151
|
Olenginski LT, Kasprzak WK, Attionu SK, Shapiro BA, Dayie TK. Virtual Screening of Hepatitis B Virus Pre-Genomic RNA as a Novel Therapeutic Target. Molecules 2023; 28:1803. [PMID: 36838792 PMCID: PMC9963113 DOI: 10.3390/molecules28041803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The global burden imposed by hepatitis B virus (HBV) infection necessitates the discovery and design of novel antiviral drugs to complement existing treatments. One attractive and underexploited therapeutic target is ε, an ~85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 3'- and 5'-ends of the pre-genomic RNA (pgRNA). Binding of the 5'-end ε to the viral polymerase protein (P) triggers two early events in HBV replication: pgRNA and P packaging and reverse transcription. Our recent solution nuclear magnetic resonance spectroscopy structure of ε permits structure-informed drug discovery efforts that are currently lacking for P. Here, we employ a virtual screen against ε using a Food and Drug Administration (FDA)-approved compound library, followed by in vitro binding assays. This approach revealed that the anti-hepatitis C virus drug Daclatasvir is a selective ε-targeting ligand. Additional molecular dynamics simulations demonstrated that Daclatasvir targets ε at its flexible 6-nt priming loop (PL) bulge and modulates its dynamics. Given the functional importance of the PL, our work supports the notion that targeting ε dynamics may be an effective anti-HBV therapeutic strategy.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wojciech K. Kasprzak
- Bioinformatics and Computational Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Solomon K. Attionu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Bruce A. Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
152
|
Antiviral Mechanism of Virucidal Sialic Acid Modified Cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15020582. [PMID: 36839904 PMCID: PMC9965221 DOI: 10.3390/pharmaceutics15020582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
We have reported that CD-6'SLN [6-sialyllactosamine (6'SLN)-modified β-cyclodextrin (CD)] can be a potential anti-influenza drug because it irreversibly deactivates virions. Indeed, in vivo, CD-6'SLN improved mice survival in an H1N1 infection model even when administered 24 h post-infection. Although CD-6'SLN was designed to target the viral envelope protein hemagglutinin (HA), a natural receptor of 6'SLN, it remains unclear whether other targets exist. In this study, we confirm that CD-6'SLN inhibits the influenza virus through an extracellular mechanism by interacting with HA, but not with neuraminidase (NA), despite the latter also having a binding pocket for the sialyl group. We find that CD-6'SLN interacts with the viral envelope as it elicits the release of a fluorophore embedded in the membrane. Two similar compounds were designed to test separately the effect of 6'SLN and of the undecyl moiety that links the CD to 6'SLN. Neither showed any interaction with the membrane nor the irreversible viral inhibition (virucidal), confirming that both components are essential to membrane interaction and virucidal action. Unlike similar antiviral cyclodextrins developed against other viruses, CD-6'SLN was not able to decapsulate viral RNA. Our findings support that combining viral protein-specific epitopes with hydrophobic linkers provides a strategy for developing antiviral drugs with a virucidal mechanism.
Collapse
|
153
|
Najjar-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, Goldstein LH, Saliba W. Effectiveness of Molnupiravir in High-Risk Patients: A Propensity Score Matched Analysis. Clin Infect Dis 2023; 76:453-460. [PMID: 36130189 DOI: 10.1093/cid/ciac781] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Molnupiravir was granted emergency use authorization for the treatment of mild to moderate coronavirus disease 2019 (COVID-19). In this study, we used population-based real-world data to evaluate the effectiveness of molnupiravir. METHODS The database of the largest healthcare provider in Israel was used to identify all adults with first-ever positive test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) performed in the community during January-February 2022, who were at high risk for severe COVID-19, and had no contraindications for molnupiravir use. Patients were included regardless of SARS-CoV-2 vaccination status. A total of 2661 patients who received molnupiravir were propensity score matched with 2661 patients who have not received molnupiravir (control group). Patients were followed through 10 March 2022 for up to 28 days for the first occurrence of the composite severe COVID-19 or COVID-19-specific mortality. RESULTS The composite outcome occurred in 50 patients in the molnupiravir group and 60 patients in the control group. Molnupiravir was associated with a nonsignificant reduced risk of the composite outcome: hazard ratio, 0.83 (95% confidence interval, .57-1.21). However, subgroup analyses showed that molnupiravir was associated with a significant decrease in the risk of the composite outcome in older patients 0.54 (0.34-0.86), in females 0.41 (0.22-0.77), and in patients with inadequate COVID-19 vaccination 0.45 (0.25-0.82). The results were similar when each component of the composite outcome was examined separately. CONCLUSIONS This study suggests that in the era of Omicron and in real-life setting, molnupiravir might be effective in reducing the risk of severe COVID-19 and COVID-19-related mortality, particularly in specific subgroups.
Collapse
Affiliation(s)
- Ronza Najjar-Debbiny
- Infection Control and Prevention Unit, Lady Davis Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Naomi Gronich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Gabriel Weber
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Johad Khoury
- Pulmonology Division, Lady Davis Carmel Medical Center, Haifa, Israel.,Pulmonology, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maisam Amar
- Infectious Diseases Unit, Lady Davis Carmel Medical Center, Haifa, Israel.,Internal Medicine C, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Nili Stein
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel.,Statistical Unit, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Lee Hilary Goldstein
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Internal Medicine C, Emek Medical Center, Afula, Israel.,Pharmacology Unit, Emek Medical Center, Afula, Israel
| | - Walid Saliba
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel.,Translational Epidemiology Unit and Research Authority, Lady Davis Carmel Medical Center, Haifa, Israel
| |
Collapse
|
154
|
Lim SP. Targeting SARS-CoV-2 and host cell receptor interactions. Antiviral Res 2023; 210:105514. [PMID: 36581047 PMCID: PMC9792186 DOI: 10.1016/j.antiviral.2022.105514] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Despite the availability of vaccines and therapeutics, continual genetic alterations render the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) a persistent threat, particularly for the immunocompromised and elderly. Through interactions of its spike (S) protein with different receptors and coreceptors on host cell surfaces, the virus enters the cell either via fusion with the plasma membrane or through endocytosis. Angiotensin-converting enzyme 2 (ACE2) has been identified as a key receptor utilized by SARS-CoV-2 and related human coronaviruses to mediate cell entry in the lung airways. Auxiliary SARS-CoV-2 entry receptors such as ASGPR1, Kremen protein 1, integrins have also been reported. In this review, therapeutic approaches to block SARS-CoV-2 and host cell receptor interactions are discussed.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Experimental Drug Development Centre (EDDC), A*STAR, 10, Biopolis Road, #05-01, Chromos, 138670, Singapore.
| |
Collapse
|
155
|
D'Addiego J, Elaldi N, Wand N, Osman K, Bagci BK, Kennedy E, Pektas AN, Hart E, Slack G, Hewson R. Investigating the effect of ribavirin treatment on genetic mutations in Crimean-Congo haemorrhagic fever virus (CCHFV) through next-generation sequencing. J Med Virol 2023; 95:e28548. [PMID: 36734067 DOI: 10.1002/jmv.28548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is the most widespread tick-borne viral haemorrhagic fever affecting humans, and yet a licensed drug against the virus (CCHFV) is still not available. While several studies have suggested the efficacy of ribavirin against CCHFV, current literature remains inconclusive. In this study, we have utilised next-generation sequencing to investigate the mutagenic effect of ribavirin on the CCHFV genome during clinical disease. Samples collected from CCHF patients receiving ribavirin treatment or supportive care only at Sivas Cumhuriyet University Hospital, Turkey, were analysed. By comparing the frequency of mutations in each group, we found little evidence of an overall mutagenic effect. This suggests that ribavirin, administered at the acute stages of CCHFV infection (at the World Health Organization-recommended dose) is unable to induce lethal mutagenesis that would cause an extinction event in the CCHFV population and reduce viremia.
