151
|
Li G, Wang S, Xiong Y, Gu H, Jiang Y, Yang X, Wang C, Wang C, Li Z, Zhao X. Higher fasting blood glucose was associated with worse in-hospital clinical outcomes in patients with primary intracerebral hemorrhage: From a large-scale nationwide longitudinal registry. CNS Neurosci Ther 2022; 28:2260-2267. [PMID: 36152306 PMCID: PMC9627374 DOI: 10.1111/cns.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Studies that investigated the relationship between fasting blood glucose (FBG) and intracerebral hemorrhage (ICH) outcomes were insufficient. AIM We aimed to investigate the association between FBG level and in-hospital clinical outcomes in patients with primary ICH. RESULTS A total of 34,507 patients were enrolled in the final study. Compared with the reference group, the ≥6.1 and <7 mmol/L group showed nonsignificant higher in-hospital mortality (adjusted odds ratio [OR] 1.20, 95% confidence interval [CI] 0.69-2.11, p = 0.52), and a significant higher proportion of intracranial hematoma evacuation (adjusted OR 1.56, 95% CI 1.26-1.92, p < 0.001). The ≥7 mmol/L group showed both significant higher in-hospital mortality (adjusted OR 2.08, 95% CI 1.42-3.04, p = 0.52) and a significant higher proportion of intracranial hematoma evacuation (adjusted OR 2.09, 95% CI 1.78-2.47, p < 0.001). CONCLUSION Higher FBG level was correlated with both higher mortality and proportion of evacuation of intracranial hematoma.
Collapse
Affiliation(s)
- Guangshuo Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shang Wang
- Neurocardiology Center, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yunyun Xiong
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Chinese Institute for Brain ResearchBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingyu Jiang
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xin Yang
- China National Clinical Research Center for Neurological DiseasesBeijingChina,National Center for Healthcare Quality Management in Neurological DiseasesBeijingChina
| | - Chunjuan Wang
- China National Clinical Research Center for Neurological DiseasesBeijingChina,National Center for Healthcare Quality Management in Neurological DiseasesBeijingChina
| | - Chuanying Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Chinese Institute for Brain ResearchBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
152
|
The Role of Nondiabetic Hyperglycemia in Critically Ill Patients with Acute Ischemic Stroke. J Clin Med 2022; 11:jcm11175116. [PMID: 36079047 PMCID: PMC9456679 DOI: 10.3390/jcm11175116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we aim to elucidate the association between nondiabetic hyperglycemia and the short-term prognosis of critically ill patients with acute ischemic stroke. We extracted data using the Medical Information Mart for Intensive Care IV from 2008 to 2019. The primary outcomes were set as intensive care units (ICU) and in-hospital mortality. We developed a Cox proportional hazards model to determine the nonlinear association between serum glucose levels and primary outcomes. Of the 1086 patients included, 236 patients had hyperglycemia. Patients with hyperglycemia were associated with higher ages, female gender, higher Charlson Comorbidity Index scores, and higher Acute Physiology Score III scores. After propensity score matching, 222 pairs remained. The hyperglycemia group had a significantly higher ICU mortality (17.6% vs. 10.8%; p = 0.041). Meanwhile, no significant differences in ICU length of stay (5.2 vs. 5.2; p = 0.910), in-hospital mortality (26.6% vs. 18.9%, p = 0.054), and hospital length of stay (10.0 vs. 9.1; p = 0.404) were observed between the two groups. The Kaplan–Meier curves for ICU and in-hospital survival before matching suggested significant differences; however, after matching, they failed to prove any disparity. Non-diabetic patients with acute ischemic stroke have poor clinical characteristic while encountering hyperglycemic events; therefore, careful monitoring in the acute phase is still required.
Collapse
|
153
|
Zhang D, Li T, Wang A, Feng L, Lai X, Cao K, Zhou L, Yang B, Cui F, Li Q, Dou J, Qi B, Zhang C, Gao Y. Efficacy and safety of LongShengZhi capsule on functional recovery after acute ischemic stroke (LONGAN): Protocol and statistical analysis plan for a randomized, double-blind, placebo-controlled trial. Front Pharmacol 2022; 13:916421. [PMID: 36091794 PMCID: PMC9448855 DOI: 10.3389/fphar.2022.916421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Due to limited time windows and technical requirements, only a small percentage of patients can receive reperfusion therapy for acute ischemic stroke (AIS). Previous studies have shown that LongShengZhi (LSZ) capsule can improve neurological outcomes in patients after AIS, yet those results have not been finally verified through rigorous randomized controlled trials. Thus, this trial was designed to further clarify the efficacy and safety of LSZ capsule for patients with AIS. Methods: LSZ capsule on Functional Recovery after Acute Ischemic Stroke (LONGAN) trial is a prospective, multicenter, randomized, placebo-controlled, double-blind, parallel-group, superiority trial that enrolls patients from stroke and rehabilitation units in China. We will enroll 1,376 patients aged 18 years or older with AIS within 7 days of symptom onset and a National Institute of Health Stroke Scale (NIHSS) score of 4-15. Eligible patients will be randomized to receive either 2 g LSZ capsules three times a day or placebo LSZ capsules for 90 days. The primary outcome is the proportion of patients with favorable outcomes, as measured by the modified Rankin Scale (mRS) 90 days after randomization. The main safety outcome is the proportion of severe adverse events. Conclusion: This study will be the first randomized, double-blind trial to evaluate the efficacy and safety of LSZ capsule in patients with AIS. In order to improve the transparency and reproducibility of the trial, the data will be analyzed in accordance with this pre-specified plan for statistical analysis to reduce bias due to selective analysis and reporting. This trial aims to provide high-quality evidence for the efficacy and safety of LSZ capsule for AIS.
Collapse
Affiliation(s)
- Dandan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luda Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxing Lai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kegang Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baolin Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangyuan Cui
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingbin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinjuan Dou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoyun Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
154
|
He Q, Guo H, Bi R, Chen S, Shen J, Long C, Li M, Xia Y, Zhang L, Sun Z, Chen X, Wang Z, Gong D, Xu J, Zhu D, Wan Y, Hu B. Prediction of Neurological Deterioration After Intracerebral Hemorrhage: The SIGNALS Score. J Am Heart Assoc 2022; 11:e026379. [PMID: 35916347 PMCID: PMC9375508 DOI: 10.1161/jaha.122.026379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Intracerebral hemorrhage is the most disabling and lethal form of stroke. We aimed to develop a novel clinical score for neurological deterioration during hospitalization after intracerebral hemorrhage. Methods and Results We analyzed data from the CHERRY (Chinese Cerebral Hemorrhage: Mechanism and Intervention) study. Two-thirds of eligible patients were randomly allocated into the training cohort (n=1027) and one-third into the validation cohort (n=515). Multivariable logistic regression was used to identify factors associated with neurological deterioration (an increase in National Institutes of Health Stroke Scale of ≥4 or death) within 15 days after symptom onset. A prediction score was developed based on regression coefficients derived from the logistic model. The site, size, gender, National Institutes of Health Stroke Scale, age, leukocyte, sugar (SIGNALS) score was developed as a sum of individual points (0-8) based on site (1 point for infratentorial location), size (3 points for >20 mL of supratentorial hematoma volume or 2 points for >10 mL of infratentorial hematoma volume), sex (1 point for male sex), National Institutes of Health Stroke Scale score (1 point for >10), age (1 point for ≥70 years), white blood cell (1 point for>9.0×109/L), and fasting blood glucose (1 point>7.0 mmol/L). The proportion of patients who suffered from neurological deterioration increased with higher SIGNALS score, showing good discrimination and good calibration in the training cohort (C statistic, 0.821; Hosmer-Lemeshow test, P=0.687) and in the validation cohort (C statistic, 0.848; Hosmer-Lemeshow test, P=0.592), respectively. Conclusions The SIGNALS score reliably predicts the risk of in-hospital neurological deterioration of patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Shaoli Chen
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Jing Shen
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Chunnan Long
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Zhou Sun
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Xiaolu Chen
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Zhaowei Wang
- Department of Neurology Qianjiang Central Hospital Qianjiang Hubei Province China
| | - Daokai Gong
- Department of Neurology Jingzhou Central Hospital Jingzhou Hubei Province China
| | - Jingwen Xu
- Department of Neurology Honghu People's Hospital Honghu Hubei Province China
| | - Dondya Zhu
- School of Pharmacy Nanjing Medical University Nanjing Jiangsu Province China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| |
Collapse
|
155
|
Wipplinger C, Lener S, Orban C, Wipplinger TM, Abramovic A, Lang A, Hartmann S, Thomé C. Technical nuances and approach-related morbidity of anterolateral and posterolateral lumbar corpectomy approaches-a systematic review of the literature. Acta Neurochir (Wien) 2022; 164:2243-2256. [PMID: 35689694 PMCID: PMC9338118 DOI: 10.1007/s00701-022-05240-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
Purpose Approaches for lumbar corpectomies can be roughly categorized into anterolateral (AL) and posterolateral (PL) approaches. It remains controversial to date whether one approach is superior to the other, and no comparative studies exist for the two approaches for lumbar corpectomies. Methods A systematic review of the literature was performed through a MEDLINE/PubMed search. Studies and case reports describing technique plus outcomes and possible complications were included. Thereafter, estimated blood loss (EBL), length of operation (LOO), utilized implants, neurological outcomes, complication rates, and reoperation rates were analyzed. Results A total of 64 articles reporting on 702 patients including 513 AL and 189 PL corpectomies were included in this paper. All patients in the PL group were instrumented via the same approach used for corpectomy, while in the AL group the majority (68.3%) of authors described the use of an additional approach for instrumentation. The EBL was higher in the AL group (1393 ± 1341 ml vs. 982 ± 567 ml). The LOO also was higher in the AL group (317 ± 178 min vs. 258 ± 93 min). The complication rate (20.5% vs. 29.1%, p = 0.048) and the revision rate (3.1% vs. 9.5%, p = 0.004) were higher in the PL group. Neurological improvement rates were 43.8% (AL) vs. 39.2% (PL), and deterioration was only noted in the AL group (6.0%), while 50.2% (AL) and 60.8% (PL) showed no change from initial presentation to the last follow-up. Conclusion While neurological outcomes of both approaches are comparable, the results of the present review demonstrated lower complication and revision rates in anterolateral corpectomies. Nevertheless, individual patient characteristics must be considered in decision-making.
