151
|
Bartlett R, Sluyter V, Watson D, Sluyter R, Yerbury JJ. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1 G93A amyotrophic lateral sclerosis mice. PeerJ 2017; 5:e3064. [PMID: 28265522 PMCID: PMC5335685 DOI: 10.7717/peerj.3064] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG), could alter disease progression in a murine model of ALS. METHODS Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62-64 days of age) until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. RESULTS BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor coordination in either sex. BBG treatment had no major effect on any end-stage parameters. Total amounts of lumbar spinal cord SOD1 and P2X7 in untreated female SOD1G93A mice did not change over time. DISCUSSION Collectively, this data suggests P2X7 may have a partial role in ALS progression in mice, but additional research is required to fully elucidate the contribution of this receptor in this disease.
Collapse
Affiliation(s)
- Rachael Bartlett
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Vanessa Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Biosciences, Wollongong, NSW, Australia
| |
Collapse
|
152
|
Yang X, Zheng J, Tian S, Chen Y, An R, Zhao Q, Xu Y. HLA-DRA/HLA-DRB5 polymorphism affects risk of sporadic ALS and survival in a southwest Chinese cohort. J Neurol Sci 2017; 373:124-128. [DOI: 10.1016/j.jns.2016.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022]
|
153
|
Martínez HR, Escamilla-Ocañas CE, Tenorio-Pedraza JM, Gómez-Almaguer D, Jaime-Perez JC, Olguín-Ramírez LA, Salazar-Marioni S, González-Garza MT. Altered CSF cytokine network in amyotrophic lateral sclerosis patients: A pathway-based statistical analysis. Cytokine 2017; 90:1-5. [DOI: 10.1016/j.cyto.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
|
154
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
155
|
Lee JM, Tan V, Lovejoy D, Braidy N, Rowe DB, Brew BJ, Guillemin GJ. Involvement of quinolinic acid in the neuropathogenesis of amyotrophic lateral sclerosis. Neuropharmacology 2017; 112:346-364. [DOI: 10.1016/j.neuropharm.2016.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
156
|
A. Richard S, Min W, Su Z, Xu HX. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
157
|
Mancuso R, Navarro X. Sigma-1 Receptor in Motoneuron Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:235-254. [PMID: 28315275 DOI: 10.1007/978-3-319-50174-1_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS ) is a neurodegenerative disease affecting spinal cord and brain motoneurons , leading to paralysis and early death. Multiple etiopathogenic mechanisms appear to contribute in the development of ALS , including glutamate excitotoxicity, oxidative stress , protein misfolding, mitochondrial defects, impaired axonal transport, inflammation and glial cell alterations. The Sigma-1 receptor is highly expressed in motoneurons of the spinal cord, particularly enriched in the endoplasmic reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several evidences point to participation of Sigma-1R alterations in motoneuron degeneration. Thus, mutations of the transmembrane domain of the Sigma-1R have been described in familial ALS cases. Interestingly, Sigma-1R KO mice display muscle weakness and motoneuron loss. On the other hand, Sigma-1R agonists promote neuroprotection and neurite elongation through activation of protein kinase C on motoneurons in vitro and in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, the most usual animal model of ALS , with Sigma-1R agonists resulted in significantly enhanced motoneuron function and preservation, and increased animal survival. Sigma-1R activation also reduced microglial reactivity and increased the glial expression of neurotrophic factors. Two main interconnected mechanisms seem to underlie the effects of Sigma-1R manipulation on motoneurons: modulation of neuronal excitability and regulation of calcium homeostasis. In addition, Sigma-1R also contributes to regulating protein degradation, and reducing oxidative stress. Therefore, the multi-functional nature of the Sigma-1R represents an attractive target for treating aspects of ALS and other motoneuron diseases .
Collapse
Affiliation(s)
- Renzo Mancuso
- Center for Biological Sciences, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
158
|
Puentes F, Malaspina A, van Noort JM, Amor S. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers. Brain Pathol 2016; 26:248-57. [PMID: 26780491 DOI: 10.1111/bpa.12352] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | - Andrea Malaspina
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | | | - Sandra Amor
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK.,Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
159
|
Won YH, Lee MY, Choi YC, Ha Y, Kim H, Kim DY, Kim MS, Yu JH, Seo JH, Kim M, Cho SR, Kang SW. Elucidation of Relevant Neuroinflammation Mechanisms Using Gene Expression Profiling in Patients with Amyotrophic Lateral Sclerosis. PLoS One 2016; 11:e0165290. [PMID: 27812125 PMCID: PMC5094695 DOI: 10.1371/journal.pone.0165290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by damage of motor neurons. Recent reports indicate that inflammatory responses occurring within the central nervous system contribute to the pathogenesis of ALS. We aimed to investigate disease-specific gene expression associated with neuroinflammation by conducting transcriptome analysis on fibroblasts from three patients with sporadic ALS and three normal controls. Several pathways were found to be upregulated in patients with ALS, among which the toll-like receptor (TLR) and NOD-like receptor (NLR) signaling pathways are related to the immune response. Genes—toll-interacting protein (TOLLIP), mitogen-activated protein kinase 9 (MAPK9), interleukin-1β (IL-1β), interleukin-8 (IL-8), and chemokine (C-X-C motif) ligand 1 (CXCL1)—related to these two pathways were validated using western blotting. This study validated the genes that are associated with TLR and NLR signaling pathways from different types of patient-derived cells. Not only fibroblasts but also induced pluripotent stem cells (iPSCs) and neural rosettes from the same origins showed similar expression patterns. Furthermore, expression of TOLLIP, a regulator of TLR signaling pathway, decreased with cellular aging as judged by changes in its expression through multiple passages. TOLLIP expression was downregulated in ALS cells under conditions of inflammation induced by lipopolysaccharide. Our data suggest that the TLR and NLR signaling pathways are involved in pathological innate immunity and neuroinflammation associated with ALS and that TOLLIP, MAPK9, IL-1β, IL-8, and CXCL1 play a role in ALS-specific immune responses. Moreover, changes of TOLLIP expression might be associated with progression of ALS.
