151
|
Konovalova A, Stock D, Schröder S, Park HS, Jang JH, Kim HJ, Han J, Schröder D, Henkensmeier D. Partially methylated polybenzimidazoles as coating for alkaline zinc anodes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
152
|
Lu S, Jiang J, Yang H, Zhang YJ, Pei DN, Chen JJ, Yu Y. Phase Engineering of Iron-Cobalt Sulfides for Zn-Air and Na-Ion Batteries. ACS NANO 2020; 14:10438-10451. [PMID: 32701259 DOI: 10.1021/acsnano.0c04309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm-2 and negligible voltage loss after 200 cycles as an air electrode for Zn-air batteries. For Na-ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g-1 at 20 A g-1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries.
Collapse
Affiliation(s)
- Shu Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Hai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying-Jie Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Dalian National Laboratory for Clean Energy (DNL), Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
153
|
Huang K, Xu P, He X, Wang R, Wang Y, Yang H, Zhang R, Lei M, Tang H. Annealing‐Free Platinum−Cobalt Alloy Nanoparticles on Nitrogen‐Doped Mesoporous Carbon with Boosted Oxygen Electroreduction Performance. ChemElectroChem 2020. [DOI: 10.1002/celc.202000830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Huang
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Pengfu Xu
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
- Beijing Key Laboratory of Space-ground Interconnection and ConvergenceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Xian He
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Ruyue Wang
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
- Beijing Key Laboratory of Space-ground Interconnection and ConvergenceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Yonggang Wang
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Hujiang Yang
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Ru Zhang
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
- Beijing Key Laboratory of Space-ground Interconnection and ConvergenceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical CommunicationsSchool of ScienceBeijing University of Posts and Telecommunications Beijing 100876 PR China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 PR China
| |
Collapse
|
154
|
Eckardt M, Alwast D, Schnaidt J, Behm RJ. Influence of Additives on the Reversible Oxygen Reduction Reaction/Oxygen Evolution Reaction in the Mg 2+ -Containing Ionic Liquid N-Butyl-N-Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)imide. CHEMSUSCHEM 2020; 13:3919-3927. [PMID: 32315492 PMCID: PMC7496526 DOI: 10.1002/cssc.202000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The influence of different additives on the oxygen reduction reaction/oxygen evolution reaction (ORR/OER) in magnesium-containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([BMP][TFSI]) on a glassy carbon electrode was investigated to gain a better understanding of the electrochemical processes in Mg-air batteries. 18-Crown-6 was used as a complexing agent for Mg ions to hinder the passivation caused by their reaction with ORR products such as superoxide and peroxide anions. Furthermore, borane dimethylamine complex (NBH) was used as a potential water-removing agent to inhibit electrode passivation by reacting with trace impurities of water. The electrochemical processes were characterized by differential electrochemical mass spectrometry to monitor the consumed and evolved O2 in the ORR/OER and determine the number of transferred electrons. Crown ether and NBH efficiently masked Mg2+ . A stochiometric excess of crown ether resulted in reduced formation of a passivation layer, whereas at too high concentrations the reversibility of the ORR/OER was diminished.
Collapse
Affiliation(s)
- M. Eckardt
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | - D. Alwast
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | - J. Schnaidt
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - R. J. Behm
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
| |
Collapse
|
155
|
Hao J, Li B, Li X, Zeng X, Zhang S, Yang F, Liu S, Li D, Wu C, Guo Z. An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003021. [PMID: 32639067 DOI: 10.1002/adma.202003021] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Although Zn metal has been regarded as the most promising anode for aqueous batteries, it persistently suffers from serious side reactions and dendrite growth in mild electrolyte. Spontaneous Zn corrosion and hydrogen evolution damage the shelf life and calendar life of Zn-based batteries, severely affecting their industrial applications. Herein, a robust and homogeneous ZnS interphase is built in situ on the Zn surface by a vapor-solid strategy to enhance Zn reversibility. The thickness of the ZnS film is controlled via the treatment temperature, and the performance of the protected Zn electrode is optimized. The dense ZnS artificial layer obtained at 350 °C not only suppresses Zn corrosion by forming a physical barrier on the Zn surface, but also inhibits dendrite growth via guiding the Zn plating/stripping underneath the artificial layer. Accordingly, a side reaction-free and dendrite-free Zn electrode is developed, the effectiveness of which is also convincing in a MnO2 /ZnS@Zn full-cell with 87.6% capacity retention after 2500 cycles.
