151
|
Sanders SJ, Sahin M, Hostyk J, Thurm A, Jacquemont S, Avillach P, Douard E, Martin CL, Modi ME, Moreno-De-Luca A, Raznahan A, Anticevic A, Dolmetsch R, Feng G, Geschwind DH, Glahn DC, Goldstein DB, Ledbetter DH, Mulle JG, Pasca SP, Samaco R, Sebat J, Pariser A, Lehner T, Gur RE, Bearden CE. A framework for the investigation of rare genetic disorders in neuropsychiatry. Nat Med 2019; 25:1477-1487. [PMID: 31548702 PMCID: PMC8656349 DOI: 10.1038/s41591-019-0581-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
De novo and inherited rare genetic disorders (RGDs) are a major cause of human morbidity, frequently involving neuropsychiatric symptoms. Recent advances in genomic technologies and data sharing have revolutionized the identification and diagnosis of RGDs, presenting an opportunity to elucidate the mechanisms underlying neuropsychiatric disorders by investigating the pathophysiology of high-penetrance genetic risk factors. Here we seek out the best path forward for achieving these goals. We think future research will require consistent approaches across multiple RGDs and developmental stages, involving both the characterization of shared neuropsychiatric dimensions in humans and the identification of neurobiological commonalities in model systems. A coordinated and concerted effort across patients, families, researchers, clinicians and institutions, including rapid and broad sharing of data, is now needed to translate these discoveries into urgently needed therapies.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
| | - Audrey Thurm
- National Institute of Mental Health, Bethesda, MD, USA
| | - Sebastien Jacquemont
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Elise Douard
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Christa L Martin
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Meera E Modi
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Alan Anticevic
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ricardo Dolmetsch
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior and Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
| | - David H Ledbetter
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Rodney Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA, USA
| | - Anne Pariser
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Thomas Lehner
- National Institute of Mental Health, Bethesda, MD, USA
| | - Raquel E Gur
- Department of Psychiatry, Neuropsychiatry Section, and the Lifespan Brain Institute, Perelman School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
152
|
Lieberman JA, Small SA, Girgis RR. Early Detection and Preventive Intervention in Schizophrenia: From Fantasy to Reality. Am J Psychiatry 2019; 176:794-810. [PMID: 31569988 DOI: 10.1176/appi.ajp.2019.19080865] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific progress in understanding human disease can be measured by the effectiveness of its treatment. Antipsychotic drugs have been proven to alleviate acute psychotic symptoms and prevent their recurrence in schizophrenia, but the outcomes of most patients historically have been suboptimal. However, a series of findings in studies of first-episode schizophrenia patients transformed the psychiatric field's thinking about the pathophysiology, course, and potential for disease-modifying effects of treatment. These include the relationship between the duration of untreated psychotic symptoms and outcome; the superior responses of first-episode patients to antipsychotics compared with patients with chronic illness, and the reduction in brain gray matter volume over the course of the illness. Studies of the effectiveness of early detection and intervention models of care have provided encouraging but inconclusive results in limiting the morbidity and modifying the course of illness. Nevertheless, first-episode psychosis studies have established an evidentiary basis for considering a team-based, coordinated specialty approach as the standard of care for treating early psychosis, which has led to their global proliferation. In contrast, while clinical high-risk research has developed an evidence-based care model for decreasing the burden of attenuated symptoms, no treatment has been shown to reduce risk or prevent the transition to syndromal psychosis. Moreover, the current diagnostic criteria for clinical high risk lack adequate specificity for clinical application. What limits our ability to realize the potential of early detection and intervention models of care are the lack of sensitive and specific diagnostic criteria for pre-syndromal schizophrenia, validated biomarkers, and proven therapeutic strategies. Future research requires methodologically rigorous studies in large patient samples, across multiple sites, that ideally are guided by scientifically credible pathophysiological theories for which there is compelling evidence. These caveats notwithstanding, we can reasonably expect future studies to build on the research of the past four decades to advance our knowledge and enable this game-changing model of care to become a reality.
Collapse
Affiliation(s)
- Jeffrey A Lieberman
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| | - Scott A Small
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| | - Ragy R Girgis
- Department of Psychiatry (Lieberman, Small, Girgis) and Department of Neurology (Small), College of Physicians and Surgeons, Columbia University, New York; New York State Psychiatric Institute, New York (Lieberman, Small, Girgis)
| |
Collapse
|
153
|
Zheng C, Huang Y, Bo B, Wei L, Liang Z, Wang Z. Projection from the Anterior Cingulate Cortex to the Lateral Part of Mediodorsal Thalamus Modulates Vicarious Freezing Behavior. Neurosci Bull 2019; 36:217-229. [PMID: 31531804 DOI: 10.1007/s12264-019-00427-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/26/2019] [Indexed: 01/10/2023] Open
Abstract
Emotional contagion, a primary form of empathy, is present in rodents. Among emotional contagion behaviors, social transmission of fear is the most studied. Here, we modified a paradigm used in previous studies to more robustly assess the social transmission of fear in rats that experienced foot-shock. We used resting-state functional magnetic resonance imaging to show that foot-shock experience enhances the regional connectivity of the anterior cingulate cortex (ACC). We found that lesioning the ACC specifically attenuated the vicarious freezing behavior of foot-shock-experienced observer rats. Furthermore, ablation of projections from the ACC to the mediodorsal thalamus (MDL) bilaterally delayed the vicarious freezing responses, and activation of these projections decreased the vicarious freezing responses. Overall, our results demonstrate that, in rats, the ACC modulates vicarious freezing behavior via a projection to the MDL and provide clues to understanding the mechanisms underlying empathic behavior in humans.
Collapse
Affiliation(s)
- Chaowen Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binshi Bo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
154
|
Tu PC, Su TP, Lin WC, Chang WC, Bai YM, Li CT, Lin FH. Reduced synchronized brain activity in schizophrenia during viewing of comedy movies. Sci Rep 2019; 9:12738. [PMID: 31484998 PMCID: PMC6726596 DOI: 10.1038/s41598-019-48957-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/09/2019] [Indexed: 11/24/2022] Open
Abstract
Previous evaluation of brain function in schizophrenia has focused on standard experimental tasks, with cerebral response to natural stimuli less clear. This study employed inter-subject correlation (ISC) analysis to investigate the neural basis of humor processing during free viewing of comedy movies in patients with schizophrenia. We recruited 29 patients diagnosed with schizophrenia and 29 healthy, age- and sex-matched controls. Each participant underwent fMRI scanning during two viewings of three comedy movie clips. The ISC map from each participant pair within each population group and each movie viewing was separately derived. The significance of ISC within a group and between two groups were assessed by bootstrapping. The ISC map from each patient pair were also correlated with the product of Positive and Negative Syndrome Scale (PANSS) rating between the same participant pair in schizophrenia patients. Schizophrenia patients showed significant ISC in bilateral lateraloccipital, bilateral superior frontal, left supramarginal, and right lateralorbiofrontal cortices. Compared with the controls, the schizophrenia group exhibited significantly lower ISC in the left superior temporal sulcus, bilateral supramarginal, and bilateral inferiorparietal cortices. Higher clinical severity (higher total PANSS rating) was associated with lower ISC in the middle frontal and middle temporal regions, and also higher ISC in the visual cortex, inferior temporal gyrus, and anterior cingulate. The findings indicated that patients with schizophrenia are characterized by lower ISC in a frontal parietal network while viewing comedy film clips, which implicated a deficit in the cognitive component of humor processing. The lower synchronization in parts of the frontal parietal network also correlated with symptom severity.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Philosophy of Mind and Cognition, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Fa-Hsuan Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
155
|
Tu PC, Bai YM, Li CT, Chen MH, Lin WC, Chang WC, Su TP. Identification of Common Thalamocortical Dysconnectivity in Four Major Psychiatric Disorders. Schizophr Bull 2019; 45:1143-1151. [PMID: 30500946 PMCID: PMC6737486 DOI: 10.1093/schbul/sby166] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recent genetic and imaging analyses of large datasets suggested that common biological substrates exist across psychiatric diagnoses. Functional connectivity (FC) abnormalities of thalamocortical circuits were consistently found in patients with schizophrenia but have been less studied in other major psychiatric disorders. This study aimed to examine thalamocortical FC in 4 major psychiatric disorders to identify the common connectivity abnormalities across major psychiatric disorders. METHODS This study recruited 100 patients with schizophrenia, 100 patients with bipolar I disorder, 88 patients with bipolar II disorder, 100 patients with major depressive disorder, and 160 healthy controls (HCs). Each participant underwent resting functional magnetic resonance imaging. The thalamus was used to derive FC maps, and group comparisons were made between each patient group and HCs using an independent-sample t test. Conjunction analysis was used to identify the common thalamocortical abnormalities among these 4 psychiatric disorders. RESULTS The 4 groups of patients shared a similar pattern of thalamocortical dysconnectivity characterized by a decrease in thalamocortical FC with the dorsal anterior cingulate, anterior prefrontal cortex and inferior parietal cortex. The groups also showed an increase in FC with the postcentral gyrus, precentral gyrus, superior temporal cortex, and lateral occipital areas. Further network analysis demonstrated that the frontoparietal regions showing hypoconnectivity belonged to the salience network. CONCLUSION Our findings provide FC evidence that supports the common network hypothesis by identifying common thalamocortical dysconnectivities across 4 major psychiatric disorders. The network analysis also supports the cardinal role of salience network abnormalities in major psychiatric disorders.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Philosophy of Mind and Cognition, School of Humanities and Social Sciences, National Yang-Ming University, Taipei, Taiwan,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan,Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan,To whom correspondence should be addressed; Tung-Ping Su, Department of Psychiatry, Cheng-Hsin General Hospital, No.45, Cheng Hsin St., Taipei 112, Taiwan; tel: +886-2-28264400 ext. 3502, fax: +886-2-28742421, e-mail:
| |
Collapse
|
156
|
Cho KIK, Kim M, Yoon YB, Lee J, Lee TY, Kwon JS. Disturbed thalamocortical connectivity in unaffected relatives of schizophrenia patients with a high genetic loading. Aust N Z J Psychiatry 2019; 53:889-895. [PMID: 30722672 DOI: 10.1177/0004867418824020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Alterations in thalamocortical anatomical connectivity, specifically the connection between the orbitofrontal cortex and thalamus, have been frequently reported in schizophrenia and are suggested to contribute to the pathophysiology of schizophrenia. The connectivity of the thalamocortical white matter in unaffected relatives of schizophrenia patients was compared to that of healthy controls. METHODS The unaffected relative group was defined as asymptomatic family members who had at least one first-degree relative with schizophrenia and one or more other affected first- to third-degree relatives. A total of 35 unaffected relatives and 34 healthy controls underwent diffusion-weighted and T1-weighted magnetic resonance imaging to examine the white matter connectivity between the thalamus and orbitofrontal cortex using probabilistic tractography. RESULTS After controlling for age and sex, the unaffected relatives exhibited significantly reduced fractional anisotropy values for the left thalamo-orbitofrontal tract compared to that of healthy controls, F(1, 65) = 6.93, p = 0.011, effect size partial η2 = 0.10. However, there was no association between the Genetic Liability Score and fractional anisotropy in the left thalamo-orbitofrontal tracts. CONCLUSION Our findings in the unaffected relatives of schizophrenia patients, which are in line with the alterations reported in schizophrenia, first-episode psychosis and clinical high risk for psychosis, highlight a possible genetic contribution to the proposed biomarker of altered thalamocortical connectivity.
