay Drug Dev Technol 2023; 21:337-343. [PMID: 37831907 DOI: 10.1089/adt.2023.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Ocular drug delivery methods are highly favored for boosting bioavailability, patient compliance, and lower adverse effects and dose frequency. In addition to preventing adverse effects from the active ingredient, the parts of drug delivery systems must be nontoxic and nonallergic as well. Mitochondrial toxicity test (MTT) and Hen's egg chorioallantois membrane (HET-CAM) assay are the most often utilized tests based on this dilemma. The toxicity of loteprednol etabonate loaded solid lipid nanoparticles, lipid nanostructured carriers, and nanoemulsion were compared. Oleic acid, Precirol®ATO5, and Pluronic® F68 were used in the preparation. Their toxicities were evaluated by using two different toxicity tests (MTT and HET-CAM). The results suggest that there are no significant differences between the HET-CAM and MTT assays. It is noteworthy that the HET-CAM assay offers a more cost-effective and environmentally friendly alternative to the MTT assay, as it does not require cell culture and generates less toxic waste. This information may be useful to consider when selecting between the two assays.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical Technology, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, Missouri, USA
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Samet Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey
| | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Melike Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Yildiz Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
158
|
Uner B, Durgun ME, Ozdemir S, Tas C, Uner M, Ozsoy Y. Determination of the Toxicity Preferences of Ocular Drug Delivery System by Comparing Two Different Toxicity Bioassays. Assay Drug Dev Technol 2023; 21:337-343. [DOI: 14.https:/doi.org/10.1089/adt.2023.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical Technology, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, Missouri, USA
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Samet Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey
| | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Melike Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Yildiz Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
159
|
de Paiva IHR, da Silva RS, Mendonça IP, Duarte-Silva E, Botelho de Souza JR, Peixoto CA. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Improve Neuroinflammation and Cognition By Up-regulating IRS/PI3K/AKT Signaling Pathway in Diet-induced Obese Mice. J Neuroimmune Pharmacol 2023; 18:427-447. [PMID: 37382830 DOI: 10.1007/s11481-023-10069-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023]
Abstract
Increasing evidence has indicated that prebiotics as an alternative treatment for neuropsychiatric diseases. This study evaluated the prebiotics Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on the modulation of neuroinflammation and cognition in an experimental model of mice high-fat diet fed. Initially, mice were distributed in the following groups: (A) control standard diet (n = 15) and (B) HFD for 18 weeks (n = 30). In the 13th week, the mice were later divided into the following experimental groups: (A) Control (n = 15); (B) HFD (n = 14); and (C) HFD + Prebiotics (n = 14). From the 13th week, the HFD + Prebiotics group received a high-fat diet and a combination of FOS and GOS. In the 18th week, all animals performed the T-maze and Barnes Maze, and were later euthanized. Biochemical and molecular analyzes were performed to assess neuroinflammation, neurogenesis, synaptic plasticity, and intestinal inflammation. Mice fed HFD had higher blood glucose, triglyceridemia, cholesterolemia, and higher serum IL-1β associated with impaired learning and memory. These obese mice also showed activation of microglia and astrocytes and significant immunoreactivity of neuroinflammatory and apoptosis markers, such as TNF-α, COX-2, and Caspase-3, in addition to lower expression of neurogenesis and synaptic plasticity markers, such as NeuN, KI-67, CREB-p, and BDNF. FOS and GOS treatment significantly improved the biochemistry profile and decreased serum IL-1β levels. Treatment with FOS and GOS also reduced TNF-α, COX-2, Caspase-3, Iba-1, and GFAP-positive cells in the dentate gyrus, decreasing neuroinflammation and neuronal death caused by chronic HFD consumption. In addition, FOS and GOS promoted synaptic plasticity by increasing NeuN, p-CREB, BDNF, and KI-67, restoring spatial learning ability and memory. Moreover, FOS and GOS on HFD modulated the insulin pathway, which was proved by up-regulating IRS/PI3K/AKT signaling pathway, followed by a decreasing Aβ plate and Tau phosphorylation. Furthermore, the prebiotic intervention reshaped the HFD-induced imbalanced gut microbiota by modulating the composition of the bacterial community, markedly increasing Bacteroidetes. In addition, prebiotics decreased intestinal inflammation and leaky gut. In conclusion, FOS and GOS significantly modulated the gut microbiota and IRS/PI3K/AKT signaling pathway, decreased neuroinflammation, and promoted neuroplasticity improving spatial learning and memory. Schematic summarizing of the pathways by FOS and GOS improves memory and learning through the gut-brain axis. FOS and GOS improve the microbial profile, reducing intestinal inflammation and leaky gut in the distal colon. Specifically, the administration of FOS and GOS decreases the expression of TLR4, TNF-α, IL-1β, and MMP9 and increases the expression of occludin and IL-10. Prebiotics inhibit neuroinflammation, neuronal apoptosis, and reactive gliosis in the hippocampus but restore synaptic plasticity, neuronal proliferation, and neurogenesis.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Rodrigo Soares da Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
| | - Ingrid Prata Mendonça
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Eduardo Duarte-Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
160
|
Mensah RA, Cook MT, Kirton SB, Hutter V, Chau DYS. A drug-incorporated-microparticle-eggshell-membrane-scaffold (DIMES) dressing: A novel biomaterial for localised wound regeneration. Eur J Pharm Biopharm 2023; 190:258-269. [PMID: 37463633 DOI: 10.1016/j.ejpb.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
Chronic wounds affect millions of people annually and have emotional and financial implications in addition to health issues. The current treatment for chronic wounds involves the repeated use of bandages and drugs such as antibiotics over an extended period. A cost-effective and convenient solution for wound healing is the development of drug-incorporated bandages. This study aimed to develop a biocompatible bandage made of drug-incorporated poly (lactic-co-glycolic acid) (PLGA) microparticles (MPs) and eggshell membrane (ESM) for cornea wound healing. ESM has desirable properties for wound healing and can be isolated from eggshells using acetic acid or ethylenediaminetetraacetic acid (EDTA) protocols. Fluorescein isothiocyanate-labelled Bovine Serum Albumin (FITC-BSA) was used as a model drug, and the PLGA MPs were fabricated using a solvent extraction method. The MPs were successfully attached to the fibrous layer of the ESM using NaOH. The surface features of the ESM samples containing MPs were studied using a field emission scanning electron microscope (FESEM) and compared with blank ESM images. The findings indicated that the MPs were attached to the ESM fibres and had similar shapes and sizes as the control MPs. The fibre diameters of the MPs samples were assessed using Fiji-ImageJ software, and no significant changes were observed compared to the blank ESM. The surface roughness, Ra values, of the MPs incorporated ESM samples were evaluated and compared to the blank ESM, and no significant changes were found. Fourier transform infrared (FTIR) spectroscopy was used to analyse the chemical Composition of the bandage, and the spectra showed that the FBM were effectively incorporated into the ESM. The FTIR spectra identified the major peaks of the natural ESM and the PLGA polymer in the bandage. The bandage was transparent but had a reduced visibility in the waterproof test card method. The bandage achieved sustained drug release up to 10 days and was found to be biocompatible and non-toxic in a chorioallantoic membrane (CAM) assay. Overall, the drug-incorporated PLGA MPs-ESM bandage has great potential for treating chronic wounds.
Collapse
Affiliation(s)
- Rosemond A Mensah
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK
| | - Michael T Cook
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; School of Pharmacy, University College London, London, UK
| | - Stewart B Kirton
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Victoria Hutter
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - David Yi San Chau
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
161
|
Ilochonwu BC, van der Lugt SA, Annala A, Di Marco G, Sampon T, Siepmann J, Siepmann F, Hennink WE, Vermonden T. Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment. J Control Release 2023; 361:334-349. [PMID: 37532147 DOI: 10.1016/j.jconrel.2023.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
In the present study, a novel in situ forming thermosensitive hydrogel system was investigated as a versatile drug delivery system for ocular therapy. For this purpose, two thermosensitive ABA triblock copolymers bearing either furan or maleimide moieties were synthesized, named respectively poly(NIPAM-co-HEA/Furan)-PEG6K-P(NIPAM-co-HEA/Furan) (PNF) and poly(NIPAM-co-HEA/Maleimide)-PEG6K-P(NIPAM-co-HEA/-Maleimide) (PNM). Hydrogels were obtained upon mixing aqueous PNF and PNM solutions followed by incubation at 37 °C. The hydrogel undergoes an immediate (<1 min) sol-gel transition at 37 °C. In situ hydrogel formation at 37 °C was also observed after intravitreal injection of the formulation into an ex vivo rabbit eye. The hydrogel network formation was due to physical self-assembly of the PNIPAM blocks and a catalyst-free furan-maleimide Diels-Alder (DA) chemical crosslinking in the hydrophobic domains of the polymer network. Rheological studies demonstrated sol-gel transition at 23 °C, and DA crosslinks were formed in time within 60 min by increasing the temperature from 4 to 37 °C. When incubated at 37 °C, these hydrogels were stable for at least one year in phosphate buffer of pH 7.4. However, the gels degraded at basic pH 10 and 11 after 13 and 3 days, respectively, due to hydrolysis of ester bonds in the crosslinks of the hydrogel network. The hydrogel was loaded with an anti-VEGF antibody fragment (FAB; 48.4 kDa) or with corticosteroid dexamethasone (dex) by dissolving (FAB) or dispersing (DEX) in the hydrogel precursor solution. The FAB fragment in unmodified form was quantitatively released over 13 days after an initial burst release of 46, 45 and 28 % of the loading for the 5, 10 and 20 wt% hydrogel, respectively, due to gel dehydration during formation. The low molecular weight drug dexamethasone was almost quantitively released in 35 days. The slower release of dexamethasone compared to the FAB fragment can likely be explained by the solubilization of this hydrophobic drug in the hydrophobic domains of the gel. The thermosensitive gels showed good cytocompatibility when brought in contact with macrophage-like mural cells (RAW 264.7) and human retinal pigment epithelium-derived (ARPE-19) cells. This study demonstrates that PNF-PNM thermogel may be a suitable formulation for sustained release of bioactive agents into the eye for treating posterior segment eye diseases.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Simone A van der Lugt
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Ada Annala
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Greta Di Marco
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Thibault Sampon
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Juergen Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | - Florence Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France; INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508, TB, Utrecht, the Netherlands.