Collapse
Affiliation(s)
- Junnan Hao
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Mechanical Materials, Mechatronics & Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Bo Li
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaolong Li
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xiaohui Zeng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shilin Zhang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Fuhua Yang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sailin Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dan Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Wu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Zaiping Guo
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Mechanical Materials, Mechatronics & Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2500, Australia
| |
Collapse
|
156
|
Wu X, He G, Ding Y. Dealloyed Nanoporous Materials for Rechargeable Post-Lithium Batteries. CHEMSUSCHEM 2020; 13:3376-3390. [PMID: 32391967 DOI: 10.1002/cssc.202001069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Nanoporous materials (NPMs) made by dealloying have been well recognized as multifunctional electrodes for lithium-ion batteries (LIBs). In recent years, there are ever-increasing demands on grid-scale energy storage devices composed by earth-abundant elements such as Na, K, Mg, Al, and Zn. Compared to LIBs, these electrochemical cells face critical challenges such as slow kinetics of redox reactions and structural instability owing to large ion size and/or multiple-electron process. Much interest has been focused on NPMs to address these issues with great success. This Minireview discusses the recent research progresses on these novel electrode materials in the emerging post-lithium batteries, including the rational-design of NPMs, structure-performance correlation in each battery system, and insights into future development of this rapidly growing field.
Collapse
Affiliation(s)
- Xuan Wu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, P. R. China
| | - Guang He
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
157
|
Wang R, Wei Y, An L, Yang R, Guo L, Weng Z, Da P, Chen W, Jin J, Li J, Xi P. Construction and Application of Interfacial Inorganic Nanostructures. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Rui Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Linchuan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Wenqing Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jianyi Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
158
|
Shi Y, Chen Y, Shi L, Wang K, Wang B, Li L, Ma Y, Li Y, Sun Z, Ali W, Ding S. An Overview and Future Perspectives of Rechargeable Zinc Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000730. [PMID: 32406195 DOI: 10.1002/smll.202000730] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
Aqueous rechargeable zinc-based batteries have sparked a lot of enthusiasm in the energy storage field recently due to their inherent safety, low cost, and environmental friendliness. Although remarkable progress has been made in the exploration of performance so far, there are still many challenges such as low working voltage and dissolution of electrode materials at the material and system level. Herein, the central tenet is to establish a systematic summary for the construction and mechanism of different aqueous zinc-based batteries. Details for three major zinc-based battery systems, including alkaline rechargeable Zn-based batteries (ARZBs), aqueous Zn ion batteries (AZIBs), and dual-ion hybrid Zn batteries (DHZBs) are given. First, the electrode materials and energy storage mechanism of the three types of zinc-based batteries are discussed to provide universal guidance for these batteries. Then, the electrode behavior of zinc anodes and strategies to deal with problems such as dendrite and passivation are recommended. Finally, some challenge-oriented solutions are provided to facilitate the next development of zinc-based batteries. Combining the characteristics of zinc-based batteries with good use of concepts and ideas from other disciplines will surely pave the way for its commercialization.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ye Chen
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Shi
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ke Wang
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Biao Wang
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Long Li
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaming Ma
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhan Li
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zehui Sun
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wajid Ali
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
159
|
Song Z, Ding J, Liu B, Liu X, Han X, Deng Y, Hu W, Zhong C. A Rechargeable Zn-Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Water-Retentive Gel Electrolyte with Reaction Modifier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908127. [PMID: 32301217 DOI: 10.1002/adma.201908127] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Tremendous effort have recently been made in optimizing the air catalysts of flexible zinc-air batteries (ZABs). Unfortunately, the bottleneck factors in electrolytes that largely limit the working life and energy efficiency of ZABs have long been relatively neglected. Herein, an alkaline gel polymer electrolyte (GPE) is fabricated through multiple crosslinking reactions among poly(vinyl alcohol) (PVA), poly(acrylic acid), and graphene oxide followed by intense uptake of an alkali and the KI reaction modifier. The prepared GPE exhibits essentially improved properties compared to traditional PVA gel electrolyte in terms of mechanical strength, ionic conductivity, and water retention capability. In addition, the introduced reaction modifier I- in the GPE changes the path of the conventional oxygen evolution reaction, leading to a more thermodynamically favorable path. The optimized GPE enables flexible ZABs exhibiting an exceptionally low charge potential of 1.69 V, a long cycling time of 200 h, a high energy efficiency of 73%, and rugged reliability under different extreme working conditions. Moreover, the successful integration of ZABs in a variety of real wearable electronic devices demonstrates their excellent practicability as flexible power sources.
