151
|
Damiri F, Kommineni N, Ebhodaghe SO, Bulusu R, Jyothi VGSS, Sayed AA, Awaji AA, Germoush MO, Al-malky HS, Nasrullah MZ, Rahman MH, Abdel-Daim MM, Berrada M. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals (Basel) 2022; 15:190. [PMID: 35215302 PMCID: PMC8875238 DOI: 10.3390/ph15020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
In this focused progress review, the most widely accepted methods of transdermal drug delivery are hypodermic needles, transdermal patches and topical creams. However, microneedles (MNs) (or microneedle arrays) are low-invasive 3D biomedical constructs that bypass the skin barrier and produce systemic and localized pharmacological effects. In the past, biomaterials such as carbohydrates, due to their physicochemical properties, have been extensively used to manufacture microneedles (MNs). Due to their wide range of functional groups, carbohydrates enable the design and development of tunable properties and functionalities. In recent years, numerous microneedle products have emerged on the market, although much research needs to be undertaken to overcome the various challenges before the successful introduction of microneedles into the market. As a result, carbohydrate-based microarrays have a high potential to achieve a future step in sensing, drug delivery, and biologics restitution. In this review, a comprehensive overview of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose and starch is discussed systematically. It also discusses the various drug delivery strategies and mechanical properties of biomaterial-based MNs, the progress made so far in the clinical translation of carbohydrate-based MNs, and the promotional opportunities for their commercialization. In conclusion, the article summarizes the future perspectives of carbohydrate-based MNs, which are considered as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | | | | | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Vaskuri G. S. Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Hamdan S. Al-malky
- Regional Drug Information Center, Ministry of Health, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| |
Collapse
|
152
|
Chandran R, Mohd Tohit ER, Stanslas J, Tuan Mahmood TM, Salim N. Factors influencing the swelling behaviour of polymethyl vinyl ether-co-maleic acid hydrogels crosslinked by polyethylene glycol. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
153
|
Wei H, Liu S, Chu Y, Tong Z, Yang M, Guo Y, Chen T, Wu Y, Sun H, Fan L. Hydrogel-based microneedles of chitosan derivatives for drug delivery. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
154
|
Demir B, Rosselle L, Voronova A, Pagneux Q, Quenon A, Gmyr V, Jary D, Hennuyer N, Staels B, Hubert T, Abderrahmani A, Plaisance V, Pawlowski V, Boukherroub R, Vignoud S, Szunerits S. Innovative transdermal delivery of insulin using gelatin methacrylate-based microneedle patches in mice and mini-pigs. NANOSCALE HORIZONS 2022; 7:174-184. [PMID: 35039816 DOI: 10.1039/d1nh00596k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. To achieve this purpose, microneedle patches are gaining increased attention. While degradable microneedle (MN) arrays are widely employed, the use of non-dissolving MN patches remains a challenge to overcome. In this study, we demonstrate that crosslinking gelatin methacrylate with polyethylene glycol diacrylate (PEGDA) is potent for engineering non-dissolving MN arrays. Incorporation of MoS2 nanosheets as a photothermal component into MN hydrogels results in MNs featuring on-demand release properties. An optimized MoS2-MN array patch formed using a hydrogel solution containing 500 μg mL-1 of MoS2 and photochemically crosslinked for 5 min shows required mechanical behavior under a normal compressive load to penetrate the stratum corneum of mice or pig skin and allows the delivery of macromolecular therapeutics such as insulin upon swelling. Using ex vivo and in vivo models, we show that the MoS2-MN patches can be used for loading and releasing insulin for therapeutic purposes. Indeed, transdermal administration of insulin loaded into MoS2-MN patches reduces blood glucose levels in C57BL/6 mice and mini-pigs comparably to subcutaneously injected insulin. We believe that this on-demand delivery system might alter the current insulin therapies and might be a potential approach for delivery of other proteins.
Collapse
Affiliation(s)
- Bilal Demir
- CEA-TECH Region, Department Hauts-de-France, 165 Avenue de Bretagne, Lille 59000, France.
- LETI-DTBS, CEA, 17 rue des Martyrs, Grenoble 38054, France.
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Lea Rosselle
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Audrey Quenon
- Univ. Lille, CHU Lille, Inserm, European Genomic Institute of Diabetes (EGID), Institut Pasteur de Lille, UMR 1190, Lille F-59000, France
| | - Valery Gmyr
- Univ. Lille, CHU Lille, Inserm, European Genomic Institute of Diabetes (EGID), Institut Pasteur de Lille, UMR 1190, Lille F-59000, France
| | - Dorothee Jary
- LETI-DTBS, CEA, 17 rue des Martyrs, Grenoble 38054, France.
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille F-59000, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille F-59000, France
| | - Thomas Hubert
- Univ. Lille, CHU Lille, Inserm, European Genomic Institute of Diabetes (EGID), Institut Pasteur de Lille, UMR 1190, Lille F-59000, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Valerie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Valerie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | | | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| |
Collapse
|
155
|
A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens Bioelectron 2022; 203:114026. [PMID: 35114468 DOI: 10.1016/j.bios.2022.114026] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
The development of non-invasive biosensor for monitoring glucose in interstitial fluid (ISF) is still challenging, because ISF extraction through classical reverse iontophoresis (RI) is limited by low extraction flux and consistency. Here, we developed a touch-actuated biosensor for monitoring glucose in ISF. The biosensor is composed of three main components: 1) the solid microneedle array (MA) for painless skin penetration; 2) the RI unit for ISF extraction through the MA-created microchannels; and 3) the sensing unit for glucose monitoring. The sensing strategy of this biosensor is "skin penetration-RI extraction-electrochemical detection". Compared with RI extraction only, the reported skin penetration-RI extraction sampling strategy obviously increased the glucose extraction flux by ∼1.6 times not only in vitro but also in vivo. Moreover, we developed a wearable glucose monitoring system by incorporating this touch-actuated biosensor, a wireless electrochemical detector, and a smartphone application. In vivo experiments using healthy and diabetic rats revealed a high correlation between the results measured by the reported wearable system and commercially blood glucometer. This sampling strategy which combined skin penetration and RI extraction paves the way to develop wearable platforms for not only glucose monitoring but also various ISF biomarkers without the need of painful finger-stick blood sampling.
Collapse
|
156
|
A Porous Reservoir-Backed Boronate Gel Microneedle for Efficient Skin Penetration and Sustained Glucose-Responsive Insulin Delivery. Gels 2022; 8:gels8020074. [PMID: 35200456 PMCID: PMC8871697 DOI: 10.3390/gels8020074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, phenylboronic acid (PBA) gel containing microneedle (MN) technology with acute and sustained glucose-sensitive functionality has attracted significant research attention. Herein, we report a polyvinyl alcohol(PVA)-coated MNs patch with an interconnected porous gel drug reservoir for enhanced skin penetration efficiency and mechanical strength. The hybrid MNs patch fabricated with a novel, efficient method displayed a “cake-like” two-layer structure, with the tip part being composed of boronate-containing smart gel attached to a porous gel layer as a drug reservoir. The porous structure provides the necessary structural support for skin insertion and space for insulin loading. The mechanical strength of the hybrid MNs patch was further enhanced by surface coating with crystallized PVA. Compared with MNs patches attached to hollow drug reservoirs, this hybrid MNs patch with a porous gel reservoir was shown to be able to penetrate the skin more effectively, and is promising for on-demand, long-acting transdermal insulin delivery with increased patient compliance.