Collapse
Affiliation(s)
- Jake D'Addiego
- UK Health Security Agency, Salisbury, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Sivas Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | | | | | - Binnur Koksal Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Ayse Nur Pektas
- Cumhuriyet University Advanced Technology Application and Research Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | | | | | - Roger Hewson
- UK Health Security Agency, Salisbury, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
156
|
Suicidal Phenotype of Proofreading-Deficient Herpes Simplex Virus 1 Polymerase Mutants. J Virol 2023; 97:e0135922. [PMID: 36598203 PMCID: PMC9888220 DOI: 10.1128/jvi.01359-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) encodes a family B DNA polymerase (Pol) capable of exonucleolytic proofreading whose functions have been extensively studied in the past. Early studies on the in vitro activity of purified Pol protein found that the enzymatic functions of the holoenzyme are largely separate. Consequently, exonuclease activity can be reduced or abolished by certain point mutations within catalytically important regions, with no or only minor effects on polymerase activity. Despite unimpaired polymerase activity, the recovery of HSV-1 mutants with a catalytically inactive exonuclease has been so far unsuccessful. Hence, mutations such as D368A, which abolish exonuclease activity, are believed to be lethal. Here, we show that HSV-1 can be recovered in the absence of Pol intrinsic exonuclease activity and demonstrate that a lack of proofreading causes the rapid accumulation of likely detrimental mutations. Although mutations that abolish exonuclease activity do not appear to be lethal, the lack of proofreading yields viruses with a suicidal phenotype that cease to replicate within few passages following reconstitution. Hence, we conclude that high replication fidelity conferred by proofreading is essential to maintain HSV-1 genome integrity and that a lack of exonuclease activity produces an initially viable but rapidly suicidal phenotype. However, stably replicating viruses with reduced exonuclease activity and therefore elevated mutation rates can be generated by mutating a catalytically less important site located within a conserved exonuclease domain. IMPORTANCE Recovery of fully exonuclease-deficient herpes simplex virus 1 (HSV-1) DNA polymerase mutants has been so far unsuccessful. However, exonuclease activity is not known to be directly essential for virus replication, and the lethal phenotype of certain HSV-1 polymerase mutants is thus attributed to factors other than exonuclease activity. Here, we showed that the recovery of a variety of exonuclease-deficient HSV-1 polymerase mutants is possible and that these mutants are initially replication competent. We, however, observed a progressive loss of mutant viability upon cell culture passaging, which coincided with the rapid accumulation of mutations in exonuclease-deficient viruses. We thus concluded that a lack of DNA proofreading in exonuclease-deficient viruses causes an initially viable but rapidly suicidal hypermutator phenotype and, consequently, the extinction of mutant viruses within few generations following recovery. This would make the absence of exonuclease activity the primary reason for the long-reported difficulties in culturing exonuclease-deficient HSV-1 mutants.
Collapse
|
157
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
158
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
159
|
Elbur AI, Ghebremichael M, Konkle-Parker D, Jones DL, Collins S, Adimora AA, Schneider MF, Cohen MH, Tamraz B, Plankey M, Wilson T, Adedimeji A, Haberer JE, Jacobson DL. Dual Trajectories of Antiretroviral Therapy Adherence and Polypharmacy in Women with HIV in the United States. RESEARCH SQUARE 2023:rs.3.rs-2443973. [PMID: 36747684 PMCID: PMC9901001 DOI: 10.21203/rs.3.rs-2443973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Polypharmacy, using five or more medications, may increase the risk of nonadherence to prescribed treatment. We aimed to identify the interrelationship between trajectories of adherence to antiretroviral therapy (ART) and polypharmacy. Methods We included women with HIV (aged ≥ 18) enrolled in the Women's Interagency HIV Study in the United States from 2014 to 2019. We used group-based trajectory modeling (GBTM) to identify trajectories of adherence to ART and polypharmacy and the dual GBTM to identify the interrelationship between adherence and polypharmacy. Results Overall, 1,538 were eligible (median age of 49 years). GBTM analysis revealed five latent trajectories of adherence with 42% of women grouped in the consistently moderate trajectory. GBTM identified four polypharmacy trajectories with 45% categorized in the consistently low group. Conclusions The joint model did not reveal any interrelationship between ART adherence and polypharmacy trajectories. Future research should consider examining the interrelationship between both variables using objective measures of adherence.
Collapse
|
160
|
Cheng SL, Wang PH, Chang CY, Wang HH, Wang CJ, Chiu KM. The Benefits of Molnupiravir Treatment in Healthcare Facilities Patients with COVID-19. Drug Des Devel Ther 2023; 17:87-92. [PMID: 36698540 PMCID: PMC9869894 DOI: 10.2147/dddt.s392708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Background Molnupiravir (MOL) is an oral antiviral medication that has recently been treated for COVID-19. Objectively We perform a prospective and observational study to elucidate the efficacy and safety of MOL in healthcare patients with COVID-19. Materials and Methods A observational, non-randomized study of patients diagnosed with COVID-19 in 46 healthcare facilities and treated with MOL started within 5 days after the onset of signs or symptoms. We recorded data for all patients, including demographic data, clinical features, and symptoms. Treatment response was classified into cure, stable, hospitalization and death. Multivariate analysis was performed with stepwise logistic regression for hospitalization and death risk factors. Results In total, 856 patients were diagnosed as having COVID-19 and treated with MOL during the study period. Of those, 496 patients (57.9%) were cured, 256 patients (29.9%) in stable condition, 104 patients (12.2%) hospitalized, and 22 patients (2.6%) died, respectively. There was significant effectiveness (87.8%) in COVID-19 patients using MOL. Multivariate analysis was performed to confirm the risk factors for hospitalization and death and included elder age (>80 years old) (odds ratio (OR) 2.2, 95% confidence interval (CI): 1.1-6.9), old cerebrovascular accident (CVA) (OR=4.1, 95% CI: 1.3-9.9), the presence of diabetes mellitus (DM) (OR=2.6, 95% CI: 1.2-9.1) and chronic respiratory diseases (OR=2.4, 95% (CI): 1.3-8.1). Limitations This is an observational study, neither randomized study nor control group study. Conclusion Initial treatment with MOL has the treatment benefits and is well tolerated for patients with COVID-19 in healthcare facilities. Older age, old CVA, DM, and chronic respiratory diseases were independent risk factors for hospitalization and mortality. The results demonstrate there are important clinical benefits of MOL beyond the reduction in hospitalization or death for these patients with more comorbidities in Taiwan.
Collapse
Affiliation(s)
- Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan,The Graduate Institute of Medicine, Yuan-Ze University, Taoyuan City, Taiwan
| | - Ping-Huai Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Cheng-Yu Chang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Hsu-Hui Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Chung-Jen Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Kuan-Ming Chiu
- The Graduate Institute of Medicine, Yuan-Ze University, Taoyuan City, Taiwan,Division of Cardiovascular Surgery, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan,Correspondence: Kuan-Ming Chiu, Division of Cardiovascular Surgery, Far Eastern Memorial Hospital, No. 21, Section 2, Nanya S. Road, Banqiao District, New Taipei City, 220, Taiwan, Tel +886-2-89667000, Email
| |
Collapse
|
161
|
HIV and Drug-Resistant Subtypes. Microorganisms 2023; 11:microorganisms11010221. [PMID: 36677513 PMCID: PMC9861097 DOI: 10.3390/microorganisms11010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a human viral infectious disease caused by the positive-sense single-stranded (ss) RNA Human Immunodeficiency Virus (HIV) (Retroviridae family, Ortervirales order). HIV-1 can be distinguished into various worldwide spread groups and subtypes. HIV-2 also causes human immunodeficiency, which develops slowly and tends to be less aggressive. HIV-2 only partially homologates to HIV-1 despite the similar derivation. Antiretroviral therapy (ART) is the treatment approved to control HIV infection, based on multiple antiretroviral drugs that belong to different classes: (i) NNRTIs, (ii) NRTIs, (iii) PIs, (iv) INSTIs, and (v) entry inhibitors. These drugs, acting on different stages of the HIV life cycle, decrease the patient's total burden of HIV, maintain the function of the immune system, and prevent opportunistic infections. The appearance of several strains resistant to these drugs, however, represents a problem today that needs to be addressed as best as we can. New outbreaks of strains show a widespread geographic distribution and a highly variable mortality rate, even affecting treated patients significantly. Therefore, novel treatment approaches should be explored. The present review discusses updated information on HIV-1- and HIV-2-resistant strains, including details on different mutations responsible for drug resistance.