Collapse
Affiliation(s)
- Zhishuang Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
160
|
Zhang W, Li Z, Chen J, Wang X, Li X, Yang K, Li L. Three-dimensional CoNi alloy nanoparticle and carbon nanotube decorated N-doped carbon nanosheet arrays for use as bifunctional electrocatalysts in wearable and flexible Zn-air batteries. NANOTECHNOLOGY 2020; 31:185703. [PMID: 31945747 DOI: 10.1088/1361-6528/ab6cd9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel three-dimensional (3D) bifunctional electrocatalyst, CoNi alloy nanoparticle and carbon nanotube decorated N-doped carbon nanosheet arrays on carbon cloth (CoNi alloy/NCNSAs/CC) derived from polymetallic organic frameworks, is firstly prepared. The CoNi alloy/NCNSAs/CC-800 fabricated by pyrolyzing at 800 °C exhibits an oxygen reduction reaction (ORR, limiting current density) of 6.5 mA cm-2 and a superior oxygen evolution reaction (OER, at 10 mA cm-2) of 1.51 V, as well as a smaller potential difference of 0.676 V between OER and ORR half-wave potential, outperforming previous self-supporting cathodes. Flexible Zn-air batteries (FZABs) assembled with the CoNi alloy/NCNSAs/CC-800 exhibit higher energy density (98.8 mW cm-2) and higher capacity (879 mAh g-1), as well as excellent mechanical cycle ability (lower voltage gap of 0.66 V during the charge/discharge cycles at flat and folded state), significantly outstripping all other FZABs with self-supporting electrodes currently reported. Such a remarkable performance is ascribed to the 3D hierarchical nanostructure which promotes mass transport, the higher graphitization facilitating electronic mobility and the evenly dispersed active sites which accelerate kinetic reactions. So CoNi alloy/NCNSAs/CC-800 is a promising cathode candidate for ideal wearable energy devices and has great potential application in the field of electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- Wenming Zhang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, People's Republic of China. National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
161
|
Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9739-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
162
|
Liu JN, Li BQ, Zhao CX, Yu J, Zhang Q. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries. CHEMSUSCHEM 2020; 13:1529-1536. [PMID: 31845530 DOI: 10.1002/cssc.201903071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Rechargeable zinc-air batteries are considered as next-generation energy storage devices because of their ultrahigh theoretical energy density of 1086 Wh kg-1 (including oxygen) and inherent safety originating from the use of aqueous electrolyte. However, the cathode processes regarding oxygen reduction and evolution are sluggish in terms of kinetics, which severely limit the practical battery performances. Developing high-performance bifunctional oxygen electrocatalysts is of great significance, yet to achieve better bifunctional electrocatalytic reactivity beyond the state-of-the-art noble-metal-based electrocatalysts remains a great challenge. Herein, a composite Co3 O4 @POF (POF=framework porphyrin) bifunctional oxygen electrocatalyst is proposed to construct advanced air cathodes for high-performance rechargeable zinc-air batteries. The as-obtained composite Co3 O4 @POF electrocatalyst exhibits a bifunctional electrocatalytic reactivity of ΔE=0.74 V, which is better than the noble-metal-based Pt/C+Ir/C electrocatalyst and most of the reported bifunctional ORR/OER electrocatalysts. When applied in rechargeable zinc-air batteries, the Co3 O4 @POF cathode exhibits a reduced discharge-charge voltage gap of 1.0 V at 5.0 mA cm-2 , high power density of 222.2 mW cm-2 , and impressive cycling stability for more than 2000 cycles at 5.0 mA cm-2 .
