151
|
An X, He J, Xie P, Li C, Xia M, Guo D, Bi B, Wu G, Xu J, Yu W, Ren Z. The effect of tau K677 lactylation on ferritinophagy and ferroptosis in Alzheimer's disease. Free Radic Biol Med 2024; 224:685-706. [PMID: 39307193 DOI: 10.1016/j.freeradbiomed.2024.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and the accumulation of amyloid-beta plaques and hyperphosphorylated tau protein. The role of tau lactylation at the K677 site in AD progression is not well understood. This study explores how tau K677 lactylation affects ferritinophagy, ferroptosis, and their functions in an AD mouse model. Results show that mutating the K677 site to R reduces tau lactylation and inhibits ferroptosis by regulating iron metabolism factors like NCOA4 and FTH1.Tau-mutant mice showed improved memory and learning skills compared to wild-type mice. The mutation also reduced neuronal damage and was associated with decreased tau lactylation at the K677 site, regardless of phosphorylated tau levels. Gene set enrichment analysis showed that lactylation at this site was linked to the MAPK pathway, which was important for ferritinophagy in AD mice. In summary, our research indicates that the K677 mutation in tau protein may protect against AD by influencing ferritinophagy and ferroptosis through MAPK signaling pathways. Understanding these modifications in tau could lead to new treatments for AD.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China; Guizhou Provincial Center for Clinical Laboratory, Guiyang, 550002, PR China
| | - Peng Xie
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, 550025, PR China
| | - Mingyan Xia
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Dongfen Guo
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Bin Bi
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Gang Wu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guian New Area, 561113, PR China; Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guian New Area, 561113, PR China.
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China; Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China.
| |
Collapse
|
152
|
Nakazawa Y, Ishida M, Sekine K, Shimada F, Suzuki T, Hirose Y. Massive chylous pleural effusion and protein‑losing enteropathy caused by mesenteric panniculitis: A case report. Biomed Rep 2024; 21:148. [PMID: 39247425 PMCID: PMC11375620 DOI: 10.3892/br.2024.1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Mesenteric panniculitis (MP), also known as sclerosing mesenteritis, is a rare idiopathic condition characterised by chronic inflammation and fibrosis in the mesentery. While small amounts of chylous ascites due to lymph drainage obstruction are not rare in patients with MP, massive ascites is a rare complication. Moreover, protein-losing enteropathy (PLE), a rare intestinal condition of uncompensated plasma protein loss, can occur in patients with MP. To the best of our knowledge, the present study is the first to report MP with massive chylous pleural effusion and PLE in a 56-year-old male presenting with dyspnoea at Osaka Medical and Pharmaceutical University Hospital (Osaka, Japan) in March 2023. Approximately 5 years prior, the patient noticed systemic oedema, transient abdominal pain and fever and weight loss, and was diagnosed with chylous ascites and PLE by abdominal paracentesis and endoscopic examination of the small intestine. Although initial prednisolone (20 mg/day) administration improved the oedema gradual and uncontrolled fluid buildup was observed. Computed tomography revealed pneumothorax, bilateral massive pleural effusion, and pneumonia. Despite extensive antibiotic therapy [voriconazole (300 mg, twice/day), Ampicillin/Sulbactam (3 g x 4/day), and Vancomycin (1,000 mg x 2/day)], the patient succumbed to respiratory failure 1 month later. Autopsy revealed massive chylous ascites, pleural effusion and the presence of thickened and calcified nodules in the mesentery. Histopathological examination showed diffuse fat necrosis with fibrosclerosis, calcification and lymphocytic infiltration within the mesentery. Therefore, a definitive diagnosis of MP was made. The present case highlighted the importance of considering MP as a differential diagnosis in cases of concurrent chylous ascites, pleural effusion and PLE in patients with abdominal pain, fever and weight loss.
Collapse
Affiliation(s)
- Yasutaka Nakazawa
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Kazuomi Sekine
- Department of General Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Fumio Shimada
- Department of General Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Tomio Suzuki
- Department of General Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
153
|
García AAA, Fonseca LB, del Rosario Romero Alvarez M. Undifferentiated Embryonal Sarcoma of the Liver: First Case Reported in Central America. Cancer Rep (Hoboken) 2024; 7:e70067. [PMID: 39587653 PMCID: PMC11588857 DOI: 10.1002/cnr2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Undifferentiated embryonal sarcoma of the liver (UESL) is a rare and aggressive mesenchymal tumor, typically occurring in children. It poses significant diagnostic challenges due to its atypical presentation and rarity in clinical practice. CASE We report the first case in Central America of a 19-year-old female presenting with chronic abdominal pain and a liver mass. Imaging revealed a solid and cystic lesion in the liver, and a subsequent complete surgical resection confirmed the diagnosis of UESL. The patient received adjuvant chemotherapy and has been disease-free for 34 months. CONCLUSION This case highlights the importance of complete surgical resection combined with chemotherapy to improve prognosis in UESL. Our findings emphasize the need to consider UESL in differential diagnoses of liver lesions, especially in regions where it has not been previously reported.
Collapse
|
154
|
Chen Z, Wang F, Chen Z, Zheng N, Zhou Q, Xie L, Sun Q, Li L, Li B. Decursin ameliorates neurotoxicity induced by glutamate through restraining ferroptosis by up-regulating FTH1 in SH-SY5Y neuroblastoma cells. Neuroscience 2024; 559:139-149. [PMID: 39197742 DOI: 10.1016/j.neuroscience.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration which currently has no effective treatment. Ferroptosis is a new style of programmed cell death and is widely implicated in the pathogenesis and progression of AD. Decursin has been shown widely neuroprotective effects but poorly understood about the underlying mechanisms between decursin and ferroptosis in AD. Here, the protective effect of decursin and the underlying mechanism under glutamate treatment in SH-SY5Y cells was investigated. SH-SY5Y cells were cultured with glutamate in the presence or absence of decursin. The safe concentrations of decursin on SH-SY5Y cells were measured via CCK-8. Furthermore, LDH content, antioxidant enzyme activities including GPx, CAT and SOD, MDA contents, GSH levels, ROS formation, MMP, mitochondria ultrastructure morphology change, and intracellular Fe2+ levels were measured to investigate the influence of decursin and Fer-1 on ferroptosis in glutamate-treated SH-SY5Y cells. Moreover, the expressions of ferroptosis-related proteins were determined by Western blot. As a result, glutamate-induced cell survival was markedly elevated and morphological change was improved by decursin administrated in SH-SY5Y cells. Furthermore, decursin could reversed the decreased antioxidant enzyme activities, GSH levels, GPX4n and FTH1 expression, as well as the increased iron levels, LDH, MDA, ROS formation, and MMP, which showed similar effects to Fer-1, the specific ferroptosis inhibitor. Therefore, the inhibitory effect of decursin on ferroptosis probably was partially governed by FTH1 expression to regulate the cellular iron homeostasis. Additionally, decursin facilitated the translocation of Nrf2 from the cytoplasm to the nucleus. Taken together, our data for the first time suggest that decursin could ameliorate neurotoxicity induced by glutamate by attenuating ferroptosis via alleviating cellular iron levels by up-regulating FTH1 expression which is attributing to its promotion of Nrf2 translocation into the nucleus in SH-SY5Y neuroblastoma cells. Hence, decursin might be a novel and promising therapeutic option for AD. In addition, our study also provided some new clues to potential target for the intervention and therapy of AD.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiu Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
155
|
Wang YM, Feng LS, Xu A, Ma XH, Zhang MT, Zhang J. Copper ions: The invisible killer of cardiovascular disease (Review). Mol Med Rep 2024; 30:210. [PMID: 39301641 PMCID: PMC11425066 DOI: 10.3892/mmr.2024.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Copper, a vital trace element, is indispensable for the maintenance of physiological functioning, particularly in the cardiac system. Unlike other forms of cell death such as iron death and apoptosis, copper‑induced cell death has gained increasing recognition as a significant process influencing the development of cardiovascular diseases. The present review highlights the significance of maintaining copper homeostasis in addressing cardiovascular diseases. This review delves into the crucial roles of copper in physiology, including the metabolic pathways and its absorption, transport and excretion. It provides detailed insights into the mechanisms underlying cardiovascular diseases resulting from both excess and deficient copper levels. Additionally, it summarizes strategies for treating copper imbalances through approaches such as copper chelators and ion carriers while discussing their limitations and future prospects.
Collapse
Affiliation(s)
- Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Ao Xu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Xiao-Han Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Miao-Tiao Zhang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Jie Zhang
- Cardiovascular Department, Xi'an Fifth Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
156
|
Ma D, Ma H, Li Y, Yang L. Association between Neutrophil-to-high-density lipoprotein-cholesterol ratio and gallstones: insights from the national health and nutrition examination survey (2017-2020). Lipids Health Dis 2024; 23:355. [PMID: 39482705 PMCID: PMC11526654 DOI: 10.1186/s12944-024-02349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Inflammatory responses and lipid metabolism make vital impacts on the development of gallstones. This study investigated the relationship between gallstone disease (GSD) and the neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) in American patients with gallstones. METHODS The data analyzed were sourced from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) and comprised of participants with complete data on GSD and NHR. The relationship between NHR and GSD was evaluated with weighted multivariable logistic regression analysis. Additionally, subset analyses, interaction tests, smoothed curve fitting, and threshold effect analyses were conducted. RESULTS Among the 7894 participants analyzed in this study, the prevalence of GSD was 10.98%, and the average NHR value was 3.41 ± 0.06. The fully adjusted multivariable logistic regression results demonstrated an obvious positive association between NHR and the likelihood of GSD (OR = 1.09, 95% CI: 1.01, 1.16; P = 0.0197). Consistency of this association was confirmed through subset analyses and interaction tests across various subgroups, including those categorized by smoking status and asthma. Furthermore, smoothed curve fitting and threshold effect analyses revealed a nonlinear relationship with a threshold of 2.86. CONCLUSIONS NHR shows a positive relationship to an increased likelihood of GSD among Americans. It can act as an easy and cost-effective tool for the early detection and management of individuals at risk for GSD.