Collapse
|
157
|
Habib R, Azad AK, Akhlaq M, Al-Joufi FA, Shahnaz G, Mohamed HRH, Naeem M, Almalki ASA, Asghar J, Jalil A, Abdel-Daim MM. Thiolated Chitosan Microneedle Patch of Levosulpiride from Fabrication, Characterization to Bioavailability Enhancement Approach. Polymers (Basel) 2022; 14:415. [PMID: 35160403 PMCID: PMC8839939 DOI: 10.3390/polym14030415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a first attempt has been made to deliver levosulpiride transdermally through a thiolated chitosan microneedle patch (TC-MNP). Levosulpiride is slowly and weakly absorbed from the gastrointestinal tract with an oral bioavailability of less than 25% and short half-life of about 6 h. In order to enhance its bioavailability, levosulpiride-loaded thiolated chitosan microneedle patches (LS-TC-MNPs) were fabricated. Firstly, thiolated chitosan was synthesized and characterized by nuclear magnetic resonance (1HNMR) spectroscopy, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Thiolated chitosan has been used in different drug delivery systems; herein, thiolated chitosan has been used for the transdermal delivery of LS. LS-TC-MNPs were fabricated from different concentrations of thiolated chitosan solution. Furthermore, the levosulpiride-loaded thiolated chitosan microneedle patch (LS-TC-MNP) was characterized by FTIR spectroscopic analysis, scanning electron microscopy (SEM) study, penetration ability, tensile strength, moisture content, patch thickness, and elongation test. LS-TC-MNP fabricated with 3% thiolated chitosan solution was found to have the best tensile strength, moisture content, patch thickness, elongation, drug-loading efficiency, and drug content. Thiolated chitosan is biodegradable, nontoxic and has good absorption and swelling in the skin. LS-TC-MNP-3 consists of 100 needles in 10 rows each with 10 needles. The length of each microneedle was 575 μm; they were pyramidal in shape, with sharp pointed ends and a base diameter of 200 µm. The microneedle patch (LS-TC-MNP-3) resulted in-vitro drug release of 65% up to 48 h, ex vivo permeation of 63.6%, with good skin biocompatibility and enhanced in-vivo pharmacokinetics (AUC = 986 µg/mL·h, Cmax = 24.5 µg/mL) as compared to oral LS dispersion (AUC = 3.2 µg/mL·h, Cmax = 0.5 µg/mL). Based on the above results, LS-TC-MNP-3 seems to be a promising strategy for enhancing the bioavailability of levosulpiride.
Collapse
Affiliation(s)
- Rukhshanda Habib
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Skaka 72341, Saudi Arabia;
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Abdulraheem S. A. Almalki
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21974, Saudi Arabia;
| | - Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
| | - Aamir Jalil
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
158
|
Anjani QK, Bin Sabri AH, Donnelly RF. Development and validation of simple and sensitive HPLC-UV method for ethambutol hydrochloride detection following transdermal application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:125-134. [PMID: 34914816 DOI: 10.1039/d1ay01414e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new high-performance liquid chromatographic method coupled with UV detection (HPLC-UV) to quantify ethambutol (ETH) post permeation studies following microneedle administration has been developed. This method involves the derivatization of ETH with phenethyl isocyanate (PEIC) at room temperature for 90 min. The separation of the derivative was performed using a C18 column that utilised a mobile phase consisting of 25 mM sodium dihydrogen phosphate buffer (with 1% v/v triethylamine, pH 3.0 adjusted using orthophosphoric acid) and methanol (25 : 75 v/v). The developed analytical method was validated according to the standards set by the International Council on Harmonization (ICH) guidelines. The method is linear for drug concentrations within the range of 0.39-12.5 μg mL-1 (R2 = 0.9999). The validated method was found to be specific, precise, and accurate. Moreover, the ETH derivative was found to be stable under specific storage conditions. In addition, a simple and straightforward extraction procedure for extracting and quantifying ETH from the skin was developed and evaluated. The extraction procedure displayed recovery rates that range from 101.77 ± 7.10% to 102.33 ± 8.69% indicating high extraction efficiency. The developed method was utilised in assessing the permeation of ETH across dermatomed neonatal porcine skin following microneedle application. Collectively, the simple and stable HPLC method developed in this study may be of great utility in screening formulations for ethambutol within a preclinical setting through in vitro permeation studies.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
- Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
159
|
Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J Pharm Sci 2022; 17:70-86. [PMID: 35261645 PMCID: PMC8888142 DOI: 10.1016/j.ajps.2021.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Parenteral sustained release drug formulations, acting as preferable platforms for long-term exposure therapy, have been wildly used in clinical practice. However, most of these delivery systems must be given by hypodermic injection. Therefore, issues including needle-phobic, needle-stick injuries and inappropriate reuse of needles would hamper the further applications of these delivery platforms. Microneedles (MNs) as a potential alternative system for hypodermic needles can benefit from minimally invasive and self-administration. Recently, polymeric microneedle-mediated sustained release systems (MN@SRS) have opened up a new way for treatment of many diseases. Here, we reviewed the recent researches in MN@SRS for transdermal delivery, and summed up its typical design strategies and applications in various diseases therapy, particularly focusing on the applications in contraception, infection, cancer, diabetes, and subcutaneous disease. An overview of the present clinical translation difficulties and future outlook of MN@SRS was also provided.
Collapse
Affiliation(s)
- Li Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yao Yang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
160
|
Huang Y, Yu H, Wang L, Shen D, Ni Z, Ren S, Lu Y, Chen X, Yang J, Hong Y. Research progress on cosmetic microneedle systems: Preparation, property and application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
161
|
Swellable microneedles based transdermal drug delivery: Mathematical model development and numerical experiments. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
162
|
Qi Z, Cao J, Tao X, Wu X, Kundu SC, Lu S. Silk Fibroin Microneedle Patches for the Treatment of Insomnia. Pharmaceutics 2021; 13:2198. [PMID: 34959479 PMCID: PMC8704547 DOI: 10.3390/pharmaceutics13122198] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
As a patient-friendly technology, drug-loaded microneedles can deliver drugs through the skin into the body. This system has broad application prospects and is receiving wide attention. Based on the knowledge acquired in this work, we successfully developed a melatonin-loaded microneedle prepared from proline/melatonin/silk fibroin. The engineered microneedles' morphological, physical, and chemical properties were characterized to investigate their structural transformation mechanism and transdermal drug-delivery capabilities. The results indicated that the crystal structure of silk fibroin in drug-loaded microneedles was mainly Silk I crystal structure, with a low dissolution rate and suitable swelling property. Melatonin-loaded microneedles showed high mechanical properties, and the breaking strength of a single needle was 1.2 N, which could easily be penetrated the skin. The drug release results in vitro revealed that the effective drug concentration was obtained quickly during the early delivery. The successful drug concentration was maintained through continuous release at the later stage. For in vivo experimentation, the Sprague Dawley (SD) rat model of insomnia was constructed. The outcome exhibited that the melatonin-loaded microneedle released the drug into the body through the skin and maintained a high blood concentration (over 5 ng/mL) for 4-6 h. The maximum blood concentration was above 10 ng/mL, and the peak time was 0.31 h. This system indicates that it achieved the purpose of mimicking physiological release and treating insomnia.
Collapse
Affiliation(s)
- Zhenzhen Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.Q.); (J.C.); (X.T.); (X.W.)
| | - Jiaxin Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.Q.); (J.C.); (X.T.); (X.W.)
| | - Xiaosheng Tao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.Q.); (J.C.); (X.T.); (X.W.)
| | - Xinyi Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.Q.); (J.C.); (X.T.); (X.W.)