Collapse
Affiliation(s)
- Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Bo-Quan Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jia Yu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
163
|
Tang T, Jiang WJ, Liu XZ, Deng J, Niu S, Wang B, Jin SF, Zhang Q, Gu L, Hu JS, Wan LJ. Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc–Air Batteries with Record Power Density. J Am Chem Soc 2020; 142:7116-7127. [DOI: 10.1021/jacs.0c01349] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jie Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Xiao-Zhi Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Deng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shi-Feng Jin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lin Gu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
164
|
Wang C, Zhu G, Liu P, Chen Q. Monolithic Nanoporous Zn Anode for Rechargeable Alkaline Batteries. ACS NANO 2020; 14:2404-2411. [PMID: 32017531 DOI: 10.1021/acsnano.9b09669] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of monolithic nanoporous zinc bears its significance in safe and inexpensive energy storage; it can provide the much needed electrical conductivity and specific area in a practical alkaline battery to extend the short cycle life of a zinc anode. Although this type of structure has been routinely fabricated by dealloying, that is, the selective dissolution of an alloy, it has not led to a rechargeable zinc anode largely because the need for more reactive metal as the dissolving component in dealloying limits the choices of alloy precursors. Here, we apply the mechanism of dealloying, percolation dissolution, to design a process of reduction-induced decomposition of a zinc compound (ZnCl2) for nanoporous zinc. Using naphthalenide solution, we confine the selective dissolution of chloride to the compound/electrolyte interface, triggering the spontaneous formation of a network of 70 nm wide percolating zinc ligaments that retain the shape of a 200 μm thick monolith. We further reveal that this structure, when electrochemically oxidized and reduced in an alkaline electrolyte, undergoes surface-diffusion-controlled coarsening toward a quasi-steady-state with a length scale of ∼500 nm. The coarsening dynamics preserves the continuous zinc phase, enabling its uniform reaction and 200 cycles of stable performance at 40% depth of discharge (328 mAh/g) in a Ni-Zn battery.
Collapse
Affiliation(s)
- Congcheng Wang
- Department of Mechanical and Aerospace Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| | - Guoyin Zhu
- Department of Mechanical and Aerospace Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- Institute of Advanced Studies , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, and Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- The Energy Institute , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong
| |
Collapse
|
165
|
Xie Z, Du L, Lv X, Wang Q, Huang J, Fu T, Li S. Evaluation and Analysis of Battery Technologies Applied to Grid-Level Energy Storage Systems Based on Rough Set Theory. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12209-020-00237-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractInterest in the development of grid-level energy storage systems has increased over the years. As one of the most popular energy storage technologies currently available, batteries offer a number of high-value opportunities due to their rapid responses, flexible installation, and excellent performances. However, because of the complexity, multifunctionality, and wide deployment of power grids, trade-offs in battery performance exist, especially when considering economics, environmental effects, and safety. Therefore, establishing a comprehensive assessment of battery technologies is an urgent undertaking. In this work, we present an analysis of rough sets to evaluate the integration of battery systems (e.g., lead–acid batteries, lithium-ion batteries, nickel/metal–hydrogen batteries, zinc–air batteries, and Na–S batteries) into a power grid. Specifically, technological properties, economic significance, environmental effects, and safety of these battery systems are evaluated on the basis of rough set theory. In addition, some perspectives are provided to promote the development of battery technologies for grid-level energy storage.