Collapse
Affiliation(s)
- Dongchi Ma
- School of nursing, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Hengjun Ma
- Department of proctology, Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, 311106, Zhejiang, China
| | - Yu Li
- School of nursing, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Lili Yang
- School of nursing, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
157
|
Li W, Zheng L, Luo P, Chen T, Zou J, Chen Q, Cheng L, Gan L, Zhang F, Qian B. Critical role of non-coding RNA-mediated ferroptosis in urologic malignancies. Front Immunol 2024; 15:1486229. [PMID: 39544949 PMCID: PMC11560455 DOI: 10.3389/fimmu.2024.1486229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Urologic malignancies, characterized by their high aggressiveness and metastatic potential, pose a significant public health challenge globally. Ferroptosis, a novel mode of cell death, typically arises from intracellular iron ion overload and the accumulation of lipid peroxides. This process has been shown to play a crucial regulatory role in various pathological conditions, particularly in cancer, including urologic cancers. However, the comprehensive regulatory mechanisms underlying ferroptosis remain poorly understood, which somewhat limits its broader application in cancer therapy. Non-coding RNAs (ncRNAs), which encompass microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are non-coding transcripts that play pivotal roles in various physiological processes, such as proliferation, differentiation, apoptosis, and cell cycle regulation, by modulating the expression of target genes. The biological functions and potential regulatory mechanisms of ncRNAs in the context of cancer-related ferroptosis have been partially elucidated. Research indicates that ncRNAs can influence the progression of urologic cancers by affecting cell proliferation, migration, and drug resistance through the regulation of ferroptosis. Consequently, this review aims to clarify the functions and mechanisms of the ncRNA-ferroptosis axis in urologic cancers and to evaluate the clinical significance of ferroptosis-related ncRNAs, thereby providing new insights into cancer biology and therapeutic strategies that may ultimately benefit a diverse range of cancer patients.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Jiangxi, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
158
|
Firouzjaei AA, Mohammadi-Yeganeh S. The intricate interplay between ferroptosis and efferocytosis in cancer: unraveling novel insights and therapeutic opportunities. Front Oncol 2024; 14:1424218. [PMID: 39544291 PMCID: PMC11560889 DOI: 10.3389/fonc.2024.1424218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
The complex interplay between ferroptosis and efferocytosis in cancer has attracted significant interest recently. Efferocytosis, the process of eliminating apoptotic cells, is essential for preserving tissue homeostasis and reducing inflammation. However, dysregulation of efferocytosis can have profound effects on cancer. Apoptotic cells accumulate because of impaired efferocytosis, which triggers chronic inflammation and the release of pro-inflammatory chemicals. Surprisingly, accumulating evidence suggests that dysregulation of ferroptosis- a form of controlled cell death characterized by lipid peroxidation and the buildup iron-dependent reactive oxygen species (ROS)-can influence efferocytic activities within the tumor microenvironment. Dysfunctional iron metabolism and increased lipid peroxidation, are associated with ferroptosis, resulting in inadequate apoptotic cell clearance. Conversely, apoptotic cells can activate ferroptotic pathways, increasing oxidative stress and inducing cell death in cancer cells. This reciprocal interaction emphasizes the complex relationship between efferocytosis and ferroptosis in cancer biology. Understanding and managing the delicate balance between cell clearance and cell death pathways holds significant therapeutic potential in cancer treatment. Targeting the efferocytosis and ferroptosis pathways may offer new opportunities for improving tumor clearance, reducing inflammation, and sensitizing cancer cells to therapeutic interventions. Further research into the interaction between efferocytosis and ferroptosis in cancer will provide valuable insights for the development of novel therapies aimed at restoring tissue homeostasis and improving patient outcomes.
Collapse
|
159
|
Oktriani R, Pirona AC, Kalmár L, Rahadian AS, Miao B, Bauer AS, Hoheisel JD, Boettcher M, Du H. Genome-Wide CRISPR Screen Identifies Genes Involved in Metastasis of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3684. [PMID: 39518122 PMCID: PMC11545026 DOI: 10.3390/cancers16213684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Early and aggressive metastasis is a major feature of pancreatic ductal adenocarcinoma. Understanding the processes underlying metastasis is crucial for making a difference to disease outcome. Towards these ends, we looked in a comprehensive manner for genes that are metastasis-specific. Methods: A genome-wide CRISPR-Cas9 gene knockout screen with 259,900 single guide RNA constructs was performed on pancreatic cancer cell lines with very high or very low metastatic capacity, respectively. Functional aspects of some of the identified genes were analysed in vitro. The injection of tumour cells with or without a gene knockout into mice was used to confirm the effect on metastasis. Results: The knockout of 590 genes-and, with higher analysis stringency, 67 genes-affected the viability of metastatic cells substantially, while these genes were not vital to non-metastasizing cells. Further evaluations identified different molecular processes related to this observation. One of the genes was MYBL2, encoding for a well-known transcription factor involved in the regulation of cell survival, proliferation, and differentiation in cancer tissues. In our metastasis-focussed study, no novel functional activity was detected for MYBL2, however. Instead, a metastasis-specific transformation of its genetic interaction with FOXM1 was observed. The interaction was synergistic in cells of low metastatic capacity, while there was a strong switch to a buffering mode in metastatic cells. In vivo analyses confirmed the strong effect of MYBL2 on metastasis. Conclusions: The genes found to be critical for the viability of metastatic cells form a basis for further investigations of the processes responsible for triggering and driving metastasis. As shown for MYBL2, unexpected processes of regulating metastasis might also be involved.
Collapse
Affiliation(s)
- Risky Oktriani
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Sekip Utara, Yogyakarta 55281, Indonesia
| | - Anna Chiara Pirona
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Lili Kalmár
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Ariani S. Rahadian
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany;
| | - Andrea S. Bauer
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
| | - Jörg D. Hoheisel
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
| | - Michael Boettcher
- Medical Faculty, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany;
| | - Haoqi Du
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- School of Medicine, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| |
Collapse
|
160
|
Wang QS, Fan KJ, Teng H, Liu J, Yang YL, Chen D, Wang TY. MiR-204/-211 double knockout exacerbates rheumatoid arthritis progression by promoting splenic inflammation. Int Immunopharmacol 2024; 140:112850. [PMID: 39116488 DOI: 10.1016/j.intimp.2024.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Collagen-induced arthritis (CIA) model was induced in C57BL/6 wild-type (wt) and C57BL/6 miR-204/-211 double-knockout (dKO) mice to investigate the role of miR-204/-211 in suppressing splenic inflammation in rheumatoid arthritis (RA). METHODS Differences of miR-204/-211 and structure-specific recognition protein 1 (SSRP1) in the spleen of DBA/1J wt and CIA mice were detected via PCR and immunohistochemistry. CIA was induced in both C57BL/6 wt and C57BL/6 miR-204/-211 dKO mice, and the onset of CIA and disease severity were statistically analyzed. Immunohistochemistry staining of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and SSRP1 in spleen or knee joints was performed and analyzed. In CIA miR-204/-211 dKO mice, AAV-shSSRP1 was intra-articularly injected, with both the AAV-shRNA Ctrl and AAV-shRNA Ctrl CIA groups receiving the same dose of AAV-shRNA. Spleen sections were stained with hematoxylin and eosin (H&E). RESULTS Compared to wt mouse spleens, aberrant expression of miR-204/-211 and SSRP1 was observed in the spleens of CIA mice. Immunized dKO mice exhibited a higher incidence of CIA onset and a more exacerbated RA disease phenotype, characterized by increased spleen inflammation score and elevated levels of IL-1β, TNF-α, and SSRP1 expression. AAV-shSSRP1 injection in CIA dKO mice significantly reduced spleen inflammation scores, IL-1β and TNF-α expression levels, and down-regulated Ki-67 expression compared to CIA dKO mice. CONCLUSION Knockout of miR-204/-211 exacerbated the onset of CIA in C57BL/6 mice, while miR-204/-211 played a protective role against the progression of splenic inflammatory and proliferative progression in RA by targeting SSRP1.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Kai-Jian Fan
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Pharmacy, Mental Health Center, Chongming District, Shanghai 202150, China
| | - Hui Teng
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Liu
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi-Lei Yang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ting-Yu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
161
|
Cao J, Wu M, Mo W, Zhao M, Gu L, Wang X, Zhang B, Cao J. Upregulation of PRRX2 by silencing Marveld3 as a protective mechanism against radiation-induced ferroptosis in skin cells. Mol Med 2024; 30:182. [PMID: 39434056 PMCID: PMC11494952 DOI: 10.1186/s10020-024-00958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Radiation-induced skin injury (RISI) represents a significant complication in patients receiving radiotherapy and individuals exposed to nuclear accidents, characterized by a protracted wound-healing process relative to injuries from other etiologies. Current preventive and management approaches remain inadequate. Consequently, investigating efficacious intervention strategies that target the disease's progression characteristics holds significant practical importance. METHODS Small interfering RNA (siRNA) and overexpression plasmid were used to modulate the expression of Marvel domain containing 3 (Marveld3) and paired related homeobox 2 (PRRX2). Protein and mRNA levels were estimated by Western Blot and real-time PCR, respectively. Intracellular levels of Malondialdehyde (MDA), a terminal product of lipid peroxidation, were measured following the manufacturer's protocol for MDA assay kit. Similarly, intracellular levels of ferrous iron (Fe2+) and reactive oxygen species (ROS) were determined using their respective assay kits. Lipid peroxidation status within the cells was evaluated via BODIPY staining. Immunohistochemistry was conducted to ascertain the expression of PRRX2 in skin tissues collected at various time points following irradiation of rats. The H-score method was used to evaluate the percentage of positively stained cells and staining intensity. RNA sequencing, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted by OE Biotech Company. RESULTS In this study, our findings indicated that Marveld3 suppression could effectively inhibit lipid peroxidation levels in irradiated skin cells, concomitantly reducing intracellular Fe2+ content. Additionally, the silencing of Marveld3 effectively abrogated the impact of a ferroptosis agonist on cellular viability, resulting in the upregulation of 66 and 178 genes, as well as the downregulation of 188 and 31 genes in irradiated HaCaT and WS1 cells, respectively. Among the differentially expressed genes, the PRRX2 which was found to be involved in the process of ferroptosis, exhibited statistically significant upregulation. And the upregulation of PRRX2 expression may attenuate radiation-induced lipid peroxidation in skin cells, thereby functioning as a potential stress-responsive mechanism to counteract radiation effects. CONCLUSIONS This study elucidates the role of Marveld3 in radiation-induced ferroptosis in skin cells. Inhibition of Marveld3 led to the upregulation of PRRX2, which subsequently resulted in a reduction of Fe2+ and ROS levels, as well as the suppression of lipid peroxidation. These effects collectively mitigated the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Jinming Cao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Mengyao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Mo
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Min Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liming Gu
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xi Wang
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianping Cao
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
162
|
Cai S, Zhu H, Chen L, Yu C, Su L, Chen K, Li Y. Berberine Inhibits KLF4 Promoter Methylation and Ferroptosis to Ameliorate Diabetic Nephropathy in Mice. Chem Res Toxicol 2024; 37:1728-1737. [PMID: 39264844 DOI: 10.1021/acs.chemrestox.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Inflammation, oxidative stress, fibrosis, and ferroptosis play important roles in diabetic nephropathy development. Krüppel-like factor 4 (KLF4) is a transcriptional factor, which regulates multiple cell processes and is involved in diabetic nephropathy. Berberine has various biological activities, including anti-inflammation, antioxidative stress, and antiferroptosis. Berberine has been shown to inhibit diabetic nephropathy, but whether it involves KLF4 and ferroptosis remains unknown. We established a diabetic nephropathy mice model and administered berberine to the mice. The kidney function, renal structure and fibrosis, expression of KLF4 and DNA methylation enzymes, DNA methylation of the KLF4 promoter, mitochondria structure, and expression of oxidative stress and ferroptosis markers were analyzed. Berberine rescued kidney function and renal structure and prevented renal fibrosis in diabetic nephropathy mice. Berberine suppressed the expression of DNMT1 and DNMT2 and upregulated KLF4 expression by preventing KLF4 promoter methylation. Berberine inhibited the expression of oxidative stress and ferroptosis markers, maintained mitochondria structure, and prevented ferroptosis. Berberine ameliorates diabetic nephropathy by inhibiting Klf4 promoter methylation and ferroptosis.