| |
Collapse
|
162
|
Javed S, Abbas G, Shah S, Rasul A, Irfan M, Saleem A, Hosny KM, Bukhary SM, Safhi AY, Sabei FY, Majrashi MA, Alkhalidi HM, Alissa M, Khan SM, Hanif M. Tobramycin-loaded nanoparticles of thiolated chitosan for ocular drug delivery: Preparation, mucoadhesion and pharmacokinetic evaluation. Heliyon 2023; 9:e19877. [PMID: 37809498 PMCID: PMC10559273 DOI: 10.1016/j.heliyon.2023.e19877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
The present work aimed to develop nanoparticles of tobramycin (TRM) using thiolated chitosan (TCS) in order to improve the mucoadhesion, antibacterial effect and pharmacokinetics. The nanoparticles were evaluated for their compatibility, thermal stability, particle size, zeta potential, mucoadhesion, drug release, kinetics of TRM release, corneal permeation, toxicity and ocular irritation. The thiolation of chitosan was confirmed by 1H NMR and FTIR, which showed peaks at 6.6 ppm and 1230 cm-1, respectively. The nanoparticles had a diameter of 73 nm, a negative zeta potential (-21 mV) and a polydispersity index of 0.15. The optimized formulation, NT8, exhibited the highest values of mucoadhesion (7.8 ± 0.541h), drug loading (87.45 ± 1.309%), entrapment efficiency (92.34 ± 2.671%), TRM release (>90%) and corneal permeation (85.56%). The release pattern of TRM from the developed formulations was fickian diffusion. TRM-loaded nanoparticles showed good antibacterial activity against Pseudomonas aeruginosa. The optimized formulation NT8 (0.1% TRM) greatly increased the AUC(0-∞) (1.5-fold) while significantly reducing the clearance (5-fold) compared to 0.3% TRM. Pharmacokinetic parameters indicated improved ocular retention and bioavailability of TRM loaded nanoparticles. Our study demonstrated that the TRM-loaded nanoparticles had improved mucoadhesion and pharmacokinetics and a suitable candidate for effective treatment of ocular bacterial infections.
Collapse
Affiliation(s)
- Sadaf Javed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sahar M. Bukhary
- Department of Biological Analysis, Neuroscience unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed A. Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sajid Mehmood Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University Bahawalpur, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
163
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
164
|
Palandurkar GS, Kumar S. Biofilm's Impact on Inflammatory Bowel Diseases. Cureus 2023; 15:e45510. [PMID: 37868553 PMCID: PMC10585119 DOI: 10.7759/cureus.45510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The colon has a large surface area covered with a thick mucus coating. Colon's biomass consists of about 1,012 colony-forming units per gram of feces and 500-1,000 distinct bacterial species. The term inflammatory bowel disease (IBD) indicates the collection of intestinal illnesses in which the digestive system (esophagus, large intestine, mouth, stomach, and small intestine) experiences persistent inflammation. IBD development is influenced by environmental (infections, stress, and nutrition) and genetic factors. The microbes present in gut microbiota help maintain intestinal homeostasis and support immune and epithelial cell growth, differentiation, as well as proliferation. It has been discovered that a variety of variables and microorganisms are crucial for the development of biofilms and mucosal colonization during IBD. An extracellular matrix formed by bacteria supports biofilm production in our digestive system and harms the host's immunological response. Irritable bowel syndrome (IBS) and IBD considerably affect human socioeconomic well-being and the standard of living. IBD is a serious public health issue, affecting millions of people across the globe. The gut microbiome may significantly influence IBS pathogenesis, even though few diagnostic and treatment options are available. As a result, current research focuses more on disrupting biofilm in IBD patients and stresses primarily on drugs that help improve the quality of life for human well-being. We evaluate studies on IBD and bacterial biofilm to add fresh insights into the existing state of knowledge of biofilm formation in IBD, incidence of IBD patients, molecular level of investigations, bacteria that are involved in the formation of biofilm, and present and down the line regimens and probiotics. Planning advanced ways to control and eradicate bacteria in biofilms should be the primary goal to add fresh insights into generating innovative diagnostic and alternative therapy options for IBD.
Collapse
Affiliation(s)
- Gopal S Palandurkar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
165
|
Xie G, Lin S, Wu F, Liu J. Nanomaterial-based ophthalmic drug delivery. Adv Drug Deliv Rev 2023; 200:115004. [PMID: 37433372 DOI: 10.1016/j.addr.2023.115004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
The low bioavailability and side effects of conventional drugs for eye disease necessitate the development of efficient drug delivery systems. Accompanying the developments of nanofabrication techniques, nanomaterials have been recognized as promising tools to overcome these challenges due to their flexible and programmable properties. Given the advances achieved in material science, a broad spectrum of functional nanomaterials capable of overcoming various ocular anterior and posterior segment barriers have been explored to satisfy the demands for ocular drug delivery. In this review, we first highlight the unique functions of nanomaterials suitable for carrying and transporting ocular drugs. Then, various functionalization strategies are emphasized to endow nanomaterials with superior performance in enhanced ophthalmic drug delivery. The rational design of several affecting factors is essential for ideal nanomaterial candidates and is depicted as well. Lastly, we introduce the current applications of nanomaterial-based delivery systems in the therapy of different ocular anterior and posterior segment diseases. The limitations of these delivery systems as well as potential solutions are also discussed. This work will inspire innovative design thinking for the development of nanotechnology-mediated strategies for advanced drug delivery and treatment toward ocular diseases.
Collapse
Affiliation(s)
- Guocheng Xie
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
166
|
Polat HK, Ünal S, Aytekin E, Karakuyu NF, Pezik E, Haydar MK, Kurt N, Doğan O, Mokhtare B. Formulation development of Lornoxicam loaded heat triggered ocular in-situ gel using factorial design. Drug Dev Ind Pharm 2023; 49:601-615. [PMID: 37788164 DOI: 10.1080/03639045.2023.2264932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE In the current research, lornoxicam-loaded in situ gels were developed, and their potential usage in ocular inflammation was evaluated. SIGNIFICANCE Lornoxicam cyclodextrin complex prepared with hydroxypropyl methylcellulose and poloxamer P407 because of the low viscosity of in situ gels to provide easy application. However, washing and removing it from the ocular surface becomes difficult due to the gelation formation with heat. METHODS A three-level factorial experimental design was used to evaluate the effects of poloxamer 407 concentration, polymer type, and polymer concentration on viscosity, pH, gelation capacity, gelation time, and gelation temperature, which were considered the optimal indicators of lornoxicam-containing formulations. RESULTS As a result of the three-level factorial experimental design, the optimized formulation contained 15 (%w/v) poloxamer 407 and 1 (%w/v) hydroxypropyl methylcellulose. The optimize formulation viscosity 25 °C = 504 ± 49cP, viscosity 35 °C = 11247 ± 214cP, pH = 6.80 ± 0.01, gelation temprature = 35 ± 0.2 °C, and gelation time= 34 ± 0.2 s was obtained. In the in vitro release studies, 68% of lornoxicam was released with a burst effect in the first three hours; then, the release continued for eight hours with controlled release. Release kinetics of the formulations were modeled mathematically, and it was found to be compatible with the Korsemeyer-Peppas and Weibull models. In cell culture studies, cell viability at 100 µg/mL was 83% and 96% for NL6 and NL6-CD, respectively. In Draize's in vivo test, no negative conditions occurred in rats. CONCLUSIONS Therefore, the NL6-CD formulation has the potential to be a favorable option for treating ocular inflammation.
