151
|
Kofoed A, Hindborg M, Hjembæk-Brandt J, Sørensen CD, Kolpen M, Bestle MH. Exhaled nitric oxide in intubated ICU patients on mechanical ventilation-a feasibility study. J Breath Res 2023; 17:046014. [PMID: 37657436 DOI: 10.1088/1752-7163/acf607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
It can be a clinical challenge to distinguish inflammation from infection in critically ill patients. Therefore, valid and conclusive surrogate markers for infections are desired. Nitric oxide (NO) might be that marker since concentrations of exhaled NO have shown to change in the presence of various diseases. This observational, prospective, single-center feasibility study aimed to investigate if fractional exhaled NO (FeNO) can be measured in intubated patients with or without infection, pneumonia and septic shock in a standardized, reliable setting. 20 intubated patients in the intensive care unit (ICU) were included for analysis. FeNO mean values were measured in the endotracheal tube via the suction channel using a chemiluminescence based analyzer. We developed a pragmatic method to measure FeNO repeatedly and reliably in intubated patients using a chemiluminescence based analyzer. We found a median of 0.98 (0.59-1.44) FeNO mean (ppb) in exhaled breath from all 20 intubated patient. Intubated patient with suspected infection had a significantly lower median FeNO mean compared with the intubated patients without suspected infection. Similarly did patients with septic shock demonstrate a significantly lower median FeNO mean than without septic shock. We found no statistical difference in median FeNO mean for intubated patients with pneumonia. It was feasible to measure FeNO in intubated patients in the ICU. Our results indicate decreased levels of FeNO in infected intubated patients in the ICU. The study was not powered to provide firm conclusions, so larger trials are needed to confirm the results and to prove FeNO as a useful biomarker for distinguishment between infection and inflammation in the ICU.
Collapse
Affiliation(s)
- Andreas Kofoed
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Mathias Hindborg
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Jeppe Hjembæk-Brandt
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Christian Dalby Sørensen
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten H Bestle
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
152
|
Gaudet A, Kreitmann L, Nseir S. ICU-Acquired Colonization and Infection Related to Multidrug-Resistant Bacteria in COVID-19 Patients: A Narrative Review. Antibiotics (Basel) 2023; 12:1464. [PMID: 37760760 PMCID: PMC10525572 DOI: 10.3390/antibiotics12091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
A large proportion of ICU-acquired infections are related to multidrug-resistant bacteria (MDR). Infections caused by these bacteria are associated with increased mortality, and prolonged duration of mechanical ventilation and ICU stay. The aim of this narrative review is to report on the association between COVID-19 and ICU-acquired colonization or infection related to MDR bacteria. Although a huge amount of literature is available on COVID-19 and MDR bacteria, only a few clinical trials have properly evaluated the association between them using a non-COVID-19 control group and accurate design and statistical methods. The results of these studies suggest that COVID-19 patients are at a similar risk of ICU-acquired MDR colonization compared to non-COVID-19 controls. However, a higher risk of ICU-acquired infection related to MDR bacteria has been reported in several studies, mainly ventilator-associated pneumonia and bloodstream infection. Several potential explanations could be provided for the high incidence of ICU-acquired infections related to MDR. Immunomodulatory treatments, such as corticosteroids, JAK2 inhibitors, and IL-6 receptor antagonist, might play a role in the pathogenesis of these infections. Additionally, a longer stay in the ICU was reported in COVID-19 patients, resulting in higher exposure to well-known risk factors for ICU-acquired MDR infections, such as invasive procedures and antimicrobial treatment. Another possible explanation is the surge during successive COVID-19 waves, with excessive workload and low compliance with preventive measures. Further studies should evaluate the evolution of the incidence of ICU-acquired infections related to MDR bacteria, given the change in COVID-19 patient profiles. A better understanding of the immune status of critically ill COVID-19 patients is required to move to personalized treatment and reduce the risk of ICU-acquired infections. The role of specific preventive measures, such as targeted immunomodulation, should be investigated.
Collapse
Affiliation(s)
- Alexandre Gaudet
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- CNRS, Inserm U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK;
- Department of Intensive Care Medicine, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Saad Nseir
- Médecine Intensive Réanimation, CHU de Lille, F-59000 Lille, France;
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
| |
Collapse
|
153
|
Mthombeni TC, Burger JR, Lubbe MS, Julyan M. Antibiotic prescribing to inpatients in Limpopo, South Africa: a multicentre point-prevalence survey. Antimicrob Resist Infect Control 2023; 12:103. [PMID: 37717012 PMCID: PMC10505321 DOI: 10.1186/s13756-023-01306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electronic continuous surveillance databases are ideal for monitoring antibiotic use (ABU) in hospitalised patients for antibiotic stewardship programmes (ASP). However, such databases are scarce in low-resource settings. Point prevalence surveys (PPS) are viable alternatives. This report describes ABU and identifies ASP implementation improvement areas in Limpopo Province, South Africa. METHODS This cross-sectional descriptive study extracted patient-level ABU data from patients' files using a modified global PPS tool. Data were collected between September and November 2021 at five regional hospitals in Limpopo Province, South Africa. All patients in the wards before 8 a.m. on study days with an antibiotic prescription were included. Antibiotic use was stratified by Anatomic Therapeutic Chemical and Access, Watch, Reserve classifications and presented as frequencies and proportions with 95% confidence intervals (CI). Associations between categorical variables were assessed using the chi-square test. Cramér's V was used to assess the strength of these associations. RESULTS Of 804 inpatients surveyed, 261 (32.5%) (95% CI 29.2-35.7) were prescribed 416 antibiotics, 137 were female (52.5%) and 198 adults (75.9%). One hundred and twenty-two (46.7%) patients received one antibiotic, 47.5% (124/261) received two, and 5.7% (15/261) received three or more antibiotics. The intensive care units had a higher ABU (68.6%, 35/51) compared to medical (31.3%, 120/384) and surgical (28.5%, 105/369) wards (p = 0.005, Cramér's V = 0.2). Lower respiratory tract infection (27.4%, 104/379), skin and soft tissue infections (SST) (23.5%, 89/379), and obstetrics and gynaecology prophylaxis (14.0%, 53/379) were the common diagnoses for antibiotic prescriptions. The three most prescribed antibiotic classes were imidazoles (21.9%, 91/416), third-generation cephalosporins (20.7%, 86/416) and combination penicillin (18.5%, 79/416). Access antibiotics accounted for 70.2% (292/416) of prescriptions and Watch antibiotics for 29.6% (123/416) (p = 0.110, Cramér's V = 0.1). Reasons for prescribing and treatment plans were documented in 64.9% (270/416) (95% CI 60.3-69.5) and 21.4% (89/416) (95% CI 17.3-25.3) of prescriptions, respectively. CONCLUSIONS The study serves as a baseline for ABU surveillance at the five regional hospitals in Limpopo Province. Lack of documentation indicates poor prescribing practices; ASP should address gaps by deploying evidence-based, multifaceted and stepwise interventions.
Collapse
Affiliation(s)
- Tiyani Comfort Mthombeni
- Medicine Usage in South Africa (MUSA), North-West University Potchefstroom Campus, Potchefstroom, South Africa
| | - Johanita Riétte Burger
- Medicine Usage in South Africa (MUSA), North-West University Potchefstroom Campus, Potchefstroom, South Africa.
| | - Martha Susanna Lubbe
- Medicine Usage in South Africa (MUSA), North-West University Potchefstroom Campus, Potchefstroom, South Africa
| | - Marlene Julyan
- Medicine Usage in South Africa (MUSA), North-West University Potchefstroom Campus, Potchefstroom, South Africa
| |
Collapse
|
154
|
Polovina M, Tomić M, Viduljević M, Zlatić N, Stojićević A, Civrić D, Milošević A, Krljanac G, Lasica R, Ašanin M. Predictors and prognostic implications of hospital-acquired pneumonia in patients admitted for acute heart failure. Front Cardiovasc Med 2023; 10:1254306. [PMID: 37781296 PMCID: PMC10540230 DOI: 10.3389/fcvm.2023.1254306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Data on predictors and prognosis of hospital acquired pneumonia (HAP) in patients admitted for acute heart failure (AHF) to intensive care units (ICU) are scarce. Better knowledge of these factors may inform management strategies. This study aimed to assess the incidence and predictors of HAP and its impact on management and outcomes in patients hospitalised for AHF in the ICU. Methods this was a retrospective single-centre observational study. Patient-level and outcome data were collected from an anonymized registry-based dataset. Primary outcome was in-hospital all-cause mortality and secondary outcomes included length of stay (LOS), requirement for inotropic/ventilatory support, and prescription patterns of heart failure (HF) drug classes at discharge. Results Of 638 patients with AHF (mean age, 71.6 ± 12.7 years, 61.9% male), HAP occurred in 137 (21.5%). In multivariable analysis, HAP was predicted by de novo AHF, higher NT proB-type natriuretic peptide levels, pleural effusion on chest x-ray, mitral regurgitation, and a history of stroke, diabetes, and chronic kidney disease. Patients with HAP had a longer LOS, and a greater likelihood of requiring inotropes (adjusted odds ratio, OR, 2.31, 95% confidence interval, CI, 2.16-2.81; p < 0.001) or ventilatory support (adjusted OR 2.11, 95%CI, 1.76-2.79, p < 0.001). After adjusting for age, sex and clinical covariates, all-cause in-hospital mortality was significantly higher in patients with HAP (hazard ratio, 2.10; 95%CI, 1.71-2.84; p < 0.001). Patients recovering from HAP were less likely to receive HF medications at discharge. Discussion HAP is frequent in AHF patients in the ICU setting and more prevalent in individuals with de novo AHF, mitral regurgitation, higher burden of comorbidities, and more severe congestion. HAP confers a greater risk of complications and in-hospital mortality, and a lower likelihood of receiving evidence-based HF medications at discharge.
Collapse
Affiliation(s)
- Marija Polovina
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milenko Tomić
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Mihajlo Viduljević
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Nataša Zlatić
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Andrea Stojićević
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Danka Civrić
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Aleksandra Milošević
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gordana Krljanac
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ratko Lasica
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milika Ašanin
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
155
|
Li Q, Zhao SJ, Zhou JC. Editorial: Antimicrobial resistance and therapy in critically ill patients. Front Med (Lausanne) 2023; 10:1283865. [PMID: 37780570 PMCID: PMC10541214 DOI: 10.3389/fmed.2023.1283865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Qi Li
- Department of Emergency Medicine, Lanxi People's Hospital, Lanxi, China
| | - Shun-Jin Zhao
- Department of Respiratory and Critical Care Medicine, Lanxi People's Hospital, Lanxi, China
| | - Jian-Cang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
156
|
Nanao T, Nishizawa H, Fujimoto J. Empiric antimicrobial therapy in the intensive care unit based on the risk of multidrug-resistant bacterial infection: a single-centre case‒control study of blood culture results in Japan. Antimicrob Resist Infect Control 2023; 12:99. [PMID: 37697404 PMCID: PMC10496235 DOI: 10.1186/s13756-023-01303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Infections and sepsis are the leading causes of death in intensive care units (ICUs). Antimicrobial agent selection is challenging because the intervention is directly related to the outcome, and the problem of antimicrobial resistance (AMR) must be considered. Therefore, in this study, we aimed to clarify the epidemiological data and examine whether the detection rate of multidrug-resistant (MDR) bacteria differed depending on the presence or absence of the risk of MDR bacterial infections to establish guidance regarding the choice of antimicrobial therapy for ICU patients. METHODS This retrospective case‒control study was performed in a single ICU in Japan. Patients admitted to the ICU who underwent blood culture (BC) analysis were considered for inclusion in this study; patients were at risk of MDR bacterial infections, and controls were not. The primary outcome measure was the detection rate of MDR bacteria in BCs collected from patients and controls. The secondary outcome measure was the selection rate of anti-Pseudomonas and anti-methicillin-resistant Staphylococcus aureus (MRSA) drugs for patients and controls. RESULTS Among the 1,730 patients admitted to the ICU during the study period, BCs were obtained from 186 patients, and 173 samples were finally included in the analysis (n = 129 cases; n = 44 controls). No MDR bacteria or Pseudomonas aeruginosa were detected in the controls (14 (11%) vs. 0 (0%)) (P = 0.014) However, there was no difference in empiric antimicrobials, including anti-MRSA (30 (23%) vs. 12 (27%)) (P = 0.592) and anti-Pseudomonas aeruginosa (61 (47%) vs. 16 (36%)) (P = 0.208) drugs, that were administered to the two groups. CONCLUSIONS Even in critically ill patients in the ICU, MDR bacteria are unlikely to be detected in patients without the risk of MDR bacterial infections. Therefore, for such patients, a strategy of starting empiric narrow-spectrum antimicrobial therapy rather than empiric broad-spectrum therapy should be considered. This strategy, in conjunction with daily updates of clinical and epidemiological data at each facility, will promote the appropriate use of antimicrobials and reduce the emergence of MDR bacteria in the ICU. TRIAL REGISTRATION None.
Collapse
Affiliation(s)
- Taikan Nanao
- Department of Intensive Care Medicine, Yokohama Rosai Hospital, 3211, Kozukue, Kouhoku, Yokohama, Kanagawa, 222-0036, Japan.
- Graduate School of Medicine, International University of Health and Welfare, Tokyo, Japan.
| | - Hideo Nishizawa
- Department of Intensive Care Medicine, Yokohama Rosai Hospital, 3211, Kozukue, Kouhoku, Yokohama, Kanagawa, 222-0036, Japan
| | - Junichi Fujimoto
- Department of Intensive Care Medicine, Yokohama Rosai Hospital, 3211, Kozukue, Kouhoku, Yokohama, Kanagawa, 222-0036, Japan
| |
Collapse
|
157
|
Attalla ET, Khalil AM, Zakaria AS, Baker DJ, Mohamed NM. Genomic characterization of colistin-resistant Klebsiella pneumoniae isolated from intensive care unit patients in Egypt. Ann Clin Microbiol Antimicrob 2023; 22:82. [PMID: 37689686 PMCID: PMC10492301 DOI: 10.1186/s12941-023-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. METHODS Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. RESULTS Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum β-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC (11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 by a single isolate of ST525. CONCLUSIONS In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.