Collapse
Affiliation(s)
- Shengyu Cai
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Huizheng Zhu
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Lingling Chen
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Congcong Yu
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Liyuan Su
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Kaihua Chen
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yousheng Li
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
163
|
Dai X, Yu K, Wang H, Zhong R, Zhang Z, Hou Y. Construction and multiple validations of a robust ferroptosis-related prognostic model in bladder cancer: A comprehensive study. Medicine (Baltimore) 2024; 103:e40133. [PMID: 39432593 PMCID: PMC11495766 DOI: 10.1097/md.0000000000040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Ferroptosis is iron-dependent programmed cell death that inhibits tumor growth, particularly in traditional treatment-resistant tumors. Prognostic models constructed from ferroptosis-related genes are lacking; prognostic biomarkers remain insufficient. We acquired gene expression data and corresponding clinical information for bladder cancer (BC) samples from public databases. Ferroptosis-related genes from the ferroptosis database were screened for clinical predictive value. We validated gene expression differences between tumors and normal tissues through polymerase chain reaction and western blotting. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were conducted to explore signaling pathways affecting the overall survival of patients with BC. CIBERSORT was used to quantify the infiltration of 22 immune cell types. We identified 6 genes (EGFR, FADS1, ISCU, PGRMC1, PTPN6, and TRIM26) to construct the prognostic risk model. The high-risk group had a poorer overall survival than the low-risk group. Receiver operating characteristic curves demonstrated excellent predictive accuracy. The validation cohort and 3 independent datasets confirmed the models' general applicability and stability. BC tissues had elevated FADS1, PTPN6, and TRIM26 mRNA and protein levels and decreased ISCU levels. Enrichment analysis indicated that neurosecretory activity might be the main pathway affecting the overall survival. High- and low-risk groups had significantly different immune cell infiltration. Specific ferroptosis-related gene expression was associated with immune cell infiltration levels. The risk score was significantly correlated with patients' clinical characteristics. A novel, widely applicable risk model with independent predictive value for the prognosis of patients with BC was established; candidate molecules for future BC research were identified.
Collapse
Affiliation(s)
- Xianyu Dai
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Kai Yu
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongjie Wang
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rong Zhong
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhongqi Zhang
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yuchuan Hou
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
164
|
Chen XJ, Guo CH, Yang Y, Wang ZC, Liang YY, Cai YQ, Cui XF, Fan LS, Wang W. HPV16 integration regulates ferroptosis resistance via the c-Myc/miR-142-5p/HOXA5/SLC7A11 axis during cervical carcinogenesis. Cell Biosci 2024; 14:129. [PMID: 39420439 PMCID: PMC11484211 DOI: 10.1186/s13578-024-01309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Ferroptosis, a newly identified form of regulated cell death triggered by small molecules or specific conditions, plays a significant role in virus-associated carcinogenesis. However, whether tumours arising after high-risk HPV integration are associated with ferroptosis is unexplored and remains enigmatic. METHODS High-risk HPV16 integration was analysed by high-throughput viral integration detection (HIVID). Ferroptosis was induced by erastin, and the levels of ferroptosis were assessed through the measurement of lipid-reactive oxygen species (ROS), malondialdehyde (MDA), intracellular Fe2+ level and transmission electron microscopy (TEM). Additionally, clinical cervical specimens and an in vivo xenograft model were utilized for the study. RESULTS Expression of HPV16 integration hot spot c-Myc negatively correlates with ferroptosis during the progression of cervical squamous cell carcinoma (CSCC). Further investigation revealed that the upregulated oncogene miR-142-5p in HPV16-integrated CSCC cells served as a critical downstream effector of c-Myc in its target network. Inhibiting miR-142-5p significantly decreased the ferroptosis-suppressing effect mediated by c-Myc. Through a combination of computational and experimental approaches, HOXA5 was identified as a key downstream target gene of miR-142-5p. Overexpression of miR-142-5p suppressed HOXA5 expression, leading to decreased accumulation of intracellular Fe2+ and lipid peroxides (ROS and MDA). HOXA5 increased the sensitivity of CSCC cells to erastin-induced ferroptosis via transcriptional downregulation of SLC7A11, a negative regulator of ferroptosis. Importantly, c-Myc knockdown increased the anti-tumour activity of erastin by promoting ferroptosis both in vitro and in vivo. CONCLUSIONS Collectively, these data indicate that HPV16 integration hot spot c-Myc plays a novel and indispensable role in ferroptosis resistance by regulating the miR-142-5p/HOXA5/SLC7A11 signalling axis and suggest a potential therapeutic approach for HPV16 integration-related CSCC.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Chu-Hong Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Department of Obstetrics and Gynecology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511699, People's Republic of China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yun-Yi Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yong-Qi Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Xiao-Feng Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, People's Republic of China.
| |
Collapse
|
165
|
Tang X, Xue J, Zhang J, Zhou J. A Gluconeogenesis-Related Genes Model for Predicting Prognosis, Tumor Microenvironment Infiltration, and Drug Sensitivity in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1907-1926. [PMID: 39386981 PMCID: PMC11463187 DOI: 10.2147/jhc.s483664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a prevalent malignancy within the digestive system, known for its poor prognosis. Gluconeogenesis, a critical metabolic pathway, is responsible for the synthesis of glucose in the normal liver. This study aimed to examine the role of gluconeogenesis-related genes (GRGs) in HCC and evaluate their impact on the tumor microenvironment infiltration and drug sensitivity in HCC. Methods We retrieved gene expression and clinical pathological data of HCC from The Cancer Genome Atlas (TCGA) database. This dataset was utilized to develop a prognosis model. The data from The International Cancer Genome Consortium (ICGC) served as an independent validation cohort. A least absolute shrinkage and selection operator (LASSO) regression analysis was applied to a curated panel of GRGs to construct and validate the predictive model. Furthermore, unsupervised consensus clustering, based on the expression levels of GRGs, categorized HCC patients into distinct subgroups. Results A four-gene prognostic model, referred to as GRGs, has been successfully developed with high accuracy and stability for the prediction of HCC patient prognosis. This model enables the stratification of patients into high or low risk groups based on individual risk scores, revealing significant differences in immune infiltration patterns and anti-tumor drug responses. Unsupervised consensus clustering analysis delineated four distinct subgroups of patients, each characterized by a unique prognosis and tumor immune microenvironment (TIME). Conclusion This study is the first to develop a prognostic model incorporating 4-GRGs that effectively predicts the prognosis, tumor microenvironment infiltration, and drug sensitivity in HCC patients. The model based on 4 GRGs may contribute to predict the prognosis, immunotherapy and chemotherapy response of HCC patients.
Collapse
Affiliation(s)
- Xilong Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jianjin Xue
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jie Zhang
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jiajia Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| |
Collapse
|
166
|
Jin X, Zhang Y, Hu W, Liu C, Cai D, Sun J, Wei Q, Cai Q. Developing a prognostic model for hepatocellular carcinoma based on MED19 and clinical stage and determining MED19 as a therapeutic target. J Cancer Res Clin Oncol 2024; 150:446. [PMID: 39369139 PMCID: PMC11455706 DOI: 10.1007/s00432-024-05978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUD Mediator complex subunit 19 (MED19), a member of the mediator complex, has been demonstrated to involve in tumorigenesis of hepatocellular carcinoma (HCC). However, the regulation mechanisms of MED19, the immune landscape linking MED19 to HCC and its predictive value of immunotherapy treatment in HCC are so far unknown. METHODS Here, we analyzed data from The Cancer Genome Atlas and other databases to assess the expression of MED19 and its prognosis and therapeutical-targets impact in HCC. RESULTS MED19 expression was upregulated in HCC tissues compared to non-tumorous liver tissues and that its upregulation was positively associated with advanced clinicopathology features. The multivariate analysis showed that MED19 was an independent predictor of outcome in HCC. In vitro experiments revealed that MED19 knockdown suppressed hepG2 cells proliferation, colony forming and invasion and induced apoptosis. Furthermore, MED19 inhibition resulted in G0/G1 phase arrest in hepG2 cells. We screened differentially expressed genes between low and high MED19 expression groups. Enrichment analyses showed that these genes were mainly linked to nuclear division and cell cycle. The pattern of tumor-infiltrating immune was demonstrated to be related with MED19 expression in HCC. TIDE analyses showed that patients in the low-expression group presented significantly better immunotherapy. Moreover, we developed a predicted model for HCC patient's prognosis. Receiver operating characteristic analyses revealed that this model processed a favorable performance in predicting the prognosis of HCC patients. Finally, a nomogram was built for predicting survival probability of individual HCC patient. CONCLUSION These findings suggest that MED19 as a novel biomarker that has significant association with immune landscape and immunotherapy response in HCC. The proposed prediction model composed of MED19 and pathological stage has a better role in determining prognosis and stratifying of HCC.
Collapse
Affiliation(s)
- Xiaojun Jin
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, 57 Xingning Rd., Ningbo, Zhejiang, China
| | - Yun Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, SouthernMedical University, Guangzhou, China
| | - Wei Hu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Liu
- Department of Hepatological Surgery, Bethune Third Clinical Medical College, Jilin University, Changchun, China
| | - Danyang Cai
- Department of Radiation Oncology, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Jialin Sun
- School of Statistics, East China Normal University, Shanghai, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qun Cai
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, 57 Xingning Rd., Ningbo, Zhejiang, China.
| |
Collapse
|
167
|
Wang K, Lin Y, Zhou D, Li P, Zhao X, Han Z, Chen H. Unveiling ferroptosis: a new frontier in skin disease research. Front Immunol 2024; 15:1485523. [PMID: 39430757 PMCID: PMC11486644 DOI: 10.3389/fimmu.2024.1485523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Ferroptosis, a form of regulated cell death distinct from apoptosis, necrosis, and autophagy, is increasingly recognized for its role in skin disease pathology. Characterized by iron accumulation and lipid peroxidation, ferroptosis has been implicated in the progression of various skin conditions, including psoriasis, photosensitive dermatitis, and melanoma. This review provides an in-depth analysis of the molecular mechanisms underlying ferroptosis and compares its cellular effects with other forms of cell death in the context of skin health and disease. We systematically examine the role of ferroptosis in five specific skin diseases, including ichthyosis, psoriasis, polymorphous light eruption (PMLE), vitiligo, and melanoma, detailing its influence on disease pathogenesis and progression. Moreover, we explore the current clinical landscape of ferroptosis-targeted therapies, discussing their potential in managing and treating skin diseases. Our aim is to shed light on the therapeutic potential of modulating ferroptosis in skin disease research and practice.