Collapse
|
162
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
163
|
Bai N, Adeshina Y, Bychkov I, Xia Y, Gowthaman R, Miller SA, Gupta AK, Johnson DK, Lan L, Golemis EA, Makhov PB, Xu L, Pillai MM, Boumber Y, Karanicolas J. Rationally designed inhibitors of the Musashi protein-RNA interaction by hotspot mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523326. [PMID: 36711508 PMCID: PMC9882015 DOI: 10.1101/2023.01.09.523326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.
Collapse
Affiliation(s)
- Nan Bai
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Yusuf Adeshina
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Igor Bychkov
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yan Xia
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Ragul Gowthaman
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Sven A. Miller
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | | | - David K. Johnson
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Erica A. Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Petr B. Makhov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City KS 66160
| | - Manoj M. Pillai
- Section of Hematology, Yale Cancer Center, New Haven CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven CT 06520
| | - Yanis Boumber
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140
| |
Collapse
|
164
|
Ghaleh SS, Rahimian K, Mahmanzar M, Mahdavi B, Tokhanbigli S, Sisakht MM, Farhadi A, Bakhtiari MM, Kuehu DL, Deng Y. SARS-CoV-2 Non-structural protein 1(NSP1) mutation virulence and natural selection: Evolutionary trends in the six continents. Virus Res 2023; 323:199016. [PMID: 36473671 PMCID: PMC9721189 DOI: 10.1016/j.virusres.2022.199016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Rapid transmission and reproduction of RNA viruses prepare conducive conditions to have a high rate of mutations in their genetic sequence. The viral mutations make adapt the severe acute respiratory syndrome coronavirus 2 in the host environment and help the evolution of the virus then also caused a high mortality rate by the virus that threatens worldwide health. Mutations and adaptation help the virus to escape confrontations that are done against it. METHODS In the present study, we analyzed 6,510,947 sequences of non-structural protein 1 as one of the conserved regions of the virus to find out frequent mutations and substitute amino acids in comparison with the wild type. NSP1 mutations rate divided into continents were different. RESULTS Based on this continental categorization, E87D in global vision and also in Europe notably increased. The E87D mutation has signed up to January 2022 as the first frequent mutation observed. The remarkable mutations, H110Y and R24C have the second and third frequencies, respectively. CONCLUSION According to the important role of non-structural protein 1 on the host mRNA translation, developing drug design against the protein could be so hopeful to find more effective ways the control and then treatment of the global pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
| | - Karim Rahimian
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics. Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Tokhanbigli
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Amin Farhadi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
165
|
Temereanca A, Ruta S. Strategies to overcome HIV drug resistance-current and future perspectives. Front Microbiol 2023; 14:1133407. [PMID: 36876064 PMCID: PMC9978142 DOI: 10.3389/fmicb.2023.1133407] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The availability of combined antiretroviral therapy (cART) has revolutionized the course of HIV infection, suppressing HIV viremia, restoring the immune system, and improving the quality of life of HIV infected patients. However, the emergence of drug resistant and multidrug resistant strains remains an important contributor to cART failure, associated with a higher risk of HIV-disease progression and mortality. According to the latest WHO HIV Drug Resistance Report, the prevalence of acquired and transmitted HIV drug resistance in ART naive individuals has exponentially increased in the recent years, being an important obstacle in ending HIV-1 epidemic as a public health threat by 2030. The prevalence of three and four-class resistance is estimated to range from 5 to 10% in Europe and less than 3% in North America. The new drug development strategies are focused on improved safety and resistance profile within the existing antiretroviral classes, discovery of drugs with novel mechanisms of action (e.g., attachment/post-attachment inhibitors, capsid inhibitors, maturation inhibitors, nucleoside reverse transcriptase translocation inhibitors), combination therapies with improved adherence, and treatment simplification with infrequent dosing. This review highlight the current progress in the management of salvage therapy for patients with multidrug-resistant HIV-1 infection, discussing the recently approved and under development antiretroviral agents, as well as the new drug targets that are providing a new avenue for the development of therapeutic interventions in HIV infection.
Collapse
Affiliation(s)
- Aura Temereanca
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Viral Emerging Diseases Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Simona Ruta
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Viral Emerging Diseases Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| |
Collapse
|
166
|
Tian X, Chen J, Wang X, Xie Y, Zhang X, Han D, Fu H, Yin W, Wu N. Global, regional, and national HIV/AIDS disease burden levels and trends in 1990-2019: A systematic analysis for the global burden of disease 2019 study. Front Public Health 2023; 11:1068664. [PMID: 36875364 PMCID: PMC9975742 DOI: 10.3389/fpubh.2023.1068664] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background Since the first HIV/AIDS case appeared in 1980s, HIV/AIDS has been the focus of international attention. As a major public health problem, there are epidemiological uncertainties about the future of HIV/AIDS. It is important to monitor the global statistics of HIV/AIDS prevalence, deaths, disability adjusted life years (DALYs), and risk factors for adequate prevention and control. Methods The Global Burden of Disease Study 2019 database was used to analyze the burden of HIV/AIDS in 1990-2019. By extracting global, regional, and national data on HIV/AIDS prevalence, deaths, and DALYs, we described the distribution by age and sex, explored the risk factors, and analyzed the trends in HIV/AIDS. Results In 2019, there were 36.85 million HIV/AIDS cases (95% UI: 35.15-38.86 million), 863.84 thousand deaths (95% UI: 78.61-99.60 thousand), and 47.63 million (95% UI: 42.63-55.65 million) DALYs. The global age-standardized HIV/AIDS prevalence, death, and DALY rates were 454.32 (95% UI: 433.76-478.59), 10.72 (95% UI: 9.70-12.39), and 601.49 (95% UI: 536.16-703.92) per 100,000 cases, respectively. In 2019, the global age-standardized HIV/AIDS prevalence, death, and DALY rates increased by 307.26 (95% UI: 304.45-312.63), 4.34 (95% UI: 3.78-4.90), and 221.91 (95% UI: 204.36-239.47) per 100,000 cases, respectively, compared to 1990. Age-standardized prevalence, death, and DALY rates decreased in high sociodemographic index (SDI) areas. High age-standardized rates were observed in low sociodemographic index areas, while low age-standardized rates were observed in high sociodemographic index areas. In 2019, the high age-standardized prevalence, death, and DALY rates were predominant in Southern Sub-Saharan Africa, and global DALYs peaked in 2004 and subsequently decreased. The highest global HIV/AIDS DALYs were in the 40-44 age group. The main risk factors affecting HIV/AIDS DALY rates included behavioral risks, drug use, partner violence, and unsafe sex. Conclusions HIV/AIDS disease burden and risk factors vary by region, sex, and age. As access to health care increases across countries and treatment for HIV/AIDS infection improves, the HIV/AIDS disease burden is concentrated in areas with low SDIs, particularly in South Africa. Regional differences should be fully considered to target optimal prevention strategies and treatment options based on risk factors.
Collapse
Affiliation(s)
- Xuebin Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Jingjing Chen
- Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yiwen Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Dating Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Haijing Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wanpeng Yin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
167
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
168
|
Johnson MM, Jones CE, Clark DN. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Viruses 2022; 15:107. [PMID: 36680147 PMCID: PMC9861436 DOI: 10.3390/v15010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
HIV/AIDS mortality has been decreasing over the last decade. While promising, this decrease correlated directly with increased use of antiretroviral drugs. As a natural consequence of its high mutation rate, treatments provide selection pressure that promotes the natural selection of escape mutants. Individuals may acquire drug-naive strains, or those that have already mutated due to treatment. Even within a host, mutation affects HIV tropism, where initial infection begins with R5-tropic virus, but the clinical transition to AIDS correlates with mutations that lead to an X4-tropic switch. Furthermore, the high mutation rate of HIV has spelled failure for all attempts at an effective vaccine. Pre-exposure drugs are currently the most effective drug-based preventatives, but their effectiveness is also threatened by viral mutation. From attachment and entry to assembly and release, the steps in the replication cycle are also discussed to describe the drug mechanisms and mutations that arise due to those drugs. Revealing the patterns of HIV-1 mutations, their effects, and the coordinated attempt to understand and control them will lead to effective use of current preventative measures and treatment options, as well as the development of new ones.