Collapse
Affiliation(s)
- Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
- Department of Medicine, the Graduate School of Yonsei University, Seoul, Korea
| | - Min-Young Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Hyongbum Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Myung-Sun Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - MinGi Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- * E-mail: (SWK); (SRC)
| | - Seong-Woong Kang
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, the Graduate School of Yonsei University, Seoul, Korea
- * E-mail: (SWK); (SRC)
| |
Collapse
|
160
|
Impaired activation of ALS monocytes by exosomes. Immunol Cell Biol 2016; 95:207-214. [DOI: 10.1038/icb.2016.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
|
161
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
162
|
Lee J, Hyeon SJ, Im H, Ryu H, Kim Y, Ryu H. Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS. Exp Neurobiol 2016; 25:233-240. [PMID: 27790057 PMCID: PMC5081469 DOI: 10.5607/en.2016.25.5.233] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that leads to a progressive muscle wasting and paralysis. The pathological phenotypes are featured by severe motor neuron death and glial activation in the lumbar spinal cord. Proposed ALS pathogenic mechanisms include glutamate cytotoxicity, inflammatory pathway, oxidative stress, and protein aggregation. However, the exact mechanisms of ALS pathogenesis are not fully understood yet. Recently, a growing body of evidence provides a novel insight on the importance of glial cells in relation to the motor neuronal damage via the non-cell autonomous pathway. Accordingly, the aim of the current paper is to overview the role of astrocytes and microglia in the pathogenesis of ALS and to better understand the disease mechanism of ALS.
Collapse
Affiliation(s)
- Junghee Lee
- Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA.; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seung Jae Hyeon
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| | - Hyeonjoo Im
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| | - Hyun Ryu
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yunha Kim
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| | - Hoon Ryu
- Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA.; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.; Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 04535, Korea
| |
Collapse
|
163
|
Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf WP, Grozdanov V, Thiemann M, Fundel-Clemes K, Freischmidt A, Holzmann K, Strobel B, Weydt P, Witting A, Thal DR, Helferich AM, Hengerer B, Gottschalk KE, Hill O, Kluge M, Ludolph AC, Danzer KM, Weishaupt JH. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 2016; 132:391-411. [PMID: 26910103 DOI: 10.1007/s00401-016-1548-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lisa Zondler
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Kathrin Müller
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Samira Khalaji
- Department of Experimental Physics, Ulm University, Ulm, Germany
| | - Corinna Bliederhäuser
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Wolfgang P Ruf
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Veselin Grozdanov
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | | | | | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | | | | | - Patrick Weydt
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Anke Witting
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Dietmar R Thal
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Anika M Helferich
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | | | | | | | | | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany.
| |
Collapse
|
164
|
Gómez-Pinedo U, Galán L, Yañez M, Matias-Guiu J, Valencia C, Guerrero-Sola A, Lopez-Sosa F, Brin JR, Benito-Martin MS, Leon-Espinosa G, Vela-Souto A, Lendinez C, Guillamon-Vivancos T, Matias-Guiu JA, Arranz-Tagarro JA, Barcia JA, Garcia AG. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. Neurologia 2016; 33:211-223. [PMID: 27570180 DOI: 10.1016/j.nrl.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) from amyotrophic lateral sclerosis (ALS) patients induces cytotoxic effects in in vitro cultured motor neurons. MATERIAL AND METHODS We selected CSF with previously reported cytotoxic effects from 32 ALS patients. Twenty-eight adult male rats were intracerebroventricularly implanted with osmotic mini-pumps and divided into 3 groups: 9 rats injected with CSF from non-ALS patients, 15 rats injected with cytotoxic ALS-CSF, and 4 rats injected with a physiological saline solution. CSF was intracerebroventricularly and continuously infused for periods of 20 or 43days after implantation. We conducted clinical assessments and electromyographic examinations, and histological analyses were conducted in rats euthanised 20, 45, and 82days after surgery. RESULTS Immunohistochemical studies revealed tissue damage with similar characteristics to those found in the sporadic forms of ALS, such as overexpression of cystatinC, transferrin, and TDP-43 protein in the cytoplasm. The earliest changes observed seemed to play a protective role due to the overexpression of peripherin, AKTpan, AKTphospho, and metallothioneins; this expression had diminished by the time we analysed rats euthanised on day 82, when an increase in apoptosis was observed. The first cellular changes identified were activated microglia followed by astrogliosis and overexpression of GFAP and S100B proteins. CONCLUSION Our data suggest that ALS could spread through CSF and that intracerebroventricular administration of cytotoxic ALS-CSF provokes changes similar to those found in sporadic forms of the disease.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - L Galán
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - M Yañez
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J Matias-Guiu
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - C Valencia
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A Guerrero-Sola
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - F Lopez-Sosa
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J R Brin
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - M S Benito-Martin
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - G Leon-Espinosa
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A Vela-Souto
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - C Lendinez
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - T Guillamon-Vivancos
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España; Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Arranz-Tagarro
- Instituto Teófilo Hernando, Departamento de Farmacología Terapéutica, Universidad Autónoma de Madrid, Madrid, España
| | - J A Barcia
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A G Garcia
- Instituto Teófilo Hernando, Departamento de Farmacología Terapéutica, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
165
|
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord. PLoS One 2016; 11:e0160520. [PMID: 27487029 PMCID: PMC4972368 DOI: 10.1371/journal.pone.0160520] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned >50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG's). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network "hub" gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF's involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients.