Collapse
|
166
|
Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S. Defect Engineering on Electrode Materials for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905923. [PMID: 31930593 DOI: 10.1002/adma.201905923] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Indexed: 05/21/2023]
Abstract
The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in-depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal-ion batteries, lithium-sulfur batteries, and metal-air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.
Collapse
Affiliation(s)
- Yiqiong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Ru Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yanyong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
167
|
Cai JJ, Zhou QY, Liu B, Gong XF, Zhang YL, Goh K, Gu DM, Zhao L, Sui XL, Wang ZB. A sponge-templated sandwich-like cobalt-embedded nitrogen-doped carbon polyhedron/graphene composite as a highly efficient catalyst for Zn-air batteries. NANOSCALE 2020; 12:973-982. [PMID: 31840721 DOI: 10.1039/c9nr09020g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-noble metal materials are regarded as the most promising catalysts for the oxygen reduction reaction (ORR) to overcome the inherent defects of Pt-based catalysts, like high cost, limited availability and insufficient stability. Here, we fabricate sandwich-like Co encapsulated nitrogen doped carbon polyhedron/graphene (s-Co@NCP/rGO) via a facile and scalable strategy by loading Co-based zeolitic imidazolate framework (ZIF-67) and graphene oxide (GO) layers individually on a polyurethane (PU) sponge template. The 3D sandwich structure is maintained with the assistance of the sponge template, which promotes the uniform dispersion of ZIF-67-derived Co embedded nitrogen doped carbon polyhedra (Co@NCP) and prevents the graphene plates from agglomerating during the annealing process. The final product demonstrates considerable catalytic performance for the ORR with a half-wave potential of 0.85 V, preferable stability and increased poisoning tolerance by comparison to 20 wt% Pt/C, which stems from the 3D sandwich-like structure, N/Co-doping effect, large accessible surface area and hierarchical porous structures. The excellent ORR performance of the catalysts means that they can be utilised in a Zn-air battery as cathode catalysts. During such a demonstration, s-Co@NCP/rGO shows a high open-circuit voltage of 1.466 V, remarkable long-term durability and an outstanding peak power density of 186 mV cm-2, which shows its high potential as a prospective alternative for widespread practical application in the field of non-noble metal ORR catalysts.
Collapse
Affiliation(s)
- Jia-Jun Cai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001 China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Xu R, Luo F, Li M, Yang Z. Ultrafine cobalt nitride nanoparticles supported on carbon nanotubes as efficient electrocatalyst for rechargeable zinc-air batteries. Chem Commun (Camb) 2019; 55:13394-13397. [PMID: 31637394 DOI: 10.1039/c9cc06359e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafine (5 nm) cobalt nitride nanoparticles supported on carbon nanotubes (CoN/CNT) are reported as air electrodes for rechargeable zinc-air batteries (ZABs). CoN/CNT exhibits 2.4 fold higher battery performance than commercial Pt/C-IrO2.
Collapse
Affiliation(s)
- Ruizhi Xu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China.
| | - Fang Luo
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China.
| | - Min Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China.
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China.