Collapse
Affiliation(s)
- Ke Wang
- Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dan Zhou
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
| | - Peipei Li
- Department of Obstetrics and Gynecology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xiaoying Zhao
- Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhongyu Han
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
168
|
Xu Q, Ren L, Ren N, Yang Y, Pan J, Zheng Y, Wang G. Ferroptosis: a new promising target for hepatocellular carcinoma therapy. Mol Cell Biochem 2024; 479:2615-2636. [PMID: 38051404 DOI: 10.1007/s11010-023-04893-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer. The in-depth researches for iron metabolism, lipid peroxidation and dysregulation of antioxidant defense have brought about tangible progress in the firmament of ferroptosis with more and more results showing close connections between ferroptosis and HCC. The potential role of ferroptosis has been widely used in chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of various new drugs significantly improving the prognosis of patients. Based on the characteristics and mechanisms of ferroptosis, this article further focuses on the main signaling pathways and promising treatments of HCC, envisioning that existing problems in regard with ferroptosis and HCC could be grappled with in the foreseeable future.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yu Zheng
- Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China.
| |
Collapse
|
169
|
Zhai T. Druggable genome-wide Mendelian randomization for identifying the role of integrated stress response in therapeutic targets of bipolar disorder. J Affect Disord 2024; 362:843-852. [PMID: 39025441 DOI: 10.1016/j.jad.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
For bipolar disorder (BD), the inconsistency of treatment guidelines and the long phases of pharmacological adjustment remain major challenges. BD is known to be comorbid with many medical and psychiatric conditions and they may share inflammatory and stress-related aetiologies, which could give rise to this association. The integrated stress response (ISR) responds to various stress conditions that lead to alterations in cellular homeostasis. However, as a causative mechanism underlying cognitive deficits and neurodegeneration in a broad range of brain disorders, the impact of ISR on BD is understudied. Mendelian randomization has been widely used to repurpose licensed drugs and discover novel therapeutic targets. Thus, we aimed to identify novel therapeutic targets for BD and analyze their pathophysiological mechanisms, using the summary data-based Mendelian Randomization (SMR) and Bayesian colocalization (COLOC) methods to integrate the summary-level data of the GWAS on BD and the expression quantitative trait locus (eQTL) study in blood. We utilized the GWAS data including 41,917 BD cases and 371,549 controls from the Psychiatric Genomics Consortium and the eQTL data from 31,684 participants of predominantly European ancestry from the eQTLGen consortium. The SMR analysis identified the EIF2B5 gene that was associated with BD due to no linkage but pleiotropy or causality. The COLOC analysis strongly suggested that EIF2B5 and the trait of BD were affected by shared causal variants, and thus were colocalized. Utilizing data in EpiGraphDB we find other putative causal BD genes (EIF2AK4 and GSK3B) to prioritize potential alternative drug targets.
Collapse
Affiliation(s)
- Ting Zhai
- School of Humanities, Southeast University, Nanjing 211189, China; Institute of Child Development and Education, Southeast University, Nanjing 211189, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 211189, China.
| |
Collapse
|
170
|
Ocanha-Xavier JP, Xavier-Junior JCC, Miot HA, da Silva MG, Marques MEA. Transcriptomic analysis of genes associated with vitamin D receptor signalling reveals differences between skin cancers. Exp Dermatol 2024; 33:e15160. [PMID: 39435723 DOI: 10.1111/exd.15160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 10/23/2024]
Abstract
Vitamin D activates the vitamin D receptor (VDR), which dimerizes preferentially with the retinoid X receptor-α (RXRα). This heterodimer connects with genetic elements responsive to vitamin D, inhibiting or stimulating gene activity. We performed Nanostring® analysis of VDR/RXRα to compare the mRNA expression of this heterodimer and their correlated transcriptomes in non-melanoma skin cancer (basal cell carcinomas (BCC) and squamous cell carcinomas (SCC)) and melanocytic lesions (intradermal nevi (IN), and melanomas (MM)) with control skin. To evaluate VDR, RXRα and other 22 correlated genes in BCC, SCC, IN and MM, paraffin samples had their transcriptomes analysed using Nanostring®, a platform that allows multiple mRNA analyses. There were 46 samples, including 11 BCC, 10 SCC, 10 IN, 12 MM and 3 pools of control skins. Most mRNAs differed between the lesion groups and the control group. BCC and SCC NCOR2 were upregulated; in MM and IN, RXRγ was higher than in the control group. TP53, FOXO3 and MED1 showed a significant difference when we compared the BCC group to the SCC group. Melanoma and intradermal nevi differed only in AhR. VDR and RXRα were lower than the control in all groups. The panel shows a clear difference between the non-melanocytic cancers and, on the other hand, a slight difference between the melanocytic lesions. The study of vitamin D's influence through its receptor and RXRα is an exciting issue for understanding the importance of this pathway, and the present study can impact the prevention and treatment strategies, mainly in non-melanocytic tumours.
Collapse
Affiliation(s)
- Juliana Polizel Ocanha-Xavier
- Department of Pathology, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
- Private Clinic (JPOX Clinic), Araçatuba, São Paulo, Brazil
| | - José Cândido Caldeira Xavier-Junior
- Department of Pathology, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
- Araçatuba Institute of Pathology, Araçatuba, São Paulo, Brazil
- Salesian Catholic University Center Auxilium (UNISALESIANO), Medical School, Araçatuba, São Paulo, Brazil
| | - Hélio Amante Miot
- Department of Dermatology, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | | |
Collapse
|
171
|
Ham S, Choi BH, Kwak MK. NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 2024; 58:648-661. [PMID: 39540796 DOI: 10.1080/10715762.2024.2423690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.
Collapse
Affiliation(s)
- Suji Ham
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
172
|
Guo S, Zhang D, Dong Y, Shu Y, Wu X, Ni Y, Zhao R, Ma W. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme Oxygenase-1 activation. Free Radic Biol Med 2024; 223:430-442. [PMID: 39159887 DOI: 10.1016/j.freeradbiomed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
173
|
Chen Q, Wang D, Chen Z, Lin L, Shao Q, Zhang H, Li P, Lv H. Predicting biomarkers in laryngeal squamous cell carcinoma based on the cytokine-cytokine receptor interaction pathway. Heliyon 2024; 10:e37738. [PMID: 39309795 PMCID: PMC11416252 DOI: 10.1016/j.heliyon.2024.e37738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Objective To analyze and validate differential genes in the cytokine-cytokine receptor interaction CCRI pathway in laryngeal squamous cell carcinoma (LSCC) using bioinformatics and Mendelian randomization (MR) to find potential biomarkers for LSCC. Methods Five sets of LSCC-related gene chips were downloaded from the GEO database, and four sets of combined datasets were randomly selected as the test set and one set as the validation set to screen for differential genes in the CCRI pathway; two-way Mendelian randomization was performed to analyze the causal relationship between cytokine receptor as the exposure factor and LSCC as the outcome variable; and the causal relationship was analyzed by DGIdb, Miranda, miRDB, miRWalk, TargetScan, spongeScan, and TISIDB databases to analyze the relationship between differential genes and drugs, immune cell infiltration, and mRNA-miNA-lncRNA interactions. Results A total of 7 differentially expressed genes CD27, CXCL2, CXCL9, INHBA, IL6, CXCL11, and TNFRSF17 were screened for enrichment in the CCRI signaling pathway; MR analysis showed that the CCRI receptor was a risk factor for LSCC (IVW: OR = 1.629, 95 % CI:1.060-2.504, P = 0.026); Seven differential genes were correlated with drugs, immune cells and mRNA-miNA-lncRNA, respectively; the CCRI differential gene expression analysis in the validation set was consistent with the test set results. Conclusion This study provided CCRI differential gene expression by bioinformatics, and MR analysis demonstrated that cytokine receptors are risk factors for LSCC, providing new ideas for the pathogenesis and therapeutic targets of LSCC.
Collapse
Affiliation(s)
- Qingyong Chen
- The Second School of Clinical Medicine of Binzhou Medical University, Yan Tai, China
| | - Dongqing Wang
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Zhipeng Chen
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Liqiang Lin
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Qiang Shao
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Han Zhang
- No.One Clinical Medicine School of Binzhou Medical University, Bing Zhou, China
| | - Peng Li
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Huaiqing Lv
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
174
|
Lou Y, Wu L, Cai W, Deng H, Sang R, Xie S, Xu X, Yuan X, Wu C, Xu M, Ge W, Xi Y, Yang X. The FAcilitates Chromatin Transcription complex regulates the ratio of glycolysis to oxidative phosphorylation in neural stem cells. J Mol Cell Biol 2024; 16:mjae017. [PMID: 38719542 PMCID: PMC11467811 DOI: 10.1093/jmcb/mjae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 10/12/2024] Open
Abstract
Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.