Collapse
|
166
|
Significance of aberrant glial cell phenotypes in pathophysiology of amyotrophic lateral sclerosis. Neurosci Lett 2016; 636:27-31. [PMID: 27473942 DOI: 10.1016/j.neulet.2016.07.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a paradigmatic neurodegenerative disease, characterized by progressive paralysis of skeletal muscles associated with motor neuron degeneration. It is well-established that glial cells play a key role in ALS pathogenesis. In transgenic rodent models for familial ALS reactive astrocytes, microglia and oligodendrocyte precursors accumulate in the degenerating spinal cord and appear to contribute to primary motor neuron death through a non-cell autonomous pathogenic mechanism. Furthermore in rats expressing the ALS-linked SOD1G93A mutation, rapid spread of paralysis coincides with emergence of neurotoxic and proliferating aberrant glia cells with an astrocyte-like phenotype (AbA cells) that are found surrounding damaged motor neurons. AbAs simultaneously express astrocytic markers GFAP, S100β and Connexin-43 along with microglial markers Iba-1, CD11b and CD163. Studies with cell cultures have shown that AbAs originate from inflammatory microglial cells that undergo phenotypic transition. Because AbAs appear only after paralysis onset and exponentially increase in parallel with disease progression, they appear to actively contribute to ALS progression. While several reviews have been published on the pathogenic role of glial cells in ALS, this review focuses on emergence and pro-inflammatory activity of AbAs as part of an increasingly complex neurodegenerative microenvironment during ALS disease development.
Collapse
|
167
|
Burberry A, Suzuki N, Wang JY, Moccia R, Mordes DA, Stewart MH, Suzuki-Uematsu S, Ghosh S, Singh A, Merkle FT, Koszka K, Li QZ, Zon L, Rossi DJ, Trowbridge JJ, Notarangelo LD, Eggan K. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci Transl Med 2016; 8:347ra93. [PMID: 27412785 PMCID: PMC5024536 DOI: 10.1126/scitranslmed.aaf6038] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Abstract
C9ORF72 mutations are found in a significant fraction of patients suffering from amyotrophic lateral sclerosis and frontotemporal dementia, yet the function of the C9ORF72 gene product remains poorly understood. We show that mice harboring loss-of-function mutations in the ortholog of C9ORF72 develop splenomegaly, neutrophilia, thrombocytopenia, increased expression of inflammatory cytokines, and severe autoimmunity, ultimately leading to a high mortality rate. Transplantation of mutant mouse bone marrow into wild-type recipients was sufficient to recapitulate the phenotypes observed in the mutant animals, including autoimmunity and premature mortality. Reciprocally, transplantation of wild-type mouse bone marrow into mutant mice improved their phenotype. We conclude that C9ORF72 serves an important function within the hematopoietic system to restrict inflammation and the development of autoimmunity.
Collapse
Affiliation(s)
- Aaron Burberry
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Naoki Suzuki
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jin-Yuan Wang
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rob Moccia
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel A Mordes
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Morag H Stewart
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Satomi Suzuki-Uematsu
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sulagna Ghosh
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ajay Singh
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Florian T Merkle
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn Koszka
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Quan-Zhen Li
- Departments of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leonard Zon
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Harvard Medical School, Boston, MA 02115, USA
| | - Derrick J Rossi
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA
| | | | - Luigi D Notarangelo
- Harvard Medical School, Boston, MA 02115, USA. Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Eggan
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
168
|
Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 2016; 4:70. [PMID: 27400686 PMCID: PMC4940869 DOI: 10.1186/s40478-016-0340-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| | - Paul N Valdmanis
- Departments of Pediatrics and Genetics, Stanford University, 269 Campus Drive, CCSR 2110, Stanford, CA, 94305-5164, USA
| | - Peter V Gould
- Division of Anatomic Pathology and Neuropathology, Department of Medical Biology, CHU de Québec, Hôpital de l'Enfant-Jésus, 1401, 18th street, Québec, QC, Canada, G1J 1Z4
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Nicolas Dupré
- Axe Neurosciences & The Department of Medicine, Faculty of Medicine, CHU de Québec, Laval University, 1401, 18th street, Québec, QC, G1J 1Z4, Canada.