Collapse
Affiliation(s)
- Heybet Kerem Polat
- Republic of Turkey Ministry of Health, Turkish Medicines and Medical Devices Agency, Ankara
| | - Sedat Ünal
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes University, Kayseri, Türkiye
| | - Eren Aytekin
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Türkiye
| | - Nasıf Fatih Karakuyu
- Faculty of Pharmacy, Department Of Pharmacology, Suleyman Demirel University, Isparta, Türkiye
| | - Esra Pezik
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Muhammet Kerim Haydar
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Nihat Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Technology 60100, Gaziosmanpasa University, Tokat, Türkiye
| | - Osman Doğan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Türkiye
| | - Behzad Mokhtare
- Faculty of Veterinary Medicine, Department Of Pathology, Dicle University, Diyarbakır, Türkiye
| |
Collapse
|
167
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
168
|
Acquaviva A, Nilofar, Bouyahya A, Zengin G, Di Simone SC, Recinella L, Leone S, Brunetti L, Uba AI, Cakilcioğlu U, Polat R, Darendelioglu E, Menghini L, Ferrante C, Libero ML, Orlando G, Chiavaroli A. Chemical Characterization of Different Extracts from Artemisia annua and Their Antioxidant, Enzyme Inhibitory and Anti-Inflammatory Properties. Chem Biodivers 2023; 20:e202300547. [PMID: 37306942 DOI: 10.1002/cbdv.202300547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Artemisia annua L. (Asteraceae Family) is an important plant in Asia that has been used for treating different diseases, including fever due to malaria, wounds, tubercolisis, scabues, pain, convulsions, diabetes, and inflammation. In this study we aimed to evaluate the effects of different polarity extracts (hexane, dichloromethane, ethyl acetate, ethanol, ethanol/water (70 %) and water) from A. annua against the burden of inflammation and oxidative stress occurring in colon tissue exposed to LPS. In parallel, chemical composition, antiradical, and enzyme inhibition effects against α-amylase, α-glucosidase, tyrosinase, and cholinesterases were evaluated. The water extract contained the highest content of the total phenolic with 34.59 mg gallic acid equivalent (GAE)/g extract, while the hexane had the highest content of the total flavonoid (20.06 mg rutin equivalent (RE)/g extract). In antioxidant assays, the polar extracts (ethanol, ethanol/water and water) exhibited stronger radical scavenging and reducing power abilities when compared to non-polar extracts. The hexane extract showed the best AChE, tyrosinase and glucosidase inhibitory effects. All extracts revealed effective anti-inflammatory agents, as demonstrated by the blunting effects on COX-2 and TNFα gene expression. These effects seemed to be not related to the only phenolic content. However, it is worthy of interest to highlight how the higher potency against LPS-induced gene expression was shown by the water extract ; thus suggesting a potential phytotherapy application in the management of clinical symptoms related to inflammatory colon diseases, although future in vivo studies are needed to confirm such in vitro and ex vivo observations.
Collapse
Affiliation(s)
- Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Nilofar
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, 1014, Rabat, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | | | - Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Ugur Cakilcioğlu
- Munzur University, Pertek Sakine Genç Vocational School, Tunceli, Pertek, 62500, Turkey
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl, 12000, Turkey
| | - Ekrem Darendelioglu
- Department of Molecular Biology and Genetic, Science and Art Faculty, Bingol University, Bingöl, 12000, Turkey
| | - Luigi Menghini
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
169
|
Varela K, Arman HD, Berger MS, Sponsel VM, Lin CHA, Yoshimoto FK. Inhibition of Cysteine Proteases via Thiol-Michael Addition Explains the Anti-SARS-CoV-2 and Bioactive Properties of Arteannuin B. JOURNAL OF NATURAL PRODUCTS 2023; 86:1654-1666. [PMID: 37458412 DOI: 10.1021/acs.jnatprod.2c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Artemisia annua is the plant that produces artemisinin, an endoperoxide-containing sesquiterpenoid used for the treatment of malaria. A. annua extracts, which contain other bioactive compounds, have been used to treat other diseases, including cancer and COVID-19, the disease caused by the virus SARS-CoV-2. In this study, a methyl ester derivative of arteannuin B was isolated when A. annua leaves were extracted with a 1:1 mixture of methanol and dichloromethane. This methyl ester was thought to be formed from the reaction between arteannuin B and the extracting solvent, which was supported by the fact that arteannuin B underwent 1,2-addition when it was dissolved in deuteromethanol. In contrast, in the presence of N-acetylcysteine methyl ester, a 1,4-addition (thiol-Michael reaction) occurred. Arteannuin B hindered the activity of the SARS CoV-2 main protease (nonstructural protein 5, NSP5), a cysteine protease, through time-dependent inhibition. The active site cysteine residue of NSP5 (cysteine-145) formed a covalent bond with arteannuin B as determined by mass spectrometry. In order to determine whether cysteine adduction by arteannuin B can inhibit the development of cancer cells, similar experiments were performed with caspase-8, the cysteine protease enzyme overexpressed in glioblastoma. Time-dependent inhibition and cysteine adduction assays suggested arteannuin B inhibits caspase-8 and adducts to the active site cysteine residue (cysteine-360), respectively. Overall, these results enhance our understanding of how A. annua possesses antiviral and cytotoxic activities.
Collapse
Affiliation(s)
- Kaitlyn Varela
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California 94122, United States
| | - Valerie M Sponsel
- Department of Integrative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Chin-Hsing Annie Lin
- Department of Integrative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
170
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
171
|
Migliorini F, Maffulli N, Eschweiler J, Baroncini A, Bell A, Colarossi G. Duloxetine for fibromyalgia syndrome: a systematic review and meta-analysis. J Orthop Surg Res 2023; 18:504. [PMID: 37461044 DOI: 10.1186/s13018-023-03995-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION The optimal dose of duloxetine in the management of fibromyalgia remains still controversial. Therefore, a systematic review and meta-analysis to investigate efficacy and safety of duloxetine was conducted. The outcomes of interests were to assess changes in Fibromyalgia Impact Questionnaire (FIQ), Brief Pain Inventory (BPI), and Clinical Global Impression (CGI). The rate of of adverse events and those leading to therapy discontinuation were also investigated. MATERIAL AND METHODS This study followed the 2020 PRISMA guidelines. The literature search started in December 2022 accessing PubMed, Google scholar, Embase, and Scopus databases. All the RCTs investigating the efficacy and safety of daily administration of duloxetine for fibromyalgia were accessed. Studies reporting quantitative data under the outcomes of interest, and including a minimum of 10 patients who completed a minimum of 4 weeks follow-up, were included. Studies on combined pharmacological and non-pharmacological managements for fibromyalgia were not considered. RESULTS Data from 3432 patients (11 RCTs) were included. The mean age of the patients was 46.4 ± 10.7 years old, and the mean BMI 25.3 ± 3.2 kg/m2. 90% (3089 of 3432 patients) were women. The 60 mg/daily cohort reported the higher FIQ, followed by the 30, 30-60, 120 mg/daily, and placebo groups, while the 60-120 mg /daily group performed the worst results. Concerning the CGI severity scale, placebo resulted in the lowest improvement, and no differences were found in the other groups. Concerning the BPI interference and severity pain scores, the 30-60 mg/daily group reported the worst result, along with the placebo group. The rate of adverse events leading to study discontinuation were lower in the 60-120 group, followed by the 30-60 and 30 mag/daily groups. Duloxetine was superior in all the comparisons to placebo, irrespective of the doses, in all endpoints analysed. CONCLUSIONS Duloxetine could help in improving symptoms of fibromyalgia. The dose of duloxetine should be customised according to individual patients. Irrespective of the doses, duloxetine was more effective than placebo in the management of fibromyalgia. The dose of duloxetine must be customised according to individual patients. Level of evidence I Meta-analysis of double-blind RCTs.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, England
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
| | - Jörg Eschweiler
- Department of Orthopaedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alice Baroncini
- Department of Orthopaedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Andreas Bell
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St.Brigida, 52152, Simmerath, Germany
| | - Giorgia Colarossi
- Department of Cardiothoracic Surgery, RWTH Aachen University Hospital, 52074, Aachen, Germany
| |
Collapse
|
172
|
Sapowadia A, Ghanbariamin D, Zhou L, Zhou Q, Schmidt T, Tamayol A, Chen Y. Biomaterial Drug Delivery Systems for Prominent Ocular Diseases. Pharmaceutics 2023; 15:1959. [PMID: 37514145 PMCID: PMC10383518 DOI: 10.3390/pharmaceutics15071959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.