Collapse
Affiliation(s)
- Eriny T. Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Amal M. Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Azza S. Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | | | - Nelly M. Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| |
Collapse
|
158
|
Liu Y, Sun T, Cai Y, Zhai T, Huang L, Zhang Q, Wang C, Chen H, Huang X, Li M, Xia J, Gu S, Guo L, Yang B, Wu X, Lu B, Zhan Q. Clinical characteristics and prognosis of pneumonia-related bloodstream infections in the intensive care unit: a single-center retrospective study. Front Public Health 2023; 11:1249695. [PMID: 37744495 PMCID: PMC10516289 DOI: 10.3389/fpubh.2023.1249695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background Bloodstream infections (BSI) are one of the most severe healthcare-associated infections in intensive care units (ICU). However, there are few studies on pneumonia-related BSI (PRBSI) in the ICU. This study aimed to investigate the clinical and prognostic characteristics of patients with PRBSI in the ICU and to provide a clinical basis for early clinical identification. Methods We retrospectively collected data from patients with bacterial BSI in a single-center ICU between January 1, 2017, and August 31, 2020. Clinical diagnosis combined with whole-genome sequencing (WGS) was used to clarify the diagnosis of PRBSI, and patients with PRBSI and non-PRBSI were analyzed for clinical features, prognosis, imaging presentation, and distribution of pathogenic microorganisms. Results Of the 2,240 patients admitted to the MICU, 120 with bacterial BSI were included in this study. Thirty-two (26.7%) patients were identified as having PRBSI based on the clinical diagnosis combined with WGS. Compared to patients without PRBSI, those with PRBSI had higher 28-day mortality (81.3 vs.51.1%, p = 0.003), a higher total mortality rate (93.8 vs. 64.8%, p = 0.002), longer duration of invasive mechanical ventilation (median 16 vs. 6 days, p = 0.037), and prolonged duration of ICU stay (median 21 vs. 10 days, p = 0.004). There were no differences in other baseline data between the two groups, but patients with PRBSI had extensive consolidation on chest radiographs and significantly higher Radiographic Assessment of Lung Edema scores (mean 35 vs. 24, p < 0.001). The most common causative organisms isolated in the PRBSI group were gram-negative bacteria (n = 31, 96.9%), with carbapenem-resistant gram-negative bacteria accounting for 68.8% (n = 22) and multidrug-resistant bacteria accounting for 81.3% (n = 26). Conclusion Pneumonia-related BSI is an important component of ICU-BSI and has a poor prognosis. Compared to non-PRBSI, patients with PRBSI do not have typical clinical features but have more severe lung consolidation lesions, and should be alerted to the possibility of their occurrence when combined with pulmonary gram-negative bacterial infections, especially carbapenem-resistant bacteria. Further multicenter, large-sample studies are needed to identify the risk factors for the development of PRBSI and prevention and treatment strategies.
Collapse
Affiliation(s)
- Yijie Liu
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ting Sun
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ying Cai
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tianshu Zhai
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Linna Huang
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chunlei Wang
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - He Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xu Huang
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Min Li
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jingen Xia
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Sichao Gu
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingxi Guo
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Bin Yang
- Vision Medicals Center for Infection Diseases, Guangzhou, China
| | - Xiaojing Wu
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
| | - Binghuai Lu
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qingyuan Zhan
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
159
|
Vaidie J, Peju E, Jandeaux LM, Lesouhaitier M, Lacherade JC, Guillon A, Wittebole X, Asfar P, Evrard B, Daix T, Vignon P, François B. Long-term immunosuppressive treatment is not associated with worse outcome in patients hospitalized in the intensive care unit for septic shock: the PACIFIC study. Crit Care 2023; 27:340. [PMID: 37660107 PMCID: PMC10475175 DOI: 10.1186/s13054-023-04626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Except in a few retrospective studies mainly including patients under chemotherapy, information regarding the impact of immunosuppressive therapy on the prognosis of patients admitted to the intensive care unit (ICU) for septic shock is scarce. Accordingly, the PACIFIC study aimed to asses if immunosuppressive therapy is associated with an increased mortality in patients admitted to the ICU for septic shock. METHODS This was a retrospective epidemiological multicentre study. Eight high enroller centres in septic shock randomised controlled trials (RCTs) participated in the study. Patients in the "exposed" group were selected from the screen failure logs of seven recent RCTs and excluded because of immunosuppressive treatment. The "non-exposed" patients were those included in the placebo arm of the same RCTs. A multivariate logistic regression model was used to estimate the risk of death. RESULTS Among the 433 patients enrolled, 103 were included in the "exposed" group and 330 in the "non-exposed" group. Reason for immunosuppressive therapy included organ transplantation (n = 45 [44%]) or systemic disease (n = 58 [56%]). ICU mortality rate was 24% in the "exposed" group and 25% in the "non-exposed" group (p = 0.9). Neither in univariate nor in multivariate analysis immunosuppressive therapy was associated with a higher ICU mortality (OR: 0.95; [95% CI 0.56-1.58]: p = 0.86 and 1.13 [95% CI 0.61-2.05]: p = 0.69, respectively) or 3-month mortality (OR: 1.13; [95% CI 0.69-1.82]: p = 0.62 and OR: 1.36 [95% CI 0.78-2.37]: p = 0.28, respectively). CONCLUSIONS In this study, long-term immunosuppressive therapy excluding chemotherapy was not associated with significantly higher or lower ICU and 3-month mortality in patients admitted to the ICU for septic shock.
Collapse
Affiliation(s)
- Julien Vaidie
- Réanimation Polyvalente, CHU de Limoges, 2 Avenue Martin Luther King, 87042, Limoges Cedex, France
| | - Edwige Peju
- Service de Médecine Intensive et Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Louise-Marie Jandeaux
- Médecine Intensive et Réanimation, Nouvel Hôpital Civil, CHRU de Strasbourg, Strasbourg, France
| | - Mathieu Lesouhaitier
- Service de Maladies Infectieuses et Réanimation Médicale, CHU de Rennes, Rennes, France
| | | | - Antoine Guillon
- Médecine Intensive - Réanimation, CHRU Bretonneau, Tours, France
- Inserm UMR 1100, UFR de Médecine, Tours, France
| | - Xavier Wittebole
- Service de Soins Intensifs, Cliniques universitaires Saint Luc, Brussels, Belgium
| | - Pierre Asfar
- Médecine Intensive - Réanimation et médecine hyperbare, CHU Angers, Angers, France
| | - Bruno Evrard
- Réanimation Polyvalente, CHU de Limoges, 2 Avenue Martin Luther King, 87042, Limoges Cedex, France
- Inserm CIC 1435, CHU Dupuytren, Limoges, France
| | - Thomas Daix
- Réanimation Polyvalente, CHU de Limoges, 2 Avenue Martin Luther King, 87042, Limoges Cedex, France
- Inserm CIC 1435, CHU Dupuytren, Limoges, France
- Inserm UMR 1092, CHU Dupuytren, Limoges, France
| | - Philippe Vignon
- Réanimation Polyvalente, CHU de Limoges, 2 Avenue Martin Luther King, 87042, Limoges Cedex, France
- Inserm CIC 1435, CHU Dupuytren, Limoges, France
- Inserm UMR 1092, CHU Dupuytren, Limoges, France
| | - Bruno François
- Réanimation Polyvalente, CHU de Limoges, 2 Avenue Martin Luther King, 87042, Limoges Cedex, France.
- Inserm CIC 1435, CHU Dupuytren, Limoges, France.
- Inserm UMR 1092, CHU Dupuytren, Limoges, France.
| |
Collapse
|
160
|
Vrettou CS, Douka E, Perivolioti EP, Vassiliou AG, Sarri A, Giannopoulou V, Trigkidis KK, Jahaj E, Dimopoulou I, Kotanidou A. Accuracy of T2 magnetic resonance assays as point-of-care methods in the intensive care unit. J Hosp Infect 2023; 139:240-248. [PMID: 37392869 DOI: 10.1016/j.jhin.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Novel molecular diagnostic methods are being evaluated in order to expedite pathogen identification in patients with bacteraemia. AIMS To evaluate the feasibility and diagnostic accuracy of the T2 magnetic resonance (T2MR) assays - T2 Bacteria (T2B) and T2 Resistance (T2R) - as point-of-care tests in the intensive care unit compared with blood-culture-based tests. METHODS Prospective cross-sectional study of consecutive patients with suspected bacteraemia. Diagnostic accuracy was evaluated using blood culture as the reference method. FINDINGS In total, 208 cases were included in the study. The mean time from sampling to report was lower for the T2MR assays compared with blood-culture-based methods (P<0.001). The rate of invalid reports was 6.73% for the T2B assay and 9.9% for the T2R assay. For the T2B assay, overall positive percentage agreement (PPA) was 84.6% [95% confidence interval (CI) 71.9-93.1%], negative percentage agreement (NPA) was 64.3% (95% CI 55.4-72.6%), positive predictive value (PPV) was 48.9% (95% CI 42.5-55.3%) and negative predictive value (NPV) was 91.2% (95% CI 84.4-95.2%). Cohen's kappa coefficient was 0.402. For the T2R assay, overall PPA was 80% (95% CI 51.9-95.7%), NPA was 69.2% (95% CI 54.9-81.3%), PPV was 42.9% (95% CI 31.7-54.8%) and NPV was 92.3% (95% CI 81.1-97.1%). Cohen's kappa coefficient was 0.376. CONCLUSION T2MR assays have high NPV for rapid exclusion of bacteraemia, and could potentially assist with antimicrobial stewardship when applied as point-of-care diagnostic tests in the intensive care unit.
Collapse
Affiliation(s)
- C S Vrettou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - E Douka
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - E P Perivolioti
- Department of Clinical Microbiology, Evangelismos Hospital, Athens, Greece
| | - A G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - A Sarri
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - V Giannopoulou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - K K Trigkidis
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - E Jahaj
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - I Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - A Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
161
|
Ohnuma T, Chihara S, Costin B, Treggiari M, Bartz RR, Raghunathan K, Krishnamoorthy V. Epidemiology, Resistance Profiles, and Outcomes of Bloodstream Infections in Community-Onset Sepsis in the United States. Crit Care Med 2023; 51:1148-1158. [PMID: 37276351 DOI: 10.1097/ccm.0000000000005870] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To describe frequency of positive blood cultures, patterns of pathogens' characteristics and their resistance profile in patients with blood cultures drawn due to a presumed diagnosis of community-onset sepsis, and to examine the association between blood culture-positive pathogens and hospital mortality. DESIGN Retrospective cohort study. SETTING Two hundred one U.S. hospitals from 2016 to 2020 using the Premier Healthcare Database. SUBJECTS Adult patients presenting with community-onset sepsis who had blood cultures collected within 2 days of hospital admission. We defined sepsis using the U.S. Centers for Disease Control Adult Sepsis Event Surveillance criteria. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We identified 147,061 patients with community-onset sepsis. The number of blood culture-positive sepsis episodes was 21,167 (14%) and the number of nonblood culture-positive sepsis episodes was 20,326 (14%). Among patients with blood culture-positive sepsis, Gram-negative rods were isolated in 55% of patients, Gram-positive cocci were isolated in 47%. Of those, methicillin-resistant Staphylococcus aureus (MRSA) was 11%, ceftriaxone-resistant Enterobacterales /extended-spectrum β-lactamase was 7%, and carbapenem-resistant Enterobacterales was 1.3%. The crude in-hospital mortality was 17% for culture-negative sepsis, 13% for nonblood culture-positive sepsis, and 17% for blood culture-positive sepsis. In multilevel logistic regression models, compared with culture-negative sepsis, blood culture-positive sepsis (adjusted odds ratio [aOR], 0.89; 95% CI, 0.85-0.94) and nonblood culture-positive sepsis (aOR, 0.82; 95% CI, 0.78-0.87) were associated with lower odds of in-hospital mortality. Acinetobacter species, Pseudomonas aeruginosa , methicillin-sensitive Staphylococcus aureus , and MRSA were associated with higher in-hospital mortality, whereas Escherichia coli , Klebsiella species, Proteus species, and Streptococcus species were associated with lower in-hospital mortality. CONCLUSIONS In patients hospitalized with community-onset sepsis, the prevalence of blood culture-positive sepsis was 14%. Among positive blood culture sepsis resistant organisms were infrequent. Compared with culture-negative sepsis, blood culture-positive sepsis and nonblood culture-positive sepsis were associated with lower in-hospital mortality.
Collapse
Affiliation(s)
- Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Shingo Chihara
- Section of Infectious Diseases, Department of Internal Medicine, Virginia Mason Medical Center, Seattle, WA
| | - Blair Costin
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Miriam Treggiari
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Raquel R Bartz
- Department of Anaesthesia, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, MA
| | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University Medical Center, Durham, NC
- Veterans Affairs Anesthesiology Service Division, Durham VA Medical Center, Durham, NC
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
162
|
Mentasti M, David S, Turton J, Morgan M, Turner L, Westlake J, Jenkins J, Williams C, Rey S, Watkins J, Daniel V, Mitchell S, Forbes G, Wootton M, Jones L. Clonal expansion and rapid characterization of Klebsiella pneumoniae ST1788, an otherwise uncommon strain spreading in Wales, UK. Microb Genom 2023; 9:001104. [PMID: 37668148 PMCID: PMC10569728 DOI: 10.1099/mgen.0.001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
A multidrug-resistant strain of Klebsiella pneumoniae (Kp) sequence type (ST) 1788, an otherwise uncommon ST worldwide, was isolated from 65 patients at 11 hospitals and 11 general practices across South and West Wales, UK, between February 2019 and November 2021. A collection of 97 Kp ST1788 isolates (including 94 from Wales) was analysed to investigate the diversity and spread across Wales and to identify molecular marker(s) to aid development of a strain-specific real-time PCR. Whole genome sequencing (WGS) was performed with Illumina technology and the data were used to perform phylogenetic analyses. Pan-genome analysis of further Kp genome collections was used to identify an ST1788-specific gene target; a real-time PCR was then validated against a panel of 314 strains and 218 broth-enriched screening samples. Low genomic diversity was demonstrated amongst the 94 isolates from Wales. Evidence of spread within and across healthcare facilities was found. A yersiniabactin locus and the KL2 capsular locus were identified in 85/94 (90.4 %) and 94/94 (100 %) genomes respectively; bla SHV-232, bla TEM-1, bla CTX-M-15 and bla OXA-1 were simultaneously carried by 86/94 (91.5 %) isolates; 4/94 (4.3 %) isolates also carried bla OXA-48 carbapenemase. Aminoglycoside and fluoroquinolone resistance markers were found in 94/94 (100 %) and 86/94 (91.5 %) isolates respectively. The ST1788-specific real-time PCR was 100 % sensitive and specific. Our analyses demonstrated recent clonal expansion and spread of Kp ST1788 in the community and across healthcare facilities in South and West Wales with isolates carrying well-defined antimicrobial resistance and virulence markers. An ST1788-specific marker was also identified, enabling rapid and reliable preliminary characterization of isolates by real-time PCR. This study confirms the utility of WGS in investigating novel strains and in aiding proactive implementation of molecular tools to assist infection control specialists.