Collapse
Affiliation(s)
- Yuhan Lou
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Litao Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Wanlin Cai
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Huan Deng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rong Sang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shanshan Xie
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yuan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Man Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanzhong Ge
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohang Yang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
175
|
Hashemi Karoii D, Bavandi S, Djamali M, Abroudi AS. Exploring the interaction between immune cells in the prostate cancer microenvironment combining weighted correlation gene network analysis and single-cell sequencing: An integrated bioinformatics analysis. Discov Oncol 2024; 15:513. [PMID: 39349877 PMCID: PMC11442730 DOI: 10.1007/s12672-024-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The rise of treatment resistance and variability across malignant profiles has made precision oncology an imperative in today's medical landscape. Prostate cancer is a prevalent form of cancer in males, characterized by significant diversity in both genomic and clinical characteristics. The tumor microenvironment consists of stroma, tumor cells, and various immune cells. The stromal components and tumor cells engage in mutual communication and facilitate the development of a low-oxygen and pro-cancer milieu by producing cytokines and activating pro-inflammatory signaling pathways. METHODS In order to discover new genes associated with tumor cells that interact and facilitate a hypoxic environment in prostate cancer, we conducted a cutting-edge bioinformatics investigation. This included analyzing high-throughput genomic datasets obtained from the cancer genome atlas (TCGA). RESULTS A combination of weighted gene co-expression network analysis and single-cell sequencing has identified nine dysregulated immune hub genes (AMACR, KCNN3, MME, EGFR, FLT1, GDF15, KDR, IGF1, and KRT7) that are believed to have significant involvement in the biological pathways involved with the advancement of prostate cancer enviriment. In the prostate cancer environment, we observed the overexpression of GDF15 and KRT7 genes, as well as the downregulation of other genes. Additionally, the cBioPortal platform was used to investigate the frequency of alterations in the genes and their effects on the survival of the patients. The Kaplan-Meier survival analysis indicated that the changes in the candidate genes were associated with a reduction in the overall survival of the patients. CONCLUSIONS In summary, the findings indicate that studying the genes and their genomic changes may be used to develop precise treatments for prostate cancer. This approach involves early detection and targeted therapy.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sobhan Bavandi
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Melika Djamali
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran
| | - Ali Shakeri Abroudi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
176
|
Lucía Reviglio A, Ariel Alaniz G, Cecilia Liaudat A, Alustiza F, Santo M, Otero L, Fernández L. Evaluation of the antitumor activity of albendazole using Langmuir-Blodgett monolayers as surface mediated drug delivery system. Int J Pharm 2024; 663:124586. [PMID: 39147249 DOI: 10.1016/j.ijpharm.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
This study demonstrates the application of Langmuir and Langmuir-Blodgett films as biomimetic drug reservoirs and delivery systems to investigate the effect of an anthelmintic on cancer cell culture. The repurposing of benzimidazole anthelmintics for cancer therapy due to their microtubule-inhibiting properties has gained attention, showing promising anticancer effects and tumor-suppressive properties. Although widely used in medicine, the low aqueous solubility of benzimidazole compounds poses challenges for studying their effects on cancer cells, requiring incorporation into various formulations. Our study demonstrates that incorporating albendazole into stable Palmitic Acid Langmuir monolayers, forming Langmuir-Blodgett films, significantly affects the proliferation of liver carcinoma cells. This report presents the initial findings of the effect of an antitumoral drug on cancer cell culture using a simple and repeatable methodology.
Collapse
Affiliation(s)
- Ana Lucía Reviglio
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Gustavo Ariel Alaniz
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580 Marcos Juárez, Argentina
| | - Marisa Santo
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Luis Otero
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| | - Luciana Fernández
- IITEMA-CONICET, Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto-CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| |
Collapse
|
177
|
Lai T, Li F, Xiang L, Liu Z, Li Q, Cao M, Sun J, Hu Y, Liu T, Liang J. Construction and validation of senescence risk score signature as a novel biomarker in liver hepatocellular carcinoma: a bioinformatic analysis. Transl Cancer Res 2024; 13:4786-4799. [PMID: 39430830 PMCID: PMC11483424 DOI: 10.21037/tcr-23-2373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background Globally, liver cancer as one of the most frequent fatal malignancies, hits hard and fast. And the lack of effective treatments for liver hepatocellular carcinoma (LIHC), activates the researchers to promote promising precision medicine. Interestingly, emerging evidence proves that cellular senescence is involved in the progression of cancers and is recognized for its hallmark-promoting capabilities. Hence, efforts have been made to construct and validate the senescence risk score signature (SRSS) model as a novel prognostic biomarker for LIHC. Methods The existing databases were mined for the following bioinformatics analyses. GSE22405, GSE57957, and senescence-related genes (SRGs) from public databases were utilized as a training set and the validation set was constituted by LIHC and pancreatic adenocarcinoma (PAAD) from The Cancer Genome Atlas (TCGA). After overlapping differentially expressed genes (DEGs) with SRGs, differentially expressed SRGs were identified with the progression of liver cancer through univariate and multivariate Cox regression and enrichment analyses. The model that utilized three SRGs was constructed using the least absolute shrinkage and selection operator (LASSO) regression algorithm. Next, to evaluate the predictive performance of the SRSS model, the overall survival (OS) and survival rates were assessed through Kaplan-Meier (KM) and the receiver operating characteristic (ROC) curves. The predictive value for LIHC prognosis was further evaluated by capitalizing on risk score, nomograms, decision curve analysis (DCA) curves, and clinical information including tumor stages, gender, age, and race. Results DEGs were revealed as enriching in multiple tumor-related biological processes (BPs) and pathways. IGFBP3, SOCS2, and RACGAP1 were identified as the three considerable SRGs for the model. The high-risk group had a worse prognosis [both hazard ratio (HR) >1, P<0.001] and ROC curves showed a reliable predictive model with area under the curve (AUC) predictive values ranging from 0.673-0.816 for different-year survival rates respectively. The univariate and multivariate Cox regression analyses exhibited that risk score was the only credible prognostic predictor (HR >1, P<0.001) among clinical features such as tumor stage, age, etc., in LIHC. The nomograms, and DCA curves, combined with multiple clinical information, proved that the predictive ability of SRSS was strongest, followed by nomogram and traditional tumor node metastasis (TNM) stage was the weakest. Conclusions In summary, comprehensive analyses supported that the SRSS model can better predict survival and risk in LIHC patients. Promisingly, it may point out a brand-new direction for LIHC therapy.
Collapse
Affiliation(s)
- Tianqi Lai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Clinical Medicine, Medical College, Jinan University, Guangzhou, China
| | - Feilong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhilong Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Youzhu Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, The Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Junjie Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
178
|
Yin Y, Zhang X. Exploring the correlation among genetic variants, cholecystectomy and gut microbiome: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39852. [PMID: 39331944 PMCID: PMC11441970 DOI: 10.1097/md.0000000000039852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
This Mendelian randomization (MR) study aims to explore the relationship between gut microbiota and the occurrence of cholelithiasis, as well as the impact of cholecystectomy on the gut microbiota. This study leverages data on exposures and outcomes from the GWAS database, employing the inverse variance weighting (IVW) method to obtain primary causal estimates. Heterogeneity is assessed using Cochran Q and Rücker Q tests through both IVW and MR-Egger methods. Pleiotropy is evaluated using the Egger-intercept method, while sensitivity analyses are conducted via leave-one-out tests. Additionally, the F-statistic is calculated to assess the presence of weak instrument bias. Finally, the MR-PRESSO method is utilized to validate the findings concerning the relationship between gut microbiota and the incidence of cholelithiasis, as well as the impact of cholecystectomy on gut microbiota composition. The genera Butyricicoccus (ID: 2055), Solibacillus (ID: 11348), Anaerotruncus (ID: 2054), Allisonella (ID: 2174), and Howardella (ID: 2000) have been found to decrease the genetically predicted probability of cholelithiasis. Reverse MR analysis indicates that the occurrence of cholelithiasis reduces the levels of gut microbiota such as Blautia (ID: 1992), Anaerofilum (ID: 2053), Howardella (ID: 2000), Butyricicoccus (ID: 2055), Solibacillus (ID: 11348), Allisonella (ID: 2174), Anaerotruncus (ID: 2054), and Firmicutes (ID: 1672). Additionally, the genera Odoribacter (ID: 952), and Holdemanella (ID: 2157) increase the genetically predicted risk of cholecystectomy. Reverse MR results show that post-cholecystectomy reduces the levels of gut microbiota such as Blautia (ID: 1992), Butyricicoccus (ID: 2055), Alistipes (ID: 11296), Oxalobacteraceae (ID: 2966), and Ruminococcaceae UCG010 (ID: 11367). Conversely, post-cholecystectomy increases the levels of gut microbiota such as Odoribacter (ID: 952), an unknown family (ID: 1000001214), an unknown genus (ID: 1000001215), Aeromonadales (ID: 1591), Holdemanella (ID: 2157), Phascolarctobacteria (ID: 1589), and Eggerthella (ID: 819). All study results show no horizontal pleiotropy, and the MR-PRESSO validation results are consistent with the MR analysis findings. This study elucidates the relationship between gut microbiota and the occurrence of cholelithiasis, as well as the impact of cholecystectomy on the gut microbiota. These findings have clinical significance for diagnosing disease onset and understanding digestive function changes following gallbladder removal, providing theoretical support for further investigation into the molecular mechanisms underlying cholelithiasis.
Collapse
Affiliation(s)
- Yulai Yin
- Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Xiaoyu Zhang
- Department of Thyroid and Breast Surgery III, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
179
|
Talubo NDD, Tsai PW, Tayo LL. Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors. BIOLOGY 2024; 13:765. [PMID: 39452074 PMCID: PMC11505157 DOI: 10.3390/biology13100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) has the highest mortality rate and is the most frequent of liver cancers. The heterogeneity of HCC in its etiology and molecular expression increases the difficulty in identifying possible treatments. To elucidate the molecular mechanisms of HCC across grades, data from The Cancer Genome Atlas (TCGA) were used for gene co-expression analysis, categorizing each sample into its pre-existing risk factors. The R library BioNERO was used for preprocessing and gene co-expression network construction. For those modules most correlated with a grade, functional enrichments from different databases were then tested, which appeared to have relatively consistent patterns when grouped by G1/G2 and G3/G4. G1/G2 exhibited the involvement of pathways related to metabolism and the PI3K/Akt pathway, which regulates cell proliferation and related pathways, whereas G3/G4 showed the activation of cell adhesion genes and the p53 signaling pathway, which regulates apoptosis, cell cycle arrest, and similar processes. Module preservation analysis was then used with the no history dataset as the reference network, which found cell adhesion molecules and cell cycle genes to be preserved across all risk factors, suggesting they are imperative in the development of HCC regardless of potential etiology. Through hierarchical clustering, modules related to the cell cycle, cell adhesion, the immune system, and the ribosome were found to be consistently present across all risk factors, with distinct clusters linked to oxidative phosphorylation in viral HCC and pentose and glucuronate interconversions in non-viral HCC, underscoring their potential roles in cancer progression.
Collapse
Affiliation(s)
- Nicholas Dale D. Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1203, Philippines
| |
Collapse
|
180
|
Dong J, Gong Z, Bi H, Yang J, Wang B, Du K, Zhang C, Chen L. BMSC-derived exosomal miR-219-5p alleviates ferroptosis in neuronal cells caused by spinal cord injury via the UBE2Z/NRF2 pathway. Neuroscience 2024; 556:73-85. [PMID: 39084457 DOI: 10.1016/j.neuroscience.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the molecular mechanism of exosomal miR-219-5p derived from bone marrow mesenchymal stem cells (BMSCs) in the treatment of spinal cord injury (SCI). METHODS Basso Beattie Bresnahan (BBB) score and tissue staining were used to assess SCI and neuronal survival in rats. The contents of Fe2+, malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were detected by a kit. The expression levels of ubiquitin-conjugating enzyme E2 Z (UBE2Z), nuclear factor erythroid 2-related Factor 2 (NRF2) and ferroptosis-related proteins were detected by Western blotting. In addition, the ability of BMSC-derived exosomes to inhibit ferroptosis in neuronal cells in rats with SCI was validated by in vivo injection of ferroptosis inhibitors/inducers. RESULTS In this study, we found that miR-219-5p-rich BMSC-derived exosomes inhibited ferroptosis in SCI rats and that the alleviating effect of BMSC-Exos on SCI was achieved by inhibiting the ferroptosis signaling pathway and that NRF2 played a key role in this process. Our study confirmed that BMSC exosome-specific delivery of miR-219-5p can target UBE2Z to regulate its stability and that overexpression of UBE2Z reverses miR-219-5p regulation of NRF2. In addition, in vivo experiments showed that BMSC exosomes alleviated ferroptosis in neuronal SCI progression, and inhibiting the expression of miR-219-5p in BMSCs reduced the alleviating effect of exosomes on ferroptosis in neuronal cells and SCI. CONCLUSION miR-219-5p in BMSC-derived exosomes can repair the injured spinal cord. In addition, miR-219-5p alleviates ferroptosis in neuronal cells induced by SCI through the UBE2Z/NRF2 pathway.