Collapse
Affiliation(s)
- Avin Sapowadia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tannin Schmidt
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
173
|
Aceves-Franco LA, Sanchez-Aguilar OE, Barragan-Arias AR, Ponce-Gallegos MA, Navarro-Partida J, Santos A. The Evolution of Triamcinolone Acetonide Therapeutic Use in Retinal Diseases: From Off-Label Intravitreal Injection to Advanced Nano-Drug Delivery Systems. Biomedicines 2023; 11:1901. [PMID: 37509540 PMCID: PMC10377205 DOI: 10.3390/biomedicines11071901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Ophthalmic drug delivery to the posterior segment of the eye has been challenging due to the complex ocular anatomy. Intravitreal injection of drugs was introduced to deliver therapeutic doses in the posterior segment. Different posterior segment diseases including age-related macular degeneration, diabetic macular edema, retinal vein occlusions, uveitis, and cystoid macular edema, among others, have been historically treated with intravitreal corticosteroids injections, and more recently with intravitreal corticosteroids drug implants. Triamcinolone acetonide (TA) is the most frequently used intraocular synthetic corticosteroid. Using nanoparticle-based TA delivery systems has been proposed as an alternative to intravitreal injections in the treatment of posterior segment diseases. From these novel delivery systems, topical liposomes have been the most promising strategy. This review is oriented to exhibit triamcinolone acetonide drug evolution and its results in treating posterior segment diseases using diverse delivery platforms.
Collapse
Affiliation(s)
- Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Oscar Eduardo Sanchez-Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | | | | | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
174
|
El Zaafarany GM, Hathout RM, Ibrahim SS. Nanocarriers significantly augment the absorption of ocular-delivered drugs: A comparative meta-analysis study. Int J Pharm 2023; 642:123204. [PMID: 37406947 DOI: 10.1016/j.ijpharm.2023.123204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
This study presents a meta-analysis that compiles information collected from several studies aiming to prove, by evidence, that nanocarriers out-perform conventional formulations in augmenting the bioavailability of ocular topically administered drugs. Data was further categorized into two subgroups; polymeric-based nanocarriers versus their lipid-based counterparts, as well as, naturally-driven carriers versus synthetically-fabricated ones. After normalization, the pharmacokinetic factor, area under the curve (AUC), was denoted as the "effect" in the conducted study, and the corresponding Forest plots were obtained. Our meta-analysis study confirmed the absorption enhancement effect of loading drugs into nanocarriers as compared to conventional topical ocular dosage forms. Interestingly, no significant differences were recorded between the polymeric and lipidic nanocarriers included in the study, while naturally-driven nanoplatforms were proven superior to the synthetic alternatives.
Collapse
Affiliation(s)
- Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
175
|
Lawson K. What is the progress of experimental drug development for fibromyalgia? Expert Opin Investig Drugs 2023; 32:563-565. [PMID: 37357750 DOI: 10.1080/13543784.2023.2230118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Kim Lawson
- Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, College of Health, Wellbeing & Life Sciences, Sheffield, UK
| |
Collapse
|
176
|
Sanap SN, Bisen AC, Agrawal S, Kedar A, Bhatta RS. Ophthalmic nano-bioconjugates: critical challenges and technological advances. Ther Deliv 2023; 14:419-441. [PMID: 37535389 DOI: 10.4155/tde-2023-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Ophthalmic disease can cause permanent loss of vision and blindness. Easy-to-administer topical and systemic treatments are preferred for treating sight-threatening disorders. Typical ocular anatomy makes topical and systemic ophthalmic drug delivery challenging. Various novel nano-drug delivery approaches are developed to attain the desired bioavailability in the eye by increasing residence time and improved permeability across the cornea. The review focuses on novel methods that are biocompatible, safe and highly therapeutic. Novelty in nanocarrier design and modification can overcome their drawbacks and make them potential drug carriers for eye disorders in both the anterior and posterior eye segments. This review briefly discussed technologies, patented developments, and clinical trial data to support nanocarriers' use in ocular drug delivery.
Collapse
Affiliation(s)
- Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
177
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
178
|
Al-Qaysi ZK, Beadham IG, Schwikkard SL, Bear JC, Al-Kinani AA, Alany RG. Sustained release ocular drug delivery systems for glaucoma therapy. Expert Opin Drug Deliv 2023; 20:905-919. [PMID: 37249548 DOI: 10.1080/17425247.2023.2219053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Glaucoma is a group of progressive optic neuropathies resulting in irreversible blindness. It is associated with an elevation of intraocular pressure (>21 mm Hg) and optic nerve damage. Reduction of the intraocular pressure (IOP) through the administration of ocular hypotensive eye drops is one of the most common therapeutic strategies. Patient adherence to conventional eye drops remains a major obstacle in preventing glaucoma progression. Additional problems emerge from inadequate patient education as well as local and systemic side effects associated with adminstering ocular hypotensive drugs. AREAS COVERED Sustained-release drug delivery systems for glaucoma treatment are classified into extraocular systems including wearable ocular surface devices or multi-use (immediate-release) eye formulations (such as aqueous solutions, gels; ocular inserts, contact lenses, periocular rings, or punctual plugs) and intraocular drug delivery systems (such as intraocular implants, and microspheres for supraciliary drug delivery). EXPERT OPINION Sustained release platforms for the delivery of ocular hypotensive drugs (small molecules and biologics) may improve patient adherence and prevent vision loss. Such innovations will only be widely adopted when efficacy and safety has been established through large-scale trials. Sustained release drug delivery can improve glaucoma treatment adherence and reverse/prevent vision deterioration. It is expected that these approaches will improve clinical management and prognosis of glaucoma.
Collapse
Affiliation(s)
- Zinah K Al-Qaysi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Ian G Beadham
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Sianne L Schwikkard
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Joseph C Bear
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
179
|
Sikhondze SS, Makoni PA, Walker RB, Khamanga SMM. Chitosan-Coated SLN: A Potential System for Ocular Delivery of Metronidazole. Pharmaceutics 2023; 15:1855. [PMID: 37514041 PMCID: PMC10383454 DOI: 10.3390/pharmaceutics15071855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Ophthalmic drops for ocular delivery exhibit inadequate residence time, which often requires multiple daily dosing that may result in patient non-adherence. In this study, the development of a once-daily-dosed chitosan-coated metronidazole (MTZ)-loaded solid lipid nanoparticles (SLNs) for ocular delivery was undertaken. Melt emulsification and ultrasonication were used to manufacture MTZ-loaded SLN, which were subsequently coated with chitosan (CS) by mechanical stirring using a 0.1% w/v solution. Gelucire® 48/16 and Transcutol® HP were used as the solid lipid and synthetic solvent, respectively, with Tween® 20 included as a stabilizing agent. The critical quality attributes (CQA) of the optimized CS-coated SLN that was monitored included particle size, polydispersity index, Zeta potential, % entrapment efficiency, % MTZ loading, pH, and osmolarity. The optimized coated nanocarriers were evaluated using laser Doppler anemometry (LDA) and were determined to be stable, with particle sizes in the nanometre range. In vitro mucoadhesion, MTZ release and short-term stability, in addition to the determination of the shape of the optimized CS-coated SLN, were undertaken. The mucoadhesive properties of the optimized CS-coated MTZ-loaded SLN demonstrated increased ocular availability, which may allow dose reduction or longer intervals between doses by improving precorneal retention and ocular availability. Overall, our findings suggest that CS-coated MTZ-loaded SLNs have the potential for clinical application, to enhance ocular delivery through the release of MTZ.
Collapse
Affiliation(s)
- Simise S Sikhondze
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai A Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Roderick B Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Sandile M M Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
180
|
Manhard CE, Lucke-Wold B. Commentary: Discussing the antidepressant potential of silymarin. World J Pharmacol 2023; 12:18-24. [DOI: 10.5497/wjp.v12.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Affiliation(s)
- Claire E Manhard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| |
Collapse
|
181
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
182
|
Dai LL, Cho SB, Li HF, A LS, Ji XP, Pan S, Bao ML, Bai L, Ba GN, Fu MH. Lomatogonium rotatum extract alleviates diabetes mellitus induced by a high-fat, high-sugar diet and streptozotocin in rats. World J Diabetes 2023; 14:846-861. [PMID: 37383587 PMCID: PMC10294064 DOI: 10.4239/wjd.v14.i6.846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Lomatogonium rotatum (LR) is traditionally used in Mongolian folk medicine as a hypoglycemic agent, but its evidence-based pharmacological effects and me-chanisms of action have not been fully elucidated.
AIM To emphasize the hypoglycemic action mechanism of LR in a type 2 diabetic rat model and examine potential biomarkers to obtain mechanistic understanding regarding serum metabolite modifications.