Collapse
Affiliation(s)
- Kang Ik K Cho
- 1 Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- 2 Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minah Kim
- 3 Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youngwoo Bryan Yoon
- 2 Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junhee Lee
- 3 Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Lee
- 1 Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- 3 Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- 1 Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- 2 Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- 3 Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
157
|
Hamoda HM, Makhlouf AT, Fitzsimmons J, Rathi Y, Makris N, Mesholam-Gately RI, Wojcik JD, Goldstein J, McCarley RW, Seidman LJ, Kubicki M, Shenton ME. Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: a two-tensor tractography study. Brain Imaging Behav 2019; 13:472-481. [PMID: 29667043 DOI: 10.1007/s11682-018-9862-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The "cognitive dysmetria" hypothesis suggests that impairments in cognition and behavior in patients with schizophrenia can be explained by disruptions in the cortico-cerebellar-thalamic-cortical circuit. In this study we examine thalamo-cortical connections in patients with first-episode schizophrenia (FESZ). White matter pathways are investigated that connect the thalamus with three frontal cortex regions including the anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), and lateral oribitofrontal cortex (LOFC). We use a novel method of two-tensor tractography in 26 patients with FESZ compared to 31 healthy controls (HC), who did not differ on age, sex, or education. Dependent measures were fractional anisotropy (FA), Axial Diffusivity (AD), and Radial Diffusivity (RD). Subjects were also assessed using clinical functioning measures including the Global Assessment of Functioning (GAF) Scale, the Global Social Functioning Scale (GF: Social), and the Global Role Functioning Scale (GF: Role). FESZ patients showed decreased FA in the right thalamus-right ACC and right-thalamus-right LOFC pathways compared to healthy controls (HCs). In the right thalamus-right VLPFC tract, we found decreased FA and increased RD in the FESZ group compared to HCs. After correcting for multiple comparisons, reductions in FA in the right thalamus- right ACC and the right thalamus- right VLPC tracts remained significant. Moreover, reductions in FA were significantly associated with lower global functioning scores as well as lower social and role functioning scores. We report the first diffusion tensor imaging study of white matter pathways connecting the thalamus to three frontal regions. Findings of white matter alterations and clinical associations in the thalamic-cortical component of the cortico-cerebellar-thalamic-cortical circuit in patients with FESZ support the cognitive dysmetria hypothesis and further suggest the possible involvement of myelin sheath pathology and axonal membrane disruption in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Hesham M Hamoda
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - A T Makhlouf
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - J Fitzsimmons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R I Mesholam-Gately
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J D Wojcik
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Women's Health, Connors Center for Women's Health & Gender Biology; Departments of Psychiatry and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R W McCarley
- Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - L J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
158
|
Krajcovic B, Fajnerova I, Horacek J, Kelemen E, Kubik S, Svoboda J, Stuchlik A. Neural and neuronal discoordination in schizophrenia: From ensembles through networks to symptoms. Acta Physiol (Oxf) 2019; 226:e13282. [PMID: 31002202 DOI: 10.1111/apha.13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Despite the substantial knowledge accumulated by past research, the exact mechanisms of the pathogenesis of schizophrenia and causal treatments still remain unclear. Deficits of cognition and information processing in schizophrenia are today often viewed as the primary and core symptoms of this devastating disorder. These deficits likely result from disruptions in the coordination of neuronal and neural activity. The aim of this review is to bring together convergent evidence of discoordinated brain circuits in schizophrenia at multiple levels of resolution, ranging from principal cells and interneurons, neuronal ensembles and local circuits, to large-scale brain networks. We show how these aberrations could underlie deficits in cognitive control and other higher order cognitive-behavioural functions. Converging evidence from both animal models and patients with schizophrenia is presented in an effort to gain insight into common features of deficits in the brain information processing in this disorder, marked by disruption of several neurotransmitter and signalling systems and severe behavioural outcomes.
Collapse
Affiliation(s)
- Branislav Krajcovic
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Iveta Fajnerova
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Jiri Horacek
- Third Faculty of Medicine Charles University Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Eduard Kelemen
- Research Programme 1 - Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Stepan Kubik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Svoboda
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ales Stuchlik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
159
|
Sheffield JM, Rogers BP, Blackford JU, Heckers S, Woodward ND. Accelerated Aging of Functional Brain Networks Supporting Cognitive Function in Psychotic Disorders. Biol Psychiatry 2019; 86:240-248. [PMID: 30739807 PMCID: PMC6609513 DOI: 10.1016/j.biopsych.2018.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Across networks, connectivity within the frontoparietal network (FPN) and cingulo-opercular network (CON) exhibits reductions earliest during healthy aging, contributing to cognitive impairment. Individuals with psychotic disorders demonstrate evidence of accelerated aging across multiple biological systems. By leveraging a large sample of patients with psychosis from early to chronic illness stages, this study sought to determine whether the CON and FPN exhibit evidence of accelerated aging in psychotic disorders, confirm associations between network efficiency and cognition, and determine whether reduced network efficiency is observed in early-stage psychosis. METHODS Resting-state functional magnetic resonance imaging and cognitive data were obtained on 240 patients with psychotic disorder and 178 healthy control participants (HCs). Global efficiency, a measure of functional integration, was calculated for the CON, FPN, subcortical network, and visual network. Associations with age and cognition were assessed and compared between groups. RESULTS Consistent with accelerated aging, significant group by age interactions reflected significantly stronger relationships between efficiency and age in patients with psychosis than in HCs for both the CON (psychosis: r = -.37; HC: r = -.16) and FPN (psychosis: r = -.31; HC: r = -.05). Accelerated aging was not observed in either the subcortical or visual network, suggesting specificity for cognitive networks that decline earliest in healthy aging. Replicating prior findings, efficiency of both the CON and FPN correlated with cognitive function across all participants (rs > .11, ps < .031). Furthermore, patients with chronic psychosis (p = .004), but not patients with early psychosis (p = .553), exhibited significantly lower FPN efficiency compared with HCs. CONCLUSIONS Functional integration of higher-order cognitive networks is intact in early psychosis but exhibits evidence of accelerated aging, suggesting the potential for intervention targeting cognition within the early psychosis period.
Collapse
Affiliation(s)
- Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, Tennessee
| | - Jennifer U Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; Tennessee Valley Health Service, Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
160
|
Jacobs GR, Ameis SH, Ji JL, Viviano JD, Dickie EW, Wheeler AL, Stojanovski S, Anticevic A, Voineskos AN. Developmentally divergent sexual dimorphism in the cortico-striatal-thalamic-cortical psychosis risk pathway. Neuropsychopharmacology 2019; 44:1649-1658. [PMID: 31060043 PMCID: PMC6785143 DOI: 10.1038/s41386-019-0408-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/20/2023]
Abstract
Structural and functional cortico-striatal-thalamic-cortical (CSTC) circuit abnormalities have been observed in schizophrenia and the clinical high-risk state. However, this circuit is sexually dimorphic and changes across neurodevelopment. We examined effects of sex and age on structural and functional properties of the CSTC circuit in a large sample of youth with and without psychosis spectrum symptoms (PSS) from the Philadelphia Neurodevelopmental Cohort. T1-weighted and resting-state functional MRI scans were collected on a 3T Siemens scanner, in addition to participants' cognitive and psychopathology data. After quality control, the total sample (aged 11-21) was n = 1095 (males = 485, females = 610). Structural subdivisions of the striatum and thalamus were identified using the MAGeT Brain segmentation tool. Functional seeds were segmented based on brain network connectivity. Interaction effects among PSS group, sex, and age on striatum, thalamus, and subdivision volumes were examined. A similar model was used to test effects on functional connectivity of the CSTC circuit. A sex by PSS group interaction was identified, whereby PSS males had higher volumes and PSS females had lower volumes in striatal and thalamic subdivisions. Reduced functional striato-cortical connectivity was found in PSS youth, primarily driven by males, whereby younger male PSS youth also exhibited thalamo-cortical hypo-connectivity (compared to non-PSS youth), vs. striato-cortical hyper-connectivity in older male PSS youth (compared to non-PSS youth). Youth with PSS demonstrate sex and age-dependent differences in striatal and thalamic subdivision structure and functional connectivity. Further efforts at biomarker discovery and early therapeutic intervention targeting the CSTC circuit in psychosis should consider effects of sex and age.
Collapse
Affiliation(s)
- Grace R. Jacobs
- 0000 0001 2157 2938grid.17063.33Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Stephanie H. Ameis
- 0000 0001 2157 2938grid.17063.33Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0004 0473 9646grid.42327.30Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Jie Lisa Ji
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Joseph D. Viviano
- 0000 0001 2157 2938grid.17063.33Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Erin W. Dickie
- 0000 0001 2157 2938grid.17063.33Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Anne L. Wheeler
- 0000 0004 0473 9646grid.42327.30Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, Canada
| | - Sonja Stojanovski
- 0000 0004 0473 9646grid.42327.30Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, Canada
| | - Alan Anticevic
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Aristotle N. Voineskos
- 0000 0001 2157 2938grid.17063.33Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
161
|
Tomyshev AS, Lebedeva IS, Akhadov TA, Omelchenko MA, Rumyantsev AO, Kaleda VG. Alterations in white matter microstructure and cortical thickness in individuals at ultra-high risk of psychosis: A multimodal tractography and surface-based morphometry study. Psychiatry Res Neuroimaging 2019; 289:26-36. [PMID: 31132567 DOI: 10.1016/j.pscychresns.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/24/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of white matter (WM) and grey matter pathology in subjects at ultra-high risk of psychosis (UHR), although a limited number of diffusion-weighted magnetic resonance imaging (DW-MRI) and surface-based morphometry (SBM) studies have revealed anatomically inconsistent results. The present multimodal study applies tractography and SBM to analyze WM microstructure, whole-brain cortical anatomy, and potential interconnections between WM and grey matter abnormalities in UHR subjects. Thirty young male UHR patients and 30 healthy controls underwent DW-MRI and T1-weighted MRI. Fractional anisotropy; mean, radial, and axial diffusivity in 18 WM tracts; and vertex-based cortical thickness, area, and volume were analyzed. We found increased radial diffusivity in the left anterior thalamic radiation and reduced bilateral thickness across the frontal, temporal, and parietal cortices. No correlations between WM and grey matter abnormalities were identified. These results provide further evidence that WM microstructure abnormalities and cortical anatomical changes occur in the UHR state. Disruption of structural connectivity in the prefrontal-subcortical circuitry, likely caused by myelin pathology, and cortical thickness reduction affecting the networks presumably involved in processing and coordination of external and internal information streams may underlie the widespread deficits in neurocognitive and social functioning that are consistently reported in UHR subjects.
Collapse
Affiliation(s)
- Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia.