Collapse
Affiliation(s)
- Christoph Wipplinger
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Sara Lener
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Christoph Orban
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Tamara M Wipplinger
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Anto Abramovic
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anna Lang
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sebastian Hartmann
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
156
|
Tabery K, Doležalová L, Černý M, Janota J, Zoban P, Štechová K. Feasibility and Safety of Continuous Glucose Monitoring in Infants at Risk of Hypoglycemia in a Rooming-in Setting. Fetal Pediatr Pathol 2022; 41:627-633. [PMID: 34219588 DOI: 10.1080/15513815.2021.1945716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background:Screening of neonatal hypoglycemia uses currently intermittent blood sampling. Continuous glucose monitoring (CGM) allows for tighter glucose control and better comfort for newborns and parents. CGM has previously been used in intensive care setting or blinded to clinicians. Our pilot study uses CGM in real time in rooming-in setting. Methods: CGM was attached within first two hours of life. Low glucose readings were verified to prevent overtreatment. Pairs of sensor readings and corresponding blood glucose measurements were assessed retrospectively. Neurodevelopmental evaluation was performed at 24 months. Results: 44 infants were enrolled. Three had verified hypoglycemia found due to CGM. No patient was below 2 standard deviations in any components of Bayley scales. Median scores were: Cognitive 100, language 86, motor 94. Conclusion: Use of CGM in a rooming-in environment is safe from clinical and neurodevelopmental point of view. Randomized trials are needed to evaluate superiority in longer term outcomes.
Collapse
Affiliation(s)
- Kryštof Tabery
- Department of Neonatology, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislava Doležalová
- Department of Clinical Psychology, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miloš Černý
- Department of Neonatology, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Janota
- Department of Neonatology, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Zoban
- Department of Neonatology, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Štechová
- Department of Internal Medicine, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
157
|
Jia L, Zhang Y, Wang P, Wang X, Nie XQ, Yao W, Li T, Chen L, Chong W, Hai Y, You C, Chen Y, Fang F, Ji H, Li R. Association between hyperglycemia at admission and mortality in aneurysmal subarachnoid hemorrhage. J Clin Neurosci 2022; 103:172-179. [PMID: 35907352 DOI: 10.1016/j.jocn.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/07/2022] [Accepted: 07/09/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Elevated blood glucose is frequently detected early after aneurysmal subarachnoid hemorrhage (aSAH). We aimed to investigate whether hyperglycemia at admission is associated with mortality in patients with aSAH. METHODS In a multicenter observational study of patients with aSAH, we defined normal glycemia, mild hyperglycemia, moderate hyperglycemia, and severe hyperglycemia as blood glucose of 4.00-6.09 mmol/L, 6.10-7.80 mmol/L, 7.81-10.00 mmol/L, and > 10.00 mmol/L, respectively. We performed propensity score matching to obtain the adjusted odds ratios (OR) with 95 % confidence intervals (CI). RESULTS Of 6771 patients with aSAH, 511(7.5 %) had died in hospital, and hyperglycemia at admission was observed in 4804 (70.9 %). Propensity scores matching analyses indicated that compared with normal glycemia, the odds of in-hospital mortality were slightly lower in patients with mild hyperglycemia (OR 0.89, 95 % CI 0.56-1.40), significantly higher in patients with moderate hyperglycemia (OR 1.90, 95 % CI 1.20-3.01), and in patients with severe hyperglycemia (OR 3.45, 95 % CI 2.15-5.53; P trend < 0.001). Long-term survival was worse among patients with hyperglycemia and was proportional to its severity. Similar dose-response associations were evident for poor functional outcomes and major disability. Hyperglycemia was associated with an increased risk of hospital-acquired infections (OR 1.46, 95 % CI 1.29-1.66) and rebleeding (OR 1.58, 95 % CI 1.06-2.35). CONCLUSIONS Among aSAH patients, hyperglycemia at admission was independently associated with increased mortality. Both moderate hyperglycemia and severe hyperglycemia were associated with an increased risk of mortality, but these associations were not seen in mild hyperglycemia (blood glucose 6.10-7.80 mmol/L).
Collapse
Affiliation(s)
- Lu Jia
- Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Yu Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Peng Wang
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Qi Nie
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Wei Yao
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Tiangui Li
- Department of Neurosurgery, West China Longquan Hospital Sichuan University, Chengdu, Sichuan, China
| | - Lvlin Chen
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Weelic Chong
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yang Hai
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongzhong Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongming Ji
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| | - Rongshan Li
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
158
|
He Q, Guo H, Bi R, Chen S, Shen J, Long C, Li M, Xia Y, Zhang L, Sun Z, Chen X, Wang Z, Gong D, Xu J, Zhu D, Wan Y, Hu B. Prediction of Neurological Deterioration After Intracerebral Hemorrhage: The SIGNALS Score. J Am Heart Assoc 2022. [PMID: 35862193 DOI: 10.1161/jaha.121.026379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Intracerebral hemorrhage is the most disabling and lethal form of stroke. We aimed to develop a novel clinical score for neurological deterioration during hospitalization after intracerebral hemorrhage. Methods and Results We analyzed data from the CHERRY (Chinese Cerebral Hemorrhage: Mechanism and Intervention) study. Two-thirds of eligible patients were randomly allocated into the training cohort (n=1027) and one-third into the validation cohort (n=515). Multivariable logistic regression was used to identify factors associated with neurological deterioration (an increase in National Institutes of Health Stroke Scale of ≥4 or death) within 15 days after symptom onset. A prediction score was developed based on regression coefficients derived from the logistic model. The site, size, gender, National Institutes of Health Stroke Scale, age, leukocyte, sugar (SIGNALS) score was developed as a sum of individual points (0-8) based on site (1 point for infratentorial location), size (3 points for >20 mL of supratentorial hematoma volume or 2 points for >10 mL of infratentorial hematoma volume), sex (1 point for male sex), National Institutes of Health Stroke Scale score (1 point for >10), age (1 point for ≥70 years), white blood cell (1 point for>9.0×109/L), and fasting blood glucose (1 point>7.0 mmol/L). The proportion of patients who suffered from neurological deterioration increased with higher SIGNALS score, showing good discrimination and good calibration in the training cohort (C statistic, 0.821; Hosmer-Lemeshow test, P=0.687) and in the validation cohort (C statistic, 0.848; Hosmer-Lemeshow test, P=0.592), respectively. Conclusions The SIGNALS score reliably predicts the risk of in-hospital neurological deterioration of patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Shaoli Chen
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Jing Shen
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Chunnan Long
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Zhou Sun
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Xiaolu Chen
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Zhaowei Wang
- Department of Neurology Qianjiang Central Hospital Qianjiang Hubei Province China
| | - Daokai Gong
- Department of Neurology Jingzhou Central Hospital Jingzhou Hubei Province China
| | - Jingwen Xu
- Department of Neurology Honghu People's Hospital Honghu Hubei Province China
| | - Dondya Zhu
- School of Pharmacy Nanjing Medical University Nanjing Jiangsu Province China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei Province China
| |
Collapse
|
159
|
Xian M, Shen L, Zhan S, Chen S, Lin H, Cai J, Hu T, Wang S. Integrated 16S rRNA gene sequencing and LC/MS-based metabolomics ascertained synergistic influences of the combination of acupuncture and NaoMaiTong on ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115281. [PMID: 35405257 DOI: 10.1016/j.jep.2022.115281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acupuncture is an effective therapy for ischemic stroke, which has been widely used in China and gradually accepted in more countries and regions recently. In addition, Chinese medicine also plays an important role in stroke treatment, among which NaoMaiTong (NMT) is an example of an effective herbal formula for the treatment of stroke. A therapeutic strategy that combines acupuncture and medicine was widely used in stroke patients. However, the synergistic influences and mechanisms of combined acupuncture and medicine on ischemic stroke have not yet been entirely elucidated. AIM OF THIS STUDY The purpose of this study is to explore whether acupuncture and medicine combination treatments can produce synergism by using NMT, a clinically effective Chinese medicinal formula for the treatment of ischemic stroke for decades and has been demonstrated to be effective against ischemic brain injury, as a probe. Meanwhile, the potential mechanisms were investigated via cecal microbiome and plasma metabolomics to provide more strategies and basis for acupuncture-medicine combination for stroke. MATERIALS AND METHODS Adopted middle-cerebral artery occlusion/reperfusion (MCAO/R) rat models, the effect for the stroke of the combination treatment consisting of acupuncture and NMT was evaluated by detecting neurological issues, cerebral infarct dimensions, levels of inflammatory factors (IL-6, IL-1β, TNF-α) and oxidative stress factors (SOD, MDA) and brain-derived neurotrophic factor (BDNF). Subsequently,16S rRNA gene sequencing and LC/MS-based metabolomic analysis were utilized to explore the characteristics of cecal-contents microecology and plasma metabolic profile, respectively. Finally, the correlation between intestinal microecological characteristics and plasma metabolic characteristics was analyzed to explore the potential mechanism of the acupuncture-NMT combination. RESULTS The efficacy of acupuncture-NMT therapy was more effective than a single treatment on ischemic stroke, with more effectively reduced infarct sizes, improved neurobehavioral deficits, and alleviated oxidative stress and inflammatory responses. Besides, the combination therapy not only adjusted gut microbiota disturbances by enriching species diversity, reducing the abundance of pathogenic bacteria (such as Escherichia-Shaigella), as well as increasing the abundance of beneficial bacteria (such as Turicibacter, Bifidobacterium), but also improved metabolic disorders by reversing metabolite plasma levels to normality. The results of the correlation analysis demonstrated a significant association between intestinal microbiota and plasma metabolic profile, especially the strong correlation of Turicibacter and isoflavones phyto-estrogens metabolites. CONCLUSION The combination of acupuncture and NMT could produce synergism, suggesting acupuncture-medicine combination therapy might be more conducive to the recovery of ischemic stroke. And the potential mechanism was probably related to the mediation of intestinal microecology and plasma metabolism. Turicibacter and isoflavones phyto-estrogens metabolites might be the targets for acupuncture-NMT combination for stroke. Our current findings could provide a potential therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Shen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sikai Zhan