METHODS A high-fat, high-sugar diet and streptozotocin injection-induced type 2 diabetic rat model was established. The chemical composition of the LR was identified by high performance liquid chromatography. LR extract administrated as oral gavage at 0.5 g/kg, 2.5 g/kg, and 5 g/kg for 4 wk. Anti-diabetic effects of LR extract were evaluated based on histopathological examination as well as the measurement of blood glucose, insulin, glucagon-like peptide 1 (GLP-1), and lipid levels. Serum metabolites were analyzed using an untargeted metabolomics approach.
RESULTS According to a chemical analysis, swertiamarin, sweroside, hesperetin, coumarin, 1.7-dihydroxy-3,8-dimethoxyl xanthone, and 1-hydroxy-2,3,5 trimethoxanone are the principal active ingredients in LR. An anti-diabetic experiment revealed that the LR treatment significantly increased plasma insulin and GLP-1 levels while effectively lowering blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and oral glucose tolerance test compared to the model group. Furthermore, untargeted metabolomic analysis of serum samples detected 236 metabolites, among which 86 were differentially expressed between the model and the LR group. It was also found that LR considerably altered the levels of metabolites such as vitamin B6, mevalonate-5P, D-proline, L-lysine, and taurine, which are involved in the regulation of the vitamin B6 metabolic pathway, selenium amino acid metabolic pathway, pyrimidine metabolic pathway, and arginine and proline metabolic pathways.
CONCLUSION These findings indicated that LR may have a hypoglycemic impact and that its role may be related to changes in the serum metabolites and to facilitate the release of insulin and GLP-1, which lower blood glucose and lipid profiles.
Collapse
Affiliation(s)
- Li-Li Dai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Sung-Bo Cho
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Hui-Fang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Li-Sha A
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Xiao-Ping Ji
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Sirigunqiqige Pan
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Lan Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Gen-Na Ba
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
183
|
De Hoon I, Boukherroub R, De Smedt SC, Szunerits S, Sauvage F. In Vitro and Ex Vivo Models for Assessing Drug Permeation across the Cornea. Mol Pharm 2023. [PMID: 37314950 DOI: 10.1021/acs.molpharmaceut.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug permeation across the cornea remains a major challenge due to its unique and complex anatomy and physiology. Static barriers such as the different layers of the cornea, as well as dynamic aspects such as the constant renewal of the tear film and the presence of the mucin layer together with efflux pumps, all present unique challenges for effective ophthalmic drug delivery. To overcome some of the current ophthalmic drug limitations, the identification and testing of novel drug formulations such as liposomes, nanoemulsions, and nanoparticles began to be considered and widely explored. In the early stages of corneal drug development reliable in vitro and ex vivo alternatives, are required, to be in line with the principles of the 3Rs (Replacement, Reduction, and Refinement), with such methods being in addition faster and more ethical alternatives to in vivo studies. The ocular field remains limited to a handful of predictive models for ophthalmic drug permeation. In vitro cell culture models are increasingly used when it comes to transcorneal permeation studies. Ex vivo models using excised animal tissue such as porcine eyes are the model of choice to study corneal permeation and promising advancements have been reported over the years. Interspecies characteristics must be considered in detail when using such models. This review updates the current knowledge about in vitro and ex vivo corneal permeability models and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- Inès De Hoon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
184
|
Onaolapo AY, Ojo FO, Onaolapo OJ. Biflavonoid quercetin protects against cyclophosphamide-induced organ toxicities via modulation of inflammatory cytokines, brain neurotransmitters, and astrocyte immunoreactivity. Food Chem Toxicol 2023:113879. [PMID: 37301500 DOI: 10.1016/j.fct.2023.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cyclophosphamide use has been associated with increased oxidative stress in cells and tissues. Quercetin's antioxidative properties make it of potential benefit in such conditions of oxidative stress. OBJECTIVE To assess quercetin's ability to mitigate cyclophosphamide-induced organ toxicities in rats. METHODS Sixty rats were assigned into six groups. Groups A and D served as normal and cyclophosphamide control and were fed standard rat chow, groups B and E were fed quercetin supplemented diet (100 mg/kg of feed), while those in groups C and F were fed quercetin at 200 mg/kg of feed. Groups A-C received intraperitoneal (ip) normal saline on days 1 and 2, while D-F received ip cyclophosphamide (150 mg/kg/day on days 1 and 2). On day 21, behavioural tests were carried out, animals were sacrificed and blood samples taken. Organs were processed for histological study. RESULTS Quercetin reversed cyclophosphamide-induced decrease in body weight, food intake and total antioxidant capacity, and increase in lipid peroxidation (p = 0.001), It also reversed derangement in levels of liver transaminase, urea, creatinine and proinflammatory cytokines (p = 0.001). Improvement in working-memory and anxiety-related behaviours were also observed. Finally, quercetin reversed alterations in levels of acetylcholine, dopamine and brain-derived neurotropic factor (p = 0.021); while reducing serotonin levels and astrocyte immunoreactivity. CONCLUSION Quercetin shows significant ability to protect against cyclophosphamide-induced changes in rats.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| | - Foluso O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
185
|
Phan CM, Ross M, Fahmy K, McEwen B, Hofmann I, Chan VWY, Clark-Baba C, Jones L. Evaluating Viscosity and Tear Breakup Time of Contemporary Commercial Ocular Lubricants on an In Vitro Eye Model. Transl Vis Sci Technol 2023; 12:29. [PMID: 37382574 PMCID: PMC10318592 DOI: 10.1167/tvst.12.6.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
Purpose To evaluate the link between the viscosity of ophthalmic formulation and tear film stability using a novel in vitro eye model. Methods The viscosities and noninvasive tear breakup time (NIKBUT) of 13 commercial ocular lubricants were measured to evaluate the correlation between viscosity and NIKBUT. The complex viscosity of each lubricant was measured three times for each angular frequency (ranging from 0.1 to 100 rad/s) using the Discovery HR-2 hybrid rheometer. The NIKBUT measurements were performed eight times for each lubricant using an advanced eye model mounted on the OCULUS Keratograph 5M. A contact lens (CL; ACUVUE OASYS [etafilcon A]) or a collagen shield (CS) was used as the simulated corneal surface. Phosphate-buffered saline was used as a simulated fluid. Results The results showed a positive correlation between viscosity and NIKBUT at high shear rates (at 10 rad/s, r = 0.67) but not at low shear. This correlation was even better for viscosities between 0 and 100 mPa*s (r = 0.85). Most of the lubricants tested in this study also had shear-thinning properties. OPTASE INTENSE, I-DROP PUR GEL, I DROP MGD, OASIS TEARS PLUS, and I-DROP PUR had higher viscosity in comparison to other lubricants (P < 0.05). All of the formulations had a higher NIKBUT than the control (2.7 ± 1.2 seconds for CS and 5.4 ± 0.9 seconds for CL) without any lubricant (P < 0.05). I-DROP PUR GEL, OASIS TEARS PLUS, I-DROP MGD, REFRESH OPTIVE ADVANCED, and OPTASE INTENSE had the highest NIKBUT using this eye model. Conclusions The results show that the viscosity is correlated with NIKBUT, but further work is necessary to determine the underlying mechanisms. Translational Relevance The viscosity of ocular lubricants can affect NIKBUT and tear film stability, so it is an important property to consider when formulating ocular lubricants.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Mitchell Ross
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | | | | | | | - Vivian W. Y. Chan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Connor Clark-Baba
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), Hong Kong
| |
Collapse
|
186
|
Sharon T, Naftali Ben Haim L, Rabinowicz N, Kidron D, Kidron A, Ton Y, Einan-Lifshitz A, Assia EI, Belkin A. The effect of hypotensive drugs on intraocular lenses clarity. Eye (Lond) 2023; 37:1696-1703. [PMID: 36071178 PMCID: PMC10219955 DOI: 10.1038/s41433-022-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To assess the effect of hypotensive drugs on light absorbance, discoloration, opacification and precipitate formation of IOLs. METHODS In this laboratory study, four types of IOLs (two hydrophilic-acrylic-L1 and L2, and two hydrophobic-acrylic-B1 and B2) were soaked in solutions containing Timolol-maleate 0.5%, Dorzolamide 2%, Brimonidine-tartrate 0.2%, Latanoprost 0.005%, Brimonidine-tartrate/Timolol-maleate 0.2%/0.5% and Dorzolamide/Timolol-maleate 2%/0.5%. Non-treated IOLs and IOLs soaked in balanced salt solution (BSS) served as controls. All Treated lenses were sealed in containers and placed in an oven at 82 degrees Celsius for 120 days. Each IOL was examined using four different techniques: light microscopy imaging, light absorbance measurements at 550 nanometers through the optic's center, assessment of by a scanning electron microscope (SEM), and energy dispersive Xray spectrometry (EDX). RESULTS Ninety-eight IOLs were included. All BSS-soaked IOLs appeared clear with no significant discoloration or precipitate-formation. Light absorbance in these lenses was comparable to that of non-soaked, non-heated IOLs. No calcium or phosphate were detected in either of these groups. Light absorbance differed significantly between the four treated IOL types. The drops most affecting light absorbance differed between IOLs. Gross examination revealed brown and yellow discoloration of all IOLs soaked in Dorzolamide and Brimonidine-tartrate solutions, respectively. SEM demonstrated precipitates that differed in size, morphology and distribution, between different IOL-solution combinations. EDX's demonstrated the presence calcium and phosphor in the majority of precipitates and the presence of sulfur in brown discolored IOLs. CONCLUSIONS In vitro, interactions between hypotensive drugs and IOLs induce changes in light absorbance, discoloration and precipitate formation.