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia
| | - Tolibdzhon A Akhadov
- Department of Radiology, Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russia
| | - Maria A Omelchenko
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Andrey O Rumyantsev
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Vasiliy G Kaleda
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| |
Collapse
|
162
|
Murphy M, Stickgold R, Öngür D. Electroencephalogram Microstate Abnormalities in Early-Course Psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:35-44. [PMID: 31543456 DOI: 10.1016/j.bpsc.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Microstates are periods of characteristic electroencephalographic signal topography that are related to activity in brain networks. Previous work has identified abnormal microstate parameters in individuals with psychotic disorders. We combined microstate analysis with sample entropy analysis to study the dynamics of resting-state networks in patients with early-course psychosis. METHODS We used microstate analysis to transform resting-state high-density electroencephalography data from 22 patients with early-course psychosis and 22 healthy control subjects into sequences of characteristic scalp topographies. Sample entropy was used to calculate the complexity of microstate sequences across a range of template lengths. RESULTS Patients and control subjects produced similar sets of 4 microstates that agree with a widely reported canonical set (A, B, C, and D). Relative to control subjects, patients had decreased frequency of microstate A. In control subjects, sample entropy decreased as template length increased, suggesting that sequence of microstate transitions is self-similar across multiple transitions. In patients, sample entropy did not decrease, suggesting a lack of self-similarity in transition sequences. This finding was unrelated to data length or microstate topography. Entropy was elevated in unmedicated patients, and it decreased in patients who were administered medication. We identified patterns of transitions between microstates that were overrepresented in control data compared with representation in patient data. CONCLUSIONS Our findings suggest that patients with early-course psychosis have abnormally chaotic transitions between brain networks. This chaos may reflect an underlying abnormality in allocating neural resources and effecting appropriate transitions between distinct activity states in psychosis.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, Massachusetts.
| | - Robert Stickgold
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, Massachusetts
| |
Collapse
|
163
|
Grent-'t-Jong T, Rivolta D, Gross J, Gajwani R, Lawrie SM, Schwannauer M, Heidegger T, Wibral M, Singer W, Sauer A, Scheller B, Uhlhaas PJ. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia. Brain 2019; 141:2511-2526. [PMID: 30020423 PMCID: PMC6061682 DOI: 10.1093/brain/awy175] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
Hypofunction of the N-methyl-d-aspartate receptor (NMDAR) has been implicated as a possible mechanism underlying cognitive deficits and aberrant neuronal dynamics in schizophrenia. To test this hypothesis, we first administered a sub-anaesthetic dose of S-ketamine (0.006 mg/kg/min) or saline in a single-blind crossover design in 14 participants while magnetoencephalographic data were recorded during a visual task. In addition, magnetoencephalographic data were obtained in a sample of unmedicated first-episode psychosis patients (n = 10) and in patients with chronic schizophrenia (n = 16) to allow for comparisons of neuronal dynamics in clinical populations versus NMDAR hypofunctioning. Magnetoencephalographic data were analysed at source-level in the 1–90 Hz frequency range in occipital and thalamic regions of interest. In addition, directed functional connectivity analysis was performed using Granger causality and feedback and feedforward activity was investigated using a directed asymmetry index. Psychopathology was assessed with the Positive and Negative Syndrome Scale. Acute ketamine administration in healthy volunteers led to similar effects on cognition and psychopathology as observed in first-episode and chronic schizophrenia patients. However, the effects of ketamine on high-frequency oscillations and their connectivity profile were not consistent with these observations. Ketamine increased amplitude and frequency of gamma-power (63–80 Hz) in occipital regions and upregulated low frequency (5–28 Hz) activity. Moreover, ketamine disrupted feedforward and feedback signalling at high and low frequencies leading to hypo- and hyper-connectivity in thalamo-cortical networks. In contrast, first-episode and chronic schizophrenia patients showed a different pattern of magnetoencephalographic activity, characterized by decreased task-induced high-gamma band oscillations and predominantly increased feedforward/feedback-mediated Granger causality connectivity. Accordingly, the current data have implications for theories of cognitive dysfunctions and circuit impairments in the disorder, suggesting that acute NMDAR hypofunction does not recreate alterations in neural oscillations during visual processing observed in schizophrenia.
Collapse
Affiliation(s)
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Ruchika Gajwani
- Institute of Health and Wellbeing, University of Glasgow, UK
| | | | | | - Tonio Heidegger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | | | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Sauer
- MEG-Unit, Goethe University, Frankfurt am Main, Germany.,Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Bertram Scheller
- Department of Anaesthesia, Intensive Care Medicine and Pain Therapy, Goethe University, Frankfurt am Main, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
164
|
Moberget T, Alnæs D, Kaufmann T, Doan NT, Córdova-Palomera A, Norbom LB, Rokicki J, van der Meer D, Andreassen OA, Westlye LT. Cerebellar Gray Matter Volume Is Associated With Cognitive Function and Psychopathology in Adolescence. Biol Psychiatry 2019; 86:65-75. [PMID: 30850129 DOI: 10.1016/j.biopsych.2019.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accumulating evidence supports cerebellar involvement in mental disorders, such as schizophrenia, bipolar disorder, depression, anxiety disorders, and attention-deficit/hyperactivity disorder. However, little is known about the cerebellum in developmental stages of these disorders. In particular, whether cerebellar morphology is associated with early expression of specific symptom domains remains unclear. METHODS We used machine learning to test whether cerebellar morphometric features could robustly predict general cognitive function and psychiatric symptoms in a large and well-characterized developmental community sample centered on adolescence (Philadelphia Neurodevelopmental Cohort, n = 1401, age 8-23 years). RESULTS Cerebellar morphology was associated with both general cognitive function and general psychopathology (mean correlations between predicted and observed values: r = .20 and r = .13; p < .001). Analyses of specific symptom domains revealed significant associations with rates of norm-violating behavior (r = .17; p < .001) as well as psychosis (r = .12; p < .001) and anxiety (r = .09; p = .012) symptoms. In contrast, we observed no associations with attention deficits or depressive, manic, or obsessive-compulsive symptoms. Crucially, across 52 brain-wide anatomical features, cerebellar features emerged as the most important for prediction of general psychopathology, psychotic symptoms, and norm-violating behavior. Moreover, the association between cerebellar volume and psychotic symptoms and, to a lesser extent, norm-violating behavior remained significant when adjusting for several potentially confounding factors. CONCLUSIONS The robust associations with psychiatric symptoms in the age range when these typically emerge highlight the cerebellum as a key brain structure in the development of severe mental disorders.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aldo Córdova-Palomera
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Bonaventure Norbom
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
165
|
Functional Connectivity of Corticostriatal Circuitry and Psychosis-like Experiences in the General Community. Biol Psychiatry 2019; 86:16-24. [PMID: 30952359 DOI: 10.1016/j.biopsych.2019.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Psychotic symptoms are proposed to lie on a continuum, ranging from isolated psychosis-like experiences (PLEs) in nonclinical populations to frank disorder. Here, we investigated the neurobiological correlates of this continuum by examining whether functional connectivity of dorsal corticostriatal circuitry, which is disrupted in psychosis patients and individuals at high risk for psychosis, is associated with the severity of subclinical PLEs. METHODS A community sample of 672 adults with no history of psychiatric or neurological illnesses completed a battery of seven questionnaires spanning various PLE domains. Principal component analysis of 12 subscales taken from seven questionnaires was used to estimate major dimensions of PLEs. Dimension scores from principal component analysis were then correlated with whole-brain voxelwise functional connectivity maps of the dorsal striatum in a subset of 353 participants who completed a resting-state neuroimaging protocol. RESULTS Principal component analysis identified two dimensions of PLEs that accounted for 62.57% of variance in the measures, corresponding to positive (i.e., subthreshold delusions and hallucinations) and negative (i.e., subthreshold social and physical anhedonia) symptom-like PLEs. Reduced functional connectivity between the dorsal striatum and prefrontal and motor cortices correlated with more severe positive PLEs. Increased functional connectivity between the dorsal striatum and motor cortex was associated with more severe negative PLEs. CONCLUSIONS Consistent with past findings in patients and individuals at high risk for psychosis, subthreshold positive symptomatology is associated with reduced functional connectivity of the dorsal circuit. This finding suggests that the connectivity of this circuit tracks the expression of psychotic phenomena across a broad spectrum of severity, extending from the subclinical domain to clinical diagnosis.
Collapse
|
166
|
Karcher NR, O'Brien KJ, Kandala S, Barch DM. Resting-State Functional Connectivity and Psychotic-like Experiences in Childhood: Results From the Adolescent Brain Cognitive Development Study. Biol Psychiatry 2019; 86:7-15. [PMID: 30850130 PMCID: PMC6588441 DOI: 10.1016/j.biopsych.2019.01.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Psychotic-like experiences (PLEs) during childhood are associated with greater risk of developing a psychotic disorder (and other mental disorders), highlighting the importance of identifying neural correlates of childhood PLEs. Three major cortical networks-the cingulo-opercular network (CON), default mode network (DMN), and frontoparietal network-are consistently implicated in psychosis and PLEs in adults. However, it is unclear whether variation in functional connectivity is associated with PLEs in school-aged children. METHODS Using hierarchical linear models, we examined the relationships between childhood PLEs and resting-state functional connectivity of the CON, DMN, and frontoparietal network, as well as the other networks, using an a priori network parcellation, using data from 9- to 11-year-olds (n = 3434) in the ABCD (Adolescent Brain Cognitive Development) study. We examined within-network, between-network, and subcortical connectivity. RESULTS Decreased CON and DMN connectivity, as well as cinguloparietal (CPAR) network connectivity, were associated with greater PLEs, even after accounting for family history of psychotic disorders, internalizing symptoms, and cognitive performance. Decreased DMN connectivity was more strongly associated with increased delusional ideation, whereas decreased CON connectivity was more strongly associated with increased perceptual distortions. Increased CON-cerebellar and decreased CPAR-cerebellar connectivity were also associated with increased PLEs, and CPAR-cerebellar connectivity was more strongly associated with increased perceptual distortions. CONCLUSIONS Consistent with hypotheses about the dimensionality of psychosis, our results provide novel evidence that neural correlates of PLEs, such as reduced functional connectivity of higher-order cognitive networks, are present even in school-aged children. The results provide further validation for continuity of PLEs across the life span.
Collapse
Affiliation(s)
- Nicole R Karcher
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| | - Kathleen J O'Brien
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
167
|
Niznikiewicz MA. Neurobiological approaches to the study of clinical and genetic high risk for developing psychosis. Psychiatry Res 2019; 277:17-22. [PMID: 30926150 DOI: 10.1016/j.psychres.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023]
Abstract
Research on neurobiological impairments in clinical and genetic high risk for developing psychosis individuals (CHR) has identified several brain abnormalities that impact both brain structure and function. The current review will discuss research examining brain abnormalities in clinical and genetic high risk for psychosis using magnetic resonance imaging (MRI) focusing on structural brain abnormalities, diffusion tensor imaging (DTI) focusing on the integrity of white matter tracks, functional MRI focusing on functional brain abnormalities, and EEG and event related potential (ERP) methodologies focusing on indices of cognitive dysfunction in CHR. Studies conducted across these different methodologies sought to identify brain regions and brain processes that would distinguish between those high risk individuals who converted to psychosis versus those who did not. In addition, in some of the studies, the distinction was made between individuals who converted to psychosis, those who did not, and those individuals who remained clinically symptomatic while not converting to psychosis. The brain regions most often identified as abnormal in this subject group were the brain areas often found abnormal in schizophrenia, including frontal and temporal regions. Similarly, several cognitive processes often found to be abnormal in schizophrenia have been also found impaired in CHR.
Collapse
Affiliation(s)
- Margaret A Niznikiewicz
- Harvard Medical School and Veterans Administration Boston, Healthcare System, United States.
| |
Collapse
|
168
|
Prediction, Psychosis, and the Cerebellum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:820-831. [PMID: 31495402 DOI: 10.1016/j.bpsc.2019.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
Abstract
An increasingly influential hypothesis posits that many of the diverse symptoms of psychosis can be viewed as reflecting dysfunctional predictive mechanisms. Indeed, to perceive something is to take a sensory input and make a prediction of the external source of that signal; thus, prediction is perhaps the most fundamental neural computation. Given the ubiquity of prediction, a more challenging problem is to specify the unique predictive role or capability of a particular brain structure. This question is relevant when considering recent claims that one aspect of the predictive deficits observed in psychotic disorders might be related to cerebellar dysfunction, a subcortical structure known to play a critical role in predictive sensorimotor control and perhaps higher-level cognitive function. Here, we review evidence bearing on this question. We first focus on clinical, behavioral, and neuroimaging findings suggesting cerebellar involvement in psychosis and, specifically, schizophrenia. We then review a relatively novel line of research exploring whether computational models of cerebellar motor function can also account for cerebellar involvement in higher-order human cognition, and in particular, language function. We end the review by highlighting some key gaps in these literatures, limitations that currently preclude strong conclusions regarding cerebellar involvement in psychosis.