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs Research Institute on Biomaterials, Biodegrabilities and Biomimetics, University of Minho, 4710-057 Braga, Portugal;
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, 4805-017 Guimaraes, Portugal
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.Q.); (J.C.); (X.T.); (X.W.)
| |
Collapse
|
163
|
Amarnani R, Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed Microdevices 2021; 24:4. [PMID: 34878589 PMCID: PMC8651504 DOI: 10.1007/s10544-021-00604-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology plays an important role in biomedical engineering for their less intrusive access to the skin due to minimally or painless penetration, enhancement of drug permeability, improvement of detectability of biomolecules in the epidermal and dermal layers with therapeutic efficacy and safety. Furthermore, MNs possess some major disadvantages like difficulty in scale-up technique, variation in drug delivery pattern with respect to external environment of skin, blockage of arrays due to dermal tissues, induction of inflammation or allergy at the site of administration and restriction of dosing range based on the size of active. Additionally, microneedle acts as a transdermal theranostic device for monitoring the physiological parameters in clinical studies. The investigation of drug transfer mechanisms through microneedles includes coat and poke, poke and flow, poke and patch and poke and release method. This review article discusses different categories of microneedles with fabrication methods such as photolithography, laser cutting, 3D printing, etc. in therapeutic applications for treating cancer, diabetes, arthritis, obesity, neurological disorders, and glaucoma. Biosensing devices based on microneedles may detect target analytes directly in the interstitial fluid by penetrating the stratum corneum of the skin and thus microneedles-based devices can be considered as a single tool in diagnostic sensing and therapeutic administration of drugs inside the body. Moreover, the clinical status and commercial availability of microneedle devices are discussed in this review article to offer new insights to researchers and scientists. Continuous monitoring particularly for the determination of blood glucose concentration is one of the most important requirements for the development of next-generation healthcare devices. The aim of this review article focuses mainly on the theranostic applications of microneedles in various medical conditions such as malaria, glaucoma, cancer, etc.
Collapse
Affiliation(s)
- Ragini Amarnani
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
164
|
Ruan S, Zhang Y, Feng N. Microneedle-mediated transdermal nanodelivery systems: a review. Biomater Sci 2021; 9:8065-8089. [PMID: 34752590 DOI: 10.1039/d1bm01249e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The greatest limitation in the development of transdermal drug delivery systems is that only a few drugs can permeate the skin due to the barrier function of the stratum corneum. Active and passive methods are generally available for improving the ability of drug transdermal delivery. However, nanoparticles, as a passive approach, exhibit capacity-constrained permeation enhancement. Thus, microneedle-mediated nanoparticles possess enormous potential and broad prospects. Microneedles promote the penetration of macromolecules by creating microchannels on the skin surface. In this review, the prevailing subknowledge on microneedles (mechanism, classification, and applications of microneedles combined with nanoparticles) is discussed to provide a guideline for readers and a basic reference for further in-depth studies of this novel drug delivery system.
Collapse
Affiliation(s)
- Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
165
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
166
|
Saepang K, Li SK, Chantasart D. Passive and iontophoretic transport of pramipexole dihydrochloride across human skin microchannels created by microneedles in vitro. Int J Pharm 2021; 609:121092. [PMID: 34530098 DOI: 10.1016/j.ijpharm.2021.121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Skin microchannels (MCs) created by microneedles (MNs) provide a promising route for enhancing transdermal drug delivery. This study investigated passive and iontophoretic transport of pramipexole dihydrochloride (PXCl) across skin MCs created by polymer MN patches made of 1:2 polymethyl-vinyl-ether-co-maleic acid (PMVEMA) to polyvinyl alcohol (PVA) ratio. Permeation studies were performed in vitro using excised human skin under the conditions of (i) "poke-and-patch" and "poke-and-release" delivery approaches with varying concentration of PXCl in the formulations, (ii) drug-loaded dissolving MN (DMN) and hydrogel-forming MN (HGMN) type patches and (iii) combination of MNs and iontophoresis. The results showed that DMN patch greatly enhanced transdermal delivery of PXCl for both "poke-and-patch" and "poke-and-release" approaches as compared with the conventional delivery method. PXCl flux mainly resulted from the contribution of MC pathway created in skin and increased with increasing drug amounts in the formulations. Compared to DMN patch, HGMN patch provided more linear sustained drug delivery over 72 h. Electromigration was the main mechanism of PXCl iontophoresis through MCs and flux enhancement was found to be larger for HGMN patch than DMN patch. These results demonstrated the potential application of MN patches individually or combined with iontophoresis as an alternative method for PXCl administration.
Collapse
Affiliation(s)
- Kamchai Saepang
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - S Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Doungdaw Chantasart
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
167
|
Nguyen TT, Nguyen TTD, Tran NMA, Vo GV. Advances of microneedles in hormone delivery. Biomed Pharmacother 2021; 145:112393. [PMID: 34773762 DOI: 10.1016/j.biopha.2021.112393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
The skin is recognized as a potential target for local and systemic drug delivery and hormone. However, the transdermal route of drug administration seems to be limited by substantial barrier properties of the skin. Recently, delivering hormone via the skin by transdermal patches is a big challenge because of the presence of the stratum corneum that prevents the application of hormone via this route. In order to overcome the limitations, microneedle (MN), consisting of micro-sized needles, are a promising approach to drill the stratum corneum and release hormone into the dermis via a minimal-invasive route. This review aimed to highlight advances in research on the development of MNs-based therapeutics for their implications in hormone delivery. The challenges during clinical translation of MNs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Viet Nam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71420, Viet Nam.
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
168
|
Avcil M, Çelik A. Microneedles in Drug Delivery: Progress and Challenges. MICROMACHINES 2021; 12:mi12111321. [PMID: 34832733 PMCID: PMC8623547 DOI: 10.3390/mi12111321] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/21/2023]
Abstract
In recent years, an innovative transdermal delivery technology has attracted great interest for its ability to distribute therapeutics and cosmeceuticals for several applications, including vaccines, drugs, and biomolecules for skin-related problems. The advantages of microneedle patch technology have been extensively evaluated in the latest literature; hence, the academic publications in this area are rising exponentially. Like all new technologies, the microneedle patch application has great potential but is not without limitations. In this review, we will discuss the possible limitations by highlighting the areas where a great deal of improvements are required. Emphasising these concerns early on should help scientists and technologists to address the matters in a timely fashion and to use their resources wisely.
Collapse
|
169
|
Zhao J, Xu G, Yao X, Zhou H, Lyu B, Pei S, Wen P. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res 2021; 12:2403-2427. [PMID: 34671948 PMCID: PMC8528479 DOI: 10.1007/s13346-021-01077-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus is a metabolic disease manifested by hyperglycemia. For patients with type 1 and advanced type 2 diabetes mellitus, insulin therapy is essential. Subcutaneous injection remains the most common administration method. Non-invasive insulin delivery technologies are pursued because of their benefits of decreasing patients' pain, anxiety, and stress. Transdermal delivery systems have gained extensive attention due to the ease of administration and absence of hepatic first-pass metabolism. Microneedle (MN) technology is one of the most promising tactics, which can effectively deliver insulin through skin stratum corneum in a minimally invasive and painless way. This article will review the research progress of MNs in insulin transdermal delivery, including hollow MNs, dissolving MNs, hydrogel MNs, and glucose-responsive MN patches, in which insulin dosage can be strictly controlled. The clinical studies about insulin delivery with MN devices have also been summarized and grouped based on the study phase. There are still several challenges to achieve successful translation of MNs-based insulin therapy. In this review, we also discussed these challenges including safety, efficacy, patient/prescriber acceptability, manufacturing and scale-up, and regulatory authority acceptability.