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shaoru Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tao Hu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
160
|
Zhu W, Chen L, Wu Z, Li W, Liu X, Wang Y, Guo M, Ito Y, Wang L, Zhang P, Wang H. Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain injury by microenvironment regulation. Acta Biomater 2022; 150:67-82. [PMID: 35842032 DOI: 10.1016/j.actbio.2022.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/03/2023]
Abstract
Stem cell treatment is vital for recovery from traumatic brain injury (TBI). However, severe TBI usually leads to excessive inflammation and neuroinhibitory factors in the injured brain, resulting in poor neural cell survival and uncontrolled formation of glial scars. In this study, a bioorthogonal microenvironment was constructed on biodegradable poly(lactide-co-glycolide) (PLGA) microcarriers through immobilization of mussel-inspired bioorthogonal 3,4-dihydroxyphenylalanine-containing recombinant nerve growth factor (DOPA-NGF) and human umbilical cord mesenchymal stem cells (hUMSCs) for minimally invasive therapy of TBI. Cell culture and RNA-seq analysis revealed enhanced extracellular matrix (ECM) secretion and viability of hUMSCs on PLGA microcarriers compared to 2D culture. Immobilized DOPA-NGF further promoted adhesion, proliferation, and gene expression in RSC96 neurotrophic cells and hUMSCs. Specifically, the neurotrophin receptor of NT-3 (NTRK3) in hUMSCs was activated by DOPA-NGF, leading to MYC transcription and paracrine enhancement to build an adjustable biomimetic microenvironment. After transplantation of microunits in animal models, the motor and learning-memory ability of TBI mice were improved through rollbacks of overactivated inflammatory reaction regulation, neuronal death, and glial scar formation after injury. This was attributed to the paracrine enhancement of hUMSCs activated by the DOPA-NGF. Our study provides a neural regenerative microenvironment-based therapeutic strategy to advance the effects of transplanted hUMSCs in cell-based regenerative medicine for TBI therapy. STATEMENT OF SIGNIFICANCE: Extensive studies have demonstrated the importance of the microenvironment for posttraumatic brain injury recovery. However, an efficient method that can mimic the neural regenerative microenvironment to strengthen stem cell therapy and brain injury recovery is still absent. In this study, the minimally invasive transplantation of DOPA-NGF immobilized biodegradable microcarriers with mesenchymal stem cells was found to be an effective method for regeneration of injured brain. Moreover, transcriptome analysis revealed that neurotrophin receptor of NT-3 (NTRK3) was activated by DOPA-NGF for MYC transcription and paracrine enhancement to build a kind of adjustable biomimetic microenvironment for brain injury therapy. This study provides a neural regenerative microenvironment-based therapeutic strategy to advance the transplanted hUMSCs in cell-based regenerative medicine for neural recovery.
Collapse
Affiliation(s)
- Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Li Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, 130024, China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenzhong Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama, 351-0198, Japan
| | - Liqiang Wang
- Department of Ophthalmology, Third Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
161
|
Zhao C, Jiang Z, Tian L, Tang L, Zhou A, Dong T. Bioinformatics-Based Approach for Exploring the Immune Cell Infiltration Patterns in Alzheimer's Disease and Determining the Intervention Mechanism of Liuwei Dihuang Pill. Dose Response 2022; 20:15593258221115563. [PMID: 35898725 PMCID: PMC9310246 DOI: 10.1177/15593258221115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Traditional Chinese medicine (TCM) compounds have recently garnered attention for the regulation of immune cell infiltration and the prevention and treatment of Alzheimer's disease (AD). The Liuwei Dihuang Pill (LDP) has potential in this regard; however, its specific molecular mechanism currently remains unclear. Therefore, we adopted a bioinformatics approach to investigate the infiltration patterns of different types of immune cells in AD and explored the molecular mechanism of LDP intervention, with the aim of providing a new basis for improving the clinical immunotherapy of AD patients. We found that M1 macrophages showed significantly different degrees of infiltration between the hippocampal tissue samples of AD patients and healthy individuals. Four immune intersection targets of LDP in the treatment of AD were identified; they were enriched in 206 biological functions and 30 signaling pathways. Quercetin had the best docking effect with the core immune target PRKCB. Our findings suggest that infiltrated immune cells may influence the course of AD and that LDP can regulate immune cell infiltration through multi-component, multi-target, and multi-pathway approaches, providing a new research direction regarding AD immunotherapy.
Collapse
Affiliation(s)
- Chenling Zhao
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zhangsheng Jiang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Liwei Tian
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
162
|
Li S, Wang Y, Wang W, Zhang Q, Wang A, Zhao X. Stress hyperglycemia is predictive of clinical outcomes in patients with spontaneous intracerebral hemorrhage. BMC Neurol 2022; 22:236. [PMID: 35761206 PMCID: PMC9235136 DOI: 10.1186/s12883-022-02760-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Background Stress hyperglycemia is a common condition in patients suffering from critical illness such as spontaneous intracerebral hemorrhage (ICH). Our study aimed to use glucose-to-glycated hemoglobin (HbA1c) ratio to investigate the impact of stress hyperglycemia on clinical outcomes in patients with ICH. Methods A sample of eligible 586 patients with spontaneous intracerebral hemorrhage from a multicenter, hospital-based cohort between 2014 and 2016 were recruited in our study. Stress hyperglycemia was evaluated by the index of the glucose-to-HbA1c ratio that was calculated by fasting blood glucose (mmol/L) divided by HbA1c (%). Patients were divided into two groups based on the median of the glucose-to-HbA1c ratio. The main outcomes were poor functional outcomes (modified Rankin Scale score of 3–6) at discharge and 90 days. Multivariable logistic regression and stratified analyses were performed to explore the association of stress hyperglycemia with poor prognosis of ICH. Results On multivariable analysis, higher glucose-to-HbA1c ratio (≥1.02) was independently correlated with poor functional outcomes at discharge (adjusted OR = 3.52, 95%CI: 1.98–6.23) and 90 days (adjusted OR = 2.27, 95%CI: 1.38–3.73) after adjusting for potential confounding factors. The correlation between glucose-to-HbA1c ratio and worse functional outcomes still retained in patients with or without diabetes mellitus. Conclusions Stress hyperglycemia, calculated by glucose-to-HbA1c ratio, was independently correlated with worse functional outcomes at discharge and 90 days in patients with ICH. Moreover, glucose-to-HbA1c ratio, might not only be used as a simple and readily available index to predict clinical outcomes of ICH but also provide meaningful insight into future analysis to investigate the optimal range of glucose levels among ICH patients and develop tailored glucose-lowering strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02760-9.
Collapse
Affiliation(s)
- Sijia Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wenjuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Qian Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
163
|
Murtas G, Pollegioni L, Molla G, Sacchi S. Biochemical Properties and Physiological Functions of pLG72: Twenty Years of Investigations. Biomolecules 2022; 12:biom12060858. [PMID: 35740983 PMCID: PMC9220908 DOI: 10.3390/biom12060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
In 2002, the novel human gene G72 was associated with schizophrenia susceptibility. This gene encodes a small protein of 153 amino acids, named pLG72, which represents a rare case of primate-specific protein. In particular, the rs2391191 single nucleotide polymorphism (resulting in in the R30K substitution) was robustly associated to schizophrenia and bipolar disorder. In this review, we aim to summarize the results of 20 years of biochemical investigations on pLG72. The main known role of pLG72 is related to its ability to bind and inactivate the flavoenzyme d-amino acid oxidase, i.e., the enzyme that controls the catabolism of d-serine, the main NMDA receptor coagonist in the brain. pLG72 was proposed to target the cytosolic form of d-amino acid oxidase for degradation, preserving d-serine and protecting the cell from oxidative stress generated by hydrogen peroxide produced by the flavoenzyme reaction. Anyway, pLG72 seems to play additional roles, such as affecting mitochondrial functions. The level of pLG72 in the human body is still a controversial issue because of its low expression and challenging detection. Anyway, the intriguing hypothesis that pLG72 level in blood could represent a suitable marker of Alzheimer’s disease progression (a suggestion not sufficiently established yet) merits further investigations.
Collapse
|
164
|
Discovery of Traditional Chinese Medicine Prescription Patterns Containing Herbal Dosage Based on Multilevel Top-K Weighted Association Rules. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5466011. [PMID: 35665295 PMCID: PMC9159864 DOI: 10.1155/2022/5466011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Abstract
In traditional Chinese medicine (TCM), drug dosage is an important part of the prescription. Different doses of the same drug can have varying curative effects. Doctors must determine the drug combination and dosage in clinical practice based on the patient's symptoms and treatment efficacy. Existing studies on the prescription pattern of TCM on the treatment of osteoporosis only analyze the frequency that a certain drug combination is used, without considering the treatment efficacy or drug dosage. As a result, we searched for and recorded existing literature on randomized controlled trials of TCM treatment of osteoporosis, calculated weights based on the treatment efficacy of the prescriptions used in the randomized controlled trials, and created the TCM weighted transaction database. Then, a new multilevel Top-K weighted association rule algorithm is proposed to obtain effective prescription patterns that include drug dosages, which can assist doctors in clinical practice in choosing a combination of drugs to form a prescription with good curative effects.