Collapse
Affiliation(s)
- Massimo Mentasti
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - Jane Turton
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, London, NW9 5HT, UK
| | - Mari Morgan
- Healthcare Associated Infection, Antimicrobial Resistance Prescribing Programme, Public Health Wales Health Protection, Cardiff, CF10 4BZ, UK
| | - Luke Turner
- Bacteriology Department, Public Health Wales Microbiology, Swansea, SA2 8QA, UK
| | - Joseph Westlake
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Jonathan Jenkins
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Catie Williams
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Sara Rey
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Joanne Watkins
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Victoria Daniel
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Shanine Mitchell
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Gavin Forbes
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Lim Jones
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| |
Collapse
|
163
|
August BA, Kale-Pradhan PB, Giuliano C, Johnson LB. Biomarkers in the intensive care setting: A focus on using procalcitonin and C-reactive protein to optimize antimicrobial duration of therapy. Pharmacotherapy 2023; 43:935-949. [PMID: 37300522 DOI: 10.1002/phar.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/12/2023]
Abstract
Managing the critically ill patient with infection is complex, requiring clinicians to synthesize considerable information relating to antimicrobial efficacy and treatment duration. The use of biomarkers may play an important role in identifying variation in treatment response and providing information about treatment efficacy. Though a vast number of biomarkers for clinical application have been described, procalcitonin and C-reactive protein (CRP) are the most thoroughly investigated in the critically ill. However, the presence of heterogeneous populations, variable end points, and incongruent methodology in the literature complicates the use of such biomarkers to guide antimicrobial therapy. This review focuses on an appraisal of evidence for use of procalcitonin and CRP to optimize antimicrobial duration of therapy (DOT) in critically ill patients. Procalcitonin-guided antimicrobial therapy in mixed critically ill populations with varying degrees of sepsis appears to be safe and might assist in reducing antimicrobial DOT. Compared to procalcitonin, fewer studies exist examining the impact of CRP on antimicrobial DOT and clinical outcomes in the critically ill. Procalcitonin and CRP have been insufficiently studied in many key intensive care unit populations, including surgical patients with concomitant trauma, renally insufficient populations, the immunocompromised, and patients with septic shock. We believe the available evidence is not strong enough to warrant routine use of procalcitonin or CRP to guide antimicrobial DOT in critically ill patients with infection. So long as its limitations are recognized, procalcitonin could be considered to tailor antimicrobial DOT on a case-by-case basis in the critically ill patient.
Collapse
Affiliation(s)
- Benjamin A August
- Critical Care, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Detroit, Michigan, USA
| | - Pramodini B Kale-Pradhan
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Detroit, Michigan, USA
- Ascension St. John Hospital, Detroit, Michigan, USA
| | - Christopher Giuliano
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Detroit, Michigan, USA
- Ascension St. John Hospital, Detroit, Michigan, USA
| | - Leonard B Johnson
- Division of Infectious Diseases, Department of Internal Medicine, Infection Prevention and Antimicrobial Stewardship, Ascension St. John Hospital, Detroit, Michigan, USA
- Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
164
|
Skei NV, Nilsen TIL, Knoop ST, Prescott H, Lydersen S, Mohus RM, Brkic A, Liyanarachi KV, Solligård E, Damås JK, Gustad LT. Long-term temporal trends in incidence rate and case fatality of sepsis and COVID-19-related sepsis in Norwegian hospitals, 2008-2021: a nationwide registry study. BMJ Open 2023; 13:e071846. [PMID: 37532480 PMCID: PMC10401253 DOI: 10.1136/bmjopen-2023-071846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVES To estimate temporal trends in incidence rate (IR) and case fatality during a 14-year period from 2008 to 2021, and to assess possible shifts in these trends during the COVID-19 pandemic. SETTING All Norwegian hospitals 2008-2021. PARTICIPANTS 317 705 patients ≥18 year with a sepsis International Classification of Diseases 10th revision code retrieved from The Norwegian Patient Registry. PRIMARY AND SECONDARY MEASURES Annual age-standardised IRs with 95% CIs. Poisson regression was used to estimate changes in IRs across time, and logistic regression was used to estimate ORs for in-hospital death. RESULTS Among 12 619 803 adult hospitalisations, a total of 317 705 (2.5%) hospitalisations in 222 832 (70.0%) unique patients met the sepsis criteria. The overall age-standardised IR of a first sepsis admission was 246/100 000 (95% CI 245 to 247), whereas the age-standardised IR of all sepsis admissions was 352/100 000 (95% CI 351 to 354). In the period 2009-2019, the annual IR for a first sepsis episode was stable (IR ratio (IRR) per year, 0.999; 95% CI 0.994 to 1.004), whereas for recurrent sepsis the IR increased (annual IRR, 1.048; 95% CI 1.037 to 1.059). During the COVID-19 pandemic, the IRR for a first sepsis was 0.877 (95% CI 0.829 to 0.927) in 2020 and 0.929 (95% CI 0.870 to 0.992) in 2021, and for all sepsis it was 0.870 (95% CI 0.810 to 0.935) in 2020 and 0.908 (95% CI 0.840 to 0.980) in 2021, compared with the previous 11-year period. Case fatality among first sepsis admissions declined in the period 2009-2019 (annual OR 0.954 (95% CI 0.950 to 0.958)), whereas case fatality increased during the COVID-19 pandemic in 2020 (OR 1.061 (95% CI 1.001 to 1.124) and in 2021 (OR 1.164 (95% CI 1.098 to 1.233)). CONCLUSION The overall IR of sepsis increased from 2009 to 2019, due to an increasing IR of recurrent sepsis, and indicates that sepsis awareness with updated guidelines and education must continue.
Collapse
Affiliation(s)
- Nina Vibeche Skei
- Department of Anesthesia and Intensive Care, Nord-Trøndelag Hospital Trust, Levanger, Norway
- Institute of Circulation and Medical Imaging, Mid-Norway Centre of Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tom Ivar Lund Nilsen
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siri Tandberg Knoop
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hallie Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- VA Center for Clinical Management Research, HSR&D Center of Innovation, Ann Arbor, Michigan, USA
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Randi Marie Mohus
- Institute of Circulation and Medical Imaging, Mid-Norway Centre of Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Anaesthesia and Intensive Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| | - Alen Brkic
- Research Department, Sørlandet Sykehus HF, Kristiansand, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristin Vardheim Liyanarachi
- Institute of Circulation and Medical Imaging, Mid-Norway Centre of Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infectious Diseases, St. Olav's University Hospital, Trondheim, Norway
| | - Erik Solligård
- Institute of Circulation and Medical Imaging, Mid-Norway Centre of Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Kristian Damås
- Institute of Circulation and Medical Imaging, Mid-Norway Centre of Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infectious Diseases, St. Olav's University Hospital, Trondheim, Norway
- Institute of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lise Tuset Gustad
- Institute of Circulation and Medical Imaging, Mid-Norway Centre of Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medicine and Rehabilitation, Nord-Trondelag Hospital Trust, Levanger, Norway
- Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway
| |
Collapse
|
165
|
Cutuli SL, De Rosa S, Ferrer R, Ruiz-Rodriguez JC, Forfori F, Ronco C, Antonelli M. Endotoxin activity trend and multi-organ dysfunction in critically ill patients with septic shock, who received Polymyxin-B hemadsorption: A multicenter, prospective, observational study. Artif Organs 2023; 47:1361-1370. [PMID: 37767775 DOI: 10.1111/aor.14534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND The baseline endotoxin activity (EAT0) may predict the outcome of critically ill septic patients who receive Polymyxin-B hemadsorption (PMX-HA), however, the clinical implications of specific EA trends remain unknown. METHODS Subgroup analysis of the prospective, multicenter, observational study EUPHAS2. We included 50 critically ill patients with septic shock and EAT0 ≥ 0.6, who received PMX-HA. The primary outcome of the study was the EA and SOFA score progression from T0 to 120 h afterwards (T120). Secondary outcomes included the EA and SOFA score progression in whom had EA at 48 h (EAT48) < 0.6 (EA responders, EA-R) versus who had not (EA non-responders, EA-NR). RESULTS Septic shock was mainly caused by 27 abdominal (54%) and 17 pulmonary (34%) infections, predominantly due to Gram negative bacteria (39 patients, 78%). The SAPS II score was 67.5 [52.8-82.3] and predicted a mortality rate of 75%. Between T0 and T120, the EA decreased (p < 0.001), while the SOFA score and the Inotropic Score (IS) improved (p < 0.001). In comparison with EA-NR (18 patients, 47%), the EA-R group (23 patients, 53%) showed faster IS improvement and lower requirement of continuous renal replacement therapy (CRRT) during the ICU stay. Overall hospital mortality occurred in 18 patients (36%). CONCLUSIONS In critically ill patients with septic shock and EAT0 ≥ 0.6 who received PMX-HA, EA decreased and SOFA score improved over 120 h. In whom high EA resolved within 48 h, IS improvement was faster and CRRT requirement was lower compared with patients with EAT48 ≥ 0.6.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia De Rosa
- International Renal Research Institute of Vicenza, Vicenza, Italy
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, SODIR Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d'Hebron University Hospital, SODIR Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Francesco Forfori
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Vicenza, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
166
|
Forouzani F, Khasti T, Manzouri L, Ravangard S, Shahriarirad R, Koleini M, Ayareh N, Nikbakht G. Resistance pattern of isolated microorganisms from 783 clinical specimen cultures in patients admitted to Yasuj Educational Hospitals, Iran. BMC Microbiol 2023; 23:205. [PMID: 37528350 PMCID: PMC10394882 DOI: 10.1186/s12866-023-02952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Infectious diseases are still one of the leading causes of morbidity and mortality in resource-limited settings. Serious infection caused mostly by gram-negative pathogens causes significant morbidity. According to the Centers for Disease Control and Prevention, antimicrobial resistance kills over 700,000 people worldwide. Antibiotic resistance is on the rise, and as a consequence, serious public health issues are arising. The present study investigated isolated clinical samples from Yasuj teaching hospitals to determine the antimicrobial resistance profile to various antibiotics. MATERIALS AND METHODS Microbial isolates regarding cultures from urine, blood, wound, abdominal tap, throat, stool, cerebrospinal fluid, endotracheal tube, sputum, skin lesion, nasal, and mouth secretion were collected from patients admitted to hospitals affiliated with Yasuj teaching hospitals. Antibiotic susceptibility profiles were determined by using the Kirby-Bauer disc diffusion method. Data were tabulated and analyzed with SPSS version 26.0. RESULTS A total of 783 samples were evaluated in our study, with an average of 30.6 years and 54.5% female patients. Most of the bacterial isolates were gram-negative (64.2%). The majority of cultures were Escherichia coli (49.9%), mainly among urine samples (64.2%). The frequency distribution of norfloxacin antibiotic resistance was more common in internal medicine (66.7%), infectious (63.6%), and emergency wards (58.8%). The frequency distribution of penicillin antibiotic resistance was statistically significant in different wards. All cases of oxacillin were resistant. CONCLUSION Our data showed a high level of antibiotic resistance among bacterial isolates in our center. Considering widespread empirical antibiotic therapy in Iran, the rate of increasing resistance to common antibiotics prescribed for ambulatory and hospitalized patients is concerning. We recommend providing more strict guidelines and policies to control the overuse and overprescription of antimicrobials by health policy-making organizations.
Collapse
Affiliation(s)
- Fatemeh Forouzani
- School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Tahere Khasti
- School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Leila Manzouri
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sara Ravangard
- School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Maryam Koleini
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Ayareh
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gordafarin Nikbakht
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
167
|
Serretiello E, Manente R, Dell’Annunziata F, Folliero V, Iervolino D, Casolaro V, Perrella A, Santoro E, Galdiero M, Capunzo M, Franci G, Boccia G. Antimicrobial Resistance in Pseudomonas aeruginosa before and during the COVID-19 Pandemic. Microorganisms 2023; 11:1918. [PMID: 37630478 PMCID: PMC10458743 DOI: 10.3390/microorganisms11081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a major Gram-negative opportunistic pathogen causing several serious acute and chronic infections in the nosocomial and community settings. PA eradication has become increasingly difficult due to its remarkable ability to evade antibiotics. Therefore, epidemiological studies are needed to limit the infection and aim for the correct treatment. The present retrospective study focused on PA presence among samples collected at the San Giovanni di Dio and Ruggi D'Aragona University Hospital in Salerno, Italy; its resistance profile and relative variations over the eight years were analyzed. Bacterial identification and antibiotic susceptibility tests were performed by VITEK® 2. In the 2015-2019 and 2020-2022 timeframes, respectively, 1739 and 1307 isolates of PA were obtained from respiratory samples, wound swabs, urine cultures, cultural swabs, blood, liquor, catheter cultures, vaginal swabs, and others. During 2015-2019, PA strains exhibited low resistance against amikacin (17.2%), gentamicin (25.2%), and cefepime (28.3%); moderate resistance against ceftazidime (34.4%), imipenem (34.6%), and piperacillin/tazobactam (37.7%); and high resistance against ciprofloxacin (42.4%) and levofloxacin (50.6%). Conversely, during the 2020-2022 era, PA showed 11.7, 21.1, 26.9, 32.6, 33.1, 38.7, and 39.8% resistance to amikacin, tobramycin, cefepime, imipenem, ceftazidime, ciprofloxacin, and piperacillin/tazobactam, respectively. An overall resistance-decreasing trend was observed for imipenem and gentamicin during 2015-2019. Instead, a significant increase in resistance was recorded for cefepime, ceftazidime, and imipenem in the second set of years investigated. Monitoring sentinel germs represents a key factor in optimizing empirical therapy to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Enrica Serretiello
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
| | - Roberta Manente
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
| | - Federica Dell’Annunziata
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Domenico Iervolino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Alessandro Perrella
- Division Emerging Infectious Disease and High Contagiousness, Hospital D Cotugno, 80131 Naples, Italy;
| | - Emanuela Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
| | - Mario Capunzo
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Gianluigi Franci
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Giovanni Boccia
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
- UOC Hospital and Epidemiological Hygiene, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
168
|
Hurley JC. Trends in ICU mortality and underlying risk over three decades among mechanically ventilated patients. A group level analysis of cohorts from infection prevention studies. Ann Intensive Care 2023; 13:62. [PMID: 37432605 DOI: 10.1186/s13613-023-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Has either the underlying risk or the mortality incidence among ICU patients receiving mechanical ventilation (MV) in the literature changed in recent decades? Interpreting ICU mortality trends requires an adjusted analysis accounting for changes in underlying patient risk. METHODS Control and intervention groups from 147 randomized concurrent control trials (RCCT) of various VAP prevention interventions, as listed primarily within 13 Cochrane reviews and 63 observational studies listed primarily within four systematic reviews. Eligible studies were those including ICU patients with > 50% of patients receiving > 24 h of MV with mortality data available. ICU mortality (censored day 21 or before) or late (after day 21) mortality together with group-mean age, and group-mean APACHE II scores were extracted from all groups. These incidences were summarized in five meta-regression models versus publication year being variously adjusted for age, APACHE II scores, type of study intervention and other group level parameters. RESULTS Among 210 studies published between 1985 and 2021, 169 being found in systematic reviews, the increase per decade in mean mortality incidence, group-mean APACHE II scores, and group-mean age, were < 1 percentage point (p = 0.43), 1.83 (95% CI; 0.51-3.15) points, and 3.9 (95% CI; 1.1-6.7) years, respectively. Only in the model with risk adjustment for both group-mean age and group-mean APACHE II score was a significant decline in mortality apparent. In all models, the mortality incidence among concurrent control groups of decontamination studies was paradoxically five percentage points higher than benchmark and showed greater dispersion. CONCLUSION Mortality incidence has changed little over 35 years among ICU infection prevention studies whilst the patient age and underlying disease severity, measured as APACHE II, have both increased. The paradoxically high mortality among concurrent control groups within studies of decontamination methods of infection prevention remains unaccounted for.