Collapse
Affiliation(s)
- Jing Zhao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Genying Xu
- Department of Pharmacy, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Xin Yao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Huirui Zhou
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Boyang Lyu
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Shuangshuang Pei
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Ping Wen
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road Zhangjiang Hi-Tech Park , Shanghai, 200120 China
| |
Collapse
|
170
|
|
171
|
Singh V, Kesharwani P. Recent advances in microneedles-based drug delivery device in the diagnosis and treatment of cancer. J Control Release 2021; 338:394-409. [PMID: 34481019 DOI: 10.1016/j.jconrel.2021.08.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Microneedles are unique, novel and an effective approach designed to deliver therapeutic agents and immunobiologicals in several diseases. These tiny needle patches are designed to load vaccine, small or large drug molecule, heavy molecular weighted proteins, genes, antibodies, nanoparticles and many more. These nanoparticles loaded microneedles deliver drugs deep within the skin near underlying neutrophils, langerhans and dendritic cells and induces required immunological response. With the drawbacks associated with conventional methods of cancer chemotherapy, the focus was shifted towards use of microneedles in not just anti-cancer vaccine/drug delivery but also for their early diagnosis. This delivery device is also suited for synergistic approaches such as chemotherapy or gene therapy combined with photothermal or photodynamic therapy. The painless self-administrative device offers an alternative over traditional routes of drug delivery including systemic administration via hypodermic needles. Additionally, these microneedles can be fabricated and altered in shape, size and geometry and the material polymer can be chosen depending on use and release mechanism. This review consolidates positive results obtained from studies done for different type of microneedle array in several tumor cell lines and animal models. It further highlights the use of biodegradable polymers such as hydrogel or any dissolving polymer that can be utilized for sustained codelivery of drug/vaccine to shun the need of multiple dosing. It covers the existing limitations that still needs to be resolved and further highlights on the future aspects of their use in cancer therapy.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
172
|
Tang Y, Li S, Hu L, Sun X, Zhang B, Ji W, Ma L, Qian W, Kang A, Zhu D. Hybrid Poly(AMPS-CS)-Au Microneedle Arrays to Enrich Metabolites from Skin for Early Disease Diagnosis. Adv Healthc Mater 2021; 10:e2100764. [PMID: 34028989 DOI: 10.1002/adhm.202100764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/15/2022]
Abstract
Recently, some metabolites in skin interstitial fluid (SIF) have become emerging re×sources for early disease diagnosis. However, their low level in SIF and difficulty to sampling are the biggest obstacle to further potential application. Here, a swellable microneedle array patch (MNAP) with high mechanical strength is presented, and the rapid enrichment of positively charged metabolites is achieved. The MNAP is fabricated by poly (chondroitin sulfate-acrylamido-2-methylpropane sulfonic acid)-gold nanoparticles (GNPs) composites via a micro-molding. The negatively charged copolymer hydrogel not only enrich positively charged metabolites, but also provide swellable capacity. The in situ synthesis of GNPs in the process of copolymerization make the GNPs cross-link to the hydrogel, which further enhance the MNAP mechanical strength and enrichment efficiency for positively charged metabolites. By using the MNAP, around 5 mg SIF in 10 min from the high fat/cholecalciferol/methimazole-induced atherogenesis rat is extracted and 23 metabolites including 13 quaternary ammonium cationic compounds can be detected and quantified by using a LC-QTOF-MS. Dysregulated L-carnitine and choline metabolism are discovered a week earlier in the SIF than in the serum, achieving early diagnosis of the metabolism syndrome disease. This MNAP also helps users complete home sampling for early disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Yuyin Tang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Su Li
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Linyu Hu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Xuetong Sun
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Bei Zhang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Wenwen Ji
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Lijuan Ma
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Wenhui Qian
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - An Kang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Dong Zhu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
173
|
Polymeric microneedles for transdermal delivery of nanoparticles: Frontiers of formulation, sterility and stability aspects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
174
|
Sabri AHB, Anjani QK, Donnelly RF. Synthesis and characterization of sorbitol laced hydrogel-forming microneedles for therapeutic drug monitoring. Int J Pharm 2021; 607:121049. [PMID: 34454026 DOI: 10.1016/j.ijpharm.2021.121049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
The dermal interstitial fluid (ISF) is rich in biomarkers that are of great heuristic value for disease diagnosis and therapeutic drug monitoring. Nevertheless, the current strategies for sampling dermal ISF are both technical and invasive, limiting the potential utility of ISF for clinical medicine and research purposes. In the current work, we present, for the first time, the development, characterization, and evaluation of a novel sorbitol-laced hydrogel-forming microneedles (Sor-Hyd-MN) for sampling dermal ISF. The hydrogel system is fabricated from sorbitol and PEG 10,000 crosslinked with Gantrez® S-97 via esterification in a solvent-free manner. The sorbitol-laced hydrogel rapidly absorbs fluid when placed in aqueous media, reaching a total rise in the mass of 685% relative to the control hydrogel that only reached 436% within 15 mins. When formulated into MNs, the Sor-Hyd-MN exhibited significantly superior (p < 0.001) mechanical properties as evidenced by the minimal MN height reduction (0.9%) relative to the control-MN (3.9%) and Man-Hyd-MN (28.5%) when subjected to a compressive force of 32 N, an analog of patients' thumb pressure. The skin insertion capability of the Sor-Hyd-MN and the control-MN formulation was demonstrated using the in vitro skin simulant, Parafilm® M, and ex vivo neonatal porcine skin. When inserted into ex vivo neonatal porcine skin, the Sor-Hyd-MN showed rapid imbibement of dermal ISF within 15 mins, evidenced via the formation of swollen microchannels, which was 1.2-folds wider than the control formulation. In addition, we also demonstrated for the first time that incorporating sorbitol into Gantrez® S-97 hydrogel-forming MN improved the utility of this formulation in sampling dermal ISF. This was shown from the capability of the Sor-Hyd-MN in extracting the model compounds, isoniazid and theophylline, present within the ISF of ex vivo porcine skin. The Sor-Hyd-MN exhibited an extraction efficiency of 52.4% for isoniazid and 54.4% for theophylline which was significantly higher (p < 0.05) relative to the control formulation in a simple and straightforward manner. This work illustrates that incorporating a hyperosmolyte, such as sorbitol, can further enhance the potential utility of hydrogel-forming MN as a minimally-invasive tool for ISF sampling while providing a potential strategy to extract analytes with ease for subsequent sample analysis.
Collapse
Affiliation(s)
- Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
175
|
Faraji Rad Z, Prewett PD, Davies GJ. An overview of microneedle applications, materials, and fabrication methods. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1034-1046. [PMID: 34621614 PMCID: PMC8450954 DOI: 10.3762/bjnano.12.77] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/30/2021] [Indexed: 05/19/2023]
Abstract
Microneedle-based microdevices promise to expand the scope for delivery of vaccines and therapeutic agents through the skin and withdrawing biofluids for point-of-care diagnostics - so-called theranostics. Unskilled and painless applications of microneedle patches for blood collection or drug delivery are two of the advantages of microneedle arrays over hypodermic needles. Developing the necessary microneedle fabrication processes has the potential to dramatically impact the health care delivery system by changing the landscape of fluid sampling and subcutaneous drug delivery. Microneedle designs which range from sub-micron to millimetre feature sizes are fabricated using the tools of the microelectronics industry from metals, silicon, and polymers. Various types of subtractive and additive manufacturing processes have been used to manufacture microneedles, but the development of microneedle-based systems using conventional subtractive methods has been constrained by the limitations and high cost of microfabrication technology. Additive manufacturing processes such as 3D printing and two-photon polymerization fabrication are promising transformative technologies developed in recent years. The present article provides an overview of microneedle systems applications, designs, material selection, and manufacturing methods.