Collapse
|
169
|
Cao H, McEwen SC, Chung Y, Chén OY, Bearden CE, Addington J, Goodyear B, Cadenhead KS, Mirzakhanian H, Cornblatt BA, Carrión RE, Mathalon DH, McGlashan TH, Perkins DO, Belger A, Seidman LJ, Thermenos H, Tsuang MT, van Erp TGM, Walker EF, Hamann S, Anticevic A, Woods SW, Cannon TD. Altered Brain Activation During Memory Retrieval Precedes and Predicts Conversion to Psychosis in Individuals at Clinical High Risk. Schizophr Bull 2019; 45:924-933. [PMID: 30215784 PMCID: PMC6581134 DOI: 10.1093/schbul/sby122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Memory deficits are a hallmark of psychotic disorders such as schizophrenia. However, whether the neural dysfunction underlying these deficits is present before the onset of illness and potentially predicts conversion to psychosis is unclear. In this study, we investigated brain functional alterations during memory processing in a sample of 155 individuals at clinical high risk (including 18 subjects who later converted to full psychosis) and 108 healthy controls drawn from the second phase of the North American Prodrome Longitudinal Study (NAPLS-2). All participants underwent functional magnetic resonance imaging with a paired-associate memory paradigm at the point of recruitment and were clinically followed up for approximately 2 years. We found that at baseline, subjects at high risk showed significantly higher activation during memory retrieval in the prefrontal, parietal, and bilateral temporal cortices (PFWE < .035). This effect was more pronounced in converters than nonconverters and was particularly manifested in unmedicated subjects (P < .001). The hyperactivation was significantly correlated with retrieval reaction time during scan in converters (P = .009) but not in nonconverters and controls, suggesting an exaggerated retrieval effort. These findings suggest that hyperactivation during memory retrieval may mark processes associated with conversion to psychosis, and such measures have potential as biomarkers for psychosis prediction.
Collapse
Affiliation(s)
- Hengyi Cao
- Department of Psychology, Yale University, New Haven, CT
| | - Sarah C McEwen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT
| | - Oliver Y Chén
- Department of Psychology, Yale University, New Haven, CT
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Bradley Goodyear
- Department of Psychiatry, University of Calgary, Calgary, Canada,Department of Radiology, University of Calgary, Calgary, Canada,Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
| | | | | | | | - Ricardo E Carrión
- Department of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | | | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Heidi Thermenos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, San Diego, CA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA
| | | | | | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT,Department of Psychiatry, Yale University, New Haven, CT,To whom correspondence should be addressed; Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, US; tel: +1-2034361545, e-mail:
| |
Collapse
|
170
|
Garibotto V, Wissmeyer M, Giavri Z, Ratib O, Picard F. Nicotinic Acetylcholine Receptor Density in the “Higher-Order” Thalamus Projecting to the Prefrontal Cortex in Humans: a PET Study. Mol Imaging Biol 2019; 22:417-424. [DOI: 10.1007/s11307-019-01377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
171
|
Increased Thalamocortical Connectivity in Schizophrenia Correlates With Sleep Spindle Deficits: Evidence for a Common Pathophysiology. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:706-714. [PMID: 31262708 DOI: 10.1016/j.bpsc.2019.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Converging evidence implicates abnormal thalamocortical interactions in the pathophysiology of schizophrenia. This evidence includes consistent findings of increased resting-state functional connectivity of the thalamus with somatosensory and motor cortex during wake and reduced spindle activity during sleep. We hypothesized that these abnormalities would be correlated, reflecting a common mechanism: reduced inhibition of thalamocortical neurons by the thalamic reticular nucleus (TRN). The TRN is the major inhibitory nucleus of the thalamus and is abnormal in schizophrenia. Reduced TRN inhibition would be expected to lead to increased and less filtered thalamic relay of sensory and motor information to the cortex during wake and reduced burst firing necessary for spindle initiation during sleep. METHODS Overnight polysomnography and resting-state functional connectivity magnetic resonance imaging were performed in 26 outpatients with schizophrenia and 30 demographically matched healthy individuals. We examined the relations of sleep spindle density during stage 2 non-rapid eye movement sleep with connectivity of the thalamus to the cortex during wakeful rest. RESULTS As in prior studies, patients with schizophrenia exhibited increased functional connectivity of the thalamus with bilateral somatosensory and motor cortex and reduced sleep spindle density. Spindle density inversely correlated with thalamocortical connectivity, including in somotosensory and motor cortex, regardless of diagnosis. CONCLUSIONS These findings link two biomarkers of schizophrenia-the sleep spindle density deficit and abnormally increased thalamocortical functional connectivity-and point to deficient TRN inhibition as a plausible mechanism. If TRN-mediated thalamocortical dysfunction increases risk for schizophrenia and contributes to its manifestations, understanding its mechanism could guide the development of targeted interventions.
Collapse
|
172
|
Addington J, Farris M, Stowkowy J, Santesteban-Echarri O, Metzak P, Kalathil MS. Predictors of Transition to Psychosis in Individuals at Clinical High Risk. Curr Psychiatry Rep 2019; 21:39. [PMID: 31037392 DOI: 10.1007/s11920-019-1027-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Current research is examining predictors of the transition to psychosis in youth who are at clinical high risk based on attenuated psychotic symptoms (APS). Determining predictors of the development of psychosis is important for an improved understanding of mechanisms as well as the development of preventative strategies. The purpose is to review the most recent literature identifying predictors of the transition to psychosis in those who are already assessed as being at risk. RECENT FINDINGS Multidomain models, in particular, integrated models of symptoms, social functioning, and cognition variables, achieve better predictive performance than individual factors. There are many methodological issues; however, several solutions have now been described in the literature. For youth who already have APS, predicting who may go on to later develop psychosis is possible. Several studies are underway in large consortiums that may overcome some of the methodological concerns and develop improved means of prediction.
Collapse
Affiliation(s)
- Jean Addington
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.
| | - Megan Farris
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline Stowkowy
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Olga Santesteban-Echarri
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Paul Metzak
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Mohammed Shakeel Kalathil
- Hotchkiss Brain Institute, Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
173
|
Ramsay IS. An Activation Likelihood Estimate Meta-analysis of Thalamocortical Dysconnectivity in Psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:859-869. [PMID: 31202821 DOI: 10.1016/j.bpsc.2019.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 04/13/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Thalamocortical dysconnectivity is hypothesized to underlie the pathophysiology of psychotic disorders, including schizophrenia and bipolar disorder, and individuals at clinical high risk. Numerous studies have examined connectivity networks seeding from the thalamus during rest, revealing a pattern of thalamo-fronto-cerebellar hypoconnectivity and thalamosensory hyperconnectivity. However, given variability in these networks, as well as their relationships with clinical and cognitive symptoms, thalamocortical connectivity's status as a biomarker and treatment target for psychotic disorders remains unclear. METHODS A literature search was performed to identify thalamic seed-based connectivity studies conducted in patients with psychotic disorders. Activation likelihood estimate analysis examined the reported coordinates for hypoconnectivity (healthy control participants > patients with psychosis) and hyperconnectivity (patients with psychosis > healthy control participants). The relationship between hypoconnectivity and hyperconnectivity, as well as their relationships with clinical and cognitive measures, was meta-analyzed. RESULTS Each activation likelihood estimate included 20 experiments (from 17 publications). Thalamocortical hypoconnectivity was observed in middle frontal, cingulate, and thalamic regions, while hyperconnectivity was observed in motor, somatosensory, temporal, occipital, and insular cortical regions. Meta-analysis of the studies reporting correlations between hypo- and hyperconnectivity showed a strong negative relationship. Meta-analysis of studies reporting correlations between hyperconnectivity and symptoms showed small but significant positive relationships. CONCLUSIONS Activation likelihood estimates of thalamocortical hypoconnectivity revealed a network of prefrontal and thalamic regions, while hyperconnections identified sensory areas. The strong negative relationship between these thalamocortical deflections suggests that they arrive from a common mechanism and may account for aspects of psychosis. These findings identify reliable thalamocortical networks that may guide future studies and serve as crucial treatment targets for psychotic disorders.
Collapse
Affiliation(s)
- Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
174
|
Hua J, Blair NIS, Paez A, Choe A, Barber AD, Brandt A, Lim IAL, Xu F, Kamath V, Pekar JJ, van Zijl PCM, Ross CA, Margolis RL. Altered functional connectivity between sub-regions in the thalamus and cortex in schizophrenia patients measured by resting state BOLD fMRI at 7T. Schizophr Res 2019; 206:370-377. [PMID: 30409697 PMCID: PMC6500777 DOI: 10.1016/j.schres.2018.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
The thalamus is a small brain structure that relays neuronal signals between subcortical and cortical regions. Abnormal thalamocortical connectivity in schizophrenia has been reported in previous studies using blood-oxygenation-level-dependent (BOLD) functional MRI (fMRI) performed at 3T. However, anatomically the thalamus is not a single entity, but is subdivided into multiple distinct nuclei with different connections to various cortical regions. We sought to determine the potential benefit of using the enhanced sensitivity of BOLD fMRI at ultra-high magnetic field (7T) in exploring thalamo-cortical connectivity in schizophrenia based on subregions in the thalamus. Seeds placed in thalamic subregions of 14 patients and 14 matched controls were used to calculate whole-brain functional connectivity. Our results demonstrate impaired thalamic connectivity to the prefrontal cortex and the cerebellum, but enhanced thalamic connectivity to the motor/sensory cortex in schizophrenia. This altered functional connectivity significantly correlated with disease duration in the patients. Remarkably, comparable effect sizes observed in previous 3T studies were detected in the current 7T study with a heterogeneous and much smaller cohort, providing evidence that ultra-high field fMRI may be a powerful tool for measuring functional connectivity abnormalities in schizophrenia. Further investigation with a larger cohort is merited to validate the current findings.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicholas I S Blair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ann Choe
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Anita D Barber
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Allison Brandt
- Department of Psychiatry and Behavioral Sciences and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Issel Anne L Lim
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Department of Psychiatry and Behavioral Sciences and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
175
|
Wertz CJ, Hanlon FM, Shaff NA, Dodd AB, Bustillo J, Stromberg SF, Lin DS, Abrams S, Yeo RA, Liu J, Calhoun V, Mayer AR. Disconnected and Hyperactive: A Replication of Sensorimotor Cortex Abnormalities in Patients With Schizophrenia During Proactive Response Inhibition. Schizophr Bull 2019; 45:552-561. [PMID: 29939338 PMCID: PMC6483571 DOI: 10.1093/schbul/sby086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inhibitory failure represents a core dysfunction in patients with schizophrenia (SP), which has predominantly been tested in the literature using reactive (ie, altering behavior after a stimulus) rather than proactive (ie, purposefully changing behavior before a stimulus) response inhibition tasks. The current study replicates/extends our previous findings of SP exhibiting sensorimotor cortex (SMC) hyperactivity and connectivity abnormalities in independent samples of patients and controls. Specifically, 49 clinically well-characterized SP and 54 matched healthy controls (HC) performed a proactive response inhibition task while undergoing functional magnetic resonance imaging and resting-state data collection. Results indicated that the majority of SP (84%) and HC (88%) successfully inhibited all overt motor responses following a cue, eliminating behavioral confounds frequently present in this population. Observations of left SMC hyperactivity during proactive response inhibition, reduced cortical connectivity with left SMC, and increased connectivity between left SMC and ventrolateral thalamus were replicated for SP relative to HC in the current study. Similarly, negative symptoms (eg, motor retardation) were again associated with SMC functional and connectivity abnormalities. In contrast, findings of a negative blood oxygenation level-dependent response in the SMC of HC did not replicate. Collectively, current and previous findings suggest that SMC connectivity abnormalities may be more robust relative to evoked hemodynamic signals during proactive response inhibition. In addition, there is strong support that these SMC abnormalities are a key component of SP pathology, along with dysfunction within other sensory cortices, and may be associated with certain clinical deficits such as negative symptoms.