Collapse
Affiliation(s)
- Tal Sharon
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Ein-Tal Eye Center, Tel Aviv, Israel.
| | - Liron Naftali Ben Haim
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Rabinowicz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Internal Medicine E-Research Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Debora Kidron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Arnon Kidron
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yokrat Ton
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Einan-Lifshitz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
| | - Ehud I Assia
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Ein-Tal Eye Center, Tel Aviv, Israel
| | - Avner Belkin
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Ein-Tal Eye Center, Tel Aviv, Israel
| |
Collapse
|
187
|
Fitaihi R, Abukhamees S, Orlu M, Craig DQM. Transscleral Delivery of Dexamethasone-Loaded Microparticles Using a Dissolving Microneedle Array. Pharmaceutics 2023; 15:1622. [PMID: 37376071 DOI: 10.3390/pharmaceutics15061622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) have attracted considerable interest as a means of ocular drug delivery, a challenging delivery route due to the limitations imposed by the various biological barriers associated with this organ. In this study, a novel ocular drug delivery system was developed by formulating a dissolvable MN array containing dexamethasone-loaded PLGA microparticles for scleral drug deposition. The microparticles serve as a drug reservoir for controlled transscleral delivery. The MNs displayed sufficient mechanical strength to penetrate the porcine sclera. Dexamethasone (Dex) scleral permeation was significantly higher than in topically instilled dosage forms. The MN system was able to distribute the drug through the ocular globe, with 19.2% of the administered Dex detected in the vitreous humour. Additionally, images of the sectioned sclera confirmed the diffusion of fluorescent-labelled microparticles within the scleral matrix. The system therefore represents a potential approach for minimally invasive Dex delivery to the posterior of the eye, which lends itself to self-administration and hence high patient convenience.
Collapse
Affiliation(s)
- Rawan Fitaihi
- Research Department of Pharmaceutics, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shorooq Abukhamees
- Research Department of Pharmaceutics, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mine Orlu
- Research Department of Pharmaceutics, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Duncan Q M Craig
- Research Department of Pharmaceutics, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
188
|
Nasyrova RF, Shnayder NA, Osipova SM, Khasanova AK, Efremov IS, Al-Zamil M, Petrova MM, Narodova EA, Garganeeva NP, Shipulin GA. Genetic Predictors of Antipsychotic Efflux Impairment via Blood-Brain Barrier: Role of Transport Proteins. Genes (Basel) 2023; 14:genes14051085. [PMID: 37239445 DOI: 10.3390/genes14051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Antipsychotic (AP)-induced adverse drug reactions (ADRs) are a current problem of biological and clinical psychiatry. Despite the development of new generations of APs, the problem of AP-induced ADRs has not been solved and continues to be actively studied. One of the important mechanisms for the development of AP-induced ADRs is a genetically-determined impairment of AP efflux across the blood-brain barrier (BBB). We present a narrative review of publications in databases (PubMed, Springer, Scopus, Web of Science E-Library) and online resources: The Human Protein Atlas; GeneCards: The Human Gene Database; US National Library of Medicine; SNPedia; OMIM Online Mendelian Inheritance in Man; The PharmGKB. The role of 15 transport proteins involved in the efflux of drugs and other xenobiotics across cell membranes (P-gp, TAP1, TAP2, MDR3, BSEP, MRP1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, MRP8, MRP9, BCRP) was analyzed. The important role of three transporter proteins (P-gp, BCRP, MRP1) in the efflux of APs through the BBB was shown, as well as the association of the functional activity and expression of these transport proteins with low-functional and non-functional single nucleotide variants (SNVs)/polymorphisms of the ABCB1, ABCG2, ABCC1 genes, encoding these transport proteins, respectively, in patients with schizophrenia spectrum disorders (SSDs). The authors propose a new pharmacogenetic panel "Transporter protein (PT)-Antipsychotic (AP) Pharmacogenetic test (PGx)" (PTAP-PGx), which allows the evaluation of the cumulative contribution of the studied genetic biomarkers of the impairment of AP efflux through the BBB. The authors also propose a riskometer for PTAP-PGx and a decision-making algorithm for psychiatrists. Conclusions: Understanding the role of the transportation of impaired APs across the BBB and the use of genetic biomarkers for its disruption may make it possible to reduce the frequency and severity of AP-induced ADRs, since this risk can be partially modified by the personalized selection of APs and their dosing rates, taking into account the genetic predisposition of the patient with SSD.
Collapse
Affiliation(s)
- Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, Samara 443016, Russia
| | - Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Sofia M Osipova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
| | - Aiperi K Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, Moscow 125993, Russia
| | - Ilya S Efremov
- Department of Psychiatry and Addiction, Bashkir State Medical University, Ufa 450008, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, Tomsk 634050, Russia
| | - German A Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, Moscow 119121, Russia
| |
Collapse
|
189
|
Kong X, Jia Y, Wang H, Li R, Li C, Cheng S, Chen T, Mai Y, Nie Y, Deng Y, Xie Z, Liu Y. Effective Treatment of Haemophilus influenzae-Induced Bacterial Conjunctivitis by a Bioadhesive Nanoparticle Reticulate Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22892-22902. [PMID: 37154428 DOI: 10.1021/acsami.3c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ocular formulations should provide an effective antibiotic concentration at the site of infection to treat bacterial eye infections. However, tears and frequent blinking accelerate the drug clearance rate and limit drug residence time on the ocular surface. This study describes a biological adhesion reticulate structure (BNP/CA-PEG) consisting of antibiotic-loaded bioadhesion nanoparticles (BNP/CA), with an average 500-600 nm diameter, and eight-arm NH2-PEG-NH2 for local and extended ocular drug delivery. This retention-prolonging effect is a function of the Schiff base reaction between groups on the surface of BNP and amidogen on PEG. BNP/CA-PEG showed significantly higher adhesion properties and better treatment efficacy in an ocular rat model with conjunctivitis in comparison to non-adhesive nanoparticles, BNP, or free antibiotics. Both in vivo safety experiment and in vitro cytotoxicity test verified the biocompatibility and biosafety of the biological adhesion reticulate structure, indicating a promising translational prospect for further clinical use.
Collapse
Affiliation(s)
- Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Han Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chujie Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shihong Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
190
|
Rajendran J. Amperometric determination of salivary thiocyanate using electrochemically fabricated poly (3, 4-ethylenedioxythiophene)/MXene hybrid film. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130979. [PMID: 36801710 DOI: 10.1016/j.jhazmat.2023.130979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Thiocyanate (SCN) is a hazardous byproduct of the detoxification of cyanide. Even in minute quantity, the SCN has a negative impact on health. Although there are several ways for SCN analysis, an efficient electrochemical procedure has hardly ever been attempted. Here, the author reports the development of a highly selective and sensitive electrochemical sensor for SCN utilizing Poly (3, 4-Ethylenedioxythiophene) incorporated MXene (PEDOT/MXene) modified screen-printed electrode (SPE). The Raman, X-ray photoelectron (XPS), and X-ray diffraction (XRD) analyses support the effective integration of PEDOT on the MXene surface. Further, scanning electron microscopy (SEM) is employed to demonstrate the formation of MXene and PEDOT/MXene hybrid film. In order to specifically detect SCN in phosphate buffer media (pH 7.4), the PEDOT/MXene hybrid film is grown on the SPE surface via the electrochemical deposition method. Under the optimized condition, the PEDOT/MXene/SPE-based sensor provides a linear response against SCN from 10 to 100 µM and 0.1 μM to 1000 μM with the lowest limit of detections (LOD) of 1.44 μM and 0.0325 μM by differential pulse voltammetry (DPV) and amperometry, respectively. For accurate detection of SCN, our newly created PEDOT/MXene hybrid film-coated SPE demonstrates excellent sensitivity, selectivity, and repeatability. Ultimately, this novel sensor can be used to detect SCN precisely in environmental and biological samples.
Collapse
Affiliation(s)
- Jerome Rajendran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
191
|
Hsueh HT, Chou RT, Rai U, Liyanage W, Kim YC, Appell MB, Pejavar J, Leo KT, Davison C, Kolodziejski P, Mozzer A, Kwon H, Sista M, Anders NM, Hemingway A, Rompicharla SVK, Edwards M, Pitha I, Hanes J, Cummings MP, Ensign LM. Machine learning-driven multifunctional peptide engineering for sustained ocular drug delivery. Nat Commun 2023; 14:2509. [PMID: 37130851 PMCID: PMC10154330 DOI: 10.1038/s41467-023-38056-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.