Collapse
Affiliation(s)
- Zahra Faraji Rad
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Philip D Prewett
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Oxacus Ltd, Dorchester-on-Thames, OX10 7HN, United Kingdom
| | - Graham J Davies
- Faculty of Engineering, UNSW Australia, NSW 2052, Australia
- College of Engineering & Physical Sciences, School of Engineering, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
176
|
Kang NW, Kim S, Lee JY, Kim KT, Choi Y, Oh Y, Kim J, Kim DD, Park JH. Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin Drug Deliv 2021; 18:929-947. [PMID: 32975144 DOI: 10.1080/17425247.2021.1828860] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A microneedle array patch (MAP) has been studied as a means for delivering drugs or vaccines and has shown superior delivery efficiency compared to the conventional transdermal drug delivery system (TDD). This paper reviews recent advancements in the development of MAPs, with a focus on their size, shapes, and materials in preclinical and clinical studies for pharmaceutics. AREA COVERED We classified MAPs for drug delivery into four types: coated, dissolving, separable, and swellable. We covered their recent developments in materials and geometry in preclinical and clinical studies. EXPERT OPINION The design of MAPs needs to be determined based on what properties would be effective for the target diseases and purposes. In addition, in preclinical studies, it is necessary to consider not only the novelty of the formulations but also the feasibility of clinical application. Currently, clinical studies of microneedles loaded with various drugs and vaccines are in progress. When the regulation of pharmaceutical microneedles is established and more clinical studies are published, more drugs will be developed as microneedle products and clinical research will proceed. With these considerations, the microneedle array patch will be a better option for drug delivery.
Collapse
Affiliation(s)
- Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Taek Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Yuji Choi
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Yujeong Oh
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Jongchan Kim
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
177
|
Dalvi M, Kharat P, Thakor P, Bhavana V, Singh SB, Mehra NK. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci 2021; 284:119877. [PMID: 34384832 DOI: 10.1016/j.lfs.2021.119877] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022]
Abstract
Recently, microfabrication technology has been developed to increase the permeability of drugs for transdermal delivery. Microneedles are ultra-small needles usually in the micron size range (different dimensions in micron), generate pores, and allow for delivery of local medication in the systemic circulation via skin. The microneedles have been available in dissolving, solid, coated, hollow, and hydrogel-based microneedles. Dissolving microneedles have been fabricated using micro-molding, photo-polymerization, drawing lithography and droplet blowing techniques. Dissolving microneedles could be a valuable option for the delivery of low molecular weight drugs, peptides, enzymes, vaccines and bio-therapeutics. It consists of water-soluble materials including maltose, polyvinyl pyrrolidone, chondroitin sulfate, dextran, hyaluronic acid, and albumin. The microneedles have almost dissolved after patch removal, leaving only blunt stubs behind, which are easily removable. In this review, we summarize the major building blocks, classification, fabrication techniques, characterization, diffusion models and application of microneedles in diverse area. We also reviewed the regulatory aspects, computational studies, patents, clinical data, and market trends of microneedles.
Collapse
Affiliation(s)
- Mayuri Dalvi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pratik Kharat
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
178
|
3D printing technologies for in vitro vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays Biochem 2021; 65:519-531. [PMID: 34342360 DOI: 10.1042/ebc20200105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in 3D printing (3DP) and tissue engineering approaches enable the potential application of these technologies to vaccine research. Reconstituting the native tissue or cellular microenvironment will be vital for successful evaluation of pathogenicity of viral infection and screening of potential vaccines. Therefore, establishing a reliable in vitro model to study the vaccine efficiency or delivery of viral disease is important. Here, this review summarizes two major ways that tissue engineering and 3DP strategies could contribute to vaccine research: (1) 3D human tissue models to study the response to virus can be served as a testbed for new potential therapeutics. Using 3D tissue platform attempts to explore alternative options to pre-clinical animal research for evaluating vaccine candidates. (2) 3DP technologies can be applied to improve the vaccination strategies which could replace existing vaccine delivery. Controlled antigen release using carriers that are generated with biodegradable biomaterials can further enhance the efficient development of immunity as well as combination of multiple-dose vaccines into a single injection. This mini review discusses the up-to-date report of current 3D tissue/organ models for potential vaccine potency and known bioengineered vaccine delivery systems.
Collapse
|
179
|
Tharmatt A, Malhotra D, Sharma H, Bedi N. Pharmaceutical Perspective in Wearable Drug Delivery Systems. Assay Drug Dev Technol 2021; 19:386-401. [PMID: 34339259 DOI: 10.1089/adt.2021.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans have been dealing with health problems for millions of years. Normal health services need well-trained personnel and high-cost diagnostic tests, which forces patients to go to hospitals if medical treatment is required. To address this, prototype testing has been carried out into the wearable drug delivery health care perspectives. Researchers have devised a wide variety of formulations for the treatment of various diseases at home by performing real-time monitoring of different routes of drug administration such as ocular, transdermal, intraoral, intracochlear, and several more. A comprehensive review of the different types of wearable drug delivery systems with respect to their manufacturing, mechanism of action and specifications has been done. In the pharmaceutical context, these devices are technologically well-equipped interfaces for diverse physicochemical signals. Above mentioned information with a broader perspective has also been discussed in this article. Several wearable drug delivery systems have been introduced in the market in recent years. But a lot of testing needs to be conducted to address the numerous obstacles before the wearable devices are successfully launched in the market.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Danish Malhotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Hamayal Sharma
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
180
|
Shi Y, Lu A, Wang X, Belhadj Z, Wang J, Zhang Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm Sin B 2021; 11:2396-2415. [PMID: 34522592 PMCID: PMC8424287 DOI: 10.1016/j.apsb.2021.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The need for long-term treatments of chronic diseases has motivated the widespread development of long-acting parenteral formulations (LAPFs) with the aim of improving drug pharmacokinetics and therapeutic efficacy. LAPFs have been proven to extend the half-life of therapeutics, as well as to improve patient adherence; consequently, this enhances the outcome of therapy positively. Over past decades, considerable progress has been made in designing effective LAPFs in both preclinical and clinical settings. Here we review the latest advances of LAPFs in preclinical and clinical stages, focusing on the strategies and underlying mechanisms for achieving long acting. Existing strategies are classified into manipulation of in vivo clearance and manipulation of drug release from delivery systems, respectively. And the current challenges and prospects of each strategy are discussed. In addition, we also briefly discuss the design principles of LAPFs and provide future perspectives of the rational design of more effective LAPFs for their further clinical translation.