Collapse
Affiliation(s)
- Christopher J Wertz
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Shannon F Stromberg
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Denise S Lin
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Swala Abrams
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM
| | - Ronald A Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM
| | - Jingyu Liu
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Vince Calhoun
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM,Department of Engineering, University of New Mexico, Albuquerque, NM
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM,Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM,Department of Psychology, University of New Mexico, Albuquerque, NM,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM,To whom correspondence should be addressed; The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Boulevard NE, Albuquerque, NM 87106, US; tel: 505-272-0769, fax: 505-272-8002, e-mail:
| |
Collapse
|
176
|
Moussa-Tooks AB, Kim DJ, Bartolomeo LA, Purcell JR, Bolbecker AR, Newman SD, O’Donnell BF, Hetrick WP. Impaired Effective Connectivity During a Cerebellar-Mediated Sensorimotor Synchronization Task in Schizophrenia. Schizophr Bull 2019; 45:531-541. [PMID: 29800417 PMCID: PMC6483568 DOI: 10.1093/schbul/sby064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prominent conceptual models characterize schizophrenia as a dysconnectivity syndrome, with recent research focusing on the contributions of the cerebellum in this framework. The present study examined the role of the cerebellum and its effective connectivity to the cerebrum during sensorimotor synchronization in schizophrenia. Specifically, the role of the cerebellum in temporally coordinating cerebral motor activity was examined through path analysis. Thirty-one individuals diagnosed with schizophrenia and 40 healthy controls completed a finger-tapping fMRI task including tone-paced synchronization and self-paced continuation tapping at a 500 ms intertap interval (ITI). Behavioral data revealed shorter and more variable ITIs during self-paced continuation, greater clock (vs motor) variance, and greater force of tapping in the schizophrenia group. In a whole-brain analysis, groups showed robust activation of the cerebellum during self-paced continuation but not during tone-paced synchronization. However, effective connectivity analysis revealed decreased connectivity in individuals with schizophrenia between the cerebellum and primary motor cortex but increased connectivity between cerebellum and thalamus during self-paced continuation compared with healthy controls. These findings in schizophrenia indicate diminished temporal coordination of cerebral motor activity by cerebellum during the continuation tapping portion of sensorimotor synchronization. Taken together with the behavioral finding of greater temporal variability in schizophrenia, these effective connectivity results are consistent with structural and temporal models of dysconnectivity in the disorder.
Collapse
Affiliation(s)
| | - Dae-Jin Kim
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | | | - John R Purcell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | - Amanda R Bolbecker
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Sharlene D Newman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Imaging Research Facility, Indiana University College of Arts and Sciences, Bloomington, IN
| | - Brian F O’Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - William P Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,To whom correspondence should be addressed; Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405; tel: 812-855-2620, fax: 812-855-4691, e-mail:
| |
Collapse
|
177
|
Subtle white matter alterations in schizophrenia identified with a new measure of fiber density. Sci Rep 2019; 9:4636. [PMID: 30874571 PMCID: PMC6420505 DOI: 10.1038/s41598-019-40070-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Altered cerebral connectivity is one of the core pathophysiological mechanism underlying the development and progression of information-processing deficits in schizophrenia. To date, most diffusion tensor imaging (DTI) studies used fractional anisotropy (FA) to investigate disrupted white matter connections. However, a quantitative interpretation of FA changes is often impeded by the inherent limitations of the underlying tensor model. A more fine-grained measure of white matter alterations could be achieved by measuring fiber density (FD) - a novel non-tensor-derived diffusion marker. This study investigates, for the first time, FD alterations in schizophrenia patients. FD and FA maps were derived from diffusion data of 25 healthy controls (HC) and 21 patients with schizophrenia (SZ). Using tract-based spatial statistics (TBSS), group differences in FD and FA were investigated across the entire white matter. Furthermore, we performed a region of interest (ROI) analysis of frontal fasciculi to detect potential correlations between FD and positive symptoms. As a result, whole brain TBSS analysis revealed reduced FD in SZ patients compared to HC in several white matter tracts including the left and right thalamic radiation (TR), superior longitudinal fasciculus (SLF), corpus callosum (CC), and corticospinal tract (CST). In contrast, there were no significant FA differences between groups. Further, FD values in the TR were negatively correlated with the severity of positive symptoms and medication dose in SZ patients. In summary, a novel diffusion-weighted data analysis approach enabled us to identify widespread FD changes in SZ patients with most prominent white matter alterations in the frontal and subcortical regions. Our findings suggest that the new FD measure may be more sensitive to subtle changes in the white matter microstructure compared to FA, particularly in the given population. Therefore, investigating FD may be a promising approach to detect subtle changes in the white matter microstructure of altered connectivity in schizophrenia.
Collapse
|
178
|
Scheinost D, Tokoglu F, Hampson M, Hoffman R, Constable RT. Data-Driven Analysis of Functional Connectivity Reveals a Potential Auditory Verbal Hallucination Network. Schizophr Bull 2019; 45:415-424. [PMID: 29660081 PMCID: PMC6403094 DOI: 10.1093/schbul/sby039] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a severe global health problem, with over half of such patients experiencing auditory verbal hallucinations (AVHs). A better understanding of the neural correlates differentiating patients experiencing AVHs from patients not experiencing AVHs and healthy controls may identify targets that lead to better treatment strategies for AVHs. Employing 2 data-driven, voxel-based measure of functional connectivity, we studied 46 patients with schizophrenia or schizoaffective disorder (28 experiencing AVHs and 18 not experiencing AVHs). Twenty healthy controls matched for age, gender, ethnicity, education level, handedness, and estimated verbal intelligence were included for comparison. The intrinsic connectivity distribution (ICD) was used to model each voxel's connectivity to the rest of the brain using a Weibull distribution. To investigate lateralization of connectivity, we used cross-hemisphere ICD, a method that separates the contribution of each hemisphere to interrogate connectivity laterality. Patients with AVHs compared with patients without AVHs exhibited significantly decreased whole-brain connectivity in the medial prefrontal cortex and posterior cingulate cortex, less lateralized connectivity in left putamen, and more lateralized connectivity in left interior frontal gyrus. Correlations with Auditory Hallucination Rating Scale (AHRS) and post hoc seed connectivity analyses revealed significantly altered network connectivity. Using the results from all analyses comparing the patient groups and correlations with AHRS, we identified a potential AVH network, consisting of 25 nodes, showing substantial overlap with the default mode network and language processing networks. This network as a whole, instead of individual nodes, may represent actionable targets for interventions.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT,To whom correspondence should be addressed; Magnetic Resonance Research Center, 300 Cedar St, PO Box 208043, New Haven, CT 06520-8043, USA; tel: 203-785-6148, fax: 203-737-1124, e-mail:
| | - Fuyuze Tokoglu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Ralph Hoffman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT,Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| |
Collapse
|
179
|
Ajnakina O, David AS, Murray RM. 'At risk mental state' clinics for psychosis - an idea whose time has come - and gone! Psychol Med 2019; 49:529-534. [PMID: 30585562 DOI: 10.1017/s0033291718003859] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
At Risk Mental State (ARMS) clinics are specialised mental health services for young, help-seeking people, thought to be at ultra-high risk of developing psychosis. Their stated purpose is to reduce transitions from the ARMS state to clinical psychotic disorder. Reports of ARMS clinics provide 'evidence-based recommendations' or 'guidance' for the treatment of such individuals, and claim that such clinics prevent the development of psychosis. However, we note that in an area with a very well-developed ARMS clinic (South London), only a very small proportion (4%) of patients with first episode psychosis had previously been seen at this clinic with symptoms of the ARMS. We conclude that the task of reaching sufficient people to make a major contribution to the prevention of psychosis is beyond the power of ARMS clinics. Following the preventative approaches used for many medical disorders (e.g. lung cancer, coronary artery disease), we consider that a more effective way of preventing psychosis will be to adopt a public health approach; this should attempt to decrease exposure to environmental factors such as cannabis use which are known to increase risk of the disorder.
Collapse
Affiliation(s)
- Olesya Ajnakina
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London, UK
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
- Department of Psychiatry, Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy
| |
Collapse
|
180
|
Fleming LM, Javitt DC, Carter CS, Kantrowitz JT, Girgis RR, Kegeles LS, Ragland JD, Maddock RJ, Lesh TA, Tanase C, Robinson J, Potter WZ, Carlson M, Wall MM, Choo TH, Grinband J, Lieberman J, Krystal JH, Corlett PR. A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms. NEUROIMAGE-CLINICAL 2019; 22:101739. [PMID: 30852397 PMCID: PMC6411494 DOI: 10.1016/j.nicl.2019.101739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Ketamine is an uncompetitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist. It induces effects in healthy individuals that mimic symptoms associated with schizophrenia. We sought to root these experiences in altered brain function, specifically aberrant resting state functional connectivity (rsfMRI). In the present study, we acquired rsfMRI data under ketamine and placebo in a between-subjects design and analyzed seed-based measures of rsfMRI using large-scale networks, dorsolateral prefrontal cortex (DLPFC) and sub-nuclei of the thalamus. We found ketamine-induced alterations in rsfMRI connectivity similar to those seen in patients with schizophrenia, some changes that may be more comparable to early stages of schizophrenia, and other connectivity signatures seen in patients that ketamine did not recreate. We do not find any circuits from our regions of interest that correlates with positive symptoms of schizophrenia in our sample, although we find that DLPFC connectivity with ACC does correlate with a mood measure. These results provide support for ketamine's use as a model of certain biomarkers of schizophrenia, particularly for early or at-risk patients. Ketamine altered connectivity in default mode network, thalamus and DLPFC at rest. Similar patterns of altered connectivity are seen with ketamine as in psychotic patients. Mood symptoms correlated with DLPFC connectivity with ACC and frontal orbital cortex.