Collapse
Affiliation(s)
- Madison M. Johnson
- Department of Microbiology, Weber State University, Ogden, UT 84408, USA
| | | | | |
Collapse
|
169
|
Gao S, Song L, Xu H, Fikatas A, Oeyen M, De Jonghe S, Zhao F, Jing L, Jochmans D, Vangeel L, Cheng Y, Kang D, Neyts J, Herdewijn P, Schols D, Zhan P, Liu X. Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010160. [PMID: 36615354 PMCID: PMC9822497 DOI: 10.3390/molecules28010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen 518057, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongtao Xu
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Merel Oeyen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| |
Collapse
|
170
|
Nelfinavir: An Old Ally in the COVID-19 Fight? Microorganisms 2022; 10:microorganisms10122471. [PMID: 36557724 PMCID: PMC9783559 DOI: 10.3390/microorganisms10122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
After almost three years of the pandemic, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still spreading around the world, causing notable sanitary and social issues. New antiviral therapies are constantly under investigation. However, few options have been approved for the treatment of COVID-19. Clinical trials are currently ongoing to evaluate the efficacy of nelfinavir on mild−moderate COVID-19. This study aims to investigate the activity of this compound on SARS-CoV-2 “Variants of Concern” (VOCs), comparing its effectiveness with the approved drugs remdesivir and molnupiravir. The experiments were conducted in a biosafety level 3 facility. In this study, we used a Vero-E6-cell-based infection assay to investigate the in vitro activity of nelfinavir, molnupiravir, and remdesivir. Four strains of SARS-CoV-2 were tested: 20A.EU1, B.1.1.7, P.1, and B.1.617.2. All compounds reached micromolar/submicromolar EC50, EC90, and EC99. Furthermore, the Cmax/EC50 and Cmax/EC90 ratios were >1 for all compounds and all variants tested. Our study demonstrated that nelfinavir, as molnupiravir, and remdesivir are effective in vitro on SARS-CoV-2 variants.
Collapse
|
171
|
Halma MTJ, Wever MJA, Abeln S, Roche D, Wuite GJL. Therapeutic potential of compounds targeting SARS-CoV-2 helicase. Front Chem 2022; 10:1062352. [PMID: 36561139 PMCID: PMC9763700 DOI: 10.3389/fchem.2022.1062352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The economical and societal impact of COVID-19 has made the development of vaccines and drugs to combat SARS-CoV-2 infection a priority. While the SARS-CoV-2 spike protein has been widely explored as a drug target, the SARS-CoV-2 helicase (nsp13) does not have any approved medication. The helicase shares 99.8% similarity with its SARS-CoV-1 homolog and was shown to be essential for viral replication. This review summarizes and builds on existing research on inhibitors of SARS-CoV-1 and SARS-CoV-2 helicases. Our analysis on the toxicity and specificity of these compounds, set the road going forward for the repurposing of existing drugs and the development of new SARS-CoV-2 helicase inhibitors.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- LUMICKS B. V., Amsterdam, Netherlands
| | - Mark J. A. Wever
- DCM, University of Grenoble Alpes, Grenoble, France
- Edelris, Lyon, France
| | - Sanne Abeln
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Gijs J. L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
172
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
173
|
Wen W, Chen C, Tang J, Wang C, Zhou M, Cheng Y, Zhou X, Wu Q, Zhang X, Feng Z, Wang M, Mao Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis. Ann Med 2022; 54:516-523. [PMID: 35118917 PMCID: PMC8820829 DOI: 10.1080/07853890.2022.2034936] [Citation(s) in RCA: 259] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The coronavirus disease (COVID-19) epidemic has not been completely controlled. Although great achievements have been made in COVID-19 research and many antiviral drugs have shown good therapeutic effects against COVID-19, a simple oral antiviral drug for COVID-19 has not yet been developed. We conducted a meta-analysis to investigate the improvement in mortality or hospitalization rates and adverse events among COVID-19 patients with three new oral antivirals (including molnupiravir, fluvoxamine and Paxlovid). METHODS We searched scientific and medical databases, such as PubMed, Web of Science, Embase and Cochrane Library for relevant articles and screened the references of retrieved studies on COVID-19. RESULTS A total of eight studies were included in this study. The drug group included 2440 COVID-19 patients, including 54 patients who died or were hospitalized. The control group included a total of 2348 COVID-19 patients, including 118 patients who died or were hospitalized. The overall odds ratio (OR) of mortality or hospitalization was 0.33 (95% confidence interval [CI], 0.22-0.49) for COVID-19 patients in the drug group and placebo group, indicating that oral antiviral drugs were effective for COVID-19 patients and reduced the mortality or hospitalization by approximately 67%. CONCLUSIONS This study showed that three novel oral antivirals (molnupiravir, fluvoxamine and Paxlovid) are effective in reducing the mortality and hospitalization rates in patients with COVID-19. In addition, the three oral drugs did not increase the occurrence of adverse events, thus exhibiting good overall safety. These three oral antiviral drugs are still being studied, and the available data suggest that they will bring new hope for COVID-19 recovery and have the potential to be a breakthrough and very promising treatment for COVID-19.KEY MESSAGESMany antiviral drugs have shown good therapeutic effects, and there is no simple oral antiviral drug for COVID-19 patients.Meta-analysis was conducted for three new oral antivirals to evaluate the improvement in mortality or hospitalization rates and adverse events among COVID-19 patients.We focussed on three new oral Coronavirus agents (molnupiravir, fluvoxamine and Paxlovid) and hope to provide guidance for the roll-out of oral antivirals.
Collapse
Affiliation(s)
- Wen Wen
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Chen Chen
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Jiake Tang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Chunyi Wang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, PR China
| | - Xiang Zhou
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Qi Wu
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Xingwei Zhang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Mingwei Wang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Qin Mao
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| |
Collapse
|
174
|
Xu S, Sun L, Zalloum WA, Huang T, Zhang X, Ding D, Shao X, Jiang X, Zhao F, Cocklin S, De Clercq E, Pannecouque C, Dick A, Liu X, Zhan P. Discovery and Mechanistic Investigation of Piperazinone Phenylalanine Derivatives with Terminal Indole or Benzene Ring as Novel HIV-1 Capsid Modulators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238415. [PMID: 36500508 PMCID: PMC9739877 DOI: 10.3390/molecules27238415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
HIV-1 capsid (CA) performs multiple roles in the viral life cycle and is a promising target for antiviral development. In this work, we describe the design, synthesis, assessment of antiviral activity, and mechanistic investigation of 20 piperazinone phenylalanine derivatives with a terminal indole or benzene ring. Among them, F2-7f exhibited moderate anti-HIV-1 activity with an EC50 value of 5.89 μM, which was slightly weaker than the lead compound PF74 (EC50 = 0.75 μM). Interestingly, several compounds showed a preference for HIV-2 inhibitory activity, represented by 7f with an HIV-2 EC50 value of 4.52 μM and nearly 5-fold increased potency over anti-HIV-1 (EC50 = 21.81 μM), equivalent to PF74 (EC50 = 4.16 μM). Furthermore, F2-7f preferred to bind to the CA hexamer rather than to the monomer, similar to PF74, according to surface plasmon resonance results. Molecular dynamics simulation indicated that F2-7f and PF74 bound at the same site. Additionally, we computationally analyzed the ADMET properties for 7f and F2-7f. Based on this analysis, 7f and F2-7f were predicted to have improved drug-like properties and metabolic stability over PF74, and no toxicities were predicted based on the chemotype of 7f and F2-7f. Finally, the experimental metabolic stability results of F2-7f in human liver microsomes and human plasma moderately correlated with our computational prediction. Our findings show that F2-7f is a promising small molecule targeting the HIV-1 CA protein with considerable development potential.