Collapse
Affiliation(s)
- James C Hurley
- Melbourne Medical School, University of Melbourne, Melbourne, Australia.
- Division of Internal Medicine, Grampians Health, Ballarat, VIC, Australia.
- Internal Medicine Service, Ballarat Health Services, PO Box 577, Ballarat, 3353, Australia.
| |
Collapse
|
169
|
Byrnes D, Masterson C, Brady J, Horie S, McCarthy SD, Gonzalez H, O’Toole D, Laffey J. Delayed MSC therapy enhances resolution of organized pneumonia induced by antibiotic resistant Klebsiella pneumoniae infection. Front Med (Lausanne) 2023; 10:1132749. [PMID: 37469663 PMCID: PMC10352103 DOI: 10.3389/fmed.2023.1132749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/23/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Mesenchymal stromal cells (MSC) are a promising therapeutic for pneumonia-induced sepsis. Here we sought to determine the efficacy of delayed administration of naïve and activated bone marrow (BM), adipose (AD), and umbilical cord (UC) derived MSCs in organized antibiotic resistant Klebsiella pneumosepsis. Methods Human BM-, AD-, and UC-MSCs were isolated and expanded and used either in the naïve state or following cytokine pre-activation. The effect of MSC tissue source and activation status was assessed first in vitro. Subsequent experiments assessed therapeutic potential as a delayed therapy at 48 h post infection of rodents with Klebsiella pneumoniae, with efficacy assessed at 120 h. Results BM-, AD-, and UC-MSCs accelerated epithelial healing, increased phagocytosis, and reduced ROS-induced epithelial injury in vitro, with AD-MSCs less effective, and naïve MSCs more effective than pre-activated MSCs. Delayed MSC administration in pre-clinical organized Klebsiella pneumosepsis had no effect on physiologic indices, but enhanced resolution of structural lung injury. Delayed therapy with pre-activated MSCs reduced mRNA concentrations of fibrotic factors. Naïve MSC treatment reduced key circulating cell proportions and increased bacterial killing capacity in the lungs whereas pre-activated MSCs enhanced the phagocytic index of pulmonary white cells. Discussion Delayed MSC therapy enhanced resolution of lung injury induced by antibiotic resistant Klebsiella infection and favorably modulated immune cell profile. Overall, AD-MSCs were less effective than either UC- or BM-MSCs, while naïve MSCs had a more favorable effect profile compared to pre-activated MSCs.
Collapse
Affiliation(s)
- Declan Byrnes
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Claire Masterson
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Jack Brady
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Shahd Horie
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Sean D. McCarthy
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Hector Gonzalez
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Daniel O’Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - John Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Hospital Group, Galway, Ireland
| |
Collapse
|
170
|
Popovich KJ, Aureden K, Ham DC, Harris AD, Hessels AJ, Huang SS, Maragakis LL, Milstone AM, Moody J, Yokoe D, Calfee DP. SHEA/IDSA/APIC Practice Recommendation: Strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol 2023; 44:1039-1067. [PMID: 37381690 PMCID: PMC10369222 DOI: 10.1017/ice.2023.102] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/29/2023]
Abstract
Previously published guidelines have provided comprehensive recommendations for detecting and preventing healthcare-associated infections (HAIs). The intent of this document is to highlight practical recommendations in a concise format designed to assist acute-care hospitals in implementing and prioritizing efforts to prevent methicillin-resistant Staphylococcus aureus (MRSA) transmission and infection. This document updates the "Strategies to Prevent Methicillin-Resistant Staphylococcus aureus Transmission and Infection in Acute Care Hospitals" published in 2014.1 This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA). It is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the Association for Professionals in Infection Control and Epidemiology (APIC), the American Hospital Association (AHA), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise.
Collapse
Affiliation(s)
- Kyle J. Popovich
- Department of Internal Medicine, RUSH Medical College, Chicago, Illinois
| | - Kathy Aureden
- Infection Prevention, Advocate Aurora Health, Downers Grove, Illinois
| | - D. Cal Ham
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anthony D. Harris
- Health Care Outcomes Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amanda J. Hessels
- Columbia School of Nursing, New York, New York
- Hackensack Meridian Health, Edison, New Jersey
| | - Susan S. Huang
- Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, California
| | - Lisa L. Maragakis
- Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Aaron M. Milstone
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia Moody
- Infection Prevention, HCA Healthcare, Nashville, Tennessee
| | - Deborah Yokoe
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, California
- Transplant Infectious Diseases, UCSF Medical Center, San Francisco, California
| | - David P. Calfee
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| |
Collapse
|
171
|
Gatti M, Pea F. The expert clinical pharmacological advice program for tailoring on real-time antimicrobial therapies with emerging TDM candidates in special populations: how the ugly duckling turned into a swan. Expert Rev Clin Pharmacol 2023; 16:1035-1051. [PMID: 37874608 DOI: 10.1080/17512433.2023.2274984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION The growing spread of infections caused by multidrug-resistant pathogens makes the need of tailoring antimicrobial therapies by means of a 'patient-centered' approach fundamental. In this scenario, therapeutic drug monitoring (TDM) of emerging antimicrobial candidates may be a valuable approach, but expert interpretation of TDM results should be granted for making them more clinically useful. The MD Clinical Pharmacologist may take over this task since this specialist may couple PK/PD expertise on drugs with a medical background and may provide expert interpretation of TDM results of antimicrobials for tailoring therapy on real-time in each single patient based on specific both drug/pathogen issues and patient issues. AREAS COVERED This article aims to highlight the main key-points and organizational aspects for implementing a successful TDM-based expert clinical pharmacological advice (ECPA) program for tailoring antimicrobial therapies on real-time in different hospitalized patient special populations. EXPERT OPINION TDM-based ECPA programs lead by the MD Clinical Pharmacologist may represent a way forward for maximizing clinical efficacy and for minimizing the risk of resistance developments and/or toxicity of antimicrobials. Stakeholders should be aware of the fact that this innovative approach may be cost-effective.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
172
|
Jeffrey M, Denny KJ, Lipman J, Conway Morris A. Differentiating infection, colonisation, and sterile inflammation in critical illness: the emerging role of host-response profiling. Intensive Care Med 2023; 49:760-771. [PMID: 37344680 DOI: 10.1007/s00134-023-07108-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023]
Abstract
Infection results when a pathogen produces host tissue damage and elicits an immune response. Critically ill patients experience immune activation secondary to both sterile and infectious insults, with overlapping clinical phenotypes and underlying immunological mechanisms. Patients also undergo a shift in microbiota with the emergence of pathogen-dominant microbiomes. Whilst the combination of inflammation and microbial shift has long challenged intensivists in the identification of true infection, the advent of highly sensitive molecular diagnostics has further confounded the diagnostic dilemma as the number of microbial detections increases. Given the key role of the host immune response in the development and definition of infection, profiling the host response offers the potential to help unravel the conundrum of distinguishing colonisation and sterile inflammation from true infection. This narrative review provides an overview of current approaches to distinguishing colonisation from infection using routinely available techniques and proposes matrices to support decision-making in this setting. In searching for new tools to better discriminate these states, the review turns to the understanding of the underlying pathobiology of the host response to infection. It then reviews the techniques available to assess this response in a clinically applicable context. It will cover techniques including profiling of transcriptome, protein expression, and immune functional assays, detailing the current state of knowledge in diagnostics along with the challenges and opportunities. The ultimate infection diagnostic tool will likely combine an assessment of both host immune response and sensitive pathogen detection to improve patient management and facilitate antimicrobial stewardship.
Collapse
Affiliation(s)
- Mark Jeffrey
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, Level 4, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Kerina J Denny
- Department of Intensive Care, Gold Coast University Hospital, Southport, QLD, Australia
- School of Medicine, University of Queensland, Herston, Brisbane, Australia
| | - Jeffrey Lipman
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Nimes University Hospital, University of Montpellier, Nimes, France
| | - Andrew Conway Morris
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Division of Anaesthesia, Department of Medicine, Level 4, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
173
|
Kreitmann L, Jermoumi S, Vasseur M, Chabani M, Nourry E, Richard JC, Wallet F, Garçon P, Kachmar S, Zerbib Y, Van Grunderbeeck N, Vinsonneau C, Duhamel A, Labreuche J, Nseir S. Relationship between COVID-19 and ICU-acquired colonization and infection related to multidrug-resistant bacteria: a prospective multicenter before-after study. Intensive Care Med 2023; 49:796-807. [PMID: 37326645 DOI: 10.1007/s00134-023-07109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Patients presenting the most severe form of coronavirus disease 2019 (COVID-19) pneumonia, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have a prolonged intensive care unit (ICU) stay and are exposed to broad-spectrum antibiotics, but the impact of COVID-19 on antimicrobial resistance is unknown. METHODS Observational prospective before-after study in 7 ICUs in France. All consecutive patients with an ICU stay > 48 h and a confirmed SARS-CoV-2 infection were included prospectively and followed for 28 days. Patients underwent systematic screening for colonization with multidrug-resistant (MDR) bacteria upon admission and every week subsequently. COVID-19 patients were compared to a recent prospective cohort of control patients from the same ICUs. The primary objective was to investigate the association of COVID-19 with the cumulative incidence of a composite outcome including ICU-acquired colonization and/or infection related to MDR bacteria (ICU-MDR-col and ICU-MDR-inf, respectively). RESULTS From February 27th, 2020 to June 2nd, 2021, 367 COVID-19 patients were included, and compared to 680 controls. After adjustment for prespecified baseline confounders, the cumulative incidence of ICU-MDR-col and/or ICU-MDR-inf was not significantly different between groups (adjusted sub-hazard ratio [sHR] 1.39, 95% confidence interval [CI] 0.91-2.09). When considering both outcomes separately, COVID-19 patients had a higher incidence of ICU-MDR-inf than controls (adjusted sHR 2.50, 95% CI 1.90-3.28), but the incidence of ICU-MDR-col was not significantly different between groups (adjusted sHR 1.27, 95% CI 0.85-1.88). CONCLUSION COVID-19 patients had an increased incidence of ICU-MDR-inf compared to controls, but the difference was not significant when considering a composite outcome including ICU-MDR-col and/or ICU-MDR-inf.
Collapse
Affiliation(s)
- Louis Kreitmann
- Médecine Intensive Réanimation, Hôpital R. Salengro, CHU de Lille, Rue E. Laine, 59037, Lille Cedex, France
- Médecine Intensive Réanimation, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437, Lyon Cedex 03, France
| | - Sonia Jermoumi
- Médecine Intensive Réanimation, Hôpital R. Salengro, CHU de Lille, Rue E. Laine, 59037, Lille Cedex, France
| | - Margot Vasseur
- Médecine Intensive Réanimation, Hôpital R. Salengro, CHU de Lille, Rue E. Laine, 59037, Lille Cedex, France
| | - Myriam Chabani
- Médecine Intensive Réanimation, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437, Lyon Cedex 03, France
| | - Emilie Nourry
- Médecine Intensive Réanimation, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437, Lyon Cedex 03, France
| | - Jean-Christophe Richard
- Médecine Intensive Réanimation, Hospices Civils de Lyon, Hôpital de la Croix Rousse, 69004, Lyon, France
| | - Florent Wallet
- Service de Réanimation, Hospices Civils de Lyon, Groupement Hospitalier Sud, 69637, Pierre Bénite, France
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Pierre Garçon
- Réanimation, Grand Hôpital de l'Est Francilien, Site de Marne-la-Vallée, Jossigny, France
| | - Safaâ Kachmar
- Réanimation, Grand Hôpital de l'Est Francilien, Site de Marne-la-Vallée, Jossigny, France
| | - Yoann Zerbib
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | | | | | - Alain Duhamel
- Department of Biostatistics, CHU Lille, 59000, Lille, France
| | | | - Saad Nseir
- Médecine Intensive Réanimation, Hôpital R. Salengro, CHU de Lille, Rue E. Laine, 59037, Lille Cedex, France.
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, 59000, Lille, France.
| |
Collapse
|
174
|
Tsachouridou O, Pilalas D, Nanoudis S, Antoniou A, Bakaimi I, Chrysanthidis T, Markakis K, Kassomenaki A, Mantzana P, Protonotariou E, Skoura L, Metallidis S. Mortality due to Multidrug-Resistant Gram-Negative Bacteremia in an Endemic Region: No Better than a Toss of a Coin. Microorganisms 2023; 11:1711. [PMID: 37512883 PMCID: PMC10383448 DOI: 10.3390/microorganisms11071711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of multidrug-resistant (MDR) bloodstream infections (BSIs) is associated with high morbidity and mortality. Little evidence exists regarding the epidemiology of BSIs and the use of appropriate empirical antimicrobial therapy in endemic regions. Novel diagnostic tests (RDTs) may facilitate and improve patient management. Data were assessed from patients with MDR Gram-negative bacteremia at a university tertiary hospital over a 12-month period. In total, 157 episodes of MDR Gram-negative BSI were included in the study. The overall mortality rate was 50.3%. Rapid molecular diagnostic tests were used in 94% of BSI episodes. In univariate analysis, age (OR 1.05 (95% CI 1.03, 1.08) p < 0.001), Charlson Comorbidity Index (OR 1.51 (95% CI 1.25, 1.83) p < 0.001), procalcitonin ≥ 1(OR 3.67 (CI 95% 1.73, 7.79) p < 0.001), and monotherapy with tigecycline (OR 3.64 (95% CI 1.13, 11.73) p = 0.030) were the only factors associated with increased overall mortality. Surprisingly, time to appropriate antimicrobial treatment had no impact on mortality. MDR pathogen isolation, other than Klebsiella pneumoniae and Acinetobacter baumanii, was associated with decreased mortality (OR 0.35 (95% CI 0.16, 0.79) p = 0.011). In multivariate analysis, the only significant factor for mortality was procalcitonin ≥ 1 (OR 2.84 (95% CI 1.13, 7.11) p = 0.025). In conclusion, in an endemic area, mortality rates in MDR BSI remain notable. High procalcitonin was the only variable that predicted death. The use of rapid diagnostics did not improve mortality rate.