Collapse
Affiliation(s)
- Leah M Fleming
- Department of Psychiatry, Yale University, New Haven, CT, United States of America; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Daniel C Javitt
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - Cameron S Carter
- Department of Psychiatry, University of California, Davis, United States of America
| | - Joshua T Kantrowitz
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - Ragy R Girgis
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Lawrence S Kegeles
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - John D Ragland
- Department of Psychiatry, University of California, Davis, United States of America
| | - Richard J Maddock
- Department of Psychiatry, University of California, Davis, United States of America
| | - Tyler A Lesh
- Department of Psychiatry, University of California, Davis, United States of America
| | - Costin Tanase
- Department of Psychiatry, University of California, Davis, United States of America
| | - James Robinson
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - William Z Potter
- National Institute of Mental Health, Rockville, MD, United States of America
| | - Marlene Carlson
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Melanie M Wall
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; National Institute of Mental Health, Rockville, MD, United States of America
| | - Tse-Hwei Choo
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Jack Grinband
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - John H Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| | - Philip R Corlett
- Department of Psychiatry, Yale University, New Haven, CT, United States of America.
| |
Collapse
|
181
|
Association between Thalamocortical Functional Connectivity Abnormalities and Cognitive Deficits in Schizophrenia. Sci Rep 2019; 9:2952. [PMID: 30814558 PMCID: PMC6393449 DOI: 10.1038/s41598-019-39367-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
Cognitive deficits are considered a core component of schizophrenia and may predict functional outcome. However, the neural underpinnings of neuropsychological impairment remain to be fully elucidated. Data of 59 schizophrenia patients and 72 healthy controls from a public resting-state fMRI database was employed in our study. Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Battery was used to measure deficits of cognitive abilities in schizophrenia. Neural correlates of cognitive deficits in schizophrenia were examined by linear regression analysis of the thalamocortical network activity with scores of seven cognitive domains. We confirmed the combination of reduced prefrontal-thalamic connectivity and increased sensorimotor-thalamic connectivity in patients with schizophrenia. Correlation analysis with cognition revealed that in schizophrenia (1) the thalamic functional connectivity in the bilateral pre- and postcentral gyri was negatively correlated with attention/vigilance and speed of processing (Pearson’s r ≤ −0.443, p ≤ 0.042, FWE corrected), and positively correlated with patients’ negative symptoms (Pearson’s r ≥ 0.375, p ≤ 0.003, FWE corrected); (2) the thalamic functional connectivity in the right cerebellum was positively correlated with speed of processing (Pearson’s r = 0.388, p = 0.01, FWE corrected). Our study demonstrates that thalamic hyperconnectivity with sensorimotor areas is related to the severity of cognitive deficits and clinical symptoms, and extends our understanding of the neural underpinnings of “cognitive dysmetria” in schizophrenia.
Collapse
|
182
|
Abstract
There is overwhelming evidence that sleep is crucial for memory consolidation. Patients with schizophrenia and their unaffected relatives have a specific deficit in sleep spindles, a defining oscillation of non-rapid eye movement (NREM) Stage 2 sleep that, in coordination with other NREM oscillations, mediate memory consolidation. In schizophrenia, the spindle deficit correlates with impaired sleep-dependent memory consolidation, positive symptoms, and abnormal thalamocortical connectivity. These relations point to dysfunction of the thalamic reticular nucleus (TRN), which generates spindles, gates the relay of sensory information to the cortex, and modulates thalamocortical communication. Genetic studies are beginning to provide clues to possible neurodevelopmental origins of TRN-mediated thalamocortical circuit dysfunction and to identify novel targets for treating the related memory deficits and symptoms. By forging empirical links in causal chains from risk genes to thalamocortical circuit dysfunction, spindle deficits, memory impairment, symptoms, and diagnosis, future research can advance our mechanistic understanding, treatment, and prevention of schizophrenia.
Collapse
Affiliation(s)
- Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215;
| |
Collapse
|
183
|
Schleifer C, Lin A, Kushan L, Ji JL, Yang G, Bearden CE, Anticevic A. Dissociable Disruptions in Thalamic and Hippocampal Resting-State Functional Connectivity in Youth with 22q11.2 Deletions. J Neurosci 2019; 39:1301-1319. [PMID: 30478034 PMCID: PMC6381244 DOI: 10.1523/jneurosci.3470-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11DS) is a recurrent copy number variant with high penetrance for developmental neuropsychiatric disorders. Study of individuals with 22q11DS therefore may offer key insights into neural mechanisms underlying such complex illnesses. Resting-state functional connectivity MRI studies in idiopathic schizophrenia have consistently revealed disruption of thalamic and hippocampal circuitry. Here, we sought to test whether this circuitry is similarly disrupted in the context of this genetic high-risk condition. To this end, resting-state functional connectivity patterns were assessed in a sample of human youth with 22q11DS (n = 42; 59.5% female) and demographically matched healthy controls (n = 39; 53.8% female). Neuroimaging data were acquired via single-band protocols and analyzed in line with methods provided by the Human Connectome Project. We computed functional relationships between individual-specific anatomically defined thalamic and hippocampal seeds and all gray matter voxels in the brain. Whole-brain Type I error protection was achieved through nonparametric permutation-based methods. The 22q11DS patients displayed dissociable disruptions in thalamic and hippocampal functional connectivity relative to control subjects. Thalamocortical coupling was increased in somatomotor regions and reduced across associative networks. The opposite effect was observed for the hippocampus in regards to somatomotor and associative network connectivity. The thalamic and hippocampal dysconnectivity observed in 22q11DS suggests that high genetic risk for psychiatric illness is linked with disruptions in large-scale corticosubcortical networks underlying higher-order cognitive functions. These effects highlight the translational importance of large-effect copy number variants for informing mechanisms underlying neural disruptions observed in idiopathic developmental neuropsychiatric disorders.SIGNIFICANCE STATEMENT Investigation of neuroimaging biomarkers in highly penetrant genetic syndromes represents a more biologically tractable approach to identify neural circuit disruptions underlying developmental neuropsychiatric conditions. The 22q11.2 deletion syndrome confers particularly high risk for psychotic disorders and is thus an important translational model in which to investigate systems-level mechanisms implicated in idiopathic illness. Here, we show resting-state fMRI evidence of large-scale sensory and executive network disruptions in youth with 22q11DS. In particular, this study provides the first evidence that these networks are disrupted in a dissociable fashion with regard to the functional connectivity of the thalamus and hippocampus, suggesting circuit-level dysfunction.
Collapse
Affiliation(s)
- Charles Schleifer
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California 90095
- Interdepartmental Neuroscience Program, University of California at Los Angeles, Los Angeles, California 90095
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California 90095
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California 90095,
- Interdepartmental Neuroscience Program, University of California at Los Angeles, Los Angeles, California 90095
- Department of Psychology, University of California at Los Angeles, Los Angeles, California 90095
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511,
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut 06519
- NIAAA Center for the Translational Neuroscience of Alcoholism, New Haven, Connecticut 06519, and
- Department of Psychology, Yale University, Connecticut 06520
| |
Collapse
|
184
|
Merikanto I, Utge S, Lahti J, Kuula L, Makkonen T, Lahti‐Pulkkinen M, Heinonen K, Räikkönen K, Andersson S, Strandberg T, Pesonen A. Genetic risk factors for schizophrenia associate with sleep spindle activity in healthy adolescents. J Sleep Res 2019; 28:e12762. [DOI: 10.1111/jsr.12762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Ilona Merikanto
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
- National Institute for Health and Welfare Helsinki Finland
| | - Siddheshwar Utge
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Liisa Kuula
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Tommi Makkonen
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Marius Lahti‐Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
- National Institute for Health and Welfare Helsinki Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sture Andersson
- Children’s Hospital, University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Timo Strandberg
- University of Helsinki and Helsinki University Hospital Helsinki Finland
- University of Oulu, Center for Life Course Health Research Oulu Finland
| | - Anu‐Katriina Pesonen
- Department of Psychology and Logopedics, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
185
|
Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc Natl Acad Sci U S A 2019; 116:2743-2748. [PMID: 30692255 PMCID: PMC6377471 DOI: 10.1073/pnas.1815129116] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lysergic acid diethylamide (LSD) is a psychedelic drug that reliably induces an altered state of consciousness. Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and potential clinical applications. However, there are major knowledge gaps regarding LSD’s neuropharmacology. Using cutting-edge neuroimaging methods we investigated directed connectivity between cortico–striato–thalamo-cortical (CSTC) regions after administration of LSD together with the specific role of the serotonin 2A receptor. Our results provide evidence that LSD alters directed connectivity within CSTC pathways in humans, suggesting that a disintegration of information processing within these loops is underlying the psychedelic state. These results inform the neurobiology of altered states of consciousness with critical implications for rational development of novel treatments. Psychedelics exert unique effects on human consciousness. The thalamic filter model suggests that core effects of psychedelics may result from gating deficits, based on a disintegration of information processing within cortico–striato–thalamo-cortical (CSTC) feedback loops. To test this hypothesis, we characterized changes in directed (effective) connectivity between selected CTSC regions after acute administration of lysergic acid diethylamide (LSD), and after pretreatment with Ketanserin (a selective serotonin 2A receptor antagonist) plus LSD in a double-blind, randomized, placebo-controlled, cross-over study in 25 healthy participants. We used spectral dynamic causal modeling (DCM) for resting-state fMRI data. Fully connected DCM models were specified for each treatment condition to investigate the connectivity between the following areas: thalamus, ventral striatum, posterior cingulate cortex, and temporal cortex. Our results confirm major predictions proposed in the CSTC model and provide evidence that LSD alters effective connectivity within CSTC pathways that have been implicated in the gating of sensory and sensorimotor information to the cortex. In particular, LSD increased effective connectivity from the thalamus to the posterior cingulate cortex in a way that depended on serotonin 2A receptor activation, and decreased effective connectivity from the ventral striatum to the thalamus independently of serotonin 2A receptor activation. Together, these results advance our mechanistic understanding of the action of psychedelics in health and disease. This is important for the development of new pharmacological therapeutics and also increases our understanding of the mechanisms underlying the potential clinical efficacy of psychedelics.
Collapse
|
186
|
Kaufman J, Torbey S. Child maltreatment and psychosis. Neurobiol Dis 2019; 131:104378. [PMID: 30685353 DOI: 10.1016/j.nbd.2019.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
This paper reviews the literature on the association between experiences of child abuse and neglect and the development of psychoses. It then explores the premise that psychotic patients with a history of maltreatment may comprise a clinically and biological distinct subgroup. The review demonstrates that there is a growing consensus in the field that experiences of child maltreatment contribute to the onset of psychotic symptoms and psychotic disorders. There is also strong support for the premise that patients with psychotic disorders and histories of child maltreatment have distinct clinical characteristics and unique treatment needs, and emerging preliminary data to suggest psychotic patients with a history of maltreatment may comprise a distinct neurobiological subgroup. The mechanisms by which experiences of child maltreatment confers risk for psychotic disorders remains unknown, and the review highlights the value of incorporating translational research perspectives to advance knowledge in this area.
Collapse
Affiliation(s)
- Joan Kaufman
- Kennedy Krieger Institute, Center for Child and Family Traumatic Stress, 1741 Ashland Avenue, Baltimore, MD 21205, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Souraya Torbey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
187
|
Dysconnectivity of the medio-dorsal thalamic nucleus in drug-naïve first episode schizophrenia: diagnosis-specific or trans-diagnostic effect? Transl Psychiatry 2019; 9:9. [PMID: 30664626 PMCID: PMC6341072 DOI: 10.1038/s41398-018-0350-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Converging lines of evidence implicate the thalamocortical network in schizophrenia. In particular, the onset of the illness is associated with aberrant functional integration between the medio-dorsal thalamic nucleus (MDN) and widespread prefrontal, temporal and parietal cortical regions. Because the thalamus is also implicated in other psychiatric illnesses including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD), the diagnostic specificity of these alterations is unclear. Here, we determined whether aberrant functional integration between the MDN and the cortex is a specific feature of schizophrenia or a trans-diagnostic feature of psychiatric illness. Effective connectivity (EC) between the MDN and rest of the cortex was measured by applying psychophysiological interaction analysis to resting-state functional magnetic resonance imaging data of 50 patients with first episode schizophrenia (FES), 50 patients with MDD, 50 patients with PTSD and 122 healthy controls. All participants were medication-naïve. The only significant schizophrenia-specific effect was increased EC between the right MDN and the right pallidum (p < 0.05 corrected). In contrast, there were a number of significant trans-diagnostic alterations, with both right and left MDN displaying trans-diagnostic increased EC with several prefrontal and parietal regions bilaterally (p < 0.05 corrected). EC alterations between the MDN and the cortex are not specific to schizophrenia but are a trans-diagnostic feature of psychiatric disorders, consistent with emerging conceptualizations of mental illness based on a single general psychopathology factor. Therefore, dysconnectivity of the MDN could potentially be used to assess the presence of general psychopathology above and beyond traditional diagnostic boundaries.