Collapse
Affiliation(s)
- Henry T Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Usha Rai
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoo Chun Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kirby T Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charlotte Davison
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Mozzer
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - HyeYoung Kwon
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Maanasa Sista
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Avelina Hemingway
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia Edwards
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
192
|
Tseng CH. Rosiglitazone Does Not Affect the Risk of Inflammatory Bowel Disease: A Retrospective Cohort Study in Taiwanese Type 2 Diabetes Patients. Pharmaceuticals (Basel) 2023; 16:ph16050679. [PMID: 37242462 DOI: 10.3390/ph16050679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Human studies on the effect of rosiglitazone on inflammatory bowel disease (IBD) are still lacking. We investigated whether rosiglitazone might affect IBD risk by using the reimbursement database of Taiwan's National Health Insurance to enroll a propensity-score-matched cohort of ever users and never users of rosiglitazone. The patients should have been newly diagnosed with diabetes mellitus between 1999 and 2006 and should have been alive on 1 January 2007. We then started to follow the patients from 1 January 2007 until 31 December 2011 for a new diagnosis of IBD. Propensity-score-weighted hazard ratios were estimated with regards to rosiglitazone exposure in terms of ever users versus never users and in terms of cumulative duration and cumulative dose of rosiglitazone therapy for dose-response analyses. The joint effects and interactions between rosiglitazone and risk factors of psoriasis/arthropathies, dorsopathies, and chronic obstructive pulmonary disease/tobacco abuse and the use of metformin were estimated by Cox regression after adjustment for all covariates. A total of 6226 ever users and 6226 never users were identified and the respective numbers of incident IBD were 95 and 111. When we compared the risk of IBD in ever users to that of the never users, the estimated hazard ratio (0.870, 95% confidence interval: 0.661-1.144) was not statistically significant. When cumulative duration and cumulative dose of rosiglitazone therapy were categorized by tertiles and hazard ratios were estimated by comparing the tertiles of rosiglitazone exposure to the never users, none of the hazard ratios reached statistical significance. In secondary analyses, rosiglitazone has a null association with Crohn's disease, but a potential benefit on ulcerative colitis (UC) could not be excluded. However, because of the low incidence of UC, we were not able to perform detailed dose-response analyses for UC. In the joint effect analyses, only the subgroup of psoriasis/arthropathies (-)/rosiglitazone (-) showed a significantly lower risk in comparison to the subgroup of psoriasis/arthropathies (+)/rosiglitazone (-). No interactions between rosiglitazone and the major risk factors or metformin use were observed. We concluded that rosiglitazone has a null effect on the risk of IBD, but the potential benefit on UC awaits further investigation.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- National Institute of Environmental Health Sciences of the National Health Research Institutes, Zhunan 35053, Taiwan
| |
Collapse
|
193
|
Shinyuy LM, Loe GE, Jansen O, Mamede L, Ledoux A, Noukimi SF, Abenwie SN, Ghogomu SM, Souopgui J, Robert A, Demeyer K, Frederich M. Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties-Pharmacokinetics and Pharmacodynamics: A Review. Metabolites 2023; 13:metabo13050613. [PMID: 37233654 DOI: 10.3390/metabo13050613] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
There are over 500 species of the genus Artemisia in the Asteraceae family distributed over the globe, with varying potentials to treat different ailments. Following the isolation of artemisinin (a potent anti-malarial compound with a sesquiterpene backbone) from Artemisia annua, the phytochemical composition of this species has been of interest over recent decades. Additionally, the number of phytochemical investigations of other species, including those of Artemisia afra in a search for new molecules with pharmacological potentials, has increased in recent years. This has led to the isolation of several compounds from both species, including a majority of monoterpenes, sesquiterpenes, and polyphenols with varying pharmacological activities. This review aims to discuss the most important compounds present in both plant species with anti-malarial properties, anti-inflammatory potentials, and immunomodulating properties, with an emphasis on their pharmacokinetics and pharmacodynamics properties. Additionally, the toxicity of both plants and their anti-malaria properties, including those of other species in the genus Artemisia, is discussed. As such, data were collected via a thorough literature search in web databases, such as ResearchGate, ScienceDirect, Google scholar, PubMed, Phytochemical and Ethnobotanical databases, up to 2022. A distinction was made between compounds involved in a direct anti-plasmodial activity and those expressing anti-inflammatory and immunomodulating activities or anti-fever properties. For pharmacokinetics activities, a distinction was made between compounds influencing bioavailability (CYP effect or P-Glycoprotein effect) and those affecting the stability of pharmacodynamic active components.
Collapse
Affiliation(s)
- Lahngong Methodius Shinyuy
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
- Laboratory of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Department of Analytical, Applied Chemometrics and Molecular Modeling (FABI), Faculty of Medicine and Pharmacy, Vrije Universiteit of Brussel, 1050 Ixelles, Belgium
- Laboratory of Pharmacochemical and Natural Pharmaceutical Substances, Doctoral Training Unit in Health Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| | - Gisèle E Loe
- Laboratory of Pharmacochemical and Natural Pharmaceutical Substances, Doctoral Training Unit in Health Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| | - Olivia Jansen
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| | - Lúcia Mamede
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| | - Sandra Fankem Noukimi
- Molecular and Cell Biology Laboratory (MCBL), Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
- Embryology and Biotechnology Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Suh Nchang Abenwie
- Epidemiology and Biostatistics Unit (EPiD), Institute of Clinical and Experimental Research (IREC), UCLouvain, 1200 Brussel, Belgium
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory (MCBL), Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Jacob Souopgui
- Embryology and Biotechnology Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Annie Robert
- Epidemiology and Biostatistics Unit (EPiD), Institute of Clinical and Experimental Research (IREC), UCLouvain, 1200 Brussel, Belgium
| | - Kristiaan Demeyer
- Laboratory of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Department of Analytical, Applied Chemometrics and Molecular Modeling (FABI), Faculty of Medicine and Pharmacy, Vrije Universiteit of Brussel, 1050 Ixelles, Belgium
| | - Michel Frederich
- Laboratory of Pharmacognosy, Department of Pharmacy, Center of Interdisciplinary Research on Medicine (CIRM), University of Liege, 4000 Liège, Belgium
| |
Collapse
|
194
|
Lashgari NA, Roudsari NM, Shayan M, Niazi Shahraki F, Hosseini Y, Momtaz S, Abdolghaffari AH. IDO/Kynurenine; novel insight for treatment of inflammatory diseases. Cytokine 2023; 166:156206. [PMID: 37120946 DOI: 10.1016/j.cyto.2023.156206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Inflammation and oxidative stress play pivotal roles in pathogenesis of many diseases including cancer, type 2 diabetes, cardiovascular disease, atherosclerosis, neurological diseases, and inflammatory diseases such as inflammatory bowel disease (IBD). Inflammatory mediators such as interleukins (ILs), interferons (INF-s), and tumor necrosis factor (TNF)-α are related to an extended chance of inflammatory diseases initiation or progression due to the over expression of the nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLR), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. These pathways are completely interconnected. Theindoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) (IDO/KYN), is a metabolic inflammatory pathway involved in production of nicotinamide adenine dinucleotide (NAD + ). It has been shown that IDO/KYN actively participates in inflammatory processes and can increase the secretion of cytokines that provoke inflammatory diseases. Data were extracted from clinical and animal studies published in English between 1990-April 2022, which were collected from PubMed, Google Scholar, Scopus, and Cochrane library. IDO/KYN is completely associated with inflammatory-related pathways, thus leading to the production of cytokines such as TNF-α, IL-1β, and IL-6, and ultimately development and progression of various inflammatory disorders. Inhibition of the IDO/KYN pathway might be a novel therapeutic option for inflammatory diseases. Herein, we gathered data on probable interactions of the IDO/KYN pathway with induction of some inflammatory diseases.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
195
|
Rizi KS, Aryan E, Youssefi M, Ghazvini K, Meshkat Z, Amini Y, Safdari H, Derakhshan M, Farsiani H. Characterization of carbapenem-resistant Escherichia coli and Klebsiella: a role for AmpC-producing isolates. Future Microbiol 2023; 18:215-223. [PMID: 37129534 DOI: 10.2217/fmb-2021-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Aim: This study aimed to investigate the role of AmpC enzymes in carbapenem resistance among AmpC/extended-spectrum β-lactamase (ESBL)-producing clinical isolates of Escherichia coli and Klebsiella spp. Methods: Fifty-six bacterial strains that were AmpC producers were examined. The antibiotic susceptibility test was performed by the disk diffusion and E-test. The prevalence of the plasmid carbapenemase was determined using PCR. Results: The resistance to meropenem in the AmpC+/ESBL+ group was 64%, higher than that reported for the AmpC-/ESBL+ group. Ten isolates of the carbapenem-resistant AmpC producers were negative for carbapenemase-encoding genes. Conclusion: Carbapenem resistance among AmpC-producing isolates with negative results for carbapenemase-encoding genes potentially demonstrates the role of AmpC enzymes among these isolates.