Collapse
Affiliation(s)
- Shujing Xu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lin Sun
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Waleed A. Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O. Box 2882, Amman 11821, Jordan
| | - Tianguang Huang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xujie Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dang Ding
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiaoyu Shao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangyi Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Fabao Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Simon Cocklin
- Specifica Inc., The Santa Fe Railyard, 1607 Alcaldesa Street, Santa Fe, NM 87501, USA
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| |
Collapse
|
175
|
Wang S, Ren Y, Li Q, Wang Y, Jiang X, Xu S, Zhang X, Zhao S, Bradley DP, Woodson ME, Zhao F, Wu S, Li Y, Tian Y, Liu X, Tavis JE, Zhan P. Design, synthesis, and biological evaluation of novel sulfamoylbenzamide derivatives as HBV capsid assembly modulators. Bioorg Chem 2022; 129:106192. [PMID: 36265355 PMCID: PMC10591450 DOI: 10.1016/j.bioorg.2022.106192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/02/2022]
Abstract
Capsid assembly modulators (CAMs) represent a novel class of antiviral agents targeting hepatitis B virus (HBV) capsid to disrupt the assembly process. NVR 3-778 is the first CAM to demonstrate antiviral activity in patients infected with HBV. However, the relatively low aqueous solubility and moderate activity in the human body halted further development of NVR 3-778. To improve the anti-HBV activity and the drug-like properties of NVR 3-778, we designed and synthesized a series of NVR 3-778 derivatives. Notably, phenylboronic acid-bearing compound 7b (EC50 = 0.83 ± 0.33 µM, CC50 = 19.4 ± 5.0 µM) displayed comparable anti-HBV activity to NVR 3-778 (EC50 = 0.73 ± 0.20 µM, CC50 = 23.4 ± 7.0 µM). Besides, 7b showed improved water solubility (328.8 µg/mL, pH 7) compared to NVR 3-778 (35.8 µg/mL, pH 7). Size exclusion chromatography (SEC) and quantification of encapsidated viral RNA were used to demonstrate that 7b behaves as a class II CAM similar to NVR 3-778. Moreover, molecular dynamics (MD) simulations were conducted to rationalize the structure-activity relationships (SARs) of these novel derivatives and to understand their key interactions with the binding pocket, which provide useful indications for guiding the further rational design of more effective anti-HBV drugs.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100, S. Grand Blvd, St. Louis, MO 63104, USA
| | - Ya Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Daniel P Bradley
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100, S. Grand Blvd, St. Louis, MO 63104, USA
| | - Molly E Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100, S. Grand Blvd, St. Louis, MO 63104, USA
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, PR China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, PR China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China.
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100, S. Grand Blvd, St. Louis, MO 63104, USA.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
176
|
Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Novel computational pipelines in antiviral structure‑based drug design (Review). Biomed Rep 2022; 17:97. [PMID: 36382260 PMCID: PMC9634337 DOI: 10.3892/br.2022.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Viral infections constitute a fundamental and continuous challenge for the global scientific and medical community, as highlighted by the ongoing COVID-19 pandemic. In combination with prophylactic vaccines, the development of safe and effective antiviral drugs remains a pressing need for the effective management of rare and common pathogenic viruses. The design of potent antivirals can be informed by the study of the three-dimensional structure of viral protein targets. Structure-based design of antivirals in silico provides a solution to the arduous and costly process of conventional drug development pipelines. Furthermore, rapid advances in high-throughput computing, along with the growth of available biomolecular and biochemical data, enable the development of novel computational pipelines in the hunt of antivirals. The incorporation of modern methods, such as deep-learning and artificial intelligence, has the potential to revolutionize the structure-based design and repurposing of antiviral compounds, with minimal side effects and high efficacy. The present review aims to provide an outline of both traditional computational drug design and emerging, high-level computing strategies.
Collapse
Affiliation(s)
- Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of The Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
177
|
Erdogan Orhan I, Deniz FSS, Salmas RE, Irmak S, Acar OO, Turgut GC, Sen A, Zbancioc AM, Luca SV, Skiba A, Skalicka-Woźniak K, Tataringa G. Evaluation of Anti-Alzheimer Activity of Synthetic Coumarins by Combination of in Vitro and in Silico Approaches. Chem Biodivers 2022; 19:e202200315. [PMID: 36282001 DOI: 10.1002/cbdv.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
Series of synthetic coumarin derivatives (1-16) were tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes linked to the pathology of Alzheimer's disease (AD). Compound 16 was the most active AChE inhibitor with IC50 32.23±2.91 μM, while the reference (galantamine) had IC50 =1.85±0.12 μM. Compounds 9 (IC50 75.14±1.82 μM), 13 (IC50 =16.14±0.43 μM), were determined to be stronger BChE inhibitors than the reference galantamine (IC50 =93.53±2.23 μM). The IC50 value of compound 16 for BChE inhibition (IC50 =126.56±11.96 μM) was slightly higher than galantamine. The atomic interactions between the ligands and the key amino acids inside the binding cavities were simulated to determine their ligand-binding positions and free energies. The three inhibitory coumarins (9, 13, 16) were next tested for their effects on the genes associated with AD using human neuroblastoma (SH-SY5Y) cell lines. Our data indicate that they could be considered for further evaluation as new anti-Alzheimer drug candidates.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - F Sezer Senol Deniz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | | | - Sule Irmak
- Pamukkale University, Faculty of Arts & Sciences, Department of Biology, 20070, Denizli, Turkey
| | - Ozden Ozgun Acar
- Pamukkale University, Seed Breeding & Genetics Application Research Center, 20070, Denizli, Turkey
| | - Gurbet Celik Turgut
- Pamukkale University, Faculty of Applied Sciences, Organic Agriculture Management, Civril, 20680, Denizli, Turkey
| | - Alaattin Sen
- Pamukkale University, Faculty of Arts & Sciences, Department of Biology, 20070, Denizli, Turkey.,Abdullah Gul University, Faculty of Life and Natural Sciences, Department of Molecular Biology and Genetics, 38080, Kayseri, Turkey
| | - Ana-Maria Zbancioc
- University of Medicine and Pharmacy Grigore T. Popa Iasi, Faculty of Pharmacy, Romania
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093, Lublin, Poland
| | | | - Gabriela Tataringa
- University of Medicine and Pharmacy Grigore T. Popa Iasi, Faculty of Pharmacy, Romania
| |
Collapse
|
178
|
Haldar S. Recent Developments in Single-Virus Fusion Assay. J Membr Biol 2022; 255:747-755. [PMID: 36173449 DOI: 10.1007/s00232-022-00270-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Viral infection is a global health hazard. A crucial step in the infection cycle of enveloped viruses is the fusion of viral and host cellular membranes, which permits the transfer of the viral genome to the host cells. Membrane fusion is a ubiquitous process involved in sperm-egg fusion, exocytosis, vesicular trafficking, and viral entry to host cells. While different protein machineries catalyze the diverse fusion processes, the essential step, i.e., merging of two lipid bilayers against a kinetic energy barrier, is the same. Therefore, viral fusion machineries/pathways are not only the sites for antiviral drug development but also serve as model fusogens. Ensemble-based spectroscopic approaches or bulk fusion assays have yielded valuable insights regarding the fusion processes. However, due to the stochastic nature of the fusion events, ensemble-based assays do not permit synchronization of all the fusion events, and the molecular steps leading to fusion pore opening cannot be resolved entirely and correlated with the structural changes in viral fusion proteins. Several single-virus fusion assays have been developed to circumvent these issues. The review describes the recent advancements in single-virus/particle fusion assays using the Influenza virus as a paradigm.