Collapse
|
188
|
Structural Thalamofrontal Hypoconnectivity Is Related to Oculomotor Corollary Discharge Dysfunction in Schizophrenia. J Neurosci 2019; 39:2102-2113. [PMID: 30630882 DOI: 10.1523/jneurosci.1473-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 11/21/2022] Open
Abstract
By predicting sensory consequences of actions, humans can distinguish self-generated sensory inputs from those that are elicited externally. This is one mechanism by which we achieve a subjective sense of agency over our actions. Corollary discharge (CD) signals-"copies" of motor signals sent to sensory areas-permit such predictions, and CD abnormalities are a hypothesized mechanism for the agency disruptions in schizophrenia that characterize a subset of symptoms. Indeed, behavioral evidence of altered CD, including in the oculomotor system, has been observed in schizophrenia patients. A pathway projecting from the superior colliculus to the frontal eye fields (FEFs) via the mediodorsal thalamus (MD) conveys oculomotor CD associated with saccadic eye movements in nonhuman primates. This animal work provides a promising translational framework in which to investigate CD abnormalities in clinical populations. In the current study, we examined whether structural connectivity of this MD-FEF pathway relates to oculomotor CD functioning in schizophrenia. Twenty-two schizophrenia patients and 24 healthy control participants of both sexes underwent diffusion tensor imaging, and a large subset performed a trans-saccadic perceptual task that yields measures of CD. Using probabilistic tractography, we identified anatomical connections between FEF and MD and extracted indices of microstructural integrity. Patients exhibited compromised microstructural integrity in the MD-FEF pathway, which was correlated with greater oculomotor CD abnormalities and more severe psychotic symptoms. These data reinforce the role of the MD-FEF pathway in transmitting oculomotor CD signals and suggest that disturbances in this pathway may relate to psychotic symptom manifestation in patients.SIGNIFICANCE STATEMENT People with schizophrenia sometimes experience abnormalities in a sense of agency, which may stem from abnormal sensory predictions about their own actions. Consistent with this notion, the current study found reduced structural connectivity in patients with schizophrenia in a specific brain pathway found to transmit such sensorimotor prediction signals in nonhuman primates. Reduced structural connectivity was correlated with behavioral evidence for impaired sensorimotor predictions and psychotic symptoms.
Collapse
|
189
|
Canetta S, Kellendonk C. Can we use mice to study schizophrenia? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0032. [PMID: 29352031 DOI: 10.1098/rstb.2017.0032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/03/2023] Open
Abstract
The validity of rodent models for the study of psychiatric disorders is controversial. Despite great efforts from academic institutions and pharmaceutical companies, as of today, no major therapeutic intervention has been developed for the treatment of psychiatric disorders based on mechanistic insights from rodent models. Here, we argue that despite these historical shortcomings, rodent studies are nevertheless instrumental for identifying neuronal circuit mechanisms underlying behaviours that are affected in psychiatric disorders. Focusing on schizophrenia, we will give four examples of rodent models that were generated based on genetic and environmental risk factors or pathophysiological evidence as entry points. We will then discuss how circuit analysis in these specific examples can be used for testing hypotheses about neuronal mechanisms underlying symptoms of schizophrenia, which will then guide the development of new therapies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Sarah Canetta
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA .,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA .,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
190
|
Li S, Gao L, Liu Y, Ao Y, Xu H. Unilateral thalamic glioma disrupts large-scale functional architecture of human brain during resting state. Neuropsychiatr Dis Treat 2019; 15:947-956. [PMID: 31043784 PMCID: PMC6472434 DOI: 10.2147/ndt.s186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The thalamus is an important deep brain structure for the synchronization of brain rhythm and the integration of cortical activity. Human brain imaging and computational modeling have non-invasively revealed its role in maintaining the cortical network architecture and functional hierarchy. PURPOSE The objective of this study was to identify the effect of unilateral thalamic damage on the human brain intrinsic functional architecture. PATIENTS AND METHODS We collected an 8-minute resting-state functional magnetic resonance imaging (R-fMRI) data on a 3.0 T magnetic resonance scanner for all the participants: a preoperative patient with left thalamus destroyed by anaplastic astrocytoma (WHO grade III type of astrocytoma) and 20 matched healthy controls. The R-fMRI data was analyzed for functional connectivity and amplitude of spontaneous fluctuations. RESULTS The patient showed prominent decrease in functional connectivity within primary sensory networks and advanced cognitive networks, and extensive alterations in between-network coupling. Further analysis of the amplitude of spontaneous activity suggested significant decrease especially in the topographies of default mode network and the Papez circuit. CONCLUSION This result provided evidence about the consequences of thalamic destruction on the correlation and landscape of spontaneous brain activity, promoting our understanding of the effects of thalamic damage on large-scale brain networks.
Collapse
Affiliation(s)
- Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, People's Republic of China,
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, People's Republic of China,
| | - Ying Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, People's Republic of China,
| | - Yawen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, People's Republic of China,
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, People's Republic of China,
| |
Collapse
|
191
|
Du X, Choa FS, Chiappelli J, Wisner KM, Wittenberg G, Adhikari B, Bruce H, Rowland LM, Kochunov P, Hong LE. Aberrant Middle Prefrontal-Motor Cortex Connectivity Mediates Motor Inhibitory Biomarker in Schizophrenia. Biol Psychiatry 2019; 85:49-59. [PMID: 30126607 PMCID: PMC6289820 DOI: 10.1016/j.biopsych.2018.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/29/2018] [Accepted: 06/09/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inhibitory deficits in motor cortex in schizophrenia have been well demonstrated using short-interval intracortical inhibition (SICI) by transcranial magnetic stimulation. However, it remains unknown whether these deficits originate from dysfunction of motor cortex itself or reflect abnormal modulations of motor cortex by other schizophrenia-related brain areas. METHODS The study was completed by 24 patients with schizophrenia spectrum disorders and 30 healthy control subjects. SICI was obtained by delivering transcranial magnetic stimulation over the left motor cortex. Resting-state functional magnetic resonance imaging and diffusion tensor imaging fractional anisotropy were used to measure functional connectivity (FC) and white matter microstructures, respectively. Stimulation sites for SICI at motor cortex were used as the seeds to obtain whole-brain FC maps. Clinical symptoms were assessed with the Brief Psychiatric Rating Scale. RESULTS In schizophrenia, left prefrontal cortex-motor cortex FC was inversely associated with SICI but positively associated with the underlying white matter microstructure at the left corona radiata and also associated with overall symptoms (all corrected p < .05). Mediation analysis showed that the prefrontal-motor cortex FC significantly mediated the corona radiata white matter effects on SICI (p = .007). CONCLUSIONS Higher resting-state left prefrontal-motor cortex FC, accompanied by a higher fractional anisotropy of left corona radiata, predicted fewer inhibitory deficits, suggesting that the inhibitory deficits in motor cortex in schizophrenia may in part be mediated by a top-down prefrontal influence. SICI may serve as a robust biomarker indexing inhibitory dysfunction at anatomic as well as circuitry levels in schizophrenia.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland, Baltimore, Maryland
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Krista M Wisner
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - George Wittenberg
- Department of Psychiatry, Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bhim Adhikari
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Heather Bruce
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Laura M Rowland
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
192
|
Cho KIK, Kwak YB, Hwang WJ, Lee J, Kim M, Lee TY, Kwon JS. Microstructural Changes in Higher-Order Nuclei of the Thalamus in Patients With First-Episode Psychosis. Biol Psychiatry 2019; 85:70-78. [PMID: 29961564 DOI: 10.1016/j.biopsych.2018.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disruption in the thalamus, such as volume, shape, and cortical connectivity, is regarded as an important pathophysiological mechanism in schizophrenia. However, there is little evidence of nuclei-specific structural alterations in the thalamus during early-stage psychosis, mainly because of the methodological limitations of conventional structural imaging in identifying the thalamic nuclei. METHODS A total of 37 patients with first-episode psychosis and 36 matched healthy control subjects underwent diffusion tensor imaging, diffusion kurtosis imaging, and T1-weighted magnetic resonance imaging. Connectivity-based segmentation of the thalamus was performed using diffusion tensor imaging, and averages of the diffusion kurtosis values, which represent microstructural complexity, were estimated using diffusion kurtosis imaging and were compared in each thalamic nucleus between the groups. RESULTS The mean kurtosis values in the thalamic regions with strong connections to the orbitofrontal cortex (F1,70 = 8.40, p < .01) and the lateral temporal cortex (F1,70 = 8.46, p < .01) were significantly reduced in patients with first-episode psychosis compared with those of the healthy control subjects. The mean kurtosis values in the thalamic region with strong connection to the orbitofrontal cortex showed a significant correlation with spatial working memory accuracy in patients with first-episode psychosis (r = .36, p < .05), whereas no significant correlation between these variables was observed in the healthy control subjects. CONCLUSIONS The observed pattern of reduced microstructural complexity in the nuclei not only highlights the involvement of the thalamus but also emphasizes the role of the higher-order nuclei in the pathophysiology beginning in the early stage of schizophrenia.
Collapse
Affiliation(s)
- Kang Ik K Cho
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junhee Lee
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Lee
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
193
|
Development of Neuroimaging-Based Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:159-195. [PMID: 31705495 DOI: 10.1007/978-981-32-9721-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of accumulating neuroimaging data with emphasis on translational potential. The subject will be described in the context of three disease states, i.e., schizophrenia, bipolar disorder, and major depressive disorder, and for three clinical goals, i.e., disease risk assessment, subtyping, and treatment decision.
Collapse
|
194
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
195
|
Long X, Liu F, Huang N, Liu N, Zhang J, Chen J, Qi A, Guan X, Lu Z. Brain regional homogeneity and function connectivity in attenuated psychosis syndrome -based on a resting state fMRI study. BMC Psychiatry 2018; 18:383. [PMID: 30526563 PMCID: PMC6286581 DOI: 10.1186/s12888-018-1954-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND By combining regional homogeneity (ReHo) and functional connectivity (FC) analyses, this study aimed to explore brain functional alterations in Attenuated Psychosis Syndrome (APS), which could provide complementary information for the neurophysiological indicators for schizophrenia (SZ) associated brain dysfunction. METHODS Twenty-one APS subjects and twenty healthy controls were enrolled in the data acquisition of demographics and clinical characteristics as well as structural and resting-state functional magnetic resonance imaging (rs-fMRI). ReHo analysis was conducted to determine the peak coordinate of the abnormal regional brain activity. Then, identified brain regions were considered as seed regions and were used to calculate FC between reginal brain voxels and whole brain voxels. Finally, potential correlations between imaging indices and clinical data were also explored. RESULTS Four APS and two HC subjects were excluded because the largest dynamic translation or rotation had exceeded 2 mm / 2°. Compared with healthy controls (HCs), APS subjects exhibited higher ReHo values in the right middle temporal gyrus (MTG) and lower ReHo values in the left middle frontal gyrus (MFG), left superior frontal gyrus (SFG), left postcentral gyrus (PoCG), and left superior frontal gyrus, medial (SFGmed). Considered these areas as seed regions, the APS subjects showed abnormal enhancement in functional brain connections, predominantly in the frontal and temporal lobes. CONCLUSIONS We concluded that the APS subjects had spatially regional dysfunction and remoted synchronous dysfunction in the frontal and temporal lobes of the brain, and changes in ReHo and FC patterns may reveal the mechanism of brain dysfunctions and may serve as an imaging biomarker for the diagnosis and evaluation of SZ.