Collapse
|
165
|
Rajahthurai SD, Farrukh MJ, Makmor-Bakry M, Tan HJ, Fatokun O, Mohd Saffian S, Ramatillah DL. Use of Complementary and Alternative Medicine and Adherence to Medication Therapy Among Stroke Patients: A Meta-analysis and Systematic Review. Front Pharmacol 2022; 13:870641. [PMID: 35721127 PMCID: PMC9204087 DOI: 10.3389/fphar.2022.870641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To identify the use patterns of complementary and alternative medicine (CAM) and its impact on medication adherence among patients with stroke. Method: A systematic search through Science Direct, Google Scholar, and PubMed was performed to identify potential studies up to June 2021.The primary outcome was CAM use, and the secondary outcome was medication adherence among patients with stroke. Articles included in the review met the following criteria: 1) patients with stroke ≥18 years old on prescribed medications, and 2) medication adherence reported status. Meta-analyses were conducted to estimate the pooled prevalence of complementary and alternative medicine and adherence in stroke patients using a random-effects model. Results: A total of 1,330 studies were screened, of which 22 were included in the final analysis. The type of studies included were cross-sectional surveys, cohort studies, retrospective studies and prospective survey. The pooled prevalence of CAM usage was at 38% (29-48% CI) and medication non-adherence among stroke patients was at 29% (20-48% CI). The most common reason for inadequate stroke therapy and higher dependence on CAM was the patients' lack of knowledge and the regimen complexity of the medication. Other factors for medication non-adherence were forgetfulness, side effects, cost, and lack of doctor-patient communication. Conclusion: A low prevalence of CAM usage and non-adherence to medications was observed among patients with stroke. Studies investigating the association between CAM usage and medication adherence among patients with stroke are scarce and future researches are needed to explore the influence of CAM use on stroke medication adherence.
Collapse
Affiliation(s)
| | | | - Mohd Makmor-Bakry
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Omotayo Fatokun
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
166
|
Abstract
Hypoglycemia is a common condition in the newborn period. Several intrinsic and extrinsic factors play a role in the degree/duration of hypoglycemia. Multiple thresholds have been proposed as a potential point whereby hypoglycemia may have short and long-term adverse effects. Rather than a "numerical" threshold, treatment approaches should be individualized and tailored to the etiology, symptoms, and neonatal underlying conditions. Hyperglycemia in the newborn period is commonly seen in preterm infants and can exert gluco-toxic effects in organs at critical periods of development. Considering the peripheral insulin resistance (IR) of prematurity and contributing factors is key to achieving euglycemia.
Collapse
Affiliation(s)
- Cynthia L Blanco
- Division of Neonatology, Department of Pediatrics, UT Health San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA; Neonatology Services, University Health System, 4502 Medical Dr, San Antonio, TX, 78229, USA.
| | - Jennifer Kim
- Division of Neonatology, Department of Pediatrics, UT Health San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA
| |
Collapse
|
167
|
Tapanes SA, Arizanovska D, Díaz MM, Folorunso OO, Harvey T, Brown SE, Radzishevsky I, Close LN, Jagid JR, Graciolli Cordeiro J, Wolosker H, Balu DT, Liebl DJ. Inhibition of glial D-serine release rescues synaptic damage after brain injury. Glia 2022; 70:1133-1152. [PMID: 35195906 PMCID: PMC9305835 DOI: 10.1002/glia.24161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Synaptic damage is one of the most prevalent pathophysiological responses to traumatic CNS injury and underlies much of the associated cognitive dysfunction; however, it is poorly understood. The D-amino acid, D-serine, serves as the primary co-agonist at synaptic NMDA receptors (NDMARs) and is a critical mediator of NMDAR-dependent transmission and synaptic plasticity. In physiological conditions, D-serine is produced and released by neurons from the enzymatic conversion of L-serine by serine racemase (SRR). However, under inflammatory conditions, glial cells become a major source of D-serine. Here, we report that D-serine synthesized by reactive glia plays a critical role in synaptic damage after traumatic brain injury (TBI) and identify the therapeutic potential of inhibiting glial D-serine release though the transporter Slc1a4 (ASCT1). Furthermore, using cell-specific genetic strategies and pharmacology, we demonstrate that TBI-induced synaptic damage and memory impairment requires D-serine synthesis and release from both reactive astrocytes and microglia. Analysis of the murine cortex and acutely resected human TBI brain also show increased SRR and Slc1a4 levels. Together, these findings support a novel role for glial D-serine in acute pathological dysfunction following brain trauma, whereby these reactive cells provide the excess co-agonist levels necessary to initiate NMDAR-mediated synaptic damage.
Collapse
Affiliation(s)
- Stephen A. Tapanes
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Madelen M. Díaz
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Oluwarotimi O. Folorunso
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Theresa Harvey
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Stephanie E. Brown
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Inna Radzishevsky
- Department of Biochemistry, Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Liesl N. Close
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan R. Jagid
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Joacir Graciolli Cordeiro
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Darrick T. Balu
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Daniel J. Liebl
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
168
|
Sinclair LI, Ball HA, Bauermeister S, Gallacher JEJ, Bolea-Alamanac BM. Recurrent depression has persistent effects on cognition but this does not appear to be mediated by neuroinflammation. J Affect Disord 2022; 306:232-239. [PMID: 35337923 DOI: 10.1016/j.jad.2022.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Later-life depression appears to be different to depression in younger adults. The underlying pathology may also differ. Depression is linked to dementia but whether it is a risk factor or an early sign of a developing dementia remains unclear. Neuroinflammation is increasingly recognised in both depression and Alzheimer's Disease. AIMS To investigate the link between depression, inflammation and dementia. We hypothesised that recurrent depression has adverse effects on performance in cognitive tests in middle to older age and that this effect is modified by anti-inflammatory medication. METHODS We identified UK based cohort studies which included individuals aged >50, had medical information, results from detailed cognitive testing and had used reliable measures to assess depression. Individuals with recurrent depression had ≥ 2 episodes of depression. Controls had no history of depression. The presence/absence of inflammatory illness was assessed using a standardised list of inflammatory conditions. Individuals with dementia, chronic neurological and psychotic conditions were excluded. Logistic and linear regression were used to examine the effect of depression on cognitive test performance and the mediating effect of chronic inflammation. RESULTS Unexpectedly in both studies there was evidence that those with recurrent depression performed better in some cognitive tasks (e.g Mill Hill vocabulary) but worse in others (e.g. reaction time). In UK Biobank there was no evidence that anti-inflammatories moderated this effect. LIMITATIONS Cross-sectional assessment of cognition. CONCLUSIONS Although previous recurrent depression has small effects on cognitive test performance this does not appear to be mediated by chronic inflammatory disease.
Collapse
Affiliation(s)
- Lindsey I Sinclair
- Department of Clinical Neuroscience, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Harriet A Ball
- Department of Clinical Neuroscience, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
169
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
170
|
Kim SY, Lim W. Population and individual firing behaviors in sparsely synchronized rhythms in the hippocampal dentate gyrus. Cogn Neurodyn 2022; 16:643-665. [PMID: 35603046 PMCID: PMC9120338 DOI: 10.1007/s11571-021-09728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
We investigate population and individual firing behaviors in sparsely synchronized rhythms (SSRs) in a spiking neural network of the hippocampal dentate gyrus (DG). The main encoding granule cells (GCs) are grouped into lamellar clusters. In each GC cluster, there is one inhibitory (I) basket cell (BC) along with excitatory (E) GCs, and they form the E-I loop. Winner-take-all competition, leading to sparse activation of the GCs, occurs in each GC cluster. Such sparsity has been thought to enhance pattern separation performed in the DG. During the winner-take-all competition, SSRs are found to appear in each population of the GCs and the BCs through interaction of excitation of the GCs with inhibition of the BCs. Sparsely synchronized spiking stripes appear successively with the population frequencyf p ( = 13.1 Hz) in the raster plots of spikes. We also note that excitatory hilar mossy cells (MCs) control the firing activity of the GC-BC loop by providing excitation to both the GCs and the BCs. SSR also appears in the population of MCs via interaction with the GCs (i.e., GC-MC loop). Population behaviors in the SSRs are quantitatively characterized in terms of the synchronization measures. In addition, we investigate individual firing activity of GCs, BCs, and MCs in the SSRs. Individual GCs exhibit random spike skipping, leading to a multi-peaked inter-spike-interval histogram, which is well characterized in terms of the random phase-locking degree. In this case, population-averaged mean-firing-rate (MFR) < f i ( GC ) > is less than the population frequency f p . On the other hand, both BCs and MCs show "intrastripe" burstings within stripes, together with random spike skipping. Thus, the population-averaged MFR ⟨ f i ( X ) ⟩ ( X = MC and BC) is larger than f p , in contrast to the case of the GCs. MC loss may occur during epileptogenesis. With decreasing the fraction of the MCs, changes in the population and individual firings in the SSRs are also studied. Finally, quantitative association between the population/individual firing behaviors in the SSRs and the winner-take-all competition is discussed.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
171
|
Hu C, Chen X, Wang M, Zhang L, Gao D, Zhang L. Analgecine protects against cerebral ischemia-reperfusion through apoptosis inhibition and anti-neuroinflammation in rats. Neuropeptides 2022; 93:102230. [PMID: 35378359 DOI: 10.1016/j.npep.2022.102230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
Stroke influence the quality of life of patients and leave big public health issues as acute cerebrovascular disease all over the world. Analgecine (AGC) relieves pain and accelerates repair of nerve injury. This current study aims to observe the pharmacological effects and related mechanisms of AGC in cerebral ischemic stroke among middle cerebral artery ischemia-reperfusion (MCAO) rats. After seven days of AGC administration, motor function was enhanced as evidenced by the prehensile traction test. Morphological ameliorations were observed by immunohistochemistry analysis. The protein expression levels of HSP70, Bcl-2, Bax, TRAF-6, MyD88, BDNF, NGF, pCREB, CREB, pTrkB, TrkB, pAKT and AKT were estimated by western blot. Meanwhile, AGC alleviated MCAO-induced inflammation chiefly by decreasing inflammatory cytokines in rat brain tissues. These results above suggested that MCAO-caused brain infarction was obviously alleviated by AGC. The immunohistochemistry data showed that AGC reduced neuronal injury and apoptosis, and inhibited microglia and astrocytes activation. The protein results suggested the expression of apoptosis-relevant proteins decreased among AGC treated groups and the neurotrophin related proteins were obviously enhanced by CREB/BDNF/TrkB/AKT and HSP70/Bcl-2/Bax pathways. Collectively, the results demonstrated that AGC primarily promoted neuro-nutrition, reduced the injury of nerve apoptosis and ameliorated neuroinflammation. In summary, AGC played a neuroprotective role, which had provided reliable evidence for AGC to be a potential drug in treating stroke.