Collapse
Affiliation(s)
- Junjie Dong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Zhiqiang Gong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hangchuan Bi
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jin Yang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kaili Du
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chunqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lingqiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| |
Collapse
|
181
|
Gou X, Tang X, Liu C, Chen Z. Ferroptosis: a new mechanism of traditional Chinese medicine for treating hematologic malignancies. Front Oncol 2024; 14:1469178. [PMID: 39376985 PMCID: PMC11456518 DOI: 10.3389/fonc.2024.1469178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Ferroptosis is a recently identified form of cell death characterized by lipid peroxidation and elevated iron levels. It is closely associated with hematologic malignancies, including leukemia, multiple myeloma (MM), and myelodysplastic syndromes (MDS). Research indicates that ferroptosis could represent a novel therapeutic target for these hematologic malignancies. Furthermore, traditional Chinese medicine (TCM) has been shown to modulate hematologic malignancies through the ferroptosis pathway. This paper aims to elucidate the mechanisms underlying ferroptosis and summarize the current research advancements regarding ferroptosis in hematologic malignancies, as well as the role of traditional Chinese medicine in the prevention and treatment of ferroptosis, with the goal of enhancing treatment efficacy.
Collapse
Affiliation(s)
- Xinyue Gou
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuo Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
182
|
Long D, Chan M, Han M, Kamdar Z, Ma RK, Tsai PY, Francisco AB, Barrow J, Shackelford DB, Yarchoan M, McBride MJ, Orre LM, Vacanti NM, Gujral TS, Sethupathy P. Proteo-metabolomics and patient tumor slice experiments point to amino acid centrality for rewired mitochondria in fibrolamellar carcinoma. Cell Rep Med 2024; 5:101699. [PMID: 39208801 PMCID: PMC11528240 DOI: 10.1016/j.xcrm.2024.101699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a rare, lethal, early-onset liver cancer with a critical need for new therapeutics. The primary driver in FLC is the fusion oncoprotein, DNAJ-PKAc, which remains challenging to target therapeutically. It is critical, therefore, to expand understanding of the FLC molecular landscape to identify druggable pathways/targets. Here, we perform the most comprehensive integrative proteo-metabolomic analysis of FLC. We also conduct nutrient manipulation, respirometry analyses, as well as key loss-of-function assays in FLC tumor tissue slices from patients. We propose a model of cellular energetics in FLC pointing to proline anabolism being mediated by ornithine aminotransferase hyperactivity and ornithine transcarbamylase hypoactivity with serine and glutamine catabolism fueling the process. We highlight FLC's potential dependency on voltage-dependent anion channel (VDAC), a mitochondrial gatekeeper for anions including pyruvate. The metabolic rewiring in FLC that we propose in our model, with an emphasis on mitochondria, can be exploited for therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Donald Long
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Marina Chan
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mingqi Han
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Zeal Kamdar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosanna K Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joeva Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J McBride
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Lukas M Orre
- Department of Oncology and Pathology, Karolinska Institute, SciLifeLab, Solna, Sweden
| | | | - Taranjit S Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
183
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
184
|
Liu M, Gao S, Wang Y, Yang X, Fang H, Hou X. Discovery of a Novel Benzimidazole Derivative Targeting Histone Deacetylase to Induce Ferroptosis and Trigger Immunogenic Cell Death. J Med Chem 2024; 67:15098-15117. [PMID: 39145486 DOI: 10.1021/acs.jmedchem.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroptosis is a unique type of cell death, characterized by its reliance on iron dependency and lipid peroxidation (LPO). Consequently, small-molecule ferroptosis modulators have garnered substantial interest as a promising avenue for cancer therapy. Herein, we explored the ferroptosis sensitivity of epigenetic modulators and found that the antiproliferative effects of class I histone deacetylase (HDAC) inhibitors are significantly reliant on ferroptosis. Subsequently, we developed a novel series of HDAC inhibitors, identifying HL-5s with robust inhibitory activity against class I HDACs, particularly HDAC1. Notably, HL-5s induces ferroptosis by augmenting LPO production. Mechanistically, HL-5s increased the YB-1 acetylation and inhibited the Nrf2/HO-1 signaling pathway. Furthermore, HL-5s not only significantly suppresses tumor growth in the PC-9 xenograft model but also remodels the tumor microenvironment in the LLC allograft model. Our study has unveiled that class I HDAC inhibitors can exert antitumor effects by triggering ferroptosis, and HL-5s may serve as a promising candidate for future cancer treatment.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Shan Gao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 26003, P. R. China
| | - Xinying Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Hao Fang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xuben Hou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
185
|
Biondini M, Lehuédé C, Tabariès S, Annis MG, Pacis A, Ma EH, Tam C, Hsu BE, Audet-Delage Y, Abu-Thuraia A, Girondel C, Sabourin V, Totten SP, de Sá Tavares Russo M, Bridon G, Avizonis D, Guiot MC, St-Pierre J, Ursini-Siegel J, Jones R, Siegel PM. Metastatic breast cancer cells are metabolically reprogrammed to maintain redox homeostasis during metastasis. Redox Biol 2024; 75:103276. [PMID: 39053265 PMCID: PMC11321393 DOI: 10.1016/j.redox.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic rewiring is essential for tumor growth and progression to metastatic disease, yet little is known regarding how cancer cells modify their acquired metabolic programs in response to different metastatic microenvironments. We have previously shown that liver-metastatic breast cancer cells adopt an intrinsic metabolic program characterized by increased HIF-1α activity and dependence on glycolysis. Here, we confirm by in vivo stable isotope tracing analysis (SITA) that liver-metastatic breast cancer cells retain a glycolytic profile when grown as mammary tumors or liver metastases. However, hepatic metastases exhibit unique metabolic adaptations including elevated expression of genes involved in glutathione (GSH) biosynthesis and reactive oxygen species (ROS) detoxification when compared to mammary tumors. Accordingly, breast-cancer-liver-metastases exhibited enhanced de novo GSH synthesis. Confirming their increased capacity to mitigate ROS-mediated damage, liver metastases display reduced levels of 8-Oxo-2'-deoxyguanosine. Depletion of the catalytic subunit of the rate-limiting enzyme in glutathione biosynthesis, glutamate-cysteine ligase (GCLC), strongly reduced the capacity of breast cancer cells to form liver metastases, supporting the importance of these distinct metabolic adaptations. Loss of GCLC also affected the early steps of the metastatic cascade, leading to decreased numbers of circulating tumor cells (CTCs) and impaired metastasis to the liver and the lungs. Altogether, our results indicate that GSH metabolism could be targeted to prevent the dissemination of breast cancer cells.
Collapse
Affiliation(s)
- Marco Biondini
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Camille Lehuédé
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Sébastien Tabariès
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Alain Pacis
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Canadian Center for Computational Genomics, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Christine Tam
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Brian E Hsu
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Yannick Audet-Delage
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Afnan Abu-Thuraia
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Charlotte Girondel
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Valerie Sabourin
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Stephanie P Totten
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Mariana de Sá Tavares Russo
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Gaëlle Bridon
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Daina Avizonis
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Marie-Christine Guiot
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Josie Ursini-Siegel
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Qc, H3A 1A3, Canada
| | - Russell Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, Québec, Qc, H3A 1A3, Canada.
| |
Collapse
|
186
|
Hu Y, Peng X. Single-cell sequencing reveals LRRc17-mediated modulation of cardiac fibroblast ferroptosis in regulating myocardial fibrosis after myocardial infarction. Cell Signal 2024; 121:111293. [PMID: 38996956 DOI: 10.1016/j.cellsig.2024.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Myocardial fibrosis after myocardial infarction (MI) is one of the main causes of death in patients, but there is no effective treatment for myocardial fibrosis at present. Hence, it is important to elucidate the pathogenesis of fibrosis after MI and find therapeutic targets for regulating ventricular remodeling after MI. METHODS Differentially expressed gene analysis, weighted Gene co-expression network analysis (WGCNA) and differential gene analysis in cardiac fibroblasts (CFs) were performed on the MI-related data (GSE153485 and GSE210159) from the GEO database to screen the hub genes related to ferroptosis in MI. After the establishment of MI model in vivo and in vitro, the myocardial CFs were observed by Masson staining, hematoxylin-eosin staining, CCK-8, and Transwell, and the changes of LRRc17 and ferroptosis-related proteins were detected by qRT-PCR and Western blotting. The expression of ROS was detected by fluorescence dye method. RESULTS Three DEGs were identified in MI related to ferroptosis, among which LRRc17 was selected for subsequent study. In both in vitro and in vivo models of MI, we found a sustained downregulation of LRRc17 expression and the expression of ferroptosis-related proteins GPX-4 and xCT, but increased ROS expression and enhanced migration and viability of CFs. After oe-LRRc17 treatment, the expression levels of GPX-4 and xCT were restored, while ROS levels were inhibited, and the migration and viability of CFs were inhibited. After treatment with ferroptosis inducer Erastin, there were down-regulated expressions of GPX-4 and xCT, increased expression of ROS, and enhanced migration and viability of CFs. CONCLUSION LRRc17 affects ventricular remodeling by mediating ferroptosis in CFs to regulate the degree of fibrosis after MI.
Collapse
Affiliation(s)
- Yao Hu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Xiaoping Peng
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
187
|
Liang X, Long L, Guan F, Xu Z, Huang H. Research status and potential applications of circRNAs affecting colorectal cancer by regulating ferroptosis. Life Sci 2024; 352:122870. [PMID: 38942360 DOI: 10.1016/j.lfs.2024.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Ferroptosis is an emerging form of non-apoptotic programmed cell death (PCD), characterized by iron-mediated oxidative imbalance. This process plays a significant role in the development and progression of various tumors, including colorectal cancer, gastric cancer, and others. Circular RNA (circRNA) is a stable, non-coding RNA type with a single-stranded, covalently closed loop structure, which is intricately linked to the proliferation, invasion, and metastasis of tumor cells. Recent studies have shown that many circRNAs regulate various pathways leading to cellular ferroptosis. Colorectal cancer, known for its high incidence and mortality among cancers, is marked by a poor prognosis and pronounced chemoresistance. To enhance our understanding of how circRNA-mediated regulation of ferroptosis influences colorectal cancer development, this review systematically examines the mechanisms by which specific circRNAs regulate ferroptosis and their critical role in the progression of colorectal cancer. Furthermore, it explores the potential of circRNAs as biomarkers and therapeutic targets in colorectal cancer treatment, offering a novel approach to clinical management.