Collapse
Key Words
- 2′-F, 2′-fluoro
- 2′-O-MOE, 2′-O-(2-methoxyethyl)
- 2′-OMe, 2′-O-methyl
- 3D, three-dimensional
- ART, antiretroviral therapy
- ASO, antisense oligonucleotide
- Biomimetic strategies
- Chemical modification
- DDS, drug delivery systems
- ECM, extracellular matrix
- ENA, ethylene-bridged nucleic acid
- ESC, enhanced stabilization chemistry
- EVA, ethylene vinyl acetate
- Fc/HSA fusion
- FcRn, Fc receptor
- GLP-1, glucagon like peptide-1
- GS, glycine–serine
- HA, hyaluronic acid
- HES, hydroxy-ethyl-starch
- HP, hypoparathyroidism
- HSA, human serum albumin
- Hydrogels
- ISFI, in situ forming implants
- IgG, immunoglobulin G
- Implantable systems
- LAFs, long-acting formulations
- LAPFs, long-acting parenteral formulations
- LNA, locked nucleic acid
- Long-acting
- MNs, microneedles
- Microneedles
- NDS, nanochannel delivery system
- NPs, nanoparticles
- Nanocrystal suspensions
- OA, osteoarthritis
- PCPP-SA, poly(1,3-bis(carboxyphenoxy)propane-co-sebacic-acid)
- PEG, polyethylene glycol
- PM, platelet membrane
- PMPC, poly(2-methyacryloyloxyethyl phosphorylcholine)
- PNAs, peptide nucleic acids
- PS, phase separation
- PSA, polysialic acid
- PTH, parathyroid hormone
- PVA, polyvinyl alcohol
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNAi, RNA interference
- SAR, structure‒activity relationship
- SCID, severe combined immunodeficiency
- SE, solvent extraction
- STC, standard template chemistry
- TNFR2, tumor necrosis factor receptor 2
- hGH, human growth hormone
- im, intramuscular
- iv, intravenous
- mPEG, methoxypolyethylene glycol
- sc, subcutaneous
Collapse
Affiliation(s)
- Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangyu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
181
|
Dixon RV, Skaria E, Lau WM, Manning P, Birch-Machin MA, Moghimi SM, Ng KW. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B 2021; 11:2344-2361. [PMID: 34150486 PMCID: PMC8206489 DOI: 10.1016/j.apsb.2021.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.
Collapse
Key Words
- AC, alternating current
- APCs, antigen-presenting cells
- ASSURED, affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users
- Biomarker detection
- Biosensor
- CMOS, complementary metal-oxide semiconductor
- COVID, coronavirus disease
- COVID-19
- CSF, cerebrospinal fluid
- CT, computerised tomography
- CV, cyclic voltammetry
- DC, direct current
- DNA, deoxyribonucleic acid
- DPV, differential pulse voltammetry
- EBV, Epstein–Barr virus
- EDC/NHS, 1-ethyl-3-(3-dimethylaminoproply) carbodiimide/N-hydroxysuccinimide
- ELISA, enzyme-linked immunosorbent assay
- GOx, glucose oxidase
- HIV, human immunodeficiency virus
- HPLC, high performance liquid chromatography
- HRP, horseradish peroxidase
- IP, iontophoresis
- ISF, interstitial fluid
- IgG, immunoglobulin G
- Infectious disease
- JEV, Japanese encephalitis virus
- MN, microneedle
- Microneedle
- NA, nucleic acid
- OBMT, one-touch-activated blood multidiagnostic tool
- OPD, o-phenylenediamine
- PCB, printed circuit board
- PCR, polymerase chain reaction
- PDMS, polydimethylsiloxane
- PEDOT, poly(3,4-ethylenedioxythiophene)
- PNA, peptide nucleic acid
- PP, polyphenol
- PPD, poly(o-phenylenediamine)
- PoC, point-of-care
- Point-of-care diagnostics (PoC)
- SALT, skin-associated lymphoid tissue
- SAM, self-assembled monolayer
- SEM, scanning electron microscope
- SERS, surface-enhanced Raman spectroscopy
- SWV, square wave voltammetry
- Skin
- TB, tuberculosis
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- WHO, World Health Organisation
- cfDNA, cell-free deoxyribonucleic acid
Collapse
Affiliation(s)
- Rachael V. Dixon
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Eldhose Skaria
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Philip Manning
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Mark A. Birch-Machin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - S. Moein Moghimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
182
|
The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis. Adv Drug Deliv Rev 2021; 175:113825. [PMID: 34111467 DOI: 10.1016/j.addr.2021.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Diabetes affects approximately 450 million adults globally. If not effectively managed, chronic hyperglycaemia causes tissue damage that can develop into fibrosis. Fibrosis leads to end-organ complications, failure of organ systems occurs, which can ultimately cause death. One strategy to tackle end-organ complications is to maintain normoglycaemia. Conventionally, insulin is administered subcutaneously. Whilst effective, this delivery route shows several limitations, including pain. The transdermal route is a favourable alternative. Microneedle (MN) arrays are minimally invasive and painless devices that can enhance transdermal drug delivery. Convincing evidence is provided on MN-mediated insulin delivery. MN arrays can also be used as a diagnostic tool and monitor glucose levels. Furthermore, sophisticated MN array-based systems that integrate glucose monitoring and drug delivery into a single device have been designed. Therefore, MN technology has potential to revolutionise diabetes management. This review describes the current applications of MN technology for diabetes management and how these could prevent diabetes induced fibrosis.
Collapse
|
183
|
Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, Pan X, Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm Sin B 2021; 11:2326-2343. [PMID: 34522590 PMCID: PMC8424228 DOI: 10.1016/j.apsb.2021.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
184
|
Hutton ARJ, Kirkby M, Larrañeta E, Donnelly RF. Designing a unique feedback mechanism for hydrogel-forming microneedle array patches: a concept study. Drug Deliv Transl Res 2021; 12:838-850. [PMID: 34333728 PMCID: PMC8325539 DOI: 10.1007/s13346-021-01033-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/02/2022]
Abstract
Although microneedle array patch (MAP) technology is reaching ever closer to regulatory approval, it remains imperative that approaches to further improve patient acceptance are still explored. Addressing this perception, a water-filled reservoir was incorporated into a hydrogel-forming MAP system to provide a novel feedback mechanism. To confirm successful MAP skin insertion, the end user would both hear and feel the rupture of the water-filled reservoir. Interestingly, a 50-µL water-filled reservoir ruptured at 30.27 ± 0.39 N, which has previously been shown as the mean application force for MN insertion in human subjects following appropriate instruction. Importantly, no significant difference in % cumulative permeation of FITC-dextran 10 kDa and fluorescein sodium after 24 h was observed between a 50-µL reservoir and the current method of application that has been successfully used in both in vitro and in vivo studies (p > 0.05). Therefore, as drug delivery was not affected, this proof-of-concept study has shown that a water-filled reservoir feedback mechanism has the potential to serve as a viable tool for consistent MAP skin insertion.
Collapse
Affiliation(s)
- Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Melissa Kirkby
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
185
|
Bhadale RS, Londhe VY. A systematic review of carbohydrate-based microneedles: current status and future prospects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:89. [PMID: 34331594 PMCID: PMC8325649 DOI: 10.1007/s10856-021-06559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 06/01/2023]
Abstract
Microneedles (MNs) are minimally invasive tridimensional biomedical devices that bypass the skin barrier resulting in systemic and localized pharmacological effects. Historically, biomaterials such as carbohydrates, due to their physicochemical properties, have been used widely to fabricate MNs. Owing to their broad spectrum of functional groups, carbohydrates permit designing and engineering with tunable properties and functionalities. This has led the carbohydrate-based microarrays possessing the great potential to take a futuristic step in detecting, drug delivery, and retorting to biologicals. In this review, the crucial and extensive summary of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose, and starch has been discussed systematically, using PRISMA guidelines. It also discusses different approaches for drug delivery and the mechanical properties of biomaterial-based MNs, till date, progress has been achieved in clinical translation of carbohydrate-based MNs, and regulatory requirements for their commercialization. In conclusion, it describes a brief perspective on the future prospects of carbohydrate-based MNs referred to as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Rupali S Bhadale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
186
|
Mdanda S, Ubanako P, Kondiah PPD, Kumar P, Choonara YE. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies. Polymers (Basel) 2021; 13:polym13152405. [PMID: 34372008 PMCID: PMC8348894 DOI: 10.3390/polym13152405] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
In many clinical applications, the transdermal route is used as an alternative approach to avoid the significant limitations associated with oral drug delivery. There is a long history for drug delivery through the skin utilizing transdermal microneedle arrays. Microneedles are reported to be versatile and very efficient devices. This technique has spurred both industrial and scientific curiosity, due to its outstanding characteristics such as painless penetration, affordability, excellent medicinal efficiency, and relative protection. Microneedles possess outstanding properties for diverse biomedical uses such as the delivery of very large substances with ionic and hydrophilic physicochemical properties. Importantly, microneedles are applicable in numerous biomedical fields such as therapy, diagnosis, and vaccine administration. Microneedles are emerging tools that have shown profound potential for biomedical applications. Transdermal microneedle technologies are likely to become a preferred route of therapeutic substances administration in the future since they are effective, painless, and affordable. In this review, we summarize recent advances in microneedles for therapeutic applications. We explore their constituent materials and fabrication methods that improve the delivery of critical therapeutic substances through the skin. We further discuss the practicality of advanced microneedles used as drug delivery tools.