Collapse
Affiliation(s)
- Chaoying Hu
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiaoping Chen
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Mingyang Wang
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Dan Gao
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
172
|
Ma W, Zhu K, Yin L, Yang J, Zhang J, Wu H, Liu K, Li C, Liu W, Guo J, Li L. Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke. Bioengineered 2022; 13:14799-14814. [PMID: 36420646 PMCID: PMC9704383 DOI: 10.1080/21655979.2022.2108266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stroke is a main cause of disability and death among adults in China, and acute ischemic stroke accounts for 80% of cases. The key to ischemic stroke treatment is to recanalize the blocked blood vessels. However, more than 90% of patients cannot receive effective treatment within an appropriate time, and delayed recanalization of blood vessels causes reperfusion injury. Recent research has revealed that ischemic postconditioning has a neuroprotective effect on the brain, but the mechanism has not been fully clarified. Long non-coding RNAs (lncRNAs) have previously been associated with ischemic reperfusion injury in ischemic stroke. LncRNAs regulate important cellular and molecular events through a variety of mechanisms, but a comprehensive analysis of potential lncRNAs involved in the brain protection produced by ischemic postconditioning has not been conducted. In this review, we summarize the common mechanisms of cerebral injury in ischemic stroke and the effect of ischemic postconditioning, and we describe the potential mechanisms of some lncRNAs associated with ischemic stroke.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Luwei Yin
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinfen Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chunyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China,Jianhui Guo Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650034, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China,CONTACT Liyan Li Institute of Neurosicence, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
173
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
174
|
Park S, Choi ES, Jung HW, Lee JY, Park JW, Bang JS, Jeon YT. Preoperative Serum Alkaline Phosphatase and Neurological Outcome of Cerebrovascular Surgery. J Clin Med 2022; 11:2981. [PMID: 35683370 PMCID: PMC9181655 DOI: 10.3390/jcm11112981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
This study evaluated the relationship between the preoperative alkaline phosphatase (ALP) level and major postoperative neurological complications in patients undergoing cerebral bypass surgery. This was a retrospective analysis of a prospective database of all patients undergoing cerebral bypass surgery after a diagnosis of cerebrovascular stenosis or occlusion between May 2003 and August 2017. The patients were divided into tertiles based on serum alkaline phosphatase (ALP) levels (low: <63, intermediate: 63~79, and high: ALP > 79 IU/mL). The incidence of neurological events according to ALP level was analyzed. The study analyzed 211 cases. The incidence of acute infarction was highest in the third serum ALP tertile (5.7% vs. 2.9% vs. 16.9% in the first, second, and third tertile, respectively, p = 0.007). Logistic regression analysis showed that the third tertile of serum ALP was an independent predictor of acute cerebral infarction (odds ratio 3.346, 95% confidence interval 1.026−10.984, p = 0.045). On Kaplan−Meier time-to-event curves, the incidence of acute infarction increased significantly with ALP (log rank = 0.048). Preoperative serum ALP level can be used as a biomarker to predict acute cerebral infarction in patients undergoing cerebral bypass surgery for vascular stenosis or occlusion.
Collapse
Affiliation(s)
- Seongjoo Park
- Department of Anaesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea;
| | - Eun-Su Choi
- Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (E.-S.C.); (H.-W.J.)
| | - Hee-Won Jung
- Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; (E.-S.C.); (H.-W.J.)
| | - Ji-Youn Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.-Y.L.); (J.-W.P.)
| | - Jin-Woo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.-Y.L.); (J.-W.P.)
| | - Jae-Seung Bang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Yeong-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (J.-Y.L.); (J.-W.P.)
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
175
|
Pohanka M. Diagnoses Based on C-Reactive Protein Point-of-Care Tests. BIOSENSORS 2022; 12:bios12050344. [PMID: 35624645 PMCID: PMC9138282 DOI: 10.3390/bios12050344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 05/09/2023]
Abstract
C-reactive protein (CRP) is an important part of the immune system's reaction to various pathological impulses such as bacterial infections, systemic inflammation, and internal organ failures. An increased CRP level serves to diagnose the mentioned pathological states. Both standard laboratory methods and simple point-of-care devices such as lateral flow tests and immunoturbidimetric assays serve for the instrumental diagnoses based on CRP. The current method for CRP has many flaws and limitations in its use. Biosensor and bioassay analytical devices are presently researched by many teams to provide more sensitive and better-suited tools for point-of-care tests of CRP in biological samples when compared to the standard methods. This review article is focused on mapping the diagnostical relevance of CRP, the applicability of the current analytical methods, and the recent innovations in the measurement of CRP level.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
176
|
Wang C, Chang YX, Chen X, Bai L, Wang H, Pan YC, Zhang C, Guo DS, Xue X. A Calixarene Assembly Strategy of Combined Anti-Neuroinflammation and Drug Delivery Functions for Traumatic Brain Injury Therapy. Molecules 2022; 27:2967. [PMID: 35566317 PMCID: PMC9101726 DOI: 10.3390/molecules27092967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Excessive inflammatory reaction aggravates brain injury and hinders the recovery of neural function in nervous system diseases. Microglia, as the major players of neuroinflammation, control the progress of the disease. There is an urgent need for effective non-invasive therapy to treat neuroinflammation mediated by microglia. However, the lack of specificity of anti-inflammatory agents and insufficient drug dose penetrating into the brain lesion area are the main problems. Here, we evaluated a series of calixarenes and found that among them the self-assembling architecture of amphiphilic sulfonatocalix[8]arene (SC8A12C) had the most potent ability to suppress neuroinflammation in vitro and in vivo. Moreover, SC8A12C assemblies were internalized into microglia through macropinocytosis. In addition, after applying the SC8A12C assemblies to the exposed brain tissue, we observed that SC8A12C assemblies penetrated into the brain parenchyma and eliminated the inflammatory factor storm, thereby restoring neurobiological functions in a mouse model of traumatic brain injury.
Collapse
Affiliation(s)
- Chunxiao Wang
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Yu-Xuan Chang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Poad, Tianjin 300071, China; (Y.-X.C.); (Y.-C.P.)
| | - Xi Chen
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Lihuan Bai
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Heping Wang
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Yu-Chen Pan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Poad, Tianjin 300071, China; (Y.-X.C.); (Y.-C.P.)
| | - Chunqiu Zhang
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Dong-Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Poad, Tianjin 300071, China; (Y.-X.C.); (Y.-C.P.)
| | - Xue Xue
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| |
Collapse
|
177
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
178
|
Xiao Z, Shen D, Lan T, Wei C, Wu W, Sun Q, Luo Z, Chen W, Zhang Y, Hu L, Zhang C, Wang Y, Lu Y, Wang P, Yang F, Li Q. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol 2022; 50:102256. [PMID: 35131600 PMCID: PMC8829351 DOI: 10.1016/j.redox.2022.102256] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic hyperglycemia aggravates the prognosis of intracerebral hemorrhagic stroke (ICH) in the clinic. In addition to hematoma expansion and increased inflammation, how diabetic hyperglycemia affects the outcomes of ICH is still unclear. We found that streptozotocin-induced diabetic hyperglycemia not only increased neutrophil infiltration, but also changed the gene expression profile of neutrophils, including lactoferrin (Ltf) encoding gene Ltf. Peroxisome proliferator-activated receptor γ (PPARγ) transcribed Ltf and the lack of neutrophilic Ltf transcription and secretion exacerbated neuronal ferroptosis by accumulating intraneuronal iron. Furthermore, the administration of recombinant Ltf protected against neuronal ferroptosis and improved neurobehavior in hyperglycemic ICH mice, and vice versa. These results indicate that supplementing Ltf or inhibiting neuronal ferroptosis are promising potential strategies to improve the acute outcomes of diabetic ICH in the clinic. Neutrophil infiltration and ICH prognosis are aggravated in hyperglycemic mice. Hyperglycemia impairs PPAR-γ activity and decreases Ltf expression in neutrophils. The lack of neutrophilic Ltf fails to decrease intraneuronal iron and ferroptosis. rLtf eases neuronal ferroptosis and neurologic deficits in hyperglycemic ICH mice.
Collapse
Affiliation(s)
- Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
179
|
Lu CY, Lee SR, Chang CJ, Chen PC. Adjuvant therapy with traditional Chinese medicine and long-term mortality in patients with stroke: A nationwide population-based cohort study in Taiwan. Maturitas 2022; 158:47-54. [DOI: 10.1016/j.maturitas.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
|
180
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
181
|
Cordeiro JL, Neves JD, Nicola F, Vizuete AF, Sanches EF, Gonçalves CA, Netto CA. Arundic Acid (ONO-2506) Attenuates Neuroinflammation and Prevents Motor Impairment in Rats with Intracerebral Hemorrhage. Cell Mol Neurobiol 2022; 42:739-751. [PMID: 32918255 PMCID: PMC11441233 DOI: 10.1007/s10571-020-00964-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype caused by the rupture of blood vessels within the brain. Increased levels of S100B protein may contribute to neuroinflammation after ICH through activation of astrocytes and resident microglia, with the consequent production of proinflammatory cytokines and reactive oxygen species (ROS). Inhibition of astrocytic synthesis of S100B by arundic acid (AA) has shown beneficial effects in experimental central nervous system disorders. In present study, we administered AA in a collagenase-induced ICH rodent model in order to evaluate its effects on neurological deficits, S100B levels, astrocytic activation, inflammatory, and oxidative parameters. Rats underwent stereotactic surgery for injection of collagenase in the left striatum and AA (2 μg/μl; weight × 0.005) or vehicle in the left lateral ventricle. Neurological deficits were evaluated by the Ladder rung walking and Grip strength tests. Striatal S100B, astrogliosis, and microglial activation were assessed by immunofluorescence analysis. Striatal levels of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were measured by ELISA, and the ROS production was analyzed by dichlorofluorescein (DCF) oxidation. AA treatment prevented motor dysfunction, reduced S100B levels, astrogliosis, and microglial activation in the damaged striatum, thus decreasing the release of proinflammatory cytokines IL-1β and TNF-α, as well as ROS production. Taken together, present results suggest that AA could be a pharmacological tool to prevent the harmful effects of increased S100B, attenuating neuroinflammation and secondary brain damage after ICH.