| |
Collapse
|
169
|
Trias E, Ibarburu S, Barreto-Núñez R, Babdor J, Maciel TT, Guillo M, Gros L, Dubreuil P, Díaz-Amarilla P, Cassina P, Martínez-Palma L, Moura IC, Beckman JS, Hermine O, Barbeito L. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation 2016; 13:177. [PMID: 27400786 PMCID: PMC4940876 DOI: 10.1186/s12974-016-0620-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background In the SOD1G93A mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefore, the tyrosine kinase inhibitor masitinib (AB1010) could potentially control neuroinflammation in the rat model of ALS. Methods The cellular effects of pharmacological inhibition of tyrosine kinases with masitinib were analyzed in cell cultures of microglia isolated from aged symptomatic SOD1G93A rats. To determine whether masitinib prevented the appearance of aberrant glial cells or modified post-paralysis survival, the drug was orally administered at 30 mg/kg/day starting after paralysis onset. Results We found that masitinib selectively inhibited the tyrosine kinase receptor colony-stimulating factor 1R (CSF-1R) at nanomolar concentrations. In microglia cultures from symptomatic SOD1G93A spinal cords, masitinib prevented CSF-induced proliferation, cell migration, and the expression of inflammatory mediators. Oral administration of masitinib to SOD1G93A rats starting after paralysis onset decreased the number of aberrant glial cells, microgliosis, and motor neuron pathology in the degenerating spinal cord, relative to vehicle-treated rats. Masitinib treatment initiated 7 days after paralysis onset prolonged post-paralysis survival by 40 %. Conclusions These data show that masitinib is capable of controlling microgliosis and the emergence/expansion of aberrant glial cells, thus providing a strong biological rationale for its use to control neuroinflammation in ALS. Remarkably, masitinib significantly prolonged survival when delivered after paralysis onset, an unprecedented effect in preclinical models of ALS, and therefore appears well-suited for treating ALS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0620-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emiliano Trias
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11.400, Uruguay
| | - Sofía Ibarburu
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11.400, Uruguay
| | | | - Joël Babdor
- Imagine Institute, Hôpital Necker, 24 boulevard du Montparnasse, 75015, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France
| | - Thiago T Maciel
- Imagine Institute, Hôpital Necker, 24 boulevard du Montparnasse, 75015, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France.,Equipe Labélisée par la Ligue Nationale contre le cancer, Paris, Cedex, France
| | - Matthias Guillo
- Imagine Institute, Hôpital Necker, 24 boulevard du Montparnasse, 75015, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France
| | - Laurent Gros
- AB Science, 3 Avenue Georges V, 75008, Paris, France
| | - Patrice Dubreuil
- Equipe Labélisée par la Ligue Nationale contre le cancer, Paris, Cedex, France.,AB Science, 3 Avenue Georges V, 75008, Paris, France.,CRCM, [Signaling, Hematopoiesis and Mechanism of Oncogenesis], Inserm, U1068, Institut Paoli-Calmettes, Aix-Marseille Univ, UM105, CNRS, UMR7258, Marseille, F-13009, France
| | - Pablo Díaz-Amarilla
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ivan C Moura
- Imagine Institute, Hôpital Necker, 24 boulevard du Montparnasse, 75015, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France.,Equipe Labélisée par la Ligue Nationale contre le cancer, Paris, Cedex, France
| | - Joseph S Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Environmental Health Sciences Center, Oregon State University, Corvallis, USA
| | - Olivier Hermine
- Imagine Institute, Hôpital Necker, 24 boulevard du Montparnasse, 75015, Paris, France. .,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France. .,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. .,CNRS ERL 8254, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France. .,Equipe Labélisée par la Ligue Nationale contre le cancer, Paris, Cedex, France. .,AB Science, 3 Avenue Georges V, 75008, Paris, France. .,Department of Hematology, Necker Hospital, Paris, France. .,Centre national de référence des mastocytoses (CEREMAST), Paris, France.
| | - Luis Barbeito
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11.400, Uruguay.
| |
Collapse
|
170
|
Lam L, Chin L, Halder RC, Sagong B, Famenini S, Sayre J, Montoya D, Rubbi L, Pellegrini M, Fiala M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients. FASEB J 2016; 30:3461-3473. [PMID: 27368295 DOI: 10.1096/fj.201600259rr] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells (PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring DNA methylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time, the ALS twin developed higher abundances of the CD14 macrophages and lower abundances of T cells compared to the non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq). Moreover, the twins differed in the methylome at loci near several genes, including EGFR and TNFRSF11A, and in the pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS twin's PBMCs spontaneously produced IL-6 and TNF-α, whereas PBMCs of the healthy twin produced these cytokines only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and CD127 suggest the presence of memory T cells in both twins, but effector T cells only in the ALS twin. The ALS twin's PBMC supernatants, but not the healthy twin's, were toxic to rat cortical neurons, and this toxicity was strongly inhibited by an IL-6 receptor antibody (tocilizumab) and less well by TNF-α and IL-1β antibodies. The putative neurotoxicity of IL-6 and TNF-α is in agreement with a high expression of these cytokines on infiltrating macrophages in the ALS spinal cord. We hypothesize that higher macrophage abundance and increased neurotoxic cytokines have a fundamental role in the phenotype and treatment of certain individuals with ALS.-Lam, L., Chin, L., Halder, R. C., Sagong, B., Famenini, S., Sayre, J., Montoya, D., Rubbi L., Pellegrini, M., Fiala, M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients.
Collapse
Affiliation(s)
- Larry Lam
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Lydia Chin
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - Ramesh C Halder
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - Bien Sagong
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - Sam Famenini
- Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| | - James Sayre
- Department of Biostatistics, UCLA School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Dennis Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Milan Fiala
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA; Department of Surgery, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and
| |
Collapse
|
171
|
Nardo G, Trolese MC, Bendotti C. Major Histocompatibility Complex I Expression by Motor Neurons and Its Implication in Amyotrophic Lateral Sclerosis. Front Neurol 2016; 7:89. [PMID: 27379008 PMCID: PMC4904147 DOI: 10.3389/fneur.2016.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
Neuronal expression of major histocompatibility complex I (MHCI)-related molecules in adults and during CNS diseases is involved in the synaptic plasticity and axonal regeneration with mechanisms either dependent or independent of their immune functions. Motor neurons are highly responsive in triggering the expression of MHCI molecules during normal aging or following insults and diseases, and this has implications in the synaptic controls, axonal regeneration, and neuromuscular junction stability of these neurons. We recently reported that MHCI and immunoproteasome are strongly activated in spinal motor neurons and their peripheral motor axon in a mouse model of familial amyotrophic lateral sclerosis (ALS) during the course of the disease. This response was prominent in ALS mice with slower disease progression in which the axonal structure and function was better preserved than in fast-progressing mice. This review summarizes and discusses our observations in the light of knowledge about the possible role of MHCI in motor neurons providing additional insight into the pathophysiology of ALS.