Collapse
Affiliation(s)
- Olga Tsachouridou
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Dimitrios Pilalas
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Sideris Nanoudis
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Athanasios Antoniou
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Isidora Bakaimi
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Theofilos Chrysanthidis
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Konstantinos Markakis
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Angeliki Kassomenaki
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Paraskevi Mantzana
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Efthymia Protonotariou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| | - Symeon Metallidis
- Infectious Diseases Unit, 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece
| |
Collapse
|
175
|
Piantoni A, Houard M, Piga G, Zebian G, Ruffier des Aimes S, Holik B, Wallet F, Rouzé A, Kreitmann L, Loiez C, Labreuche J, Nseir S. Relationship between COVID-19 and ICU-Acquired Bloodstream Infections Related to Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:1105. [PMID: 37508201 PMCID: PMC10376231 DOI: 10.3390/antibiotics12071105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A bloodstream infection (BSI) is a severe ICU-acquired infection. A growing proportion is caused by multidrug-resistant bacteria (MDRB). COVID-19 was reported to be associated with a high rate of secondary infections. However, there is a lack of data on the relationship between COVID-19 and the incidence of MDRB ICU-acquired BSI. The aim of this study was to evaluate the relationship between COVID-19 and ICU-acquired BSI related to MDRB. This retrospective study was conducted in a single-center ICU during a one-year period. All adult patients admitted for more than 48 h were included. The cumulative incidence of ICU-acquired BSI related to MDRB was estimated using the Kalbfleisch and Prentice method. The association of COVID-19 status with the risk of ICU-acquired BSI related to MDRB was assessed using cause-specific Cox's proportional hazard model. Among the 1320 patients included in the analysis, 497 (37.65%) had COVID-19. ICU-acquired BSI related to MDRB occurred in 50 patients (36 COVID patients (7%) and 14 non-COVID patients (1.6%)). Extended-spectrum beta-lactamase Enterobacteriacae (46%) and carbapenem-resistant Acinetobacter baumannii (30%) were the most commonly isolated MDRB. COVID-19 was significantly associated with a higher risk of MDRB ICU-acquired BSI (adjusted cHR 2.65 (1.25 to 5.59) for the whole study period). However, this relationship was only significant for the period starting at day 15 after ICU admission. ICU-acquired BSI related to MDRB was significantly associated with ICU mortality (HR (95%CI) 1.73 (1-3)), although COVID-19 had no significant impact on this association (p het 0.94). COVID-19 is significantly associated with an increased risk of ICU-acquired BSI related to MDRB, mainly during the period starting at day 15 after ICU admission.
Collapse
Affiliation(s)
- Antoine Piantoni
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Marion Houard
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Gaetan Piga
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Ghadi Zebian
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | | | - Bérénice Holik
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Frédéric Wallet
- CHU de Lille, Laboratoire de Bactériologie-Hygiène, Centre de Biologie Pathologie, F-59000 Lille, France
| | - Anahita Rouzé
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
- CNRS, UMR 8576-UGSF, F-59000 Lille, France
- Inserm, U1285, F-59000 Lille, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK
- ICU West, The Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Caroline Loiez
- CHU de Lille, Laboratoire de Bactériologie-Hygiène, Centre de Biologie Pathologie, F-59000 Lille, France
| | - Julien Labreuche
- Department of Biostatistics, CHU de Lille, F-59000 Lille, France
| | - Saad Nseir
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
- CNRS, UMR 8576-UGSF, F-59000 Lille, France
- Inserm, U1285, F-59000 Lille, France
| |
Collapse
|
176
|
Meyer S, Gaïa N, Lazarevic V, Schrenzel J, François B, Barraud O. Could daily changes in respiratory microbiota help predicting early Staphylococcus aureus ventilator-associated pneumonia? Intensive Care Med Exp 2023; 11:34. [PMID: 37349606 DOI: 10.1186/s40635-023-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Affiliation(s)
- Sylvain Meyer
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Nadia Gaïa
- Genomic Research Laboratory and Infectious Diseases Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Laboratory and Infectious Diseases Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory and Infectious Diseases Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Bruno François
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France.
- CHU Limoges, Réanimation Polyvalente CHU Dupuytren, 2 Ave. Martin Luther King, 87042, Limoges Cedex, France.
- CHU Limoges, INSERM, CIC1435, Limoges, France.
| | - Olivier Barraud
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
- Genomic Research Laboratory and Infectious Diseases Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- CHU Limoges, INSERM, CIC1435, Limoges, France
| |
Collapse
|
177
|
Williams PG, Tabah A, Cotta MO, Sandaradura I, Kanji S, Scheetz MH, Imani S, Elhadi M, Luque-Pardos S, Schellack N, Sanches C, Timsit JF, Xie J, Farkas A, Wilks K, Roberts JA. International survey of antibiotic dosing and monitoring in adult intensive care units. Crit Care 2023; 27:241. [PMID: 37331935 PMCID: PMC10278304 DOI: 10.1186/s13054-023-04527-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND In recent years, numerous dosing studies have been conducted to optimize therapeutic antibiotic exposures in patients with serious infections. These studies have led to the inclusion of dose optimization recommendations in international clinical practice guidelines. The last international survey describing dosing, administration and monitoring of commonly prescribed antibiotics for critically ill patients was published in 2015 (ADMIN-ICU 2015). This study aimed to describe the evolution of practice since this time. METHODS A cross-sectional international survey distributed through professional societies and networks was used to obtain information on practices used in the dosing, administration and monitoring of vancomycin, piperacillin/tazobactam, meropenem and aminoglycosides. RESULTS A total of 538 respondents (71% physicians and 29% pharmacists) from 409 hospitals in 45 countries completed the survey. Vancomycin was mostly administered as an intermittent infusion, and loading doses were used by 74% of respondents with 25 mg/kg and 20 mg/kg the most favoured doses for intermittent and continuous infusions, respectively. Piperacillin/tazobactam and meropenem were most frequently administered as an extended infusion (42% and 51%, respectively). Therapeutic drug monitoring was undertaken by 90%, 82%, 43%, and 39% of respondents for vancomycin, aminoglycosides, piperacillin/tazobactam, and meropenem, respectively, and was more frequently performed in high-income countries. Respondents rarely used dosing software to guide therapy in clinical practice and was most frequently used with vancomycin (11%). CONCLUSIONS We observed numerous changes in practice since the ADMIN-ICU 2015 survey was conducted. Beta-lactams are more commonly administered as extended infusions, and therapeutic drug monitoring use has increased, which align with emerging evidence.
Collapse
Affiliation(s)
- Paul G Williams
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia.
- Pharmacy Department, Sunshine Coast University Hospital, Birtinya, QLD, Australia.
| | - Alexis Tabah
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia
- Intensive Care Unit, Redcliffe Hospital, Redcliffe, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Menino Osbert Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Indy Sandaradura
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
- Institute for Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Salmaan Kanji
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc H Scheetz
- Pharmacometric Center of Excellence, Departments of Pharmacy Practice and Pharmacology, College of Pharmacy, Midwestern University, Downers Grove, IL, USA
| | - Sahand Imani
- Nepean Blue Mountains Local Health District, Nepean Hospital, Sydney, NSW, Australia
| | | | - Sònia Luque-Pardos
- Pharmacy Department, Parc de Salut Mar, Barcelona, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- CIBER of Pharmacy, Saint Clare's Infectious Diseases (CIBERINFEC CB21/13/0002) Institute of Health Carlos III, Madrid, Spain
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cristina Sanches
- Campus Centro Oeste Dona Lindu, Federal University of Sao João del Rei, Divinópolis, Minas Gerais, Brasil
| | - Jean-Francois Timsit
- Assistance Publique Hôpitaux de Paris - Bichat hospital Medical and infectious diseases ICU (MI2), 75018, Paris, France
- IAME U 1137 Université Paris-Cité Site Bichat, 75018, Paris, France
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Andras Farkas
- Optimum Dosing Strategies, Bloomingdale, NJ, USA
- Department of Pharmacy, Saint Clare's Health, Denville, NJ, USA
| | - Kathryn Wilks
- Infectious Diseases Department, Sunshine Coast University Hospital, Birtinya, QLD, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
178
|
Viale P, Sandrock CE, Ramirez P, Rossolini GM, Lodise TP. Treatment of critically ill patients with cefiderocol for infections caused by multidrug-resistant pathogens: review of the evidence. Ann Intensive Care 2023; 13:52. [PMID: 37322293 PMCID: PMC10272070 DOI: 10.1186/s13613-023-01146-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Appropriate antibiotic treatment for critically ill patients with serious Gram-negative infections in the intensive care unit is crucial to minimize morbidity and mortality. Several new antibiotics have shown in vitro activity against carbapenem-resistant Enterobacterales (CRE) and difficult-to-treat resistant Pseudomonas aeruginosa. Cefiderocol is the first approved siderophore beta-lactam antibiotic with potent activity against multidrug-resistant, carbapenem-resistant, difficult-to-treat or extensively drug-resistant Gram-negative pathogens, which have limited treatment options. The spectrum of activity of cefiderocol includes drug-resistant strains of Acinetobacter baumannii, P. aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp. and Burkholderia spp. and CRE that produce serine- and/or metallo-carbapenemases. Phase 1 studies established that cefiderocol achieves adequate concentration in the epithelial lining fluid in the lung and requires dosing adjustment for renal function, including patients with augmented renal clearance and continuous renal-replacement therapy (CRRT); no clinically significant drug-drug interactions are expected. The non-inferiority of cefiderocol versus high-dose, extended-infusion meropenem in all-cause mortality (ACM) rates at day 14 was demonstrated in the randomized, double-blind APEKS-NP Phase 3 clinical study in patients with nosocomial pneumonia caused by suspected or confirmed Gram-negative bacteria. Furthermore, the efficacy of cefiderocol was investigated in the randomized, open-label, pathogen-focused, descriptive CREDIBLE-CR Phase 3 clinical study in its target patient population with serious carbapenem-resistant Gram-negative infections, including hospitalized patients with nosocomial pneumonia, bloodstream infection/sepsis, or complicated urinary tract infections. However, a numerically greater ACM rate with cefiderocol compared with BAT led to the inclusion of a warning in US and European prescribing information. Cefiderocol susceptibility results obtained with commercial tests should be carefully evaluated due to current issues regarding their accuracy and reliability. Since its approval, real-world evidence in patients with multidrug-resistant and carbapenem-resistant Gram-negative bacterial infections suggests that cefiderocol can be efficacious in certain critically ill patient groups, such as those requiring mechanical ventilation for COVID-19 pneumonia with subsequently acquired Gram-negative bacterial superinfection, and patients with CRRT and/or extracorporeal membrane oxygenation. In this article, we review the microbiological spectrum, pharmacokinetics/pharmacodynamics, efficacy and safety profiles and real-world evidence for cefiderocol, and look at future considerations for its role in the treatment of critically ill patients with challenging Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Pierluigi Viale
- Infectious Disease Unit, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
- Department of Medical and Surgical Science, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Christian E Sandrock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA.
| | - Paula Ramirez
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
179
|
Dalfino L, Stufano M, Bavaro DF, Diella L, Belati A, Stolfa S, Romanelli F, Ronga L, Di Mussi R, Murgolo F, Loconsole D, Chironna M, Mosca A, Montagna MT, Saracino A, Grasso S. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics (Basel) 2023; 12:1048. [PMID: 37370367 DOI: 10.3390/antibiotics12061048] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Evidence-based, standard antibiotic therapy for ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) is a relevant unmet clinical need in the intensive care unit (ICU). We aimed to evaluate the effectiveness of first-line therapy with old and novel CRAB active antibiotics in monomicrobial VAP caused by CRAB. A prospective, observational study was performed in a mixed non-COVID-19 ICU. The primary outcome measure was clinical failure upon first-line targeted therapy. Features independently influencing failure occurrence were also investigated via Cox proportional multivariable analysis. To account for the imbalance in antibiotic treatment allocation, a propensity score analysis with an inverse probability treatment weighting approach was adopted. Of the 90 enrolled patients, 34 (38%) experienced clinical failure. Compared to patients who experienced a clinical resolution of VAP, those who had clinical failure were of an older age (median age 71 (IQR 64-78) vs. 62 (IQR 52-69) years), and showed greater burden of comorbidities (median Charlson comorbidity index 8 (IQR 6-8) vs. 4 (IQR 2-6)), higher frequency of immunodepression (44% vs. 21%), and greater clinical severity at VAP onset (median SOFA score 10 (IQR 9-11) vs. 9 (IQR 7-11)). Lower rates of use of fast molecular diagnostics for nosocomial pneumonia (8.8% vs. 30.3%) and of timely CRAB active therapy administration (65% vs. 89%), and higher rates of colistin-based targeted therapy (71% vs. 46%) were also observed in patients who failed first-line therapy. Overall, CRAB active iv regimens were colistin-based in 50 patients and cefiderocol-based in 40 patients, both always combined with inhaled colistin. According to the backbone agent of first-line regimens, clinical failure was lower in the cefiderocol group, compared to that in the colistin group (25% vs. 48%, respectively). In multivariable Cox regression analysis, the burden of comorbid conditions independently predicted clinical failure occurrence (Charlson index aHR = 1.21, 95% CI = 1.04-1.42, p = 0.01), while timely targeted antibiotic treatment (aHR = 0.40, 95% CI = 0.19-0.84, p = 0.01) and cefiderocol-based first-line regimens (aHR = 0.38, 95% CI = 0.17-0.85, p = 0.02) strongly reduced failure risk. In patients with VAP caused by CRAB, timely active therapy improves infection outcomes and cefiderocol holds promise as a first-line therapeutic option.