| |
Collapse
|
169
|
Wu H, Wang J, Yan J, Wu Z, Jin W. MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts. NANOSCALE 2019; 11:20144-20150. [PMID: 31613298 DOI: 10.1039/c9nr05744g] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing highly efficient, low-cost and bifunctional electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) plays a pivotal role in the scalable applications of zinc-air (Zn-air) batteries. Herein, Co-Fe-P-Se nanoparticles supported on two-dimensional nitrogen-doped carbon (Co-Fe-P-Se/NC) to construct a three-dimensional nanostructure were obtained under the assistance of metal-organic frameworks (MOFs). The two-dimensional nanosheet facilitated the electron transfer rate and exposed abundant active sites. The three-dimensional morphology composed of nanosheets was favorable for electrolyte transport and provided abundant channels for gas diffusion during the catalytic process. Moreover, the coexistence of Co and Fe had important effects on promoting the catalytic performances. Lastly, the catalytic performances for OER and ORR could be promoted effectively after the introduction of selenium and phosphorous in the designed electrocatalyst. Benefiting from the above merits, the prepared Co-Fe-P-Se/NC exhibited excellent catalytic performances for OER (overpotential of 0.27 V at 10 mA cm-2), ORR (half-wave potential of 0.76 V) and rechargeable batteries (a low voltage gap of 0.719 V, high power density of 104 mW cm-2 at 200 mA cm-2 and high energy density of 805 W h KgZn-1). Moreover, the prepared electrocatalyst possessed more stable long-term stability in all the conducted experiments. This work provides a novel approach to develop and construct high-performance bifunctional nanocatalysts for metal-air batteries.
Collapse
Affiliation(s)
- Hengbo Wu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ji Yan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, PR China
| | - Zexing Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Wei Jin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
170
|
|
171
|
Culebras M, Geaney H, Beaucamp A, Upadhyaya P, Dalton E, Ryan KM, Collins MN. Bio-derived Carbon Nanofibres from Lignin as High-Performance Li-Ion Anode Materials. CHEMSUSCHEM 2019; 12:4516-4521. [PMID: 31390144 DOI: 10.1002/cssc.201901562] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/29/2019] [Indexed: 05/14/2023]
Abstract
Development of cost-effective and increasingly efficient sustainable materials for energy-storage devices, such Li-ion batteries, is of crucial future importance. Herein, the preparation of carbon nanofibres from biopolymer blends of lignin (byproduct from the paper and pulp industry) and polylactic acid (PLA) or a thermoplastic elastomeric polyurethane (TPU) is described. SEM analysis shows the evolving microstructural morphology after each processing step (electrospinning, stabilisation and carbonisation). Importantly, it is possible to tailor the nanofibre porosity by utilising miscibility/immiscibility rules between lignin and the polymer additive (PLA/TPU). PLA blends (immiscible) generate porous structures whereas miscible lignin/TPU blends are solid when carbonised. Electrodes produced from 50 % PLA blends have capacity values of 611 mAh g-1 after 500 charge/discharge cycles, the highest reported to date for sustainable electrodes for Li-ion batteries. Thus, this work will promote the development of lignocellulose waste materials as high-performance energy-storage materials.
Collapse
Affiliation(s)
- Mario Culebras
- Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland
| | - Hugh Geaney
- Bernal Institute & Chemical Sciences Department, University of Limerick, Limerick, V94T9PX, Ireland
| | - Anne Beaucamp
- Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland
| | - Prathviraj Upadhyaya
- Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland
| | - Eric Dalton
- Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland
| | - Kevin M Ryan
- Bernal Institute & Chemical Sciences Department, University of Limerick, Limerick, V94T9PX, Ireland
| | - Maurice N Collins
- Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland
| |
Collapse
|
172
|
Zhu D, Zhao Q, Fan G, Zhao S, Wang L, Li F, Chen J. Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angew Chem Int Ed Engl 2019; 58:12460-12464. [DOI: 10.1002/anie.201905954] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Dongdong Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Qiancheng Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Guilan Fan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Shuo Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Liubin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
173
|
Qian J, Bai X, Xi S, Xiao W, Gao D, Wang J. Bifunctional Electrocatalytic Activity of Nitrogen-Doped NiO Nanosheets for Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30865-30871. [PMID: 31380619 DOI: 10.1021/acsami.9b08647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In order to improve the efficiencies and service lifetimes of rechargeable Zn-air batteries, it is necessary to develop highly efficient air electrocatalysts. In the present study, we prove that the bifunctional electrocatalytic activity in NiO nanosheets is effectively improved by the synergistic effects of N dopants and considerably porous structure. As an electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the as-prepared porous N-doped NiO nanosheets exhibit good activities with the small overpotential and ideal half-wave potential, which is superior to Ir/C electrocatalyst. Besides, it is proved that the process of HO* being oxidized to O* is the OER potential rate-determining step; also the OER electrocatalytic performance of NiO can be markedly promote by the doping of N atoms using the density functional theory calculations. Furthermore, the fabricated Zn-air battery based on the porous N-doped NiO nanosheets also exhibits superior activities, outperforming many reported NiO-based electrocatalyst materials. Two series Zn-air cells with a voltage of 2.80 V can power a red light-emitting diode, which shows their large potential for various applications.