Collapse
Affiliation(s)
- Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| |
Collapse
|
172
|
Murdock BJ, Bender DE, Kashlan SR, Figueroa-Romero C, Backus C, Callaghan BC, Goutman SA, Feldman EL. Increased ratio of circulating neutrophils to monocytes in amyotrophic lateral sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e242. [PMID: 27308304 PMCID: PMC4897983 DOI: 10.1212/nxi.0000000000000242] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/24/2016] [Indexed: 12/31/2022]
Abstract
Objective: To elucidate amyotrophic lateral sclerosis (ALS) biomarkers and potential mechanisms of disease, we measured immune cell populations in whole blood from a large cohort of patients with ALS. Methods: Leukocytes were isolated from the blood of 44 control patients and 90 patients with ALS. The percentages and total numbers of each cell population were analyzed using flow cytometry and matched with patient ALS Functional Rating Scale–Revised (ALSFRS-R) score to correlate leukocyte metrics with disease progression. Results: We show a significant increase in the percentage of neutrophils and a significant decrease in the percentage of CD4 T cells and CD16− monocytes in the blood of patients with ALS compared to controls; however, only CD16− monocyte levels correlated with disease progression. We also examined the monocyte surface expression of CCRL2 and CCR3; CD16− monocytes displayed decreased percentages and total numbers expressing CCR3, but these numbers did not correlate with ALSFRS-R score. We found that combining multiple disease metrics yielded the most accurate predictor of disease progression: the ratio of neutrophils to CD16− monocytes (N:M ratio) is significantly increased in patients with ALS and better correlates with disease progression than any other single metric. Conclusions: These observations implicate neutrophils and monocytes as important factors in late disease progression.
Collapse
Affiliation(s)
- Benjamin J Murdock
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| | - Diane E Bender
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| | - Samy R Kashlan
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| | - Claudia Figueroa-Romero
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| | - Carey Backus
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| | - Brian C Callaghan
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| | - Stephen A Goutman
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| | - Eva L Feldman
- Department of Neurology (B.J.M., D.E.B., S.R.K., C.F.-R., C.B., B.C.C., S.A.G., E.L.F.) and A. Alfred Taubman Medical Research Institute (E.L.F.), University of Michigan, Ann Arbor
| |
Collapse
|
173
|
Obál I, Klausz G, Mándi Y, Deli M, Siklós L, Engelhardt JI. Intraperitoneally administered IgG from patients with amyotrophic lateral sclerosis or from an immune-mediated goat model increase the levels of TNF-α, IL-6, and IL-10 in the spinal cord and serum of mice. J Neuroinflammation 2016; 13:121. [PMID: 27220674 PMCID: PMC4879728 DOI: 10.1186/s12974-016-0586-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/21/2023] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that involves the selective loss of the upper and lower motor neurons (MNs). Neuroinflammation has been implicated in the pathogenesis of the sporadic form of the disease. We earlier developed immune-mediated animal models of ALS and demonstrated humoral and cellular immune reactions in the nervous system and in the sera of patients and animals. The accumulation of immunoglobulin G (IgG), an elevated intracellular level of calcium, ultrastructural alterations in the MNs, and activation of the microglia were noted in the spinal cord of ALS patients. Similar alterations developed in mice inoculated intraperitoneally with IgG from ALS patients or from an immune-mediated goat model. Methods We have now examined whether the intraperitoneal injection of mice with IgG from sporadic ALS patients or from immunized goats with the homogenate of the anterior horn of the bovine spinal cord is associated with changes in the pro-inflammatory (TNF-α and IL-6) and anti-inflammatory (IL-10) cytokines in the spinal cord and serum of the mice. The levels of cytokines were measured by ELISA. Results Intraperitoneally administered IgG from the ALS patients induced subclinical signs of MN disease, while the injection of IgG from immunized goats resulted in a severe respiratory dysfunction and limb paralysis 24 h after the injections. Significantly increased levels of TNF-α and IL-10 were detected in the spinal cord of the mice injected with the human ALS IgG. The level of IL-6 increased primarily in the serum. The IgG from the immunized goats induced highly significant increases in the levels of all three cytokines in the serum and the spinal cord of mice. Conclusions Our earlier experiments had proved that when ALS IgG or IgG from immune-mediated animal models was inoculated into mice, it was taken up in the MNs and had the ability to initiate damage in them. The pathological process was paralleled by microglia recruitment and activation in the spinal cord. The present experiment revealed that these forms of IgG cause significant increases in certain cytokine levels locally in the spinal cord and in the serum of the inoculated mice. These results suggest that IgG directed to the MNs may be an initial element in the damage to the MNs both in human ALS and in its immune-mediated animal models.