Collapse
Affiliation(s)
- Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
179
|
Annadi AM, El Zahar NM, El-Din A. Abdel-Sattar N, Mohamed EH, Mahmoud SA, Attia MS. Development and validation of molnupiravir assessment in bulk powder and pharmaceutical formulation by the RP-HPLC-UV method. RSC Adv 2022; 12:34512-34519. [PMID: 36545624 PMCID: PMC9710530 DOI: 10.1039/d2ra05066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Abstract
An accurate, sensitive and selective RP-HPLC-UV method has been established for the estimation of Molnupiravir (MOL) in pure bulk powder and pharmaceutical formulation. Separation was achieved on an Inertsil C18 column (150.0 mm × 4.6 mm, 5.0 μm), using a mobile phase of 20 mM phosphate buffer pH 2.5 : acetonitrile (80 : 20, v/v%) in isocratic mode with a flow rate of 1.0 mL min-1. The λ max of MOL prepared in the chosen diluent (ethanol : water in equal proportions) was found to be 230.0 nm. The constructed calibration curve was found to be linear in the concentration range of 0.2-80.0 μg mL-1. The recovery% of MOL using the proposed method was 100.29%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.04 μg mL-1 and 0.12 μg mL-1, respectively. No significant interference was detected in the presence of the common pharmaceutical formulation excipients. The method was validated following the ICH recommendations. All the obtained results were statistically compared with those using reported methods and there were no significant differences. The method developed in this work was successfully employed for the assessment of MOL in bulk powder and pharmaceutical formulation.
Collapse
Affiliation(s)
- Abdelaziz M. Annadi
- Chemistry Department, Faculty of Science, Ain Shams UniversityAbbassiaCairo11566Egypt
| | - Noha M. El Zahar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity StreetAbbassiaCairo 11566Egypt,Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International UniversityRas-Sedr, South SinaiEgypt
| | | | - Ekram H. Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in EgyptElSherouk CityCairoEgypt
| | - Safwat A. Mahmoud
- Physics Department, Faculty of Science, Northern Border UniversityArarSaudi Arabia
| | - Mohamed S. Attia
- Chemistry Department, Faculty of Science, Ain Shams UniversityAbbassiaCairo11566Egypt
| |
Collapse
|
180
|
Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Bioorg Chem 2022; 130:106264. [PMCID: PMC9643332 DOI: 10.1016/j.bioorg.2022.106264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
181
|
Secchi M, Vangelista L. Rational Engineering of a Sub-Picomolar HIV-1 Blocker. Viruses 2022; 14:v14112415. [PMID: 36366513 PMCID: PMC9695723 DOI: 10.3390/v14112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
With the aim of rationally devising a refined and potent HIV-1 blocker, the cDNA of CCL5 5p12 5m, an extremely potent CCR5 antagonist, was fused to that of C37, a gp41-targeted fusion inhibitor. The resulting CCL5 5p12 5m-C37 fusion protein was expressed in E. coli and proved to be capable of inhibiting R5 HIV-1 strains with low to sub-picomolar IC50, maintaining its antagonism toward CCR5. In addition, CCL5 5p12 5m-C37 inhibits R5/X4 and X4 HIV-1 strains in the picomolar concentration range. The combination of CCL5 5p12 5m-C37 with tenofovir (TDF) exhibited a synergic effect, promoting this antiviral cocktail. Interestingly, a CCR5-targeted combination of maraviroc (MVC) with CCL5 5p12 5m-C37 led to a synergic effect that could be explained by an extensive engagement of different CCR5 conformational populations. Within the mechanism of HIV-1 entry, the CCL5 5p12 5m-C37 chimera may fit as a powerful blocker in several instances. In its possible consideration for systemic therapy or pre-exposure prophylaxis, this protein design represents an interesting lead in the combat of HIV-1 infection.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Protein Engineering and Therapeutics Group, Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- DNA Enzymology and Molecular Virology Unit, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence:
| |
Collapse
|
182
|
Peng S, Wang H, Wang Z, Wang Q. Progression of Antiviral Agents Targeting Viral Polymerases. Molecules 2022; 27:7370. [PMID: 36364196 PMCID: PMC9654062 DOI: 10.3390/molecules27217370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Viral DNA and RNA polymerases are two kinds of very important enzymes that synthesize the genetic materials of the virus itself, and they have become extremely favorable targets for the development of antiviral drugs because of their relatively conserved characteristics. There are many similarities in the structure and function of different viral polymerases, so inhibitors designed for a certain viral polymerase have acted as effective universal inhibitors on other types of viruses. The present review describes the development of classical antiviral drugs targeting polymerases, summarizes a variety of viral polymerase inhibitors from the perspective of chemically synthesized drugs and natural product drugs, describes novel approaches, and proposes promising development strategies for antiviral drugs.
Collapse
Affiliation(s)
| | | | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
183
|
Kang D, Yang J, Kong L, Luo R, Huang X, Zhang T, Ma M, Feng D, Wang Z, Fang H, Zhan P, Zheng Y, Liu X. Structure-Based Discovery and Characterization of a Preclinical Drug Candidate for the Treatment of HIV-1 Infection. Viruses 2022; 14:v14112390. [PMID: 36366488 PMCID: PMC9699427 DOI: 10.3390/v14112390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/31/2023] Open
Abstract
HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) area key component of the current HIV-1 combination drug regimens. Although they exhibit potent anti-HIV-1 activity and modest toxicity, the emergence of mutant strains limits their application in clinical. Our previous research efforts contributed to the identification of compound K-5a2, which exhibits nanomolar activity in HIV-1-infected MT-4 cells. In this study, K-5a2 was shown to have a high level of anti-HIV-1 activity against various lab-adapted strains and clinical isolate strains, being comparable to ETR. Moreover, we showed the feasibility of K-5a2 as a preclinical anti-HIV-1 candidate by establishing its synergistic or additive anti-HIV-1 activity in combination with other representative anti-HIV-1 drugs and candidates. In addition, K-5a2 exhibited no inhibitory activity to the primary CYP isoforms and favorable pharmacokinetics. Taken together, its robust anti-HIV-1 potency, synergistic or additive effects with other anti-HIV drugs, and favorable pharmacokinetic and safety profiles make K-5a2 a potent alternative drug for HIV/AIDS treatment.
Collapse
Affiliation(s)
- Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Jinxuan Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lingjin Kong
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Co., Ltd., Zibo 255400, China
| | - Ronghua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xusheng Huang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Co., Ltd., Zibo 255400, China
| | - Mengdi Ma
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Feng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Zhao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Hao Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
- Correspondence: (P.Z.); (Y.Z.); (X.L.)
| | - Yongtang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Correspondence: (P.Z.); (Y.Z.); (X.L.)
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
- Correspondence: (P.Z.); (Y.Z.); (X.L.)
| |
Collapse
|
184
|
Inhibition of Viral RNA-Dependent RNA Polymerases by Nucleoside Inhibitors: An Illustration of the Unity and Diversity of Mechanisms. Int J Mol Sci 2022; 23:ijms232012649. [PMID: 36293509 PMCID: PMC9604226 DOI: 10.3390/ijms232012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRP) is essential for the replication and expression of RNA viral genomes. This class of viruses comprise a large number of highly pathogenic agents that infect essentially all species of plants and animals including humans. Infections often lead to epidemics and pandemics that have remained largely out of control due to the lack of specific and reliable preventive and therapeutic regimens. This unmet medical need has led to the exploration of new antiviral targets, of which RdRP is a major one, due to the fact of its obligatory need in virus growth. Recent studies have demonstrated the ability of several synthetic nucleoside analogs to serve as mimics of the corresponding natural nucleosides. These mimics cause stalling/termination of RdRP, or misincorporation, preventing virus replication or promoting large-scale lethal mutations. Several such analogs have received clinical approval and are being routinely used in therapy. In parallel, the molecular structural basis of their inhibitory interactions with RdRP is being elucidated, revealing both traditional and novel mechanisms including a delayed chain termination effect. This review offers a molecular commentary on these mechanisms along with their clinical implications based on analyses of recent results, which should facilitate the rational design of structure-based antiviral drugs.