Collapse
Affiliation(s)
- Xiyuan Liang
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Linna Long
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Fan Guan
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Zilu Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - He Huang
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
188
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Role of autophagy and ferroptosis in the development of endometriotic cysts (Review). Int J Mol Med 2024; 54:78. [PMID: 38994772 PMCID: PMC11265838 DOI: 10.3892/ijmm.2024.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
It is considered that the etiology of endometriosis is retrograde menstruation of endometrial tissue. Although shed endometrial cells are constantly exposed to a challenging environment with iron overload, oxidative stress and hypoxia, a few cells are able to survive and continue to proliferate and invade. Ferroptosis, an iron‑dependent form of non‑apoptotic cell death, is known to play a major role in the development and course of endometriosis. However, few papers have concentrated on the dynamic interaction between autophagy and ferroptosis throughout the progression of diseases. The present review summarized the current understanding of the mechanisms underlying autophagy and ferroptosis in endometriosis and discuss their role in disease development and progression. For the present narrative review electronic databases including PubMed and Google Scholar were searched for literature published up to the October 31, 2023. Autophagy and ferroptosis may be activated at early stages in endometriosis development. On the other hand, excessive activation of intrinsic pathways (e.g., estrogen and mechanistic target of rapamycin) may promote disease progression through autophagy inhibition. Furthermore, suppression of ferroptosis may cause further progression of endometriotic lesions. In conclusion, the autophagy and ferroptosis pathways may play a dual role in disease initiation and progression. The present review discussed the temporal transition of non‑apoptotic cell death regulation during disease progression from retrograde endometrium to early lesions to established lesions.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Hyōgo 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara 634-0001, Japan
| |
Collapse
|
189
|
Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Zuo M, Wang J, Li Y, Chen X. Glutathione S-transferase-Pi 1 protects cells from irradiation-induced death by inhibiting ferroptosis in pancreatic cancer. FASEB J 2024; 38:e70033. [PMID: 39258853 DOI: 10.1096/fj.202400373rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
Glutathione S-transferase-Pi 1 (GSTP1) is an isozyme that plays a key role in detoxification and antioxidative damage. It also confers resistance to tumor therapy. However, the specific role of GSTP1 in radiotherapy resistance in pancreatic cancer (PC) is not known. In this study, we investigated how GSTP1 imparts radioresistance in PC. The findings of previous studies and this study revealed that ionizing radiation (IR) induces ferroptosis in pancreatic cancer cells, primarily by upregulating the expression of ACSL4. Our results showed that after IR, GSTP1 prolonged the survival of pancreatic cancer cells by inhibiting ferroptosis but did not affect apoptosis. The expression of GSTP1 reduced cellular ferroptosis by decreasing the levels of ACSL4 and increasing the GSH content. These changes increase the resistance of pancreatic cancer cells and xenograft tumors to IR. Our findings indicate that ferroptosis participates in irradiation-induced cell death and that GSTP1 prevents IR-induced death of pancreatic cancer cells by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yifan Chen
- Department of Nuclear Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yuling Wang
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yuchun Zhu
- Department of Nuclear Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Hongyan Wang
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Mengzhe Zuo
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jianliang Wang
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuelian Chen
- Department of Radiology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
190
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
191
|
Zhong YJ, Liu LL, Zhao Y, Feng Z, Liu Y. Elucidating the molecular mechanisms behind the therapeutic impact of median nerve stimulation on cognitive dysfunction post-traumatic brain injury. Exp Gerontol 2024; 194:112500. [PMID: 38901771 DOI: 10.1016/j.exger.2024.112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Ferroptosis represents a form of regulated cellular death dependent upon iron and lipid peroxidation derivatives, holding considerable implications for cerebral and neurologic pathologies. In the present study, we endeavored to elucidate the molecular mechanisms governing ferroptosis and appraise the therapeutic value of electrical stimulation of median nerve in addressing cognitive impairments following traumatic brain injury (TBI), employing a rodent model. METHODS In this study, we established a rat model to investigate the cognitive impairments resulting from TBI, followed by the application of median nerve stimulation (MNS). Initially, rats received an intraperitoneal injection of Erastin (2 mg/kg) prior to undergoing MNS. After 24 h of MNS treatment, the rats were subjected to an open field test to evaluate their cognitive and motor functions. Subsequently, we conducted biochemical assays to measure the serum levels of GSH, MDA and SOD. The structural integrity and cellular morphology of hippocampal tissue were examined through H&E staining, Nissl staining and transmission electron microscopy. Additionally, we assessed the expression levels of proteins crucial for neuronal health and function in the hippocampus, including VEGF, SLC7A11, GPX4, Nrf2, α-syn, NEUN and PSD95. RESULTS Compared to the control group, rats in the stimulation group demonstrated enhanced mobility, reduced levels of tissue damage, a decrease in MDA concentration, and increased levels of GSH and SOD. Additionally, there was a significant upregulation in the expression of proteins critical for cellular defense and neuronal health, including GPX4, SLC7A11, Nrf2, VEGF, α-syn, NEUN, and PSD95 proteins. Conversely, rats in the Erastin group demonstrated decreased mobility, exacerbated pathological tissue damage, elevated MDA concentration, and decreased levels of GSH and SOD. There was also a notable decrease in the expression of GPX4, SLC7CA11, Nrf2, and VEGF proteins. The expression levels of α-syn, NEUN, and PSD95 were similarly diminished in the Erastin group. Each of these findings was statistically significant, indicating that MNS exerts neuroprotective effect in the hippocampal tissue of rats with TBI by inhibiting the ferroptosis pathway. CONCLUSION (1) MNS may enhance the cognitive and behavioral performance of rats after TBI; (2) MNS can play a neuroprotective role by promoting the expression of nerve injury-related proteins, alleviating oxidative stress and ferroptosis process; (3) MNS may inhibit ferroptosis of neuronal cells by activating Nrf2/ GPX4 signaling pathway, thereby improving cognitive impairment in TBI rats.
Collapse
Affiliation(s)
- Ying-Jun Zhong
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Ling-Ling Liu
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yue Zhao
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| | - Yuan Liu
- Department of Orthopedics, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
192
|
Li H, Fan S, Gong Z, Chan JYK, Tong MCF, Chen GG. Role of hematological and neurological expressed 1 (HN1) in human cancers. Crit Rev Oncol Hematol 2024; 201:104446. [PMID: 38992849 DOI: 10.1016/j.critrevonc.2024.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Hematological and neurological expressed 1 (HN1), also known as Jupiter microtubule associated homolog 1 (JPT1), is a highly conserved protein with widespread expression in various tissues. Ectopic elevation of HN1 has been observed in multiple cancers, highlighting its role in tumorigenesis and progression. Both proteomics and transcriptomics reveal that HN1 is closely associated with severe disease progression, poor prognostic and shorter overall survival. HN1's involvement in cancer cell proliferation and metastasis has been extensively investigated. Overexpression of HN1 is associated with increased tumor growth and disease progression, while its depletion leads to cell cycle arrest and apoptosis. The pivotal role of HN1 in cancer progression, particularly in proliferation, migration, and invasion, underscores its significance in cancer metastasis. Validation of the efficacy and safety of HN1 inhibition, along with the development of diagnostic methods to determine HN1 expression levels in patients, is essential for the translation of HN1-targeted therapies into clinical practice. Overall, HN1 emerges as a valuable prognostic marker and therapeutic target in cancer, and further investigations hold the potential to improve patient outcomes by impeding metastasis and enhancing treatment strategies.
Collapse
Affiliation(s)
- Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Jason Ying Kuen Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
193
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
194
|
Bashir I, Dilshad E. A comparative study of Mentha longifolia var. asiatica and Zygophyllum arabicum ZnO nanoparticles against breast cancer targeting Rab22A gene. PLoS One 2024; 19:e0308982. [PMID: 39213285 PMCID: PMC11364221 DOI: 10.1371/journal.pone.0308982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer worldwide, and the incidence rate has increased enormously over the last three decades. Rab proteins are members of the Rab GTPase superfamily. The aberrant function of these proteins leads to the development of tumors. Mentha longifolia var. asiatica and Zygophyllum arabicum have been known for their therapeutic potential for ages. The present study aimed to synthesize ZnO nanoparticles encapsulated with the extracts of M. longifolia var. asiatica and Z. arabicum and evaluating their therapeutic potential against breast cancer, targeting the Rab22A gene and its protein. UV-Vis spectrophotometer showed characteristic absorbance peaks at 295 nm and 345 nm for Z. arabicum and M. longifolia var. asiatica ZnONPs, respectively. The FTIR bands of Z. arabicum nanoparticles suggested the presence of aldehydes, alcohols, and polyols whereas bands of M. longifolia var. asiatica ZnONPs suggested the presence of carboxyl groups, hydroxyl groups, alkynes, and amines. SEM revealed the size of Z. arabicum ZnO NPs to be 25 ± 4 nm with a spherical shape as compared to nanoparticles of M. longifolia var. asiatica having a size of 35 ± 6 nm with a hexagonal shape. EDX determined the elemental composition of both particles. The cytotoxicity of both plant extracts and respective NPs was determined against the MCF-7 breast cancer cell line, which was found to be significant with an IC50 value of 51.68 μM for Z. arabicum and 88.02 μM for M. longifolia var. asiatica ZnO compared to plant extracts (64.01 μM and 107.9 μM for Z. arabicum and M. longifolia var. asiatica). The gene expression and protein levels of Rab22A were decreased in nanoparticle-treated cells as compared to the control group. The apoptotic role of synthesized nanoparticles against the MCF-7 cell line was also determined by the expression of apoptotic pathway genes and proteins (bax, caspase 3, caspase 8 and caspase 9). All samples showed significant apoptotic activity by activating intrinsic and extrinsic pathway genes. The activity of Z. arabicum was more eminent as compared to M. longifolia var. asiatica which was evident by the greater expression of studied genes and proteins as determined by Real-time qPCR and ELISA. This is the first-ever report describing the comparative analysis of the efficacy of Z. arabicum and M. longifolia var. asiatica ZnONPs against breast cancer.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| |
Collapse
|
195
|
Tohme C, Haykal T, Yang R, Austin TJ, Loughran P, Geller DA, Simmons RL, Tohme S, Yazdani HO. ZLN005, a PGC-1α Activator, Protects the Liver against Ischemia-Reperfusion Injury and the Progression of Hepatic Metastases. Cells 2024; 13:1448. [PMID: 39273020 PMCID: PMC11393917 DOI: 10.3390/cells13171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Exercise can promote sustainable protection against cold and warm liver ischemia-reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can be utilized as an alternative therapeutic strategy. METHODS Eight-week-old mice were pretreated with ZLN005 and subjected to liver warm IRI. To establish a liver metastatic model, MC38 cancer cells (1 × 106) were injected into the spleen, followed by splenectomy and liver IRI. RESULTS ZLN005-pretreated mice showed a significant decrease in IRI-induced tissue injury as measured by serum ALT/AST/LDH levels and tissue necrosis. ZLN005 pretreatment decreased ROS generation and cell apoptosis at the site of injury, with a significant decrease in serum pro-inflammatory cytokines, innate immune cells infiltration, and intrahepatic neutrophil extracellular trap (NET) formation. Moreover, mitochondrial mass was significantly upregulated in hepatocytes and maintained after IRI. This was confirmed in murine and human hepatocytes treated with ZLN005 in vitro under normoxic and hypoxic conditions. Additionally, ZLN005 preconditioning significantly attenuated tumor burden and increased the percentage of intratumoral cytotoxic T cells. CONCLUSIONS Our study highlights the effective protection of ZLN005 pretreatment as a therapeutic alternative in terms of acute liver injury and tumor metastases.