Collapse
Affiliation(s)
- Izabella Obál
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Gergely Klausz
- Second Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Yvette Mándi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Mária Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - László Siklós
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | |
Collapse
|
174
|
CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves. Sci Rep 2016; 6:25663. [PMID: 27174644 PMCID: PMC4865981 DOI: 10.1038/srep25663] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/20/2016] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a common neuropathological feature in several neurological disorders, including amyotrophic lateral sclerosis (ALS). We have studied the contribution of CSF1R signalling to inflammation in ALS, as a pathway previously reported to control the expansion and activation of microglial cells. We found that microglial cell proliferation in the spinal cord of SOD1G93A transgenic mice correlates with the expression of CSF1R and its ligand CSF1. Administration of GW2580, a selective CSF1R inhibitor, reduced microglial cell proliferation in SOD1G93A mice, indicating the importance of CSF1-CSF1R signalling in microgliosis in ALS. Moreover, GW2580 treatment slowed disease progression, attenuated motoneuron cell death and extended survival of SOD1G93A mice. Electrophysiological assessment revealed that GW2580 treatment protected skeletal muscle from denervation prior to its effects on microglial cells. We found that macrophages invaded the peripheral nerve of ALS mice before CSF1R-induced microgliosis occurred. Interestingly, treatment with GW2580 attenuated the influx of macrophages into the nerve, which was partly caused by the monocytopenia induced by CSF1R inhibition. Overall, our findings provide evidence that CSF1R signalling regulates inflammation in the central and peripheral nervous system in ALS, supporting therapeutic targeting of CSF1R in this disease.
Collapse
|
175
|
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13:3391-6. [PMID: 26935478 PMCID: PMC4805095 DOI: 10.3892/mmr.2016.4948] [Citation(s) in RCA: 617] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro-inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro-inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
176
|
Gargiulo S, Anzilotti S, Coda ARD, Gramanzini M, Greco A, Panico M, Vinciguerra A, Zannetti A, Vicidomini C, Dollé F, Pignataro G, Quarantelli M, Annunziato L, Brunetti A, Salvatore M, Pappatà S. Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with (18)F-DPA-714 and micro-PET/CT. Eur J Nucl Med Mol Imaging 2016; 43:1348-59. [PMID: 26816193 DOI: 10.1007/s00259-016-3311-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the feasibility and sensitivity of (18)F-DPA-714 for the study of microglial activation in the brain and spinal cord of transgenic SOD1(G93A) mice using high-resolution PET/CT and to evaluate the Iba1 and TSPO expression with immunohistochemistry. METHODS Nine symptomatic SOD1(G93A) mice (aged 117 ± 12.7 days, clinical score range 1 - 4) and five WT SOD1 control mice (aged 108 ± 28.5 days) underwent (18)F-DPA-714 PET/CT. SUV ratios were calculated by normalizing the cerebellar (rCRB), brainstem (rBS), motor cortex (rMCX) and cervical spinal cord (rCSC) activities to that of the frontal association cortex. Two WT SOD1 and six symptomatic SOD1(G93A) mice were studied by immunohistochemistry. RESULTS In the symptomatic SOD1(G93A) mice, rCRB, rBS and rCSC were increased as compared to the values in WT SOD1 mice, with a statistically significantly difference in rBS (2.340 ± 0.784 vs 1.576 ± 0.287, p = 0.014). Immunofluorescence studies showed that TSPO expression was increased in the trigeminal, facial, ambiguus and hypoglossal nuclei, as well as in the spinal cord, of symptomatic SOD1(G93A) mice and was colocalized with increased Iba1 staining. CONCLUSION Increased (18)F-DPA-714 uptake can be detected with high-resolution PET/CT in the brainstem of transgenic SOD1(G93A) mice, a region known to be a site of degeneration and increased microglial activation in amyotrophic lateral sclerosis, in agreement with increased TSPO expression in the brainstem nuclei shown by immunostaining. Therefore, (18)F-DPA-714 PET/CT might be a suitable tool to evaluate microglial activation in the SOD1(G93A) mouse model.
Collapse
Affiliation(s)
- S Gargiulo
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.,Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy
| | - S Anzilotti
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - A R D Coda
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - M Gramanzini
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.,Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy
| | - A Greco
- Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy.,Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Panico
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - A Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - A Zannetti
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - C Vicidomini
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - F Dollé
- CEA, Institute for Biomedical Imaging, 4 Place du Général Leclerc, 91401, Orsay, France
| | - G Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - L Annunziato
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - A Brunetti
- Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy.,Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Salvatore
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - S Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.
| |
Collapse
|
177
|
ACAID as a potential therapeutic approach to modulate inflammation in neurodegenerative diseases. Med Hypotheses 2016; 88:38-45. [PMID: 26880635 DOI: 10.1016/j.mehy.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
The progressive loss of neurons and inflammation characterizes neurodegenerative diseases. Although the etiology, progression and outcome of different neurodegenerative diseases are varied, they share chronic inflammation maintained largely by central nervous system (CNS)-derived antigens recognized by T cells. Inflammation can be beneficial by recruiting immune cells to kill pathogens or to clear cell debris resulting from the primary insult. However, chronic inflammation exacerbates and perpetuates tissue damage. An increasing number of therapies that attempt to modulate neuroinflammation have been developed. However, so far none has succeeded in decreasing the secondary damage associated with chronic inflammation. A potential strategy to modulate the immune system is related to the induction of tolerance to CNS antigens. In this line, it is our hypothesis that this could be accomplished by using anterior chamber associated immune deviation (ACAID) as a strategy. Thus, we review current knowledge regarding some neurodegenerative diseases and the associated immune response that causes inflammation. In addition, we discuss further our hypothesis of the possible usefulness of ACAID as a therapeutic strategy to ameliorate damage to the CNS.