Collapse
|
185
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. Current scenario on non-nucleoside reverse transcriptase inhibitors (2018-present). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
186
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
187
|
Current medicinal chemistry strategies in the discovery of novel HIV-1 ribonuclease H inhibitors. Eur J Med Chem 2022; 243:114760. [PMID: 36152387 DOI: 10.1016/j.ejmech.2022.114760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
During HIV-1 genome replication, the viral reverse transcriptase-associated ribonuclease H (RT-associated RNase H) activity hydrolyzes the RNA strand of RNA/DNA heteroduplex intermediates. As of today, HIV-1 RNase H inhibitors (RHIs) remain at an investigational level, although none of them reached clinical trials. Therefore, RNase H remains as an attractive target for drug design and development. In this paper, we review the current status of medicinal chemistry strategies aimed at the discovery of novel RHIs, while discussing problems encountered in their characterization and further development, thereby providing an update on recent progress in the field.
Collapse
|
188
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
189
|
Hybrid Molecules as Potential Drugs for the Treatment of HIV: Design and Applications. Pharmaceuticals (Basel) 2022; 15:ph15091092. [PMID: 36145313 PMCID: PMC9502546 DOI: 10.3390/ph15091092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is a major problem for humanity because HIV is constantly changing and developing resistance to current drugs. This necessitates the development of new anti-HIV drugs that take new approaches to combat an ever-evolving virus. One of the promising alternatives to combination antiretroviral therapy (cART) is the molecular hybrid strategy, in which two or more pharmacophore units of bioactive scaffolds are combined into a single molecular structure. These hybrid structures have the potential to have higher efficacy and lower toxicity than their parent molecules. Given the potential advantages of the hybrid molecular approach, the development and synthesis of these compounds are of great importance in anti-HIV drug discovery. This review focuses on the recent development of hybrid compounds targeting integrase (IN), reverse transcriptase (RT), and protease (PR) proteins and provides a brief description of their chemical structures, structure–activity relationship, and binding mode.
Collapse
|
190
|
Sepúlveda CS, García CC, Damonte EB. Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy. Microorganisms 2022; 10:1631. [PMID: 36014049 PMCID: PMC9413629 DOI: 10.3390/microorganisms10081631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Emerging and re-emerging viruses have been a challenge in public health in recent decades. Host-targeted antivirals (HTA) directed at cellular molecules or pathways involved in virus multiplication represent an interesting strategy to combat viruses presently lacking effective chemotherapy. HTA could provide a wide range of agents with inhibitory activity against current and future viruses that share similar host requirements and reduce the possible selection of antiviral-resistant variants. Nucleotide metabolism is one of the more exploited host metabolic pathways as a potential antiviral target for several human viruses. This review focuses on the antiviral properties of the inhibitors of pyrimidine and purine nucleotide biosynthesis, with an emphasis on the rate-limiting enzymes dihydroorotate dehydrogenase (DHODH) and inosine monophosphate dehydrogenase (IMPDH) for which there are old and new drugs active against a broad spectrum of pathogenic viruses.
Collapse
Affiliation(s)
- Claudia Soledad Sepúlveda
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Cybele Carina García
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Elsa Beatriz Damonte
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| |
Collapse
|
191
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
192
|
Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine. Proc Natl Acad Sci U S A 2022; 119:e2203660119. [PMID: 35858448 PMCID: PMC9335299 DOI: 10.1073/pnas.2203660119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The enzyme reverse transcriptase (RT) is a key antiviral target, and nonnucleoside RT inhibitors (NNRTIs) are among the frequently used components of antiretroviral therapy for treating HIV-1 infection. The emergence of drug-resistant mutations continues to pose a challenge in HIV treatment. The RT mutations M184I and E138K emerge in patients receiving rilpivirine. We obtained the structural snapshots of rilpivirine, doravirine, and nevirapine inhibited wild-type and M184I/E138K RT/DNA polymerase complexes by cryo-electron microscopy. Key structural changes observed in the rilpivirine- and doravirine-bound structures have implications for understanding NNRTI drug resistance. Additionally, the cryo-EM structure determination strategy outlined in this study can be adapted to aid drug design targeting smaller and flexible proteins. Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme’s relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)–bound RT/double-stranded DNA (dsDNA), RT/RNA–DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3′-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.
Collapse
|
193
|
Troyano-Hernáez P, Reinosa R, Holguín A. Genetic Diversity and Low Therapeutic Impact of Variant-Specific Markers in HIV-1 Pol Proteins. Front Microbiol 2022; 13:866705. [PMID: 35910645 PMCID: PMC9330395 DOI: 10.3389/fmicb.2022.866705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of new HIV-1 variants pose a challenge for the effectiveness of antiretrovirals (ARV) targeting Pol proteins. During viral evolution, non-synonymous mutations have fixed along the viral genome, leading to amino acid (aa) changes that can be variant-specific (V-markers). Those V-markers fixed in positions associated with drug resistance mutations (DRM), or R-markers, can impact drug susceptibility and resistance pathways. All available HIV-1 Pol sequences from ARV-naïve subjects were downloaded from the United States Los Alamos HIV Sequence Database, selecting 59,733 protease (PR), 6,437 retrotranscriptase (RT), and 6,059 integrase (IN) complete sequences ascribed to the four HIV-1 groups and group M subtypes and circulating recombinant forms (CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio), we inferred the consensus sequences for each Pol protein and HIV-1 variant to analyze the aa conservation in Pol. We analyzed the Wu–Kabat protein variability coefficient (WK) in PR, RT, and IN group M to study the susceptibility of each site to evolutionary replacements. We identified as V-markers the variant-specific aa changes present in >75% of the sequences in variants with >5 available sequences, considering R-markers those V-markers that corresponded to DRM according to the IAS-USA2019 and Stanford-Database 9.0. The mean aa conservation of HIV-1 and group M consensus was 82.60%/93.11% in PR, 88.81%/94.07% in RT, and 90.98%/96.02% in IN. The median group M WK was 10 in PR, 4 in RT, and 5 in IN. The residues involved in binding or catalytic sites showed a variability <0.5%. We identified 106 V-markers: 31 in PR, 28 in RT, and 47 in IN, present in 11, 12, and 13 variants, respectively. Among them, eight (7.5%) were R-markers, present in five variants, being minor DRM with little potential effect on ARV susceptibility. We present a thorough analysis of Pol variability among all HIV-1 variants circulating to date. The relatively high aa conservation observed in Pol proteins across HIV-1 variants highlights their critical role in the viral cycle. However, further studies are needed to understand the V-markers’ impact on the Pol proteins structure, viral cycle, or treatment strategies, and periodic variability surveillance studies are also required to understand PR, RT, and IN evolution.
Collapse
|
194
|
Qureshi A, Ouattara LA, El-Sayed NS, Verma A, Doncel GF, Choudhary MI, Siddiqui H, Parang K. Synthesis and Evaluation of Anti-HIV Activity of Mono- and Di-Substituted Phosphonamidate Conjugates of Tenofovir. Molecules 2022; 27:4447. [PMID: 35889320 PMCID: PMC9316519 DOI: 10.3390/molecules27144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97-99% inhibition) at 10-100 ng/mL but was more potent than TAF when compared at molar concentration.
Collapse
Affiliation(s)
- Aaminat Qureshi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Louise A. Ouattara
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Cellulose and Paper Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Amita Verma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (L.A.O.); (G.F.D.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Biochemistry, King Abdul Aziz University, Jeddah 21452, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Campus C, Surabaya 60115, Indonesia
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (N.S.E.-S.); (A.V.)