Collapse
Affiliation(s)
- J L Cordeiro
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
- Post-Graduation Program of Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-190, Brazil.
| | - J D Neves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - F Nicola
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - A F Vizuete
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - E F Sanches
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Post-Graduation Program of Phisiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-190, Brazil
| | - C A Gonçalves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
182
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
183
|
Excitatory selective LTP of supramammillary glutamatergic/GABAergic cotransmission potentiates dentate granule cell firing. Proc Natl Acad Sci U S A 2022; 119:e2119636119. [PMID: 35333647 PMCID: PMC9060512 DOI: 10.1073/pnas.2119636119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It is now established that many neurons can release multiple transmitters. Recent studies revealed that fast-acting neurotransmitters, glutamate and GABA, are coreleased from the same presynaptic terminals in some adult brain regions. The dentate gyrus (DG) granule cells (GCs) are innervated by the hypothalamic supramammillary nucleus (SuM) afferents that corelease glutamate and GABA. However, how these functionally opposing neurotransmitters contribute to DG information processing remains unclear. We show that glutamatergic, but not GABAergic, cotransmission exhibits long-term potentiation (LTP) at SuM-GC synapses. By the excitatory selective LTP, the excitation/inhibition balance of SuM inputs increases, and GC firing is enhanced. This study provides evidence that glutamatergic/GABAergic cotransmission balance is rapidly changed in an activity-dependent manner, and such plasticity may modulate DG activity. Emerging evidence indicates that the functionally opposing neurotransmitters, glutamate and GABA, are coreleased from the same presynaptic terminals in some adult brain regions. The supramammillary nucleus (SuM) is one region that coreleases glutamate and GABA in the dentate gyrus (DG) through its afferents. Although the SuM-DG pathway has been implicated in various brain functions, little is known about the functional roles of the peculiar features of glutamate/GABA corelease. Here, we show that depolarization of granule cells (GCs) triggers postsynaptic long-term potentiation (LTP) of glutamatergic, but not GABAergic, cotransmission at SuM-GC synapses. Moreover, the burst activity of perforant-path inputs heterosynaptically induces LTP at excitatory SuM-GC synapses. This non-Hebbian LTP requires postsynaptic Ca2+ influx, Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, and exocytosis of AMPA receptors. Glutamatergic transmission-selective expression of LTP increases the excitatory drive such that SuM inputs become sufficient to discharge GCs. Our results highlight a form of LTP, which dynamically and rapidly changes the glutamatergic/GABAergic cotransmission balance and contributes to DG network activity.
Collapse
|
184
|
Tseng CY, Hsu PS, Lee CT, Huang HF, Lan CC, Hsieh TH, Liu GT, Kuo CY, Wang MC, Hsieh PC. Acupuncture and Traditional Chinese Herbal Medicine Integrated With Conventional Rehabilitation for Post-stroke Functional Recovery: A Retrospective Cohort Study. Front Neurosci 2022; 16:851333. [PMID: 35368268 PMCID: PMC8966540 DOI: 10.3389/fnins.2022.851333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Stroke leads to tremendous impacts on patients and the healthcare system. It is crucial to explore the potential management of rehabilitation. Acupuncture and traditional Chinese herbal medicine (TCHM) integrated with conventional rehabilitation benefit post-stroke functional recovery. Methods We retrospectively reviewed the medical records of all patients included in the Integrated Traditional Chinese-Western Medicine care program for stroke (ITCWM-stroke care program) in 2019 in Taipei Tzu Chi Hospital to investigate the effects of acupuncture and TCHM integrated with conventional rehabilitation on National Institutes of Health Stroke Scale (NIHSS) and Barthel Index (BI) scores before and after the program. Results A total of 255 stroke inpatients were retrieved and divided into acupuncture and acupuncture + TCHM group by hemorrhagic and ischemic stroke types, respectively. All the patients were recruited in the program at the early subacute phase after stroke onset. Of the hemorrhagic and ischemic stroke subjects, the NIHSS and BI total scores were significantly improved in the acupuncture and acupuncture + TCHM groups. The subgroup analysis results showed that in subjects with a baseline BI score ≤ 40, the acupuncture + TCHM group significantly improved BI total score better than the acupuncture group in both hemorrhagic (p < 0.05) and ischemic (p < 0.05) stroke subjects. Conclusion Acupuncture and TCHM integrated with conventional rehabilitation significantly improve stroke patients’ functional recovery at the early subacute phase. Acupuncture + TCHM contributes to better activities of daily living (ADL) improvements in stroke patients with a baseline BI score ≤ 40. We suggest integrating acupuncture and TCHM into the post-stroke rehabilitation strategy, especially for stroke patients with poor ADL function.
Collapse
Affiliation(s)
- Cheng-Yu Tseng
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Pei-Shan Hsu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chang-Ti Lee
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hui-Fen Huang
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Guan-Ting Liu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ming-Chieh Wang
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- *Correspondence: Po-Chun Hsieh,
| |
Collapse
|
185
|
Gage M, Gard M, Thippeswamy T. Characterization of Cortical Glial Scars in the Diisopropylfluorophosphate (DFP) Rat Model of Epilepsy. Front Cell Dev Biol 2022; 10:867949. [PMID: 35372361 PMCID: PMC8966428 DOI: 10.3389/fcell.2022.867949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Glial scars have been observed following stab lesions in the spinal cord and brain but not observed and characterized in chemoconvulsant-induced epilepsy models. Epilepsy is a disorder characterized by spontaneous recurrent seizures and can be modeled in rodents. Diisopropylfluorophosphate (DFP) exposure, like other real-world organophosphate nerve agents (OPNAs) used in chemical warfare scenarios, can lead to the development of status epilepticus (SE). We have previously demonstrated that DFP-induced SE promotes epileptogenesis which is characterized by the development of spontaneous recurrent seizures (SRS), gliosis, and neurodegeneration. In this study, we report classical glial scars developed in the piriform cortex, but not in the hippocampus, by 8 days post-exposure. We challenged both male and female rats with 4–5 mg/kg DFP (s.c.) followed immediately by 2 mg/kg atropine sulfate (i.m.) and 25 mg/kg pralidoxime (i.m.) and one hour later by midazolam (i.m). Glial scars were present in the piriform cortex/amygdala region in 73% of the DFP treated animals. No scars were found in controls. Scars were characterized by a massive clustering of reactive microglia surrounded by hypertrophic reactive astrocytes. The core of the scars was filled with a significant increase of IBA1 and CD68 positive cells and a significant reduction in NeuN positive cells compared to the periphery of the scars. There was a significantly higher density of reactive GFAP, complement 3 (C3), and inducible nitric oxide synthase (iNOS) positive cells at the periphery of the scar compared to similar areas in controls. We found a significant increase in chondroitin sulfate proteoglycans (CS-56) in the periphery of the scars compared to a similar region in control brains. However, there was no change in TGF-β1 or TGF-β2 positive cells in or around the scars in DFP-exposed animals compared to controls. In contrast to stab-induced scars, we did not find fibroblasts (Thy1.1) in the scar core or periphery. There were sex differences with respect to the density of iNOS, CD68, NeuN, GFAP, C3 and CS-56 positive cells. This is the first report of cortical glial scars in rodents with systemic chemoconvulsant-induced SE. Further investigation could help to elucidate the mechanisms of scar development and mitigation strategies.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
- *Correspondence: Thimmasettappa Thippeswamy,
| |
Collapse
|
186
|
Sun Y, Langer HF. Platelets, Thromboinflammation and Neurovascular Disease. Front Immunol 2022; 13:843404. [PMID: 35309326 PMCID: PMC8930842 DOI: 10.3389/fimmu.2022.843404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The brain and spinal cord are immune-privileged organs, but in the disease state protection mechanisms such as the blood brain barrier (BBB) are ineffective or overcome by pathological processes. In neuroinflammatory diseases, microglia cells and other resident immune cells contribute to local vascular inflammation and potentially a systemic inflammatory response taking place in parallel. Microglia cells interact with other cells impacting on the integrity of the BBB and propagate the inflammatory response through the release of inflammatory signals. Here, we discuss the activation and response mechanisms of innate and adaptive immune processes in response to neuroinflammation. Furthermore, the clinical importance of neuroinflammatory mediators and a potential translational relevance of involved mechanisms are addressed also with focus on non-classical immune cells including microglia cells or platelets. As illustrative examples, novel agents such as Anfibatide or Revacept, which result in reduced recruitment and activation of platelets, a subsequently blunted activation of the coagulation cascade and further inflammatory process, demonstrating that mechanisms of neuroinflammation and thrombosis are interconnected and should be further subject to in depth clinical and basic research.
Collapse
Affiliation(s)
- Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: Harald F. Langer,
| |
Collapse
|
187
|
Mattis J, Somarowthu A, Goff KM, Jiang E, Yom J, Sotuyo N, Mcgarry LM, Feng H, Kaneko K, Goldberg EM. Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome. eLife 2022; 11:e69293. [PMID: 35212623 PMCID: PMC8920506 DOI: 10.7554/elife.69293] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental disorder due to pathogenic variants in SCN1A encoding the Nav1.1 sodium channel subunit, characterized by treatment-resistant epilepsy, temperature-sensitive seizures, developmental delay/intellectual disability with features of autism spectrum disorder, and increased risk of sudden death. Convergent data suggest hippocampal dentate gyrus (DG) pathology in DS (Scn1a+/-) mice. We performed two-photon calcium imaging in brain slice to uncover a profound dysfunction of filtering of perforant path input by DG in young adult Scn1a+/- mice. This was not due to dysfunction of DG parvalbumin inhibitory interneurons (PV-INs), which were only mildly impaired at this timepoint; however, we identified enhanced excitatory input to granule cells, suggesting that circuit dysfunction is due to excessive excitation rather than impaired inhibition. We confirmed that both optogenetic stimulation of entorhinal cortex and selective chemogenetic inhibition of DG PV-INs lowered seizure threshold in vivo in young adult Scn1a+/- mice. Optogenetic activation of PV-INs, on the other hand, normalized evoked responses in granule cells in vitro. These results establish the corticohippocampal circuit as a key locus of pathology in Scn1a+/- mice and suggest that PV-INs retain powerful inhibitory function and may be harnessed as a potential therapeutic approach toward seizure modulation.