Collapse
|
187
|
Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, Onesto V, Vecchione R, Lee J, Tay FR, Netti P, Mattoli V, Jaklenec A, Gu Z, Langer R. Stimuli-responsive transdermal microneedle patches. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 47:206-222. [PMID: 36338772 PMCID: PMC9635273 DOI: 10.1016/j.mattod.2021.03.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zahra Baghbantaraghdari
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | | | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Jesse Lee
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Franklin R. Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Paolo Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhen Gu
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
188
|
Ding F, Ding H, Shen Z, Qian L, Ouyang J, Zeng S, Seery TAP, Li J, Wu G, Chavez SE, Smith AT, Liu L, Li Y, Sun L. Super Stretchable and Compressible Hydrogels Inspired by Hook-and-Loop Fasteners. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7760-7770. [PMID: 34129778 DOI: 10.1021/acs.langmuir.1c00924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by hook-and-loop fasteners, we designed a hydrogel network containing α-zirconium phosphate (ZrP) two-dimensional nanosheets with a high density of surface hydroxyl groups serving as nanopatches with numerous "hooks," while polymer chains with plentiful amine functional groups serve as "loops." Our multiscale molecular simulations confirm that both the high density of hydroxyl groups on nanosheets and the large number of amine functional groups on polymer chains are essential to achieve reversible interactions at the molecular scale, functioning as nano hook-and-loop fasteners to dissipate energy. As a result, the synthesized hydrogel possesses superior stretchability (>2100% strain), resilience to compression (>90% strain), and durability. Remarkably, the hydrogel can sustain >5000 cycles of compression with torsion in a solution mimicking synovial fluid, thus promising for potential biomedical applications such as artificial articular cartilage. This hook-and-loop model can be adopted and generalized to design a wide range of multifunctional materials with exceptional mechanical properties.
Collapse
Affiliation(s)
- Fuchuan Ding
- College of Chemistry and Materials Science & Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Hao Ding
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lei Qian
- Department of Anatomy and Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou 510515, China
| | - Jun Ouyang
- Department of Anatomy and Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou 510515, China
| | - Songshan Zeng
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Thomas A P Seery
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jiao Li
- College of Chemistry and Materials Science & Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
| | - Guanzheng Wu
- College of Chemistry and Materials Science & Fujian Key Laboratory of Polymer Science, Fujian Normal University, Fuzhou 350007, China
| | - Sonia E Chavez
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Andrew T Smith
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
| | - Lan Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Li
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connnecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
189
|
Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Dervišević A, Vranić E. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics 2021; 13:924. [PMID: 34206285 PMCID: PMC8308681 DOI: 10.3390/pharmaceutics13070924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Collapse
Affiliation(s)
- Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ahmet Cekic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Derzija Begic-Hajdarevic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Maida Cohodar Husic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Almir Dervišević
- Head and Neck Surgery, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| |
Collapse
|
190
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
191
|
Improved Therapeutic Efficiency against Obesity through Transdermal Drug Delivery Using Microneedle Arrays. Pharmaceutics 2021; 13:pharmaceutics13060827. [PMID: 34199630 PMCID: PMC8226838 DOI: 10.3390/pharmaceutics13060827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, we prepared patches that were composed of a degradable microneedle (MN) array with a soft backing provided for the skin tissue. We then performed a transdermal delivery of anti-obesity drugs to evaluate the effectiveness of β3 adrenergic receptor CL316243 in obesity treatment in overweight mice induced by a high-fat diet. Eighty male National Institutes of Health (NIH) mice were randomly divided into four obese groups or the control group. The obesity groups were given a high-fat diet for 15-18 weeks to establish an obese model. Afterward, the obese groups were divided into the following four groups: the control group, the unloaded MN group, the CL-316243 MN group, and the injection group. For the injection group, the group of mice was injected subcutaneously with CL316243 (1 mg/(kg·day)) for 15 days. Furthermore, the CL-316243 MN group was given a lower dose (0.1 mg/(kg·day)) for 15 days. After weighing the mice, we used Western blotting to detect the expression of uncoupling protein 1 (UCP1) in the adipose tissue around the mouse viscera. The results stated that the weight of the CL-316243 MN group and the injection group dropped, and the UCP1 protein expression of brown adipose tissue (BAT) significantly increased. The results demonstrated the β3 adrenergic receptor agonist CL316243 could be carried into the body through MN, and the dose applied was considerably smaller than the injection dose. The reason for this may arise from the CL-316243 being delivered by MN arrays to subcutaneous adipose tissue more efficiently, with an even distribution, compared to that of the injection dose. This technique provides a new and feasible way to treat obesity more effectively.
Collapse
|
192
|
Paredes AJ, Ramöller IK, McKenna PE, Abbate MT, Volpe-Zanutto F, Vora LK, Kilbourne-Brook M, Jarrahian C, Moffatt K, Zhang C, Tekko IA, Donnelly RF. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 173:331-348. [PMID: 33831475 DOI: 10.1016/j.addr.2021.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.
Collapse
|
193
|
Esposito CL, Ac AG, Laszlo E, Duy SV, Michaud C, Sauvé S, Ong H, Marleau S, Banquy X, Brambilla D. A quantitative UHPLC-MS/MS method for the growth hormone-releasing peptide-6 determination in complex biological matrices and transdermal formulations. Talanta 2021; 233:122555. [PMID: 34215058 DOI: 10.1016/j.talanta.2021.122555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
Growth hormone-releasing peptide-6 (GHRP-6) is part of a group of small synthetic peptides with potent GH-releasing activity that have gained attention in the last two decades by virtue of their cyto- and cardioprotective effects. Despite numerous preclinical studies highlighting the potential cardiovascular benefits of GHRP-6, confirmation of clinical efficacy is still awaited. Recent advances in transdermal drug delivery systems have been made to address challenges related to the poor skin permeation rate of peptides by using pain-free microneedle (MN) devices. Accordingly, highly sensitive and validated analytical methods are required for the potential clinical translation of MN-based peptides. The ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) methods developed in this study aimed to quantify GHRP-6 in biological matrices (plasma, skin) and dissolving polymeric MNs. UHPLC/MS-MS method detection limits of 0.1, 1.1, 0.9 and 1.5 ng/mL were achieved in neat solution, plasma, MN polymer solution, and skin matrices, respectively. Method validation also involved assessment of precision, accuracy, limits of quantification, linearity of matched calibration curves (R2 > 0.990), extraction recovery, matrix effect, stability studies, selectivity, and carry-over effect. Additionally, quality control samples were analyzed at three concentration levels to determine recovery (85-109%) and accuracy/bias (3.2-14.7%). Intra- and inter-day precision were within the range of acceptance (RSDs of 3.0-13.9% and 0.4-14.5%, respectively). The validity and applicability of such methods were successfully demonstrated for transdermal GHRP-6 delivery using GHRP-6-loaded MN patches applied to pig skin.