Collapse
Affiliation(s)
- Kobra S Rizi
- Department of Microbiology & Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Amini
- Infectious Disease & Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hadi Safdari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
196
|
Moon CH, Lee AJ, Jeon HY, Kim EB, Ha KS. Therapeutic effect of ultra-long-lasting human C-peptide delivery against hyperglycemia-induced neovascularization in diabetic retinopathy. Theranostics 2023; 13:2424-2438. [PMID: 37215567 PMCID: PMC10196831 DOI: 10.7150/thno.81714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Neovascularization is a hallmark of the late stages of diabetic retinopathy (DR) leading to blindness. The current anti-DR drugs have clinical disadvantages including short circulation half-lives and the need for frequent intraocular administration. New therapies with long-lasting drug release and minimal side effects are therefore needed. We explored a novel function and mechanism of a proinsulin C-peptide molecule with ultra-long-lasting delivery characteristics for the prevention of retinal neovascularization in proliferative diabetic retinopathy (PDR). Methods: We developed a strategy for ultra-long intraocular delivery of human C-peptide using an intravitreal depot of K9-C-peptide, a human C-peptide conjugated to a thermosensitive biopolymer, and investigated its inhibitory effect on hyperglycemia-induced retinal neovascularization using human retinal endothelial cells (HRECs) and PDR mice. Results: In HRECs, high glucose conditions induced oxidative stress and microvascular permeability, and K9-C-peptide suppressed those effects similarly to unconjugated human C-peptide. A single intravitreal injection of K9-C-peptide in mice resulted in the slow release of human C-peptide that maintained physiological levels of C-peptide in the intraocular space for at least 56 days without inducing retinal cytotoxicity. In PDR mice, intraocular K9-C-peptide attenuated diabetic retinal neovascularization by normalizing hyperglycemia-induced oxidative stress, vascular leakage, and inflammation and restoring blood-retinal barrier function and the balance between pro- and anti-angiogenic factors. Conclusions: K9-C-peptide provides ultra-long-lasting intraocular delivery of human C-peptide as an anti-angiogenic agent to attenuate retinal neovascularization in PDR.
Collapse
Affiliation(s)
| | | | | | | | - Kwon-Soo Ha
- ✉ Corresponding author: Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Korea. Tel: +82-33-250-8833, E-mail address:
| |
Collapse
|
197
|
Aghaei H, Kheirkhah A, Alizadeh AM, Es'haghi A, Aliakbar-Navahi R, Keikha Z, Chaibakhsh S. Local ocular safety of the subconjunctival injection of cetuximab in rabbits. BMC Ophthalmol 2023; 23:155. [PMID: 37055797 PMCID: PMC10103399 DOI: 10.1186/s12886-023-02893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND To evaluate the safety of different doses of subconjunctival cetuximab in rabbits. METHODS After general anesthesia rabbits received a subconjunctival injection of 2.5 mg in 0.5 ml, 5 mg in 1 ml, and 10 mg in 2 ml of cetuximab in their right eyes (two rabbits in each group). A similar volume of normal saline solution was injected subconjunctivally in the left eyes. The histopathologic changes were evaluated after enucleation with the aid of H&E staining. RESULTS No significant difference were observed between the treated and control eyes in terms of conjunctival inflammation, goblet cell density, or limbal blood vessel density for all administered doses of cetuximab. CONCLUSION Subconjunctival injection of cetuximab with the administrated doses in rabbit eyes are safe.
Collapse
Affiliation(s)
- Hossein Aghaei
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kheirkhah
- Department of Ophthalmology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | | | - Acieh Es'haghi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Roshanak Aliakbar-Navahi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Keikha
- Department of Ophthalmology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Chaibakhsh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
198
|
Ana RD, Gliszczyńska A, Sanchez-Lopez E, Garcia ML, Krambeck K, Kovacevic A, Souto EB. Precision Medicines for Retinal Lipid Metabolism-Related Pathologies. J Pers Med 2023; 13:jpm13040635. [PMID: 37109021 PMCID: PMC10145959 DOI: 10.3390/jpm13040635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidation of lipids and lipoproteins contributes to inflammation processes that promote the development of eye diseases. This is a consequence of metabolism dysregulation; for instance, that of the dysfunctional peroxisomal lipid metabolism. Dysfunction of lipid peroxidation is a critical factor in oxidative stress that causes ROS-induced cell damage. Targeting the lipid metabolism to treat ocular diseases is an interesting and effective approach that is now being considered. Indeed, among ocular structures, retina is a fundamental tissue that shows high metabolism. Lipids and glucose are fuel substrates for photoreceptor mitochondria; therefore, retina is rich in lipids, especially phospholipids and cholesterol. The imbalance in cholesterol homeostasis and lipid accumulation in the human Bruch's membrane are processes related to ocular diseases, such as AMD. In fact, preclinical tests are being performed in mice models with AMD, making this area a promising field. Nanotechnology, on the other hand, offers the opportunity to develop site-specific drug delivery systems to ocular tissues for the treatment of eye diseases. Specially, biodegradable nanoparticles constitute an interesting approach to treating metabolic eye-related pathologies. Among several drug delivery systems, lipid nanoparticles show attractive properties, e.g., no toxicological risk, easy scale-up and increased bioavailability of the loaded active compounds. This review analyses the mechanisms involved in ocular dyslipidemia, as well as their ocular manifestations. Moreover, active compounds as well as drug delivery systems which aim to target retinal lipid metabolism-related diseases are thoroughly discussed.
Collapse
Affiliation(s)
- Raquel da Ana
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08007 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08007 Barcelona, Spain
| | - Karolline Krambeck
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Health Sciences School, Guarda Polytechnic Institute, 6300-035 Guarda, Portugal
| | - Andjelka Kovacevic
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eliana B Souto
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
199
|
Buck CB. The mint versus Covid hypothesis. Med Hypotheses 2023; 173:111047. [PMID: 37007799 PMCID: PMC10062428 DOI: 10.1016/j.mehy.2023.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Recent lines of evidence suggest the intriguing hypothesis that consuming common culinary herbs of the mint family might help prevent or treat Covid. Individual citizens could easily explore the hypothesis using ordinary kitchen materials. I offer a philosophical framework to account for the puzzling lack of public health messaging about this interesting idea.
Collapse
Affiliation(s)
- Christopher B Buck
- Lab of Cellular Oncology, National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263 USA
| |
Collapse
|
200
|
German C, Chen Z, Przekwas A, Walenga R, Babiskin A, Zhao L, Fan J, Tan ML. Computational Model of In Vivo Corneal Pharmacokinetics and Pharmacodynamics of Topically Administered Ophthalmic Drug Products. Pharm Res 2023; 40:961-975. [PMID: 36959411 DOI: 10.1007/s11095-023-03480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/09/2023] [Indexed: 03/25/2023]
Abstract
INTRODUCTION Although the eye is directly accessible on the surface of the human body, drug delivery can be extremely challenging due to the presence of multiple protective barriers in eye tissues. Researchers have developed complex formulation strategies to overcome these barriers to ophthalmic drug delivery. Current development strategies rely heavily on in vitro experiments and animal testing to predict human pharmacokinetics (PK) and pharmacodynamics (PD). OBJECTIVE The primary objective of the study was to develop a high-fidelity PK/PD model of the anterior eye for topical application of ophthalmic drug products. METHODS Here, we present a physiologically-based in silico approach to predicting PK and PD in rabbits after topical administration of ophthalmic products. A first-principles based approach was used to describe timolol dissolution, transport, and distribution, including consideration of ionized transport, following topical instillation of a timolol suspension. RESULTS Using literature transport and response parameters, the computational model described well the concentration-time and response-time profiles in rabbit. Comparison of validated rabbit model results and extrapolated human model results demonstrate observable differences in the distribution of timolol at multiple time points. CONCLUSION This modeling framework provides a tool for model-based prediction of PK in eye tissues and PD after topical ophthalmic drug administration to the eyes.
Collapse
Affiliation(s)
- Carrie German
- CFD Research Corporation, Computational Biology Division, 6820 Moquin Dr NW, Huntsville, AL, 35806, USA.
| | - Zhijian Chen
- CFD Research Corporation, Computational Biology Division, 6820 Moquin Dr NW, Huntsville, AL, 35806, USA
| | - Andrzej Przekwas
- CFD Research Corporation, Computational Biology Division, 6820 Moquin Dr NW, Huntsville, AL, 35806, USA
| | - Ross Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Jianghong Fan
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Ming-Liang Tan
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| |
Collapse
|