Collapse
Affiliation(s)
- Joanna Mattis
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Kevin M Goff
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Evan Jiang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Jina Yom
- College of Arts and Sciences, The University of PennsylvaniaPhiladelphiaUnited States
| | - Nathaniel Sotuyo
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Laura M Mcgarry
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Ethan M Goldberg
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Neuroscience, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
188
|
Neuroinflammation and Neuropathology. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:196-201. [PMID: 35317271 PMCID: PMC8930459 DOI: 10.1007/s11055-022-01223-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022]
Abstract
This review addresses the current understanding of the role of autoimmune neuroinflammation in the pathogenesis of vascular, neurodegenerative, and other diseases of the nervous system. The mechanisms of responses of resident CNS cells (glial cells, astrocytes) and peripheral immune system cells are presented. The therapeutic potentials of phosphodiesterase inhibitors, which have antiaggregant properties and can suppress autoimmune inflammation, are discussed. The phosphodiesterase inhibitor dipyridamole is regarded as a potential drug for this purpose.
Collapse
|
189
|
Kuribara T, Akiyama Y, Mikami T, Komatsu K, Kimura Y, Takahashi Y, Sakashita K, Chiba R, Mikuni N. Macrohistory of Moyamoya Disease Analyzed Using Artificial Intelligence. Cerebrovasc Dis 2022; 51:413-426. [PMID: 35104814 DOI: 10.1159/000520099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Moyamoya disease is characterized by progressive stenotic changes in the terminal segment of the internal carotid artery and the development of abnormal vascular networks called moyamoya vessels. The objective of this review was to provide a holistic view of the epidemiology, etiology, clinical findings, treatment, and pathogenesis of moyamoya disease. A literature search was performed in PubMed using the term "moyamoya disease," for articles published until 2021. RESULTS Artificial intelligence (AI) clustering was used to classify the articles into 5 clusters: (1) pathophysiology (23.5%); (2) clinical background (37.3%); (3) imaging (13.2%); (4) treatment (17.3%); and (5) genetics (8.7%). Many articles in the "clinical background" cluster were published from the 1970s. However, in the "treatment" and "genetics" clusters, the articles were published from the 2010s through 2021. In 2011, it was confirmed that a gene called Ringin protein 213 (RNF213) is a susceptibility gene for moyamoya disease. Since then, tremendous progress in genomic, transcriptomic, and epigenetic profiling (e.g., methylation profiling) has resulted in new concepts for classifying moyamoya disease. Our literature survey revealed that the pathogenesis involves aberrations of multiple signaling pathways through genetic mutations and altered gene expression. CONCLUSION We analyzed the content vectors in abstracts using AI, and reviewed the pathophysiology, clinical background, radiological features, treatments, and genetic peculiarity of moyamoya disease.
Collapse
Affiliation(s)
| | - Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Takeshi Mikami
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Katsuya Komatsu
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Yusuke Kimura
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | | | - Kyoya Sakashita
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Ryohei Chiba
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
190
|
Mi D, Li Z, Gu H, Jiang Y, Zhao X, Wang Y, Wang Y. Stress hyperglycemia is associated with in-hospital mortality in patients with diabetes and acute ischemic stroke. CNS Neurosci Ther 2022; 28:372-381. [PMID: 35084107 PMCID: PMC8841306 DOI: 10.1111/cns.13764] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Objective Stress hyperglycemia may occur in diabetic patients with acute severe cerebrovascular disease, but the results regarding its association with stroke outcomes are conflicting. This study aimed to examine the association between stress‐induced hyperglycemia and the occurrence of in‐hospital death in patients with diabetes and acute ischemic stroke. Research Design and Methods All data were from the Chinese Stroke Center Alliance (CSCA) database and were collected between 2016 and 2018 from >300 centers across China. Patients’ demographics, clinical presentation, and laboratory data were extracted from the database. The primary endpoint was in‐hospital death. The ratio of fasting blood glucose (FBG) to HbA1c was calculated, that is, the stress‐induced hyperglycemia ratio (SHR), to determine stress hyperglycemia following acute ischemic stroke. Results A total of 168,381 patients were included. The mean age was 66.2 ± 10.7, and 77,688 (43.0%) patients were female. The patients were divided into two groups: survivors (n = 167,499) and non‐survivors (n = 882), as well as into four groups according to their SHR quartiles (n = 42,090–42,099/quartile). There were 109 (0.26%), 142 (0.34%), 196 (0.47%), and 435 (1.03%) patients who died in the Q1, Q2, Q3, and Q4 quartiles, respectively. Compared with Q1 patients, the death risk was higher in Q4 patients (odds ratio (OR) = 4.02) (adjusted OR = 1.80, 95% confidence interval [CI] = 1.10–2.92, p = 0.018 after adjustment for traditional cardiovascular risk factors). The ROC analyses showed that SHR (AUC = 0.667, 95% CI: 0.647–0.686) had a better predictive value for mortality than that of fasting blood glucose (AUC = 0.633, 95% CI: 0.613–0.652) and HbA1c (AUC = 0.523, 95% CI: 0.504–0.543). Conclusions The SHR may serve as an accessory parameter for the prognosis of patients with diabetes after acute ischemic stroke. Hyperglycemia in stroke patients with diabetes mellitus is associated with a higher risk of in‐hospital death.
Collapse
Affiliation(s)
- Donghua Mi
- Department of Vascular Neurology, Beijing Tiantan Hospital, Capital, Medical University, Beijing, China
| | - Zixiao Li
- Department of Vascular Neurology, Beijing Tiantan Hospital, Capital, Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongqiu Gu
- Department of Vascular Neurology, Beijing Tiantan Hospital, Capital, Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Clinical Trial and Research Center for Stroke, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingyu Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Clinical Trial and Research Center for Stroke, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Department of Vascular Neurology, Beijing Tiantan Hospital, Capital, Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Vascular Neurology, Beijing Tiantan Hospital, Capital, Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Clinical Trial and Research Center for Stroke, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Vascular Neurology, Beijing Tiantan Hospital, Capital, Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Clinical Trial and Research Center for Stroke, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
191
|
Chu H, Huang C, Tang Y, Dong Q, Guo Q. The stress hyperglycemia ratio predicts early hematoma expansion and poor outcomes in patients with spontaneous intracerebral hemorrhage. Ther Adv Neurol Disord 2022; 15:17562864211070681. [PMID: 35082921 PMCID: PMC8785298 DOI: 10.1177/17562864211070681] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Different from diabetic hyperglycemia, stress-induced hyperglycemia (SIH) can better reflect elevated blood glucose owing to intracerebral hemorrhage (ICH). However, studies about the outcome of ICH patients with SIH are still very limited. AIMS This study aimed to investigate whether SIH measured by stress-induced hyperglycemia ratio (SHR) was associated with hematoma expansion and poor outcomes in patients with ICH. METHODS A consecutive series of patients with spontaneous ICH from two clinical centers admitted within 24 h after symptom onset were enrolled for prospective analysis. SHR was defined as admission fasting blood glucose divided by estimated average glucose [1.59 × Hemoglobin A1c (%) - 2.59]. This study investigated the association between SHR and hematoma expansion, and short-term and long-term poor outcomes using univariate and multivariate logistic regression analyses. RESULTS A total of 313 ICH patients were enrolled in the study. SHR was markedly higher in patients with hematoma expansion and poor outcomes (p < 0.001). The multivariate logistic regression analysis demonstrated SHR independently associated with hematoma expansion (p < 0.001) and poor outcomes, including secondary neurological deterioration within 48 h, 30-day mortality, and 3-month poor modified Rankin Scale (mRS 4-6) (p < 0.001), while the blood glucose only predicted 30-day mortality. Meanwhile, the diagnostic accuracy of SHR exhibited by area under the curve in receiver operating characteristic analysis was statistically equal to or higher than the well-known predictors. CONCLUSION SHR is a reliable predictor for early hematoma expansion and poor outcomes in patients with ICH.
Collapse
Affiliation(s)
- Heling Chu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chuyi Huang
- Health Management Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuping Tang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Huashan Hospital, Fudan University, No. 12 Mid. Wulumuqi Road, Shanghai 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No. 12 Mid. Wulumuqi Road, Shanghai 200040, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
192
|
MicroRNA Transcriptomics Analysis Identifies Dysregulated Hedgehog Signaling Pathway in a Mouse Model of Acute Intracerebral Hemorrhage Exposed to Hyperglycemia. J Stroke Cerebrovasc Dis 2022; 31:106281. [PMID: 35026495 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Hyperglycemia is often observed in the patients after acute stroke. This study aims to elucidate the potential effect and mechanism of hyperglycemia by screening microRNAs expression in intracerebral hemorrhage mice. METHODS We employed the collagenase model of intracerebral hemorrhage. Twenty male C57BL/6 mice were used and randomly divided in normo- and hyperglycemic. The hyperglycemia was induced by intraperitoneally injection of 50% of Dextrose (8 mL/kg) 3 hours after intracerebral hemorrhage. The neurologic impairment was investigated by neurologic deficit scale. To study the specific mechanisms of hyperglycemia, microRNAs expression in perihematomal area was investigated by RNA sequencing. MicroRNAs expression in hyperglycemic intracerebral hemorrhage animals were compared normoglycemic mice. Functional annotation analysis was used to indicate potential pathological pathway, underlying observed effects. Finally, polymerase chain reaction validation was administered. RESULTS Intraperitoneal injection of dextrose significantly increased blood glucose level. That was associated with aggravation of neurological deficits in hyperglycemic compared to normoglycemic animals. A total of 73 differentially expressed microRNAs were identified via transcriptomics analysis. Bioinformatics analyses showed that these microRNAs were significantly altered in several signaling pathways, of which the hedgehog signaling pathway was regarded as the most potential pathway associated with the effect of hyperglycemia on acute intracerebral hemorrhage. Furthermore, polymerase chain reaction results validated the correlation between microRNAs and hedgehog signaling pathway. CONCLUSIONS MicroRNA elevated in hyperglycemia group may be involved in worsening the neurological function via inhibiting the hedgehog signaling, which provides a novel molecular physiological mechanism and lays the foundation for treatment of intracerebral hemorrhage.