Collapse
Affiliation(s)
- Cloé L Esposito
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Araceli Garcia Ac
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Elise Laszlo
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Catherine Michaud
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
194
|
Ma Z, Zhang Y, Zhang Y, An Q, Dong H, Fu H, Zhang H, Zhang S, Tong W. Bifunctional Self‐Powered Drug Delivery System to Promote the Release and Transdermal Delivery of Polar Molecules. ChemistrySelect 2021. [DOI: 10.1002/slct.202100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zequn Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology China University of Geosciences Beijing 100083 China
| | - Yi Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology China University of Geosciences Beijing 100083 China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology China University of Geosciences Beijing 100083 China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology China University of Geosciences Beijing 100083 China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine Beijing University of Agriculture Beijing China
| | - Han Fu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology China University of Geosciences Beijing 100083 China
| | - Hui Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine Beijing University of Agriculture Beijing China
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology China University of Geosciences Beijing 100083 China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology China University of Geosciences Beijing 100083 China
| |
Collapse
|
195
|
Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HM. Microneedles in Smart Drug Delivery. Adv Wound Care (New Rochelle) 2021; 10:204-219. [PMID: 32320365 PMCID: PMC7906867 DOI: 10.1089/wound.2019.1122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Significance: In biomedical setup, at large, and drug delivery, in particular, transdermal patches, hypodermal needles, and/or dermatological creams with the topical appliance are among the most widely practiced routes for transdermal drug delivery. Owing to the stratum corneum layer of the skin, traditional drug delivery methods are inefficient, and the effect of the administered therapeutic cues is limited. Recent Advances: The current advancement at the microlevel and nanolevel has revolutionized the drug delivery sector. Particularly, various types of microneedles (MNs) are becoming popular for drug delivery applications because of safety, patient compliance, and smart action. Critical Issues: Herein, we reviewed state-of-the-art MNs as a smart and sophisticated drug delivery approach. Following a brief introduction, the drug delivery mechanism of MNs is discussed. Different types of MNs, that is, solid, hollow, coated, dissolving, and hydrogel forming, are discussed with suitable examples. The latter half of the work is focused on the applied perspective and clinical translation of MNs. Furthermore, a detailed overview of clinical applications and future perspectives is also included in this review. Future Directions: Regardless of ongoing technological and clinical advancement, the focus should be diverted to enhance the efficacy and strength of MNs. Besides, the possible immune response or interference should also be avoided for successful clinical translation of MNs as an efficient drug delivery system.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Correspondence: Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
196
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
197
|
Lopez-Ramirez MA, Kupor D, Marchiori L, Soto F, Rueda R, Reynoso M, Narra LR, Chakravarthy K, Wang J. Combinatorial microneedle patch with tunable release kinetics and dual fast-deep/sustained release capabilities. J Mater Chem B 2021; 9:2189-2199. [PMID: 33651048 DOI: 10.1039/d1tb00141h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transdermal microneedle (MN) drug delivery patches, comprising water-soluble polymers, have played an essential role in diverse biomedical applications, but with limited development towards fast deep release or sustained delivery applications. The effectiveness of such MN delivery patches strongly depends on the materials from which they are constructed. Herein, we present a dual-action combinatorial programmable MN patch, comprising of fast and sustained-release MN zones, with tunable release kinetics towards delivering a wide range of therapeutics over different timeframes in single application. We demonstrate the fine tuning of MN materials; the patches can be tailored to deliver a first payload faster and deeper within minutes, while simultaneously delivering a second payload over long times ranging from weeks to months. The active and rapid burst release relies on embedding biodegradable Mg microparticle 'engines' in dissolvable MNs while the sustained release is attributed to biocompatible polymers that allow prolonged release in a controllable tunable manner. In addition, the patches are characterized and optimized for their design, materials and mechanical properties. These studies indicate that such programmable dual-action versatile MN platform is expected to improve therapeutic efficacy and patient compliance, achieving powerful benefits by single patch application at low manufacturing cost.
Collapse
Affiliation(s)
| | - Daniel Kupor
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| | - Leonardo Marchiori
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| | - Fernando Soto
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| | - Ricardo Rueda
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| | - Maria Reynoso
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| | - Lakshmi Rekha Narra
- Department of Anesthesiology and Pain Medicine, University of California, San Diego, Health Sciences, La Jolla, California 92093, USA
| | - Krishnan Chakravarthy
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. and Department of Anesthesiology and Pain Medicine, University of California, San Diego, Health Sciences, La Jolla, California 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
198
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
199
|
GhavamiNejad A, Lu B, Samarikhalaj M, Liu JF, Mirzaie S, Pereira S, Zhou L, Giacca A, Wu XY. Transdermal delivery of a somatostatin receptor type 2 antagonist using microneedle patch technology for hypoglycemia prevention. Drug Deliv Transl Res 2021; 12:792-804. [PMID: 33683625 DOI: 10.1007/s13346-021-00944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Hypoglycemia is a serious and potentially fatal complication experienced by people with insulin-dependent diabetes. The complication is usually caused by insulin overdose, skipping meals, and/or excessive physical activities. In type 1 diabetes (T1D), on top of impaired pancreatic α-cells, excessive levels of somatostatin from δ-cells further inhibit glucagon secretion to counteract overdosed insulin. Herein, we aimed to develop a microneedle (MN) patch for transdermal delivery of a peptide (PRL-2903) that antagonizes somatostatin receptor type 2 (SSTR2) in α-cells. First, we investigated the efficacy of subcutaneously administered PRL-2903 and identified the optimal dose (i.e., the minimum effective dose) and treatment scheduling (i.e., the best administration time for hypoglycemia prevention) in a T1D rat model. We then designed an MN patch using a hyaluronic acid (HA)-based polymer. The possible effect of the polymer on stabilizing the native structure of PRL-2903 was studied by molecular dynamics (MD) simulations. The results showed that the HA-based polymer could stabilize the PRL-2903 structure by restricting water molecules, promoting intra-molecular H-bonding, and constraining torsional angles of important bonds. In vivo studies with an overdose insulin challenge revealed that the PRL-2903-loaded MN patch effectively increased the plasma glucagon level, restored the counter-regulation of blood glucose concentration, and prevented hypoglycemia. The proposed MN patch is the first demonstration of a transdermal microneedle patch designed to deliver an SSTR2 antagonist for the prevention of hypoglycemia. This counter-regulatory peptide delivery system may be applied alongside with insulin delivery systems to provide a more effective and safer treatment for people with insulin-dependent diabetes.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Melisa Samarikhalaj
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liwei Zhou
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
200
|
Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: A perspective in biomedical applications. Int J Pharm 2021; 599:120455. [PMID: 33676993 DOI: 10.1016/j.ijpharm.2021.120455] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022]
Abstract
Microneedles (MN) have the potential to become a highly progressive device for both drug delivery and monitoring purposes as they penetrate the skin and pierce the stratum corneum barrier, allowing the delivery of drugs in the viable skin layers and the extraction of body fluids. Despite the many years of research and the different types of MN developed, only hollow MN have reached the pharmaceutical market under the path of medical devices. Therefore, this review focuses on hollow MN, materials and methods for their fabrication as well as their application in drug delivery, vaccine delivery and monitoring purposes. Furthermore, novel approaches for the fabrication of hollow MN are included as well as prospects of microneedle-based products on the market.
Collapse
Affiliation(s)
| | - Brónach Mallon
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|