Collapse
Affiliation(s)
- Lidia Dalfino
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Monica Stufano
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Davide Fiore Bavaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Lucia Diella
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Alessandra Belati
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Stefania Stolfa
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Federica Romanelli
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Luigi Ronga
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Rosa Di Mussi
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Francesco Murgolo
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Daniela Loconsole
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Adriana Mosca
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Maria Teresa Montagna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Salvatore Grasso
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| |
Collapse
|
180
|
Abstract
Importance Approximately 20% to 30% of patients admitted to an intensive care unit have sepsis. While fluid therapy typically begins in the emergency department, intravenous fluids in the intensive care unit are an essential component of therapy for sepsis. Observations For patients with sepsis, intravenous fluid can increase cardiac output and blood pressure, maintain or increase intravascular fluid volume, and deliver medications. Fluid therapy can be conceptualized as 4 overlapping phases from early illness through resolution of sepsis: resuscitation (rapid fluid administered to restore perfusion); optimization (the risks and benefits of additional fluids to treat shock and ensure organ perfusion are evaluated); stabilization (fluid therapy is used only when there is a signal of fluid responsiveness); and evacuation (excess fluid accumulated during treatment of critical illness is eliminated). Among 3723 patients with sepsis who received 1 to 2 L of fluid, 3 randomized clinical trials (RCTs) reported that goal-directed therapy administering fluid boluses to attain a central venous pressure of 8 to 12 mm Hg, vasopressors to attain a mean arterial blood pressure of 65 to 90 mm Hg, and red blood cell transfusions or inotropes to attain a central venous oxygen saturation of at least 70% did not decrease mortality compared with unstructured clinical care (24.9% vs 25.4%; P = .68). Among 1563 patients with sepsis and hypotension who received 1 L of fluid, an RCT reported that favoring vasopressor treatment did not improve mortality compared with further fluid administration (14.0% vs 14.9%; P = .61). Another RCT reported that among 1554 patients in the intensive care unit with septic shock treated with at least 1 L of fluid compared with more liberal fluid administration, restricting fluid administration in the absence of severe hypoperfusion did not reduce mortality (42.3% vs 42.1%; P = .96). An RCT of 1000 patients with acute respiratory distress during the evacuation phase reported that limiting fluid administration and administering diuretics improved the number of days alive without mechanical ventilation compared with fluid treatment to attain higher intracardiac pressure (14.6 vs 12.1 days; P < .001), and it reported that hydroxyethyl starch significantly increased the incidence of kidney replacement therapy compared with saline (7.0% vs 5.8%; P = .04), Ringer lactate, or Ringer acetate. Conclusions and Relevance Fluids are an important component of treating patients who are critically ill with sepsis. Although optimal fluid management in patients with sepsis remains uncertain, clinicians should consider the risks and benefits of fluid administration in each phase of critical illness, avoid use of hydroxyethyl starch, and facilitate fluid removal for patients recovering from acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Fernando G Zampieri
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | - Matthew W Semler
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Learning Healthcare, Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
181
|
Alnimr A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect Dis Ther 2023:10.1007/s40121-023-00820-2. [PMID: 37273072 DOI: 10.1007/s40121-023-00820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is a serious intensive care unit (ICU)-related infection in mechanically ventilated patients that is frequent, as more than half of antibiotics prescriptions in ICU are due to VAP. Various risk factors and diagnostic criteria for VAP have been referred to in different settings. The estimated attributable mortality of VAP can go up to 50%, which is higher in cases of antimicrobial-resistant VAP. When the diagnosis of pneumonia in a mechanically ventilated patient is made, initiation of effective antimicrobial therapy must be prompt. Microbiological diagnosis of VAP is required to optimize timely therapy since effective early treatment is fundamental for better outcomes, with controversy continuing regarding optimal sampling and testing. Understanding the role of antimicrobial resistance in the context of VAP is crucial in the era of continuously evolving antimicrobial-resistant clones that represent an urgent threat to global health. This review is focused on the risk factors for antimicrobial resistance in adult VAP and its novel microbiological tools. It aims to summarize the current evidence-based knowledge about the mechanisms of resistance in VAP caused by multidrug-resistant bacteria in clinical settings with focus on Gram-negative pathogens. It highlights the evidence-based antimicrobial management and prevention of drug-resistant VAP. It also addresses emerging concepts related to predictive microbiology in VAP and sheds lights on VAP in the context of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia.
| |
Collapse
|
182
|
Quinn B. Best Practices in Oral Care. Crit Care Nurse 2023; 43:64-67. [PMID: 37257868 PMCID: PMC10443897 DOI: 10.4037/ccn2023507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Topic Assessing functional cognition is a critical need for intensive care unit survivors transitioning to another level of care. Clinical Relevance Up to 62% of patients discharged from an intensive care unit have significant cognitive impairment that is not associated with severity of illness, number of comorbidities, or length of hospital stay. For more than 20 years, researchers have published an array of potentially effective interventions, including case management, patient and informal caregiver education, and home health care services. Purpose To describe the impact of and potential interventions for cognitive decline at intensive care unit discharge and discharge readiness on 30-day readmission rates. Content Covered Assessing the patient’s functional cognition assessment and advocating for appropriate resources are needed to improve patient and clinical outcomes.
Collapse
Affiliation(s)
- Barbara Quinn
- Barbara Quinn is a nurse consultant with 30 years of experience, most recently the Director of Professional Practice and Nursing Excellence at Sutter Health in the Office of the Chief Nurse Officer
| |
Collapse
|
183
|
McMahon A, Conrick-Martin I. Commonly encountered central nervous system infections in the intensive care unit. BJA Educ 2023; 23:212-220. [PMID: 37223692 PMCID: PMC10201400 DOI: 10.1016/j.bjae.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/22/2022] [Accepted: 02/22/2023] [Indexed: 05/25/2023] Open
Affiliation(s)
- A. McMahon
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | |
Collapse
|
184
|
Wang L, Wang Z, Zhu S, Zhu Z, Jin T, Wei J. Numerical investigation of impinging jet ventilation in ICUs: Is thermal stratification a problem? BUILDING SIMULATION 2023; 16:1-13. [PMID: 37359830 PMCID: PMC10172721 DOI: 10.1007/s12273-023-1023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Intensive care units (ICUs) are the high incidence sites of hospital-acquired infections, where impinging jet ventilation (IJV) shows great potential. Thermal stratification of IJV and its effect on contaminants distribution were systematically investigated in this study. By changing the setting of heat source or the air change rates, the main driving force of supply airflow can be transformed between thermal buoyancy and inertial force, which can be quantitatively described by the dimensionless buoyant jet length scale (l m ¯ ). For the investigated air change rates, namely 2 ACH to 12 ACH, l m ¯ varies between 0.20 and 2.80. The thermal buoyancy plays a dominant role in the movement of the horizontally exhaled airflow by the infector under low air change rate, where the temperature gradient is up to 2.45 °C/m. The flow center remains close to the breathing zone of the susceptible ahead, resulting into the highest exposure risk (6.6‰ for 10-µm particles). With higher heat flux of four PC monitors (from 0 W to 125.85 W for each monitor), the temperature gradient in ICU rises from 0.22 °C/m to 1.02 °C/m; however, the average normalized concentration of gaseous contaminants in the occupied zone is reduced from 0.81 to 0.37, because their thermal plumes are also able to carry containments around them to the ceiling-level readily. As the air change rate was increased to 8 ACH (l m ¯ = 1.56 ), high momentum weakened the thermal stratification by reducing the temperature gradient to 0.37 °C/m and exhaled flow readily rose above the breathing zone; the intake fraction of susceptible patient located in front of the infector for 10-µm particles reduces to 0.8‰. This study proved the potential application of IJV in ICUs and provides theoretical guidance for its appropriate design.}.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Refrigeration and Cryogenics/Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
- Center for Balance Architecture, Zhejiang University, Hangzhou, China
| | - Zhiqiang Wang
- The Architectural Design & Research Institute of Zhejiang University Co, Ltd, Hangzhou, China
| | - Sirui Zhu
- The Architectural Design & Research Institute of Zhejiang University Co, Ltd, Hangzhou, China
| | - Zhe Zhu
- Zhejiang Modern Architectural Design and Research Institute Co, Ltd, Hangzhou, China
| | - Tao Jin
- Institute of Refrigeration and Cryogenics/Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics/Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
- Center for Balance Architecture, Zhejiang University, Hangzhou, China
| |
Collapse
|
185
|
Legg A, Carmichael S, Chai MG, Roberts JA, Cotta MO. Beta-Lactam Dose Optimisation in the Intensive Care Unit: Targets, Therapeutic Drug Monitoring and Toxicity. Antibiotics (Basel) 2023; 12:antibiotics12050870. [PMID: 37237773 DOI: 10.3390/antibiotics12050870] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Beta-lactams are an important family of antibiotics used to treat infections and are commonly used in critically ill patients. Optimal use of these drugs in the intensive care unit (ICU) is important because of the serious complications from sepsis. Target beta-lactam antibiotic exposures may be chosen using fundamental principles of beta-lactam activity derived from pre-clinical and clinical studies, although the debate regarding optimal beta-lactam exposure targets is ongoing. Attainment of target exposures in the ICU requires overcoming significant pharmacokinetic (PK) and pharmacodynamic (PD) challenges. For beta-lactam drugs, the use of therapeutic drug monitoring (TDM) to confirm if the desired exposure targets are achieved has shown promise, but further data are required to determine if improvement in infection-related outcomes can be achieved. Additionally, beta-lactam TDM may be useful where a relationship exists between supratherapeutic antibiotic exposure and drug adverse effects. An ideal beta-lactam TDM service should endeavor to efficiently sample and report results in identified at-risk patients in a timely manner. Consensus beta-lactam PK/PD targets associated with optimal patient outcomes are lacking and should be a focus for future research.
Collapse
Affiliation(s)
- Amy Legg
- Menzies School of Health Research, Tiwi, Darwin, NT 0810, Australia
- Herston Infectious Diseases Institute, Herston, Brisbane, QLD 4029, Australia
| | - Sinead Carmichael
- Royal Brisbane and Women's Hospital, Departments of Intensive Care Medicine and Pharmacy, Brisbane, QLD 4029, Australia
| | - Ming G Chai
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| | - Jason A Roberts
- Herston Infectious Diseases Institute, Herston, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women's Hospital, Departments of Intensive Care Medicine and Pharmacy, Brisbane, QLD 4029, Australia
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Menino O Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| |
Collapse
|
186
|
Mokrani D, Chommeloux J, Pineton de Chambrun M, Hékimian G, Luyt CE. Antibiotic stewardship in the ICU: time to shift into overdrive. Ann Intensive Care 2023; 13:39. [PMID: 37148398 PMCID: PMC10163585 DOI: 10.1186/s13613-023-01134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Antibiotic resistance is a major health problem and will be probably one of the leading causes of deaths in the coming years. One of the most effective ways to fight against resistance is to decrease antibiotic consumption. Intensive care units (ICUs) are places where antibiotics are widely prescribed, and where multidrug-resistant pathogens are frequently encountered. However, ICU physicians may have opportunities to decrease antibiotics consumption and to apply antimicrobial stewardship programs. The main measures that may be implemented include refraining from immediate prescription of antibiotics when infection is suspected (except in patients with shock, where immediate administration of antibiotics is essential); limiting empiric broad-spectrum antibiotics (including anti-MRSA antibiotics) in patients without risk factors for multidrug-resistant pathogens; switching to monotherapy instead of combination therapy and narrowing spectrum when culture and susceptibility tests results are available; limiting the use of carbapenems to extended-spectrum beta-lactamase-producing Enterobacteriaceae, and new beta-lactams to difficult-to-treat pathogen (when these news beta-lactams are the only available option); and shortening the duration of antimicrobial treatment, the use of procalcitonin being one tool to attain this goal. Antimicrobial stewardship programs should combine these measures rather than applying a single one. ICUs and ICU physicians should be at the frontline for developing antimicrobial stewardship programs.
Collapse
Affiliation(s)
- David Mokrani
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Juliette Chommeloux
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marc Pineton de Chambrun
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Guillaume Hékimian
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Charles-Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
- Sorbonne Université, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France.
| |
Collapse
|
187
|
Cortegiani A, Antonelli M, Falcone M, Giarratano A, Girardis M, Leone M, Pea F, Stefani S, Viaggi B, Viale P. Rationale and clinical application of antimicrobial stewardship principles in the intensive care unit: a multidisciplinary statement. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2023; 3:11. [PMID: 37386615 PMCID: PMC10245548 DOI: 10.1186/s44158-023-00095-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Antimicrobial resistance represents a major critical issue for the management of the critically ill patients hospitalized in the intensive care unit (ICU), since infections by multidrug-resistant bacteria are characterized by high morbidity and mortality, high rates of treatment failure, and increased healthcare costs worldwide. It is also well known that antimicrobial resistance can emerge as a result of inadequate antimicrobial therapy, in terms of drug selection and/or treatment duration. The application of antimicrobial stewardship principles in ICUs improves the quality of antimicrobial therapy management. However, it needs specific considerations related to the critical setting. METHODS The aim of this consensus document gathering a multidisciplinary panel of experts was to discuss principles of antimicrobial stewardship in ICU and to produce statements that facilitate their clinical application and optimize their effectiveness. The methodology used was a modified nominal group discussion. CONCLUSION The final set of statements underlined the importance of the specific interpretation of antimicrobial stewardship's principles in critically ill patient management, quasi-targeted therapy, the use of rapid diagnostic methods, the personalization of antimicrobial therapies' duration, obtaining microbiological surveillance data, the use of PK/PD targets, and the use of specific indicators in antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy.
- Department of Anaesthesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, 90127, Palermo, Italy.
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Antonino Giarratano
- Department of Surgical, Oncological and Oral Science, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, 90127, Palermo, Italy
| | - Massimo Girardis
- Intensive Care Unit, University Hospital of Modena, Modena, Italy
| | - Marc Leone
- Department of Anaesthesia and Intensive Care Unit, Aix-Marseille University, AP-HM, North Hospital, Marseille, France
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Stefania Stefani
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
- Unità Operativa Complessa (UOC) Laboratory Analysis, University Hospital Policlinico-San Marco, Catania, Italy
| | - Bruno Viaggi
- Department of Anesthesiology, Neuro-Intensive Care Unit, Careggi University Hospital, 50139, Florence, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
188
|
De Corte T, Verhaeghe J, Dhaese S, Van Vooren S, Boelens J, G Verstraete A, Stove V, Ongenae F, De Bus L, Depuydt P, Van Hoecke S, J De Waele J. Pathogen-based target attainment of optimized continuous infusion dosing regimens of piperacillin-tazobactam and meropenem in surgical ICU patients: a prospective single center observational study. Ann Intensive Care 2023; 13:35. [PMID: 37119362 PMCID: PMC10148758 DOI: 10.1186/s13613-023-01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Several studies have indicated that commonly used piperacillin-tazobactam (TZP) and meropenem (MEM) dosing regimens lead to suboptimal plasma concentrations for a range of pharmacokinetic/pharmacodynamic (PK/PD) targets in intensive care unit (ICU) patients. These targets are often based on a hypothetical worst-case scenario, possibly overestimating the percentage of suboptimal concentrations. We aimed to evaluate the pathogen-based clinically relevant target attainment (CRTA) and therapeutic range attainment (TRA) of optimized continuous infusion dosing regimens of TZP and MEM in surgical ICU patients. METHODS A single center prospective observational study was conducted between March 2016 and April 2019. Free plasma concentrations were calculated by correcting total plasma concentrations, determined on remnants of blood gas samples by ultra-performance liquid chromatography with tandem mass spectrometry, for their protein binding. Break points (BP) of identified pathogens were derived from epidemiological cut-off values. CRTA was defined as a corrected measured total serum concentration above the BP and calculated for increasing BP multiplications up to 6 × BP. The upper limit of the therapeutic range was set at 157.2 mg/L for TZP and 45 mg/L for MEM. As a worst-case scenario, a BP of 16 mg/L for TZP and 2 mg/L for MEM was used. RESULTS 781 unique patients were included with 1036 distinctive beta-lactam antimicrobial prescriptions (731 TZP, 305 MEM) for 1003 unique infections/prophylactic regimens (750 TZP, 323 MEM). 2810 samples were available (1892 TZP, 918 MEM). The median corrected plasma concentration for TZP was 86.4 mg/L [IQR 56.2-148] and 16.2 mg/L [10.2-25.5] for MEM. CRTA and TRA was consistently higher for the pathogen-based scenario than for the worst-case scenario, but nonetheless, a substantial proportion of samples did not attain commonly used PK/PD targets. CONCLUSION Despite these pathogen-based data demonstrating that CRTA and TRA is higher than in the often-used theoretical worst-case scenario, a substantial proportion of samples did not attain commonly used PK/PD targets when using optimised continuous infusion dosing regimens. Therefore, more dosing optimization research seems warranted. At the same time, a 'pathogen-based analysis' approach might prove to be more sensible than a worst-case scenario approach when evaluating target attainment and linked clinical outcomes.