Collapse
Affiliation(s)
- Celine Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Tony Haykal
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Ruiqi Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Taylor J. Austin
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Geller
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (C.T.); (T.H.); (R.Y.); (T.J.A.); (P.L.); (D.A.G.); (R.L.S.)
| |
Collapse
|
196
|
Xu K, Li D, Ji K, Zhang Y, Zhang M, Zhou H, Hou X, Jiang J, Zhang Z, Dai H, Sun H. Disulfidptosis-associated LncRNA signature predicts prognosis and immune response in kidney renal clear cell carcinoma. Biol Direct 2024; 19:71. [PMID: 39175011 PMCID: PMC11340127 DOI: 10.1186/s13062-024-00517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) represents a significant proportion of renal cell carcinomas and is characterized by high aggressiveness and poor prognosis despite advancements in immunotherapy. Disulfidptosis, a novel cell death pathway, has emerged as a critical mechanism in various cellular processes, including cancer. This study leverages machine learning to identify disulfidptosis-related long noncoding RNAs (DRlncRNAs) as potential prognostic biomarkers in KIRC, offering new insights into tumor pathogenesis and treatment avenues. RESULTS Our analysis of data from The Cancer Genome Atlas (TCGA) led to the identification of 431 DRlncRNAs correlated with disulfidptosis-related genes. Five key DRlncRNAs (SPINT1-AS1, AL161782.1, OVCH1-AS1, AC131009.3, and AC108673.3) were used to develop a prognostic model that effectively distinguished between low- and high-risk patients with significant differences in overall survival and progression-free survival. The low-risk group had a favorable prognosis associated with a protective immune microenvironment and a better response to targeted drugs. Conversely, the high-risk group displayed aggressive tumor features and poor immunotherapy outcomes. Validation through qRT‒PCR confirmed the differential expression of these DRlncRNAs in KIRC cells compared to normal kidney cells, underscoring their potential functional significance in tumor biology. CONCLUSIONS This study established a robust link between disulfidptosis-related lncRNAs and patient prognosis in KIRC, underscoring their potential as prognostic biomarkers and therapeutic targets. The differential expression of these lncRNAs in tumor versus normal tissue further highlights their relevance in KIRC pathogenesis. The predictive model not only enhances our understanding of KIRC biology but also provides a novel stratification tool for precision medicine approaches, improving treatment personalization and outcomes in KIRC patients.
Collapse
Affiliation(s)
- Kangjie Xu
- Central Laboratory Department, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, China
| | - Dongling Li
- Nephrology Department, Binhai County People's Hospital, Yancheng, China
| | - Kangkang Ji
- Central Laboratory Department, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, China
| | - Yanhua Zhang
- Obstetrics and Gynecology Department, Binhai County People's Hospital, Yancheng, China
| | - Minglei Zhang
- Oncology Department, Binhai County People's Hospital, Yancheng, China
| | - Hai Zhou
- Science and Education Department, Binhai County People's Hospital, Yancheng, China
| | - Xuefeng Hou
- Central Laboratory Department, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, China
| | - Jian Jiang
- Central Laboratory Department, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, China
| | - Zihang Zhang
- Pathology Department, Binhai County People's Hospital, Yancheng, China
| | - Hua Dai
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Yangzhou University Clinical Medical College, Yangzhou, China
| | - Hang Sun
- Urology Department, Binhai County People's Hospital, Yancheng, China.
| |
Collapse
|
197
|
Mao Q, Ma S, Li S, Zhang Y, Li S, Wang W, Wang F, Guo Z, Wang C. PRRSV hijacks DDX3X protein and induces ferroptosis to facilitate viral replication. Vet Res 2024; 55:103. [PMID: 39155369 PMCID: PMC11331664 DOI: 10.1186/s13567-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 08/20/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a severe disease with substantial economic consequences for the swine industry. The DEAD-box helicase 3 (DDX3X) is an RNA helicase that plays a crucial role in regulating RNA metabolism, immunological response, and even RNA virus infection. However, it is unclear whether it contributes to PRRSV infection. Recent studies have found that the expression of DDX3X considerably increases in Marc-145 cells when infected with live PRRSV strains Ch-1R and SD16; however, it was observed that inactivated viruses did not lead to any changes. By using the RK-33 inhibitor or DDX3X-specific siRNAs to reduce DDX3X expression, there was a significant decrease in the production of PRRSV progenies. In contrast, the overexpression of DDX3X in host cells substantially increased the proliferation of PRRSV. A combination of transcriptomics and metabolomics investigations revealed that in PRRSV-infected cells, DDX3X gene silencing severely affected biological processes such as ferroptosis, the FoxO signalling pathway, and glutathione metabolism. The subsequent transmission electron microscopy (TEM) imaging displayed the typical ferroptosis features in PRRSV-infected cells, such as mitochondrial shrinkage, reduction or disappearance of mitochondrial cristae, and cytoplasmic membrane rupture. Conversely, the mitochondrial morphology was unchanged in DDX3X-inhibited cells. Furthermore, silencing of the DDX3X gene changed the expression of ferroptosis-related genes and inhibited the virus proliferation, while the drug-induced ferroptosis inversely promoted PRRSV replication. In summary, these results present an updated perspective of how PRRSV infection uses DDX3X for self-replication, potentially leading to ferroptosis via various mechanisms that promote PRRSV replication.
Collapse
Affiliation(s)
- Qian Mao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Shengming Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, China
| | - Shuangyu Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yuhua Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Shanshan Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wenhui Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fang Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Zekun Guo
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, China.
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
198
|
Ji J, Jin Y, Ma S, Zhu Y, Bi X, You Q, Jiang Z. Discovery of a NCOA4 Degrader for Labile Iron-Dependent Ferroptosis Inhibition. J Med Chem 2024; 67:12521-12533. [PMID: 39047113 DOI: 10.1021/acs.jmedchem.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, has been implicated in numerous pathological conditions, and its inhibition is considered a promising therapeutic strategy. Currently, there is a scarcity of efficient antagonists for directly regulating intracellular ferrous iron. Ferritinophagy, an essential process for supplying intracellular labile iron, relies on nuclear receptor coactivator 4 (NCOA4), a selective autophagy receptor for the ferritin iron storage complex, thus playing a pivotal role in ferritinophagy. In this study, we reported a novel von Hippel-Lindau-based NCOA4 degrader, V3, as a potent ferroptosis inhibitor with an intracellular ferrous iron inhibition mechanism. V3 significantly reduced NCOA4 levels and downregulated intracellular ferrous iron (Fe2+) levels, thereby effectively suppressing ferroptosis induced by multiple pathways within cells and alleviating liver damage. This research presents a chemical knockdown tool targeting NCOA4 for further exploration into intracellular ferrous iron in ferroptosis, offering a promising therapeutic avenue for ferroptosis-related acute liver injury.
Collapse
Affiliation(s)
- Jian'ai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing 210009, Jiangsu, China
| | - Yuhui Jin
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sinan Ma
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Bi
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
199
|
Sinha BK, Murphy C, Brown SM, Silver BB, Tokar EJ, Bortner CD. Mechanisms of Cell Death Induced by Erastin in Human Ovarian Tumor Cells. Int J Mol Sci 2024; 25:8666. [PMID: 39201357 PMCID: PMC11355013 DOI: 10.3390/ijms25168666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Erastin (ER) induces cell death through the formation of reactive oxygen species (ROS), resulting in ferroptosis. Ferroptosis is characterized by an accumulation of ROS within the cell, leading to an iron-dependent oxidative damage-mediated cell death. ER-induced ferroptosis may have potential as an alternative for ovarian cancers that have become resistant due to the presence of Ras mutation or multi-drug resistance1 (MDR1) gene expression. We used K-Ras mutant human ovarian tumor OVCAR-8 and NCI/ADR-RES, P-glycoprotein-expressing cells, to study the mechanisms of ER-induced cell death. We used these cell lines as NCI/ADR-RES cells also overexpresses superoxide dismutase, catalase, glutathione peroxidase, and transferase compared to OVCAR-8 cells, leading to the detoxification of reactive oxygen species. We found that ER was similarly cytotoxic to both cells. Ferrostatin, an inhibitor of ferroptosis, reduced ER cytotoxicity. In contrast, RSL3 (RAS-Selective Ligand3), an inducer of ferroptosis, markedly enhanced ER cytotoxicity in both cells. More ROS was detected in OVCAR-8 cells than NCI/ADR-RES cells, causing more malondialdehyde (MDA) formation in OVCAR-8 cells than in NCI/ADR-RES cells. RSL3, which was more cytotoxic to NCI/ADR-RES cells, significantly enhanced MDA formation in both cells, suggesting that glutathione peroxidase 4 (GPX4) was involved in ER-mediated ferroptosis. ER treatment modulated several ferroptosis-related genes (e.g., CHAC1, GSR, and HMOX1/OX1) in both cells. Our study indicates that ER-induced ferroptotic cell death may be mediated similarly in both NCI/ADR-RES and OVCAR-8 cells. Additionally, our results indicate that ER is not a substrate of P-gp and that combinations of ER and RSL3 may hold promise as more effective treatment routes for ovarian cancers, including those that are resistant to other current therapeutic agents.
Collapse
Affiliation(s)
- Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Carri Murphy
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Shalyn M. Brown
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Carl D. Bortner
- Laboratory of Signal Transduction, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
200
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|