| |
Collapse
|
195
|
Lawal B, Kuo YC, Rachmawati Sumitra M, Wu ATH, Huang HS. Identification of a novel immune-inflammatory signature of COVID-19 infections, and evaluation of pharmacokinetics and therapeutic potential of RXn-02, a novel small-molecule derivative of quinolone. Comput Biol Med 2022; 148:105814. [PMID: 35841781 PMCID: PMC9272679 DOI: 10.1016/j.compbiomed.2022.105814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic and respiratory infection that has enormous damage to human lives and economies. It is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a non-pair-stranded positive-sense RNA virus. With increasing global threats and few therapeutic options, the discovery of new potential drug targets and the development of new therapy candidates against COVID-19 are urgently needed. Based on these premises, we conducted an analysis of transcriptomic datasets from SARS-CoV-2-infected patients and identified several SARS-CoV-2 infection signatures, among which TNFRSF5/PTPRC/IDO1/MKI67 appeared to be the most pertinent signature. Subsequent integrated bioinformatics analysis identified the signature as an important immunomodulatory and inflammatory signature of SARS-CoV-2 infection. It was suggested that this gene signature mediates the interplay of immune and immunosuppressive cells leading to infiltration-exclusion of effector memory T cells in the lungs, which is of translation relevance for developing novel SARS-CoV-2 drug and vaccine candidates. Consequently, we designed and synthesized a novel small-molecule quinoline derivative (RXn-02) and evaluated its pharmacokinetics in rats, revealing a peak plasma concentration (Cmax) and time to Cmax (Tmax) of 1.756 μg/mL and 0.6 h, respectively. Values of the area under the curve (AUC) (0–24 h) and AUC (0 h∼∞) were 18.90 and 71.20 μg h/mL, respectively. Drug absorption from the various regional segments revealed that the duodenum (49.84%), jejunum (47.885%), cecum (1.82%), and ileum (0.32%) were prime sites of RXn-02 absorption. No absorption was detected from the stomach, and the least was from the colon (0.19%). Interestingly, RXn-02 exhibited in vitro antiproliferative activities against hub gene hyper-expressing cell lines; A549 (IC50 = 48.1 μM), K-562 (IC50 = 100 μM), and MCF7 (IC50 = 0.047 μM) and against five cell lines originating from human lungs (IC50 range of 33.2–69.5 μM). In addition, RXn-02 exhibited high binding efficacies for targeting the TNFRSF5/PTPRC/IDO1/MK signature with binding affinities (ΔG) of −6.6, −6.0, −9.9, −6.9 kcal/mol respectively. In conclusion, our study identified a novel signature of SARS-CoV-2 pathogenesis. RXn-02 is a drug-like candidate with good in vivo pharmacokinetics and hence possesses great translational relevance worthy of further preclinical and clinical investigations for treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, 11490, Taiwan; PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
196
|
Li D, Ding J, Liu TL, Wang F, Meng XX, Liu S, Yang Z, Zhu H. SARS-CoV-2 receptor binding domain radio-probe: a non-invasive approach for angiotensin-converting enzyme 2 mapping in mice. Acta Pharmacol Sin 2022; 43:1749-1757. [PMID: 34815544 PMCID: PMC8609177 DOI: 10.1038/s41401-021-00809-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
The spike protein of SARS-CoV-2 interacts with angiotensin-converting enzyme 2 (ACE2) of human respiratory epithelial cells, which leads to infection. Furthermore, low-dose radiation has been found to reduce inflammation and aid the curing of COVID-19. The receptor binding domain (RBD), a recombinant spike protein with a His tag at the C-terminus, binds to ACE2 in human body. We thus constructed a radioiodinated RBD as a molecule-targeted probe to non-invasively explore ACE2 expression in vivo, and to investigate radiotherapy pathway for inhibiting ACE2. RBD was labeled with [124I]NaI using an N-bromosuccinimide (NBS)-mediated method, and 124I-RBD was obtained after purification with a specific activity of 28.9 GBq/nmol. Its radiochemical purity was (RCP) over 90% in saline for 5 days. The dissociation constant of 124I-RBD binding to hACE2 was 75.7 nM. The uptake of 124I-RBD by HeLaACE+ cells at 2 h was 2.96% ± 0.35%, which could be substantially blocked by an excessive amount of RBD, and drop to 1.71% ± 0.23%. In BALB/c mice, the biodistribution of 124I-RBD after intravenous injection showed a moderate metabolism rate, and its 24 h-post injection (p.i.) organ distribution was similar to the expression profile in body. Micro-PET imaging of mice after intrapulmonary injection showed high uptake of lung at 1, 4, 24 h p.i.. In conclusion, the experimental results demonstrate the potential of 124I-RBD as a novel targeted molecular probe for COVID-19. This probe may be used for non-invasive ACE2 mapping in mammals.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Te-Li Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang-Xi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
197
|
Ji H, Sandstrom P. Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing. Pathogens 2022; 11:pathogens11070739. [PMID: 35889985 PMCID: PMC9321895 DOI: 10.3390/pathogens11070739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
The close monitoring of HIV drug resistance using genotypic HIV drug resistance testing (HIVDRT) has become essential for effective HIV/AIDS management at both individual and population levels. Over the years, a broad spectrum of analytes or specimens have been applied or attempted in HIVDRT; however, the suitability and performance of these analytes in HIVDRT and the clinical relevance of the results from them may vary significantly. This article provides a focused overview of the performance, strengths, and weaknesses of various analytes while used in HIVDRT, which may inform the optimal analytes selection in different application contexts.
Collapse
Affiliation(s)
- Hezhao Ji
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-6521
| | - Paul Sandstrom
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
198
|
Martínez-González B, Soria ME, Vázquez-Sirvent L, Ferrer-Orta C, Lobo-Vega R, Mínguez P, de la Fuente L, Llorens C, Soriano B, Ramos-Ruíz R, Cortón M, López-Rodríguez R, García-Crespo C, Somovilla P, Durán-Pastor A, Gallego I, de Ávila AI, Delgado S, Morán F, López-Galíndez C, Gómez J, Enjuanes L, Salar-Vidal L, Esteban-Muñoz M, Esteban J, Fernández-Roblas R, Gadea I, Ayuso C, Ruíz-Hornillos J, Verdaguer N, Domingo E, Perales C. SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations. Pathogens 2022; 11:662. [PMID: 35745516 PMCID: PMC9227345 DOI: 10.3390/pathogens11060662] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, 08028 Barcelona, Spain; (C.F.-O.); (N.V.)
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, Universidad de Valencia, 46980 Valencia, Spain; (C.L.); (B.S.)
| | - Beatriz Soriano
- Biotechvana, “Scientific Park”, Universidad de Valencia, 46980 Valencia, Spain; (C.L.); (B.S.)
| | - Ricardo Ramos-Ruíz
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Antoni Durán-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, 28031 Madrid, Spain;
| | - Federico Morán
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28005 Madrid, Spain;
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28222 Madrid, Spain;
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, 18016 Granada, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Ricardo Fernández-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Ruíz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, 28342 Madrid, Spain;
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, 08028 Barcelona, Spain; (C.F.-O.); (N.V.)
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
199
|
Zhang L, Wei F, Borrego D, Zhao F, Río JMD, Frutos-Beltrán E, Zhang J, Xu S, López-Carrobles N, Gao S, Kang D, Pannecouque C, Clercq ED, Liu X, Menéndez-Arias L, Zhan P. Design, synthesis, and biological evaluation of novel double-winged galloyl derivatives as HIV-1 RNase H inhibitors. Eur J Med Chem 2022; 240:114563. [DOI: 10.1016/j.ejmech.2022.114563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023]
|
200
|
Lan Y, He W, Wang G, Wang Z, Chen Y, Gao F, Song D. Potential Antiviral Strategy Exploiting Dependence of SARS-CoV-2 Replication on Lysosome-Based Pathway. Int J Mol Sci 2022; 23:ijms23116188. [PMID: 35682877 PMCID: PMC9181800 DOI: 10.3390/ijms23116188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The recent novel coronavirus (SARS-CoV-2) disease (COVID-19) outbreak created a severe public health burden worldwide. Unfortunately, the SARS-CoV-2 variant is still spreading at an unprecedented speed in many countries and regions. There is still a lack of effective treatment for moderate and severe COVID-19 patients, due to a lack of understanding of the SARS-CoV-2 life cycle. Lysosomes, which act as “garbage disposals” for nearly all types of eukaryotic cells, were shown in numerous studies to support SARS-CoV-2 replication. Lysosome-associated pathways are required for virus entry and exit during replication. In this review, we summarize experimental evidence demonstrating a correlation between lysosomal function and SARS-CoV-2 replication, and the development of lysosomal perturbation drugs as anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
- Correspondence: (Y.L.); (D.S.)
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130022, China;
| | - Zhenzhen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Yuzhu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
| | - Deguang Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130022, China; (W.H.); (Z.W.); (Y.C.); (F.G.)
- Correspondence: (Y.L.); (D.S.)
| |
Collapse
|