Collapse
Affiliation(s)
- Jinmei Qian
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Xiaowan Bai
- School of Physics , Southeast University , Nanjing 211189 , People's Republic of China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences , A*STAR , 1 Pesek Road , Jurong Island , 627833 , Singapore
| | - Wen Xiao
- Institute of Chemical and Engineering Sciences , A*STAR , 1 Pesek Road , Jurong Island , 627833 , Singapore
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Jinlan Wang
- School of Physics , Southeast University , Nanjing 211189 , People's Republic of China
| |
Collapse
|
174
|
Zhu D, Zhao Q, Fan G, Zhao S, Wang L, Li F, Chen J. Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc–Air Battery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905954] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongdong Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Qiancheng Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Guilan Fan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Shuo Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Liubin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
175
|
Yu M, Wang L, Liu J, Li H, Lang X, Zhao C, Hong Z, Wang W. Sponge Effect Boosting Oxygen Reduction Reaction at the Interfaces between Mullite SmMn 2O 5 and Nitrogen-Doped Reduced Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17482-17490. [PMID: 31026140 DOI: 10.1021/acsami.9b04451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exploring the effect of interfacial structural properties on catalytic performance of hybrid materials is essential in rationally designing novel electrocatalysts with high stability and activity. Here, in situ growth of mullite SmMn2O5 on nitrogen-doped reduced graphene oxide (SMO@NrGO) is achieved for highly efficient oxygen reduction reaction (ORR). Combining X-ray photoelectron spectroscopy and density functional theory calculations, interfacial chemical interactions between Mn and substrates are verified. Interestingly, as revealed by charge density difference, the interfacial Mn-N(C) bonds display a sponge effect to store and compensate electrons to boost the ORR process. In addition, bidentate adsorption of oxygen intermediates instead of monodentate ones is observed in hybrid materials, which facilitates the interactions between intermediates and active sites. Experimentally, the hybrid catalyst SMO@NrGO exhibits a half-wave potential as high as 0.84 V, being comparable to benchmark Pt/C and higher than that of the pure SMO (0.68 V). The Zn-air battery assembled with SMO@NrGO shows a high discharge peak power density of 244 mW cm-2 and superior cycling stability against noble metals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhanglian Hong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , No. 38 Zheda Road , Hangzhou 310027 , China
| | | |
Collapse
|
176
|
Qiu HJ, Du P, Hu K, Gao J, Li H, Liu P, Ina T, Ohara K, Ito Y, Chen M. Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900843. [PMID: 30920697 DOI: 10.1002/adma.201900843] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/11/2019] [Indexed: 05/27/2023]
Abstract
Developing bifunctional electrocatalysts with high activities and long durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial toward the practical implementation of rechargeable metal-air batteries. Here, a 3D nanoporous graphene (np-graphene) doped with both N and Ni single atoms/clusters is reported. The predoping of N by chemical vapor deposition (CVD) dramatically increases the Ni doping amount and stability. The resulting N and Ni codoped np-graphene has excellent electrocatalytic activities for both the ORR and the OER in alkaline aqueous solutions. The synergetic effects of N and Ni dopants are revealed by density functional theory calculations. The free-standing Ni,N codoped 3D np-graphene shows great potential as an economical catalyst/electrode for metal-air batteries.
Collapse
Affiliation(s)
- Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Peng Du
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kailong Hu
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Jiaojiao Gao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Huanglong Li
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Pan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Toshiaki Ina
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Koji Ohara
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan
- PRESTOJapan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|