Collapse
|
178
|
Mazzini L, Vescovi A, Cantello R, Gelati M, Vercelli A. Stem cells therapy for ALS. Expert Opin Biol Ther 2016; 16:187-99. [DOI: 10.1517/14712598.2016.1116516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
179
|
De Paola M, Sestito SE, Mariani A, Memo C, Fanelli R, Freschi M, Bendotti C, Calabrese V, Peri F. Synthetic and natural small molecule TLR4 antagonists inhibit motoneuron death in cultures from ALS mouse model. Pharmacol Res 2016; 103:180-7. [DOI: 10.1016/j.phrs.2015.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
|
180
|
Juranek JK, Daffu GK, Wojtkiewicz J, Lacomis D, Kofler J, Schmidt AM. Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:485. [PMID: 26733811 PMCID: PMC4686801 DOI: 10.3389/fncel.2015.00485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE) as a significant contributor to the pathogenesis of certain neurodegenerative diseases and chronic conditions. It is hypothesized that detrimental actions of RAGE are triggered upon binding to its ligands, such as AGEs (advanced glycation end products), S100/calgranulin family members, and High Mobility Group Box-1 (HMGB1) proteins. Here, we examined the expression of RAGE and its ligands in human ALS spinal cord. Tissue samples from age-matched human control and ALS spinal cords were tested for the expression of RAGE, carboxymethyllysine (CML) AGE, S100B, and HMGB1, and intensity of the immunofluorescent and immunoblotting signals was assessed. We found that the expression of both RAGE and its ligands was significantly increased in the spinal cords of ALS patients versus age-matched control subjects. Our study is the first report describing co-expression of both RAGE and its ligands in human ALS spinal cords. These findings suggest that further probing of RAGE as a mechanism of neurodegeneration in human ALS is rational.
Collapse
Affiliation(s)
- Judyta K Juranek
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Medicine, New York University Langone Medical Center - New York University School of MedicineNew York, NY, USA
| | - Gurdip K Daffu
- Department of Medicine, New York University Langone Medical Center - New York University School of Medicine New York, NY, USA
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, University of Warmia and Mazury Olsztyn, Poland
| | - David Lacomis
- Department of Neurology, University of Pittsburgh Pittsburgh, PA, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh Pittsburgh, PA, USA
| | - Ann Marie Schmidt
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Medicine, New York University Langone Medical Center - New York University School of MedicineNew York, NY, USA
| |
Collapse
|
181
|
Kadhim H, Deltenre P, Martin JJ, Sébire G. In-situ expression of Interleukin-18 and associated mediators in the human brain of sALS patients: Hypothesis for a role for immune-inflammatory mechanisms. Med Hypotheses 2015; 86:14-7. [PMID: 26804591 DOI: 10.1016/j.mehy.2015.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Abstract
Recent studies reported over-expression of a cytokine (Interleukin (IL)-18) in the serum of sporadic amyotrophic lateral sclerosis (sALS) patients. Here, we report on the first-time detection of in-situ expression of activated IL-18 in the human brain in sALS patients. We also detected cerebral in-situ expression of key-molecules known to be closely related to the molecular network associated with the activation/secretion of IL-18 cytokine, namely, the receptor-interacting serine/threonine-protein kinase 3 (RIPK3 or RIP3), NOD-like receptor pyrin domain containing 3 (NLRP3)-inflammasome, and activated caspase-1. These findings suggest and allow to hypothesize that there might be a role for this cytokine network in molecular mechanisms associated with or implicated in the physiopathology of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Hazim Kadhim
- Neuropathology Unit, and Reference Center for Neuromuscular Pathology, Brugmann University Hospital (CHU-Brugmann), Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.
| | - Paul Deltenre
- Department of Neurology, CHU Brugmann, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Jean-Jacques Martin
- Department of Neurology (Antwerp University Hospital) and Born-Bunge Institute (Antwerp University), Antwerp, Belgium
| | - Guillaume Sébire
- Child Neurology, Montreal Children Hospital, McGill University, Montreal, Canada
| |
Collapse
|
182
|
Almolda B, González B, Castellano B. Are Microglial Cells the Regulators of Lymphocyte Responses in the CNS? Front Cell Neurosci 2015; 9:440. [PMID: 26635525 PMCID: PMC4644801 DOI: 10.3389/fncel.2015.00440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 12/24/2022] Open
Abstract
The infiltration of immune cells in the central nervous system is a common hallmark in different neuroinflammatory conditions. Accumulating evidence indicates that resident glial cells can establish a cross-talk with infiltrated immune cells, including T-cells, regulating their recruitment, activation and function within the CNS. Although the healthy CNS has been thought to be devoid of professional dendritic cells (DCs), numerous studies have reported the presence of a population of DCs in specific locations such as the meninges, choroid plexuses and the perivascular space. Moreover, the infiltration of DC precursors during neuroinflammatory situations has been proposed, suggesting a putative role of these cells in the regulation of lymphocyte activity within the CNS. On the other hand, under specific circumstances, microglial cells are able to acquire a phenotype of DC expressing a wide range of molecules that equip these cells with all the necessary machinery for communication with T-cells. In this review, we summarize the current knowledge on the expression of molecules involved in the cross-talk with T-cells in both microglial cells and DCs and discuss the potential contribution of each of these cell populations on the control of lymphocyte function within the CNS.