Collapse
Affiliation(s)
- Thomas De Corte
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | - Sofie Dhaese
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sarah Van Vooren
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Alain G Verstraete
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Veronique Stove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Liesbet De Bus
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Pieter Depuydt
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Jan J De Waele
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
189
|
Gajic I, Jovicevic M, Popadic V, Trudic A, Kabic J, Kekic D, Ilic A, Klasnja S, Hadnadjev M, Popadic DJ, Andrijevic A, Prokic A, Tomasevic R, Ranin L, Todorovic Z, Zdravkovic M, Opavski N. The emergence of multidrug-resistant bacteria causing healthcare-associated infections in COVID-19 patients - a retrospective multi-centre study. J Hosp Infect 2023; 137:1-7. [PMID: 37121488 PMCID: PMC10140260 DOI: 10.1016/j.jhin.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
INTRODUCTION We evaluated the prevalence, aetiologies and antibiotic resistance patterns of bacterial infections in hospitalized patients with laboratory-confirmed SARS-CoV-2. We also investigated comorbidities, risk factors, and the mortality rate in COVID-19 patients with bacterial infections. METHODS This retrospective observational study evaluated medical records of 7249 randomly selected patients with COVID-19 admitted to three clinical centres between January 1 2021 and February 16, 2022. A total of 6478 COVID-19 patients met the eligibility criteria for analysis. RESULTS The mean age of the patients with SARS-CoV-2 and bacterial infections was 68.6 ± 15.5 years (range: 24 to 94 years). The majority of patients (68.7%) were older than 65 years. The prevalence of bacterial infections among hospitalized COVID-19 patients was 12.9%, most of them being hospital-acquired (11.5%). Bloodstream (37.7%) and respiratory tract infections (25.6%) were the most common bacterial infections. Klebsiella pneumoniae and Acinetobacter baumannii caused 25.2% and 23.6% of all bacterial infections, respectively. Carbapenem-resistance in Enterobacterales, A. baumannii, and Pseudomonas aeruginosa were 72.6%, 93.7%, and 69.1%. Age >60 years and infections caused by ≥3 pathogens were significantly more prevalent among deceased patients compared to survivors (p<0.05). Furthermore, 95% of patients who were intubated developed ventilator-associated pneumonia. The overall in-hospital mortality rate of patients with SARS-CoV-2 and bacterial infections was 51.6%, while 91.7% of patients who required invasive mechanical ventilation died. CONCLUSIONS Our results reveal a striking association between healthcare-associated bacterial infections as an important complication of COVID-19 and fatal outcomes.
Collapse
Affiliation(s)
- I Gajic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia.
| | - M Jovicevic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - V Popadic
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia
| | - A Trudic
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Institute for Pulmonary Diseases of Vojvodina, Institutski put 4, 21204 Sremska Kamenica, Serbia
| | - J Kabic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - D Kekic
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - A Ilic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - S Klasnja
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia
| | - M Hadnadjev
- Institute for Pulmonary Diseases of Vojvodina, Institutski put 4, 21204 Sremska Kamenica, Serbia
| | - D J Popadic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - A Andrijevic
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Institute for Pulmonary Diseases of Vojvodina, Institutski put 4, 21204 Sremska Kamenica, Serbia
| | - A Prokic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - R Tomasevic
- Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
| | - L Ranin
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - Z Todorovic
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - M Zdravkovic
- University Medical Hospital Centre "Bežanijska kosa", Dr Žorža Matea bb, 11070 Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| | - N Opavski
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 1, 11000 Belgrade, Serbia
| |
Collapse
|
190
|
Dudoignon E, Baekgaard J, Leone M, Dépret F. Which trial do we need? Bundle including antibiotic monitoring, rapid antibiotic susceptibility testing and molecular biology in septic shock. Clin Microbiol Infect 2023:S1198-743X(23)00156-8. [PMID: 37037340 DOI: 10.1016/j.cmi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Affiliation(s)
- Emmanuel Dudoignon
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier St Louis-Lariboisière, Department of Anesthesiology and Critical Care and Burn Unit, Paris, France; University of Paris, Paris, France; INI-CRCT Network, Nancy, France; FHU PROMICE, Paris, France.
| | - Josefine Baekgaard
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier St Louis-Lariboisière, Department of Anesthesiology and Critical Care and Burn Unit, Paris, France
| | - Marc Leone
- Assitance Publique - Hôpitaux de Marseille (AP-HM), Department of Anesthesiology and Critical Care, Marseille, France; University of Aix-Marseille
| | - François Dépret
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier St Louis-Lariboisière, Department of Anesthesiology and Critical Care and Burn Unit, Paris, France; University of Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), INSERM UMR-S 942 Mascot, Lariboisière Hospital, Paris, France; INI-CRCT Network, Nancy, France; FHU PROMICE, Paris, France
| |
Collapse
|
191
|
Bergmann F, Gabler C, Nussbaumer-Pröll A, Wölfl-Duchek M, Blaschke A, Radtke C, Zeitlinger M, Jorda A. Early Bacterial Coinfections in Patients Admitted to the ICU With COVID-19 or Influenza: A Retrospective Cohort Study. Crit Care Explor 2023; 5:e0895. [PMID: 37066070 PMCID: PMC10090795 DOI: 10.1097/cce.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Previous findings suggest that bacterial coinfections are less common in ICU patients with COVID-19 than with influenza, but evidence is limited. OBJECTIVES This study aimed to compare the rate of early bacterial coinfections in ICU patients with COVID-19 or influenza. DESIGN SETTING AND PARTICIPANTS Retrospective propensity score matched cohort study. We included patients admitted to ICUs of a single academic center with COVID-19 or influenza (January 2015 to April 2022). MAIN OUTCOMES AND MEASURES The primary outcome was early bacterial coinfection (i.e., positive blood or respiratory culture within 2 d of ICU admission) in the propensity score matched cohort. Key secondary outcomes included frequency of early microbiological testing, antibiotic use, and 30-day all-cause mortality. RESULTS Out of 289 patients with COVID-19 and 39 patients with influenza, 117 (n = 78 vs 39) were included in the matched analysis. In the matched cohort, the rate of early bacterial coinfections was similar between COVID-19 and influenza (18/78 [23%] vs 8/39 [21%]; odds ratio, 1.16; 95% CI, 0.42-3.45; p = 0.82). The frequency of early microbiological testing and antibiotic use was similar between the two groups. Within the overall COVID-19 group, early bacterial coinfections were associated with a statistically significant increase in 30-day all-cause mortality (21/68 [30.9%] vs 40/221 [18.1%]; hazard ratio, 1.84; 95% CI, 1.01-3.32). CONCLUSIONS AND RELEVANCE Our data suggest similar rates of early bacterial coinfections in ICU patients with COVID-19 and influenza. In addition, early bacterial coinfections were significantly associated with an increased 30-day mortality in patients with COVID-19.
Collapse
Affiliation(s)
- Felix Bergmann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Cornelia Gabler
- IT Systems and Communications, Medical University of Vienna, Vienna, Austria
| | | | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna Austria
| | - Amelie Blaschke
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Infectiology and Tropical Medicine, University Clinic of Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
192
|
Bourgault AM, Deb C, Aguirre L, Xie R, Rathbun KP, Sole ML. Microbiome profile informs cleansing and storage practices for reusable feeding tube stylets in critical care. Nutr Clin Pract 2023; 38:411-424. [PMID: 35985807 DOI: 10.1002/ncp.10904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cleansing and storage practices for reusable feeding tube stylets are varied and lack consensus guidelines. Almost 40% of critical care nurses do not cleanse reusable stylets. Our proof-of-concept study aimed to identify potential microbial contamination of stylets before and after cleansing with 70% isopropyl alcohol to establish practice standards. METHODS This prospective, exploratory pilot study sampled reusable feeding tube stylets using three different stylet sample sets. Set 1 included human participant stylets sampled for microbiome profile precleansing, and postcleansing and reinsertion into feeding tubes (n = 4). Sets 2 and 3 included stylets stored at the bedside. Set 2 included precleansed stylets for microbiome profiles (n = 5). Set 3 included precleansed and postcleansed stylets sampled for quantitative cultures (n = 5). Careful handling and storage protocols were used. Microbiome profiling used 16s ribosomal RNA gene amplicon sequencing. RESULTS Bacterial species identified on stylets were primarily common microflora and opportunistic pathogens, including Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas fulva, Cutibacterium acnes, Prevotella melaninogenica, and Lactobacillus paracasei. Microbiological culturing of stylet samples (set 3) did not yield growth for 9/10 samples; Staphylococcus capitis was identified in one postcleansed sample. Mean bacterial species diversity (alpha diversity) decreased following alcohol cleansing (M = 2.54 pre, M = 1.5 post; P = 0.006). CONCLUSION The abundance of several potentially opportunistic pathogens indicated plausible risk for gut contamination secondary to reinsertion of stylets into small-bore feeding tubes. Stylet cleansing with 70% isopropyl alcohol reduced bacterial burden on the stylets, although viability was unknown. Careful cleansing, handling, and storage protocols for reusable stylets are necessary to minimize contamination.
Collapse
Affiliation(s)
- Annette M Bourgault
- Academic Health Science Center, College of Nursing, University of Central Florida, Orlando, Florida, USA
| | - Chirajyoti Deb
- Translational Medicine Research, Translational Research and Specialty Diagnostic Laboratory, Orlando Health, Orlando, Florida
| | - Lillian Aguirre
- Trauma/Burn Critical Care, Orlando Regional Medical Center, a part of Orlando Health, Orlando, Florida
| | - Rui Xie
- Department of Statistics and Data Science, University of Central Florida, Orlando, Florida
| | - Kimberly Paige Rathbun
- Academic Health Science Center, College of Nursing, University of Central Florida, Orlando, Florida, USA
| | - Mary Lou Sole
- Academic Health Science Center, College of Nursing, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
193
|
Zacharakis A, Ackermann K, Hughes C, Lam V, Li L. Combining C-reactive protein and quick sequential organ failure assessment (qSOFA) to improve prognostic accuracy for sepsis and mortality in adult inpatients: A systematic review. Health Sci Rep 2023; 6:e1229. [PMID: 37091364 PMCID: PMC10119489 DOI: 10.1002/hsr2.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Background and Aims Infections are common in hospitals, and if mismanaged can develop into sepsis, a leading cause of death and disability worldwide. This study aimed to examine whether combining C-reactive protein (CRP) with the quick sequential organ failure assessment (qSOFA) improves its accuracy for predicting mortality and sepsis in adult inpatients. Methods PubMed, MEDLINE, EMBASE, Scopus, Web of Science, Science Direct, CINAHL, Open Grey, Grey Literature Report, and the Clinical Trials registry were searched using CRP and qSOFA search terms. Title, abstract, and full-text screening were performed by two independent reviewers using pre-determined eligibility criteria, followed by data extraction and a risk of bias assessment using the Quality Assessment tool for Diagnostic Accuracy Studies 2 (QUADAS-2). Disagreements were settled through discussion and consultation with a third reviewer. Results Four retrospective studies with a total of 2070 patients were included in this review. Adding CRP to qSOFA improved the Area Under the Receiver Operating Characteristic Curve up to 9.7% for predicting mortality and by 14.9% for identifying sepsis. The sensitivity and specificity of the combined score for mortality prediction were available in two studies. CRP improved the sensitivity of qSOFA by 43% and 71% while only decreasing the specificity by 12% and 7%, respectively. A meta-analysis was not performed due to study heterogeneity. Conclusion This comprehensive review provided initial evidence that combining CRP with qSOFA may improve the accuracy of qSOFA alone in identifying sepsis or patients at risk of dying in hospital. The combined tool demonstrated the potential to improve patient outcomes, with implications for low-resource settings given its simplicity and low-cost.
Collapse
Affiliation(s)
- Alexandra Zacharakis
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Khalia Ackermann
- Australian Institute of Health InnovationMacquarie UniversitySydneyNew South WalesAustralia
| | - Clifford Hughes
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Australian Institute of Health InnovationMacquarie UniversitySydneyNew South WalesAustralia
| | - Vincent Lam
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ling Li
- Australian Institute of Health InnovationMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
194
|
Zuercher P, Moser A, Frey MC, Pagani JL, Buetti N, Eggimann P, Daneman N, Fowler R, Que YA, Prazak J. The effect of duration of antimicrobial treatment for bacteremia in critically ill patients on in-hospital mortality - Retrospective double center analysis. J Crit Care 2023; 74:154257. [PMID: 36696827 DOI: 10.1016/j.jcrc.2023.154257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Excessive duration of antibiotic treatment is a major factor for inappropriate antibiotic consumption. Although in some instances shorter antibiotic courses are as efficient as longer ones, no specific recommendations as to the duration of antimicrobial treatment for bloodstream infections currently exist. In the present study, we investigated the effect of antibiotic treatment duration on in-hospital mortality using retrospective data from two cohorts that included patients with bacteremia at two Swiss tertiary Intensive Care Units (ICUs). MATERIALS AND METHODS Overall 8227 consecutive patients requiring ICU admission were screened for bacteremia between 01/2012-12/2013 in Lausanne and between 07/2016-05/2017 in Bern. Patients with an infection known to require prolonged treatment or having single positive blood culture with common contaminant pathogens were excluded. The primary outcome of interest was the time from start of antimicrobial treatment to in-hospital death or hospital discharge, whichever comes first. The predictor of interest was adequate antimicrobial treatment duration, further divided into shorter (≤10 days) and longer (>10 days) durations. A time-dependent Cox model and a cloning approach were used to address immortality bias. The secondary outcomes were the median duration of antimicrobial treatment for patients with bacteremia overall and stratified by underlying infectious syndrome and pathogens in the case of secondary bacteremia. RESULTS Out of the 707 patients with positive blood cultures, 382 were included into the primary analysis. Median duration of antibiotic therapy was 14 days (IQR, 7-20). Most bacteremia (84%) were monomicrobial; 18% of all episodes were primary bacteremia. Respiratory (28%), intra-abdominal (23%) and catheter infections (17%) were the most common sources of secondary bacteremia. Using methods to mitigate the risk of confounding associated with antibiotic treatment durations, shorter versus longer treatment groups showed no differences in in-hospital survival (time-dependent Cox-model: HR 1.5, 95% CI (0.8, 2.7), p = 0.20; Cloning approach: HR 1.0, 95% CI (0.7,1.5) p = 0.83). Sensitivity analyses showed that the interpretation did not change when using a 7 days cut-off. CONCLUSIONS In this restrospective study, we found no evidence for a survival benefit of longer (>10 days) versus shorter treatment course in ICU patients with bacteremia. TRIAL REGISTRATION The study was retrospectively registered on clinicatrials.gov (NCT05236283), 11 February 2022. The respective cantonal ethics commission (KEK Bern # 2021-02302) has approved the study.