Collapse
Affiliation(s)
- Xiangyun Long
- 0000000123704535grid.24516.34Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065 China
| | - Fei Liu
- 0000000123704535grid.24516.34Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065 China
| | - Nan Huang
- 0000 0004 0368 8293grid.16821.3cDepartment of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Na Liu
- 0000 0004 0368 8293grid.16821.3cDepartment of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Jie Zhang
- 0000 0004 0368 8293grid.16821.3cDepartment of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Jing Chen
- 0000 0004 0368 8293grid.16821.3cDepartment of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Ansi Qi
- 0000000123704535grid.24516.34Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065 China
| | - Xiaofeng Guan
- 0000000123704535grid.24516.34Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065 China
| | - Zheng Lu
- Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China. .,Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
| |
Collapse
|
196
|
John YJ, Zikopoulos B, Bullock D, Barbas H. Visual Attention Deficits in Schizophrenia Can Arise From Inhibitory Dysfunction in Thalamus or Cortex. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2018; 2:223-257. [PMID: 30627672 PMCID: PMC6317791 DOI: 10.1162/cpsy_a_00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/17/2018] [Indexed: 01/13/2023]
Abstract
Schizophrenia is associated with diverse cognitive deficits, including disorders of attention-related oculomotor behavior. At the structural level, schizophrenia is associated with abnormal inhibitory control in the circuit linking cortex and thalamus. We developed a spiking neural network model that demonstrates how dysfunctional inhibition can degrade attentive gaze control. Our model revealed that perturbations of two functionally distinct classes of cortical inhibitory neurons, or of the inhibitory thalamic reticular nucleus, disrupted processing vital for sustained attention to a stimulus, leading to distractibility. Because perturbation at each circuit node led to comparable but qualitatively distinct disruptions in attentive tracking or fixation, our findings support the search for new eye movement metrics that may index distinct underlying neural defects. Moreover, because the cortico-thalamic circuit is a common motif across sensory, association, and motor systems, the model and extensions can be broadly applied to study normal function and the neural bases of other cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| | - Daniel Bullock
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
197
|
Abnormal asymmetries in subcortical brain volume in early adolescents with subclinical psychotic experiences. Transl Psychiatry 2018; 8:254. [PMID: 30487578 PMCID: PMC6261944 DOI: 10.1038/s41398-018-0312-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/13/2018] [Accepted: 11/08/2018] [Indexed: 01/05/2023] Open
Abstract
Subcortical structures may have an important role in the pathophysiology of psychosis. Our recent mega-analysis of structural magnetic resonance imaging (MRI) data has reported subcortical volumetric and lateralization alterations in chronic schizophrenia, including leftward asymmetric increases in pallidal volume. The question remains, however, whether these characteristics may represent vulnerability to the development of psychosis or whether they are epiphenomena caused by exposure to medication or illness chronicity. Subclinical psychotic experiences (SPEs) occur in some adolescents in the general population and increase the odds of developing psychosis in young adulthood. Investigations into the association between SPEs and MRI-measured volumes of subcortical structures in the general adolescent population would clarify the issue. Here, we collected structural MRI data in a subsample (10.5-13.3 years old) of a large-scale population-based cohort and explored subcortical volume and lateralization alterations related to SPEs (N = 203). Adolescents with SPEs demonstrated significant volumetric increases in the left hippocampus, right caudate, and right lateral ventricle, as well as a marginally significant increase in the left pallidum. Furthermore, adolescents with SPEs showed significantly more leftward laterality of pallidal volume than individuals without SPEs, which replicates our mega-analysis findings in chronic schizophrenia. We suggest that leftward asymmetries in pallidal volume already present in early adolescence may underlie the premorbid predisposition for developing psychosis in later life.
Collapse
|
198
|
Radial glia fibers translate Fgf8 morphogenetic signals to generate a thalamic nuclear complex protomap in the mantle layer. Brain Struct Funct 2018; 224:661-679. [PMID: 30470893 PMCID: PMC6420463 DOI: 10.1007/s00429-018-1794-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 11/09/2018] [Indexed: 01/25/2023]
Abstract
Thalamic neurons are distributed between different nuclear groups of the thalamic multinuclear complex; they develop topologically ordered specific projections that convey information on voluntary motor programs and sensory modalities to functional areas in the cerebral cortex. Since thalamic neurons present a homogeneous morphology, their functional specificity is derived from their afferent and efferent connectivity. Adequate development of thalamic afferent and efferent connections depends on guide signals that bind receptors in nuclear neuropils and axonal growth cones, respectively. These are finally regulated by regionalization processes in the thalamic neurons, codifying topological information. In this work, we studied the role of Fgf8 morphogenetic signaling in establishing the molecular thalamic protomap, which was revealed by Igsf21, Pde10a and Btbd3 gene expression in the thalamic mantle layer. Fgf8 signaling activity was evidenced by pERK expression in radial glia cells and fibers, which may represent a scaffold that translates neuroepithelial positional information to the mantle layer. In this work, we describe the fact that Fgf8-hypomorphic mice did not express pERK in radial glia cells and fibers and presented disorganized thalamic regionalization, increasing neuronal death in the ventro-lateral thalamus and strong disruption of thalamocortical projections. In conclusion, Fgf8 encodes the positional information required for thalamic nuclear regionalization and the development of thalamocortical projections.
Collapse
|
199
|
Ferri J, Ford JM, Roach BJ, Turner JA, van Erp TG, Voyvodic J, Preda A, Belger A, Bustillo J, O'Leary D, Mueller BA, Lim KO, McEwen SC, Calhoun VD, Diaz M, Glover G, Greve D, Wible CG, Vaidya JG, Potkin SG, Mathalon DH. Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychol Med 2018; 48:2492-2499. [PMID: 29444726 DOI: 10.1017/s003329171800003x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is a severe neuropsychiatric disorder associated with disrupted connectivity within the thalamic-cortico-cerebellar network. Resting-state functional connectivity studies have reported thalamic hypoconnectivity with the cerebellum and prefrontal cortex as well as thalamic hyperconnectivity with sensory cortical regions in SZ patients compared with healthy comparison participants (HCs). However, fundamental questions remain regarding the clinical significance of these connectivity abnormalities. METHOD Resting state seed-based functional connectivity was used to investigate thalamus to whole brain connectivity using multi-site data including 183 SZ patients and 178 matched HCs. Statistical significance was based on a voxel-level FWE-corrected height threshold of p < 0.001. The relationships between positive and negative symptoms of SZ and regions of the brain demonstrating group differences in thalamic connectivity were examined. RESULTS HC and SZ participants both demonstrated widespread positive connectivity between the thalamus and cortical regions. Compared with HCs, SZ patients had reduced thalamic connectivity with bilateral cerebellum and anterior cingulate cortex. In contrast, SZ patients had greater thalamic connectivity with multiple sensory-motor regions, including bilateral pre- and post-central gyrus, middle/inferior occipital gyrus, and middle/superior temporal gyrus. Thalamus to middle temporal gyrus connectivity was positively correlated with hallucinations and delusions, while thalamus to cerebellar connectivity was negatively correlated with delusions and bizarre behavior. CONCLUSIONS Thalamic hyperconnectivity with sensory regions and hypoconnectivity with cerebellar regions in combination with their relationship to clinical features of SZ suggest that thalamic dysconnectivity may be a core neurobiological feature of SZ that underpins positive symptoms.
Collapse
Affiliation(s)
- J Ferri
- Department of Psychiatry,University of California,San Francisco, San Francisco, CA,USA
| | - J M Ford
- Department of Psychiatry,University of California,San Francisco, San Francisco, CA,USA
| | - B J Roach
- San Francisco VA Health Care System,San Francisco, CA,USA
| | - J A Turner
- The Mind Research Network,Albuquerque, NM,USA
| | - T G van Erp
- Department of Psychiatry and Human Behavior,University of California,Irvine, Irvine, CA,USA
| | - J Voyvodic
- Department of Psychiatry,Duke University,Raleigh-Durham, NC,USA
| | - A Preda
- Department of Psychiatry and Human Behavior,University of California,Irvine, Irvine, CA,USA
| | - A Belger
- Department of Psychiatry,University of North Carolina,Chapel Hill, NC,USA
| | - J Bustillo
- Department of Psychiatry,University of New Mexico,Albuquerque, NM,USA
| | - D O'Leary
- Department of Psychiatry,University of Iowa,Iowa City, IA,USA
| | - B A Mueller
- Department of Psychiatry,University of Minnesota,Minneapolis, MN,USA
| | - K O Lim
- Department of Psychiatry,University of Minnesota,Minneapolis, MN,USA
| | - S C McEwen
- Department of Psychiatry,University of California,Los Angeles, Los Angeles, CA,USA
| | - V D Calhoun
- The Mind Research Network,Albuquerque, NM,USA
| | - M Diaz
- Department of Psychiatry,Duke University,Raleigh-Durham, NC,USA
| | - G Glover
- Department of Radiology,Stanford University,Stanford, CA,USA
| | - D Greve
- Department of Radiology,Massachusetts General Hospital,Boston, MA,USA
| | - C G Wible
- Department of Psychiatry,Harvard University,Boston, MA,USA
| | - J G Vaidya
- Department of Psychiatry,University of Iowa,Iowa City, IA,USA
| | - S G Potkin
- Department of Psychiatry and Human Behavior,University of California,Irvine, Irvine, CA,USA
| | - D H Mathalon
- Department of Psychiatry,University of California,San Francisco, San Francisco, CA,USA
| |
Collapse
|
200
|
Zimmerman EC, Grace AA. Prefrontal cortex modulates firing pattern in the nucleus reuniens of the midline thalamus via distinct corticothalamic pathways. Eur J Neurosci 2018; 48:3255-3272. [PMID: 30107061 PMCID: PMC6237082 DOI: 10.1111/ejn.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
The thalamus has long been recognized for its role in relaying sensory information from the periphery, a function accomplished by its "first-order" nuclei. However, a second category of thalamic nuclei, termed "higher-order" nuclei, have been shown instead to mediate communication between cortical areas. The nucleus reuniens of the midline thalamus (RE) is a higher-order nucleus known to act as a conduit of reciprocal communication between the medial prefrontal cortex (mPFC) and hippocampus. While anatomical and behavioural studies of RE are numerous, circuit-based electrophysiological studies, particularly those examining the impact of cortical input and the thalamic reticular nucleus (TRN) on RE neuron firing, are sparse. To characterize RE neuron firing properties and dissect the circuit dynamics of the infralimbic subdivision of the mPFC (ilPFC), the TRN and RE, we used in vivo, extracellular, single-unit recordings in male Sprague Dawley rats and manipulated neural activity using targeted pharmacological manipulations, electrical stimulation and a projection-specific implementation of designer receptors exclusively activated by designer drugs (DREADDs). We show that ilPFC inhibition reduces multiple burst firing parameters in RE, whereas ilPFC stimulation drives burst firing and dampens tonic firing. In addition, TRN inhibition reduces the number of spontaneously active neurons in RE. Finally, inhibition of ilPFC terminals in RE selectively enhances a subset of burst firing parameters. These findings demonstrate that ilPFC input, both via direct projections and via the TRN, can modulate RE neuron firing pattern in nuanced and complex ways. They also highlight the ilPFC-TRN-RE circuit as a likely critical component of prefrontal-hippocampal interactions.
Collapse
Affiliation(s)
- Eric C Zimmerman
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|