Collapse
|
193
|
Tang L, Liu G, Hu S, Haiyan E, Zhang Y, Yang Y, Zhang J. Nursing perspective of expert consensus on the diagnosis and treatment of cerebral infarction with integrated traditional Chinese and Western medicine. JOURNAL OF INTEGRATIVE NURSING 2022. [DOI: 10.4103/jin.jin_8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
194
|
Kim SY, Lim W. Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus. Phys Rev E 2022; 105:014418. [PMID: 35193268 DOI: 10.1103/physreve.105.014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
We consider a biological network of the hippocampal dentate gyrus (DG). Computational models suggest that the DG would be a preprocessor for pattern separation (i.e., a process transforming a set of similar input patterns into distinct nonoverlapping output patterns) which could facilitate pattern storage and retrieval in the CA3 area of the hippocampus. The main encoding cells in the DG are the granule cells (GCs) which receive the input from the entorhinal cortex (EC) and send their output to the CA3. We note that the activation degree of GCs is very low (∼5%). This sparsity has been thought to enhance the pattern separation. We investigate the dynamical origin for winner-take-all (WTA) competition which leads to sparse activation of the GCs. The whole GCs are grouped into lamellar clusters. In each cluster, there is one inhibitory (I) basket cell (BC) along with excitatory (E) GCs. There are three kinds of external inputs into the GCs: the direct excitatory EC input; the indirect feedforward inhibitory EC input, mediated by the HIPP (hilar perforant path-associated) cells; and the excitatory input from the hilar mossy cells (MCs). The firing activities of the GCs are determined via competition between the external E and I inputs. The E-I conductance ratio R_{E-I}^{(con)}^{*} (given by the time average of the ratio of the external E to I conductances) may represent well the degree of such external E-I input competition. It is thus found that GCs become active when their R_{E-I}^{(con)}^{*} is larger than a threshold R_{th}^{*}, and then the mean firing rates of the active GCs are strongly correlated with R_{E-I}^{(con)}^{*}. In each cluster, the feedback inhibition from the BC may select the winner GCs. GCs with larger R_{E-I}^{(con)}^{*} than the threshold R_{th}^{*} survive, and they become winners; all the other GCs with smaller R_{E-I}^{(con)}^{*} become silent. In this way, WTA competition occurs via competition between the firing activity of the GCs and the feedback inhibition from the BC in each cluster. Finally, we also study the effects of MC death and adult-born immature GCs on the WTA competition.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, Korea
| |
Collapse
|
195
|
Branagan A, Costigan CS, Stack M, Slagle C, Molloy EJ. Management of Acute Kidney Injury in Extremely Low Birth Weight Infants. Front Pediatr 2022; 10:867715. [PMID: 35433560 PMCID: PMC9005741 DOI: 10.3389/fped.2022.867715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is a common problem in the neonatal intensive care unit (NICU). Neonates born at <1,000 g (extremely low birth weight, ELBW) are at an increased risk of secondary associated comorbidities such as intrauterine growth restriction, prematurity, volume restriction, ischaemic injury, among others. Studies estimate up to 50% ELBW infants experience at least one episode of AKI during their NICU stay. Although no curative treatment for AKI currently exists, recognition is vital to reduce potential ongoing injury and mitigate long-term consequences of AKI. However, the definition of AKI is imperfect in this population and presents clinical challenges to correct identification, thus contributing to under recognition and reporting. Additionally, the absence of guidelines for the management of AKI in ELBW infants has led to variations in practice. This review summarizes AKI in the ELBW infant and includes suggestions such as close observation of daily fluid balance, review of medications to reduce nephrotoxic exposure, management of electrolytes, maximizing nutrition, and the use of diuretics and/or dialysis when appropriate.
Collapse
Affiliation(s)
- Aoife Branagan
- Paediatrics, Trinity Research in Childhood Centre (TRICC), Trinity College Dublin, Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Caoimhe S Costigan
- Nephrology, Children's Health Ireland (CHI) at Crumlin & Temple Street, Dublin, Ireland
| | - Maria Stack
- Paediatrics, Trinity Research in Childhood Centre (TRICC), Trinity College Dublin, Dublin, Ireland.,Nephrology, Children's Health Ireland (CHI) at Crumlin & Temple Street, Dublin, Ireland
| | - Cara Slagle
- Division of Neonatology & Pulmonary Biology and the Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Eleanor J Molloy
- Paediatrics, Trinity Research in Childhood Centre (TRICC), Trinity College Dublin, Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.,Neonatology, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| |
Collapse
|
196
|
Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl AS, von Oertzen TJ. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174. [PMID: 34966269 PMCID: PMC8711648 DOI: 10.3389/fnagi.2021.781174] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Post-stroke Epilepsy (PSE) is one of the most common forms of acquired epilepsy, especially in the elderly population. As people get increasingly older, the number of stroke patients is expected to rise and concomitantly the number of people with PSE. Although many patients are affected by post-ischemic epileptogenesis, not much is known about the underlying pathomechanisms resulting in the development of chronic seizures. A common hypothesis is that persistent neuroinflammation and glial scar formation cause aberrant neuronal firing. Here, we summarize the clinical features of PSE and describe in detail the inflammatory changes after an ischemic stroke as well as the chronic changes reported in epilepsy. Moreover, we discuss alterations and disturbances in blood-brain-barrier leakage, astrogliosis, and extracellular matrix changes in both, stroke and epilepsy. In the end, we provide an overview of commonalities of inflammatory reactions and cellular processes in the post-ischemic environment and epileptic brain and discuss how these research questions should be addressed in the future.
Collapse
Affiliation(s)
| | - Joachim Gruber
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Judith N Wagner
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Vincent Böhm
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Tim J von Oertzen
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
197
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
198
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
199
|
Yuan M, Wu H. Astrocytes in the Traumatic Brain Injury: the Good and the Bad. Exp Neurol 2021; 348:113943. [PMID: 34863998 DOI: 10.1016/j.expneurol.2021.113943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes control many processes of the nervous system in health and disease, and respond to injury quickly. Astrocytes produce neuroprotective factors in the injured brain to clear cellular debris and to orchestrate neurorestorative processes that are beneficial for neurological recovery after traumatic brain injury (TBI). However, astrocytes also become dysregulated and produce cytotoxic mediators that hinder CNS repair by induction of neuronal dysfunction and cell death. Hence, we discuss the potential role of astrocytes in neuropathological processes such as neuroinflammation, neurogenesis, synaptogenesis and blood-brain barrier repair after TBI. Thus, an improved understanding of the dual role of astrocytes may advance our knowledge of post-brain injury recovery, and provide opportunities for the development of novel therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Mengqi Yuan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Haitao Wu
- Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu, China; Chinese Institute for Brain Research (CIBR), 102206 Beijing, China.
| |
Collapse
|
200
|
Pi XJ, Zhao QQ, Wang JX, Zhang XL, Yuan D, Hu SS, He YM, Zhang CC, Zhou ZY, Wang T. Saponins from Panax japonicus attenuate cognitive impairment in ageing rats through regulating microglial polarisation and autophagy. PHARMACEUTICAL BIOLOGY 2021; 59:1117-1125. [PMID: 34403300 PMCID: PMC8381902 DOI: 10.1080/13880209.2021.1961824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Panax japonicus is the dried rhizome of Panax japonicus C.A. Mey. (Araliaceae). Saponins from Panax japonicus (SPJ) exhibit anti-inflammatory and antioxidative effects. OBJECTIVE To explore the neuroprotective effect of SPJ on natural ageing of rat. MATERIALS AND METHODS Sprague-Dawley (SD) rats 18-month-old were divided into ageing control, ageing treated with SPJ 10 or 30 mg/kg (n = 8). Five-month-old rats were taken as the adult control (n = 8). Rats were fed regular feed or feed containing SPJ for 4 months. Cognitive level was evaluated by Morris water maze (MWM) test. The mechanisms of SPJ's neuroprotection were evaluated by transmission electron microscope, western blot analysis, and immunofluorescence in vivo and in vitro. RESULTS SPJ attenuated ageing-induced cognitive impairment as indicated by elevated number of times crossing the target platform (from 1.63 to 3.5) and longer time spent in the target platform quadrant (from 1.33 to 1.98). Meanwhile, SPJ improved the morphology of microglia and synapse, and activated M2 microglia polarisation including increased hippocampus levels of CD206 (from 0.98 to 1.47) and YM-1 (from 0.67 to 1.1), and enhanced autophagy-related proteins LC3B (from 0.48 to 0.82), Beclin1 (from 0.32 to 0.51), Atg5 (from 0.22 to 0.89) whereas decreased p62 level (from 0.71 to 0.45) of ageing rats. In vitro study also showed that SPJ regulated the microglial polarisation and autophagy. DISCUSSION AND CONCLUSIONS SPJ improved cognitive deficits of ageing rats through attenuating microglial inflammation and enhancing microglial autophagy, which could be used to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Xue-Jiao Pi
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qing-Qing Zhao
- College of Medical Science, Three Gorges University, Yichang, China
| | - Jin-Xin Wang
- College of Medical Science, Three Gorges University, Yichang, China
| | - Xu-Lan Zhang
- College of Medical Science, Three Gorges University, Yichang, China
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, China
| | - Shan-Shan Hu
- College of Medical Science, Three Gorges University, Yichang, China
| | - Yu-Min He
- College of Medical Science, Three Gorges University, Yichang, China
| | | | - Zhi-Yong Zhou
- College of Medical Science, Three Gorges University, Yichang, China
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|