Collapse
Affiliation(s)
- Patrick Zuercher
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | - Michael C Frey
- Department of Surgery, Kantonsspital Baden, Baden, Switzerland
| | - Jean-Luc Pagani
- Department of Intensive Care Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Niccolo Buetti
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Eggimann
- Department of Locomotor Apparatus, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Nick Daneman
- Department of Medicine and Critical Care Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Rob Fowler
- Department of Medicine and Critical Care Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Josef Prazak
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
195
|
Effect of an educational intervention on compliance with care bundle items to prevent ventilator-associated pneumonia. Intensive Crit Care Nurs 2023; 75:103342. [PMID: 36464606 DOI: 10.1016/j.iccn.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES We aimed to evaluate the effectiveness of our ventilator-associated pneumonia prevention bundle implemented by education of the nursing staff, and to describe the tendency of knowledge retention. RESEARCH METHODOLOGY A prospective, before-and-after study was performed. The ventilator-associated pneumonia prevention bundle was implemented through a single educational intervention of the nursing staff. The risk of ventilator-associated pneumonia over time was estimated using a Cox proportional cause-specific hazard model. Compliance to preventive measures was assessed at three time-points: before education, at three months and 12 months after education. SETTING A 29-bed mixed medical-surgical intensive care unit. MAIN OUTCOME MEASURES Ventilator-associate pneumonia incidence densities, the risk of ventilator-associated pneumonia, and compliance to preventive measures in the pre-implementation and post-implementation periods. RESULTS We analyzed the data of 251 patients. The incidence density of pneumonia decreased from 29.3/1000 to 15.3/1000 ventilator-days after the implementation of the prevention program. Patients in the post-implementation period had significantly lower risk to develop pneumonia (hazard ratio 0.34, 95 % confidence interval 0.19-0.61, p = 0.001). At 3 months of implementation, a significant improvement was detected to all the individual bundle components. Complete compliance increased from 16.2 % to 62.2 % (p < 0.001). Compliance with bundle components decreased to baseline levels after 12 months of implementation apart from head-of-bed elevation. CONCLUSION This study supports existing evidence that educational interventions improve compliance. The gained knowledge was well translated into clinical practice reflected by the decreasing ventilator-associated pneumonia rate. It may be assumed that a refresher educational session within 12 months after implementation is needed.
Collapse
|
196
|
Schlechte J, Zucoloto AZ, Yu IL, Doig CJ, Dunbar MJ, McCoy KD, McDonald B. Dysbiosis of a microbiota-immune metasystem in critical illness is associated with nosocomial infections. Nat Med 2023; 29:1017-1027. [PMID: 36894652 PMCID: PMC10115642 DOI: 10.1038/s41591-023-02243-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
Critically ill patients in intensive care units experience profound alterations of their gut microbiota that have been linked to a high risk of hospital-acquired (nosocomial) infections and adverse outcomes through unclear mechanisms. Abundant mouse and limited human data suggest that the gut microbiota can contribute to maintenance of systemic immune homeostasis, and that intestinal dysbiosis may lead to defects in immune defense against infections. Here we use integrated systems-level analyses of fecal microbiota dynamics in rectal swabs and single-cell profiling of systemic immune and inflammatory responses in a prospective longitudinal cohort study of critically ill patients to show that the gut microbiota and systemic immunity function as an integrated metasystem, where intestinal dysbiosis is coupled to impaired host defense and increased frequency of nosocomial infections. Longitudinal microbiota analysis by 16s rRNA gene sequencing of rectal swabs and single-cell profiling of blood using mass cytometry revealed that microbiota and immune dynamics during acute critical illness were highly interconnected and dominated by Enterobacteriaceae enrichment, dysregulated myeloid cell responses and amplified systemic inflammation, with a lesser impact on adaptive mechanisms of host defense. Intestinal Enterobacteriaceae enrichment was coupled with impaired innate antimicrobial effector responses, including hypofunctional and immature neutrophils and was associated with an increased risk of infections by various bacterial and fungal pathogens. Collectively, our findings suggest that dysbiosis of an interconnected metasystem between the gut microbiota and systemic immune response may drive impaired host defense and susceptibility to nosocomial infections in critical illness.
Collapse
Affiliation(s)
- Jared Schlechte
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amanda Z Zucoloto
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian-Ling Yu
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher J Doig
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mary J Dunbar
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathy D McCoy
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
197
|
Novy E, Martinière H, Roger C. The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients. Antibiotics (Basel) 2023; 12:antibiotics12040681. [PMID: 37107043 PMCID: PMC10135361 DOI: 10.3390/antibiotics12040681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Beta-lactams (BL) are the first line agents for the antibiotic management of critically ill patients with sepsis or septic shock. BL are hydrophilic antibiotics particularly subject to unpredictable concentrations in the context of critical illness because of pharmacokinetic (PK) and pharmacodynamics (PD) alterations. Thus, during the last decade, the literature focusing on the interest of BL therapeutic drug monitoring (TDM) in the intensive care unit (ICU) setting has been exponential. Moreover, recent guidelines strongly encourage to optimize BL therapy using a PK/PD approach with TDM. Unfortunately, several barriers exist regarding TDM access and interpretation. Consequently, adherence to routine TDM in ICU remains quite low. Lastly, recent clinical studies failed to demonstrate any improvement in mortality with the use of TDM in ICU patients. This review will first aim at explaining the value and complexity of the TDM process when translating it to critically ill patient bedside management, interpretating the results of clinical studies and discussion of the points which need to be addressed before conducting further TDM studies on clinical outcomes. In a second time, this review will focus on the future aspects of TDM integrating toxicodynamics, model informed precision dosing (MIPD) and “at risk” ICU populations that deserve further investigations to demonstrate positive clinical outcomes.
Collapse
Affiliation(s)
- Emmanuel Novy
- Department of Anesthesiology and Critical Care Medicine, Institut Lorrain du Coeur Et Des Vaisseaux, University Hospital of Nancy, Rue du Morvan, 54511 Vandoeuvre-les Nancy, France
- SIMPA, UR 7300, Faculté de Médecine, Maïeutique et Métiers de la Santé, Campus Brabois Santé, University of Lorraine, 54000 Nancy, France
| | - Hugo Martinière
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nimes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 09, 30029 Nimes, France
| | - Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nimes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 09, 30029 Nimes, France
- UR UM 103 IMAGINE, Faculty of Medicine, Montpellier University, 30029 Nimes, France
| |
Collapse
|
198
|
van der Geest R, Fan H, Peñaloza HF, Bain WG, Xiong Z, Kohli N, Larson E, Sullivan MLG, Franks JM, Stolz DB, Ito R, Chen K, Doi Y, Harriff MJ, Lee JS. Phagocytosis is a primary determinant of pulmonary clearance of clinical Klebsiella pneumoniae isolates. Front Cell Infect Microbiol 2023; 13:1150658. [PMID: 37056705 PMCID: PMC10086180 DOI: 10.3389/fcimb.2023.1150658] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Klebsiella pneumoniae (Kp) is a common cause of hospital-acquired pneumonia. Although previous studies have suggested that evasion of phagocytic uptake is a virulence determinant of Kp, few studies have examined phagocytosis sensitivity in clinical Kp isolates. Methods We screened 19 clinical respiratory Kp isolates that were previously assessed for mucoviscosity for their sensitivity to macrophage phagocytic uptake, and evaluated phagocytosis as a functional correlate of in vivo Kp pathogenicity. Results The respiratory Kp isolates displayed heterogeneity in the susceptibility to macrophage phagocytic uptake, with 14 out of 19 Kp isolates displaying relative phagocytosis-sensitivity compared to the reference Kp strain ATCC 43816, and 5 out of 19 Kp isolates displaying relative phagocytosis-resistance. Intratracheal infection with the non-mucoviscous phagocytosis-sensitive isolate S17 resulted in a significantly lower bacterial burden compared to infection with the mucoviscous phagocytosis-resistant isolate W42. In addition, infection with S17 was associated with a reduced inflammatory response, including reduced bronchoalveolar lavage fluid (BAL) polymorphonuclear (PMN) cell count, and reduced BAL TNF, IL-1β, and IL-12p40 levels. Importantly, host control of infection with the phagocytosis-sensitive S17 isolate was impaired in alveolar macrophage (AM)-depleted mice, whereas AM-depletion had no significant impact on host defense against infection with the phagocytosis-resistant W42 isolate. Conclusion Altogether, these findings show that phagocytosis is a primary determinant of pulmonary clearance of clinical Kp isolates.
Collapse
Affiliation(s)
- Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongye Fan
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hernán F. Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - William G. Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Veterans Affairs (VA) Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naina Kohli
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Larson
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryota Ito
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kong Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Japan
| | - Melanie J. Harriff
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health State University, Portland, OR, United States
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
199
|
Mangioni D, Fox V, Chatenoud L, Bolis M, Bottino N, Cariani L, Gentiloni Silverj F, Matinato C, Monti G, Muscatello A, Teri A, Terranova L, Piatti A, Gori A, Grasselli G, Stocchetti N, Alteri C, Bandera A. Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (CRAB) in Mechanically Ventilated COVID-19 Patients and Impact of Infection Control Measures on Reducing CRAB Circulation during the Second Wave of the SARS-CoV-2 Pandemic in Milan, Italy. Microbiol Spectr 2023; 11:e0020923. [PMID: 36976013 PMCID: PMC10100775 DOI: 10.1128/spectrum.00209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
COVID-19 has significantly affected hospital infection prevention and control (IPC) practices, especially in intensive care units (ICUs). This frequently caused dissemination of multidrug-resistant organisms (MDROs), including carbapenem-resistant Acinetobacter baumannii (CRAB). Here, we report the management of a CRAB outbreak in a large ICU COVID-19 hub Hospital in Italy, together with retrospective genotypic analysis by whole-genome sequencing (WGS). Bacterial strains obtained from severe COVID-19 mechanically ventilated patients diagnosed with CRAB infection or colonization between October 2020 and May 2021 were analyzed by WGS to assess antimicrobial resistance and virulence genes, along with mobile genetic elements. Phylogenetic analysis in combination with epidemiological data was used to identify putative transmission chains. CRAB infections and colonization were diagnosed in 14/40 (35%) and 26/40 (65%) cases, respectively, with isolation within 48 h from admission in 7 cases (17.5%). All CRAB strains belonged to Pasteur sequence type 2 (ST2) and 5 different Oxford STs and presented blaOXA-23 gene-carrying Tn2006 transposons. Phylogenetic analysis revealed the existence of four transmission chains inside and among ICUs, circulating mainly between November and January 2021. A tailored IPC strategy was composed of a 5-point bundle, including ICU modules' temporary conversion to CRAB-ICUs and dynamic reopening, with limited impact on ICU admission rate. After its implementation, no CRAB transmission chains were detected. Our study underlies the potentiality of integrating classical epidemiological studies with genomic investigation to identify transmission routes during outbreaks, which could represent a valuable tool to ensure IPC strategies and prevent the spread of MDROs. IMPORTANCE Infection prevention and control (IPC) practices are of paramount importance for preventing the spread of multidrug-resistant organisms (MDROs) in hospitals, especially in the intensive care unit (ICU). Whole-genome sequencing (WGS) is seen as a promising tool for IPC, but its employment is currently still limited. COVID-19 pandemics have posed dramatic challenges in IPC practices, causing worldwide several outbreaks of MDROs, including carbapenem-resistant Acinetobacter baumannii (CRAB). We present the management of a CRAB outbreak in a large ICU COVID-19 hub hospital in Italy using a tailored IPC strategy that allowed us to contain CRAB transmission while preventing ICU closure during a critical pandemic period. The analysis of clinical and epidemiological data coupled with retrospective genotypic analysis by WGS identified different putative transmission chains and confirmed the effectiveness of the IPC strategy implemented. This could be a promising approach for future IPC strategies.
Collapse
Affiliation(s)
- Davide Mangioni
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Valeria Fox
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Matteo Bolis
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Nicola Bottino
- Department of Anaesthesia, Critical Care and Emergency, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Lisa Cariani
- Microbiology Laboratory, Clinical Laboratory, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | | | - Caterina Matinato
- Microbiology Laboratory, Clinical Laboratory, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Gianpaola Monti
- Department of Anesthesia and Intensive Care, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Antonio Teri
- Microbiology Laboratory, Clinical Laboratory, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Leonardo Terranova
- Department of Internal Medicine, Respiratory Unit and Adult Cystic Fibrosis Center, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Piatti
- Medical Direction, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Department of Anaesthesia, Critical Care and Emergency, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Department of Anaesthesia and Critical Care, Neuroscience Intensive Care Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
200
|
Sun S, Wang D, Dong D, Xu L, Xie M, Wang Y, Ni T, Jiang W, Zhu X, Ning N, Sun Q, Zhao S, Li M, Chen P, Yu M, Li J, Chen E, Zhao B, Peng Y, Mao E. Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis. Crit Care 2023; 27:127. [PMID: 36978107 PMCID: PMC10044080 DOI: 10.1186/s13054-023-04412-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The gut microbiome plays a pivotal role in the progression of sepsis. However, the specific mechanism of gut microbiota and its metabolites involved in the process of sepsis remains elusive, which limits its translational application. METHOD In this study, we used a combination of the microbiome and untargeted metabolomics to analyze stool samples from patients with sepsis enrolled at admission, then microbiota, metabolites, and potential signaling pathways that might play important roles in disease outcome were screened out. Finally, the above results were validated by the microbiome and transcriptomics analysis in an animal model of sepsis. RESULTS Patients with sepsis showed destruction of symbiotic flora and elevated abundance of Enterococcus, which were validated in animal experiments. Additionally, patients with a high burden of Bacteroides, especially B. vulgatus, had higher Acute Physiology and Chronic Health Evaluation II scores and longer stays in the intensive care unit. The intestinal transcriptome in CLP rats illustrated that Enterococcus and Bacteroides had divergent profiles of correlation with differentially expressed genes, indicating distinctly different roles for these bacteria in sepsis. Furthermore, patients with sepsis exhibited disturbances in gut amino acid metabolism compared with healthy controls; namely, tryptophan metabolism was tightly related to an altered microbiota and the severity of sepsis. CONCLUSION Alterations in microbial and metabolic features in the gut corresponded with the progression of sepsis. Our findings may help to predict the clinical outcome of patients in the early stage of sepsis and provide a translational basis for exploring new therapies.
Collapse
Affiliation(s)
- Silei Sun
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Lili Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Mengqi Xie
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Tongtian Ni
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Weisong Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Xiaojuan Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Ning Ning
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Qian Sun
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Shuyuan Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Mengjiao Li
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Peili Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Meiling Yu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Jian Li
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Bing Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|