Collapse
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
183
|
Hayashi Y, Homma K, Ichijo H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul 2015; 60:95-104. [PMID: 26563614 DOI: 10.1016/j.jbior.2015.10.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disorder that is characterized by the selective death of motor neurons. While the fundamental cause of the disorder is still unclear, the first identified risk gene, Cu,Zn superoxide dismutase (SOD1), has led to the proposal of several mechanisms that are relevant to its pathogenesis. These include excitotoxicity, oxidative stress, ER stress, mitochondrial dysfunction, axonal transport disruption, prion-like propagation, and non-cell autonomous toxicity of neuroglia. Recent evidence suggests that the toxicity of the misfolded wild-type SOD1 (SOD1(WT)) is involved in the pathogenesis of sporadic cases. Yet to what extent SOD1 contributes to neurotoxicity in ALS cases generally is unknown. This review discusses the toxic mechanisms of mutant SOD1 (SOD1(mut)) and misfolded SOD1(WT) in the context of ALS as well as the potential implication of these mechanisms in SOD1 mutation-negative ALS.
Collapse
Affiliation(s)
- Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Homma
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
184
|
Wen T, Hou J, Wang F, Zhang Y, Zhang T, Sun T. Comparative analysis of molecular mechanism of spinal cord injury with time based on bioinformatics data. Spinal Cord 2015; 54:431-8. [PMID: 26503224 DOI: 10.1038/sc.2015.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/16/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVES This study was designed to explore the molecular mechanisms of spinal cord injury (SCI) with time. METHODS The gene expression profile (GSE45006) including four non-injured spinal cord samples as sham-control group and 20 thoracic transected spinal cords samples as experimental group at different times was downloaded from Gene Expression Omnibus database. The time-course changes of the SCI-related differentially expressed genes (DEGs) were identified. In addition, time-series expression profile clusters of DEGs were obtained, followed by gene ontology (GO) and pathway enrichment analysis of the DEGs. Moreover, the transcriptional regulatory network was constructed. RESULTS There were 1420, 492, 743, 568 and 533 DEGs respectively at d1, d3, w1, w2 and w8 compared with that of sham group. Importantly, 101 overlapped regulated DEGs were identified at five time points and 370 collaboratively regulated genes were identified in cluster 6. Significant functions of overlapped regulated DEGs were obtained including response to wounding and developmental process. In addition, the DEGs, such as CD14 molecule (CD14) and chemokine (C-C motif) ligand 2 (CCL2), were enriched mostly in the pathways related to tuberculosis, phagosome and NF-kappa B signaling pathway. From the transcriptional regulatory network, we identified some transription factors (TFs), including member of E26 transformation-specific (ETS) oncogene family (ELK1) and zinc finger and BTB domain containing 7A (Zbtb7a). CONCLUSION The DEGs related to immune response during SCI may provide underlying targets for treatment of SCI. Moreover, the TFs ZBTB7A and ELK1 and their target gene (dual specificity phosphatase 18 (DUSP18)) might be therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- T Wen
- Chinese PLA Medical College, Beijing, China.,Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - J Hou
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - F Wang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - Y Zhang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - T Zhang
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| | - T Sun
- Department of Orthopedics, Beijing Army General Hospital, Beijing, China
| |
Collapse
|
185
|
Chen X, Shang HF. New developments and future opportunities in biomarkers for amyotrophic lateral sclerosis. Transl Neurodegener 2015; 4:17. [PMID: 26425343 PMCID: PMC4589120 DOI: 10.1186/s40035-015-0040-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/20/2015] [Indexed: 02/05/2023] Open
Abstract
Modern technology has improved the ability to probe effectively the underlying biology of ALS by examination of genomic, proteomic and physiological changes in patients with ALS, as well as to monitor functional and structural changes during the course of disease. While effective treatments for ALS are lacking, the discovery of sensitive biomarkers to disease activity offers clinicians tools for rapid diagnosis and insights into the pathophysiology of ALS. The ultimate aim is to lessen reliance on clinical measures and survival as trial endpoints and broaden the therapeutic options for patients with this disease.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| |
Collapse
|
186
|
Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015; 23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Konstantinos Voutetakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Vasiliki Delitsikou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Konstantina Filippopoulou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
| |
Collapse
|
187
|
Mancuso R, Navarro X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog Neurobiol 2015; 133:1-26. [PMID: 26253783 DOI: 10.1016/j.pneurobio.2015.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motoneurons, leading to muscle weakness and paralysis, and finally death. Considerable recent advances have been made in basic research and preclinical therapeutic attempts using experimental models, leading to increasing clinical and translational research in the context of this disease. In this review we aim to summarize the most relevant findings from a variety of aspects about ALS, including evaluation methods, animal models, pathophysiology, and clinical findings, with particular emphasis in understanding the role of every contributing mechanism to the disease for elucidating the causes underlying degeneration of motoneurons and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
188
|
Complex Inflammation mRNA-Related Response in ALS Is Region Dependent. Neural Plast 2015; 2015:573784. [PMID: 26301107 PMCID: PMC4537753 DOI: 10.1155/2015/573784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/04/2015] [Accepted: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory changes are analyzed in the anterior spinal cord and frontal cortex area 8 in typical spinal-predominant ALS cases. Increased numbers of astrocytes and activated microglia are found in the anterior horn of the spinal cord and pyramidal tracts. Significant increased expression of TLR7, CTSS, and CTSC mRNA and a trend to increased expression of IL10RA, TGFB1, and TGFB2 are found in the anterior lumbar spinal cord in ALS cases compared to control cases, whereas C1QTNF7 and TNFRSF1A mRNA expression levels are significantly decreased. IL6 is significantly upregulated and IL1B shows a nonsignificant increased expression in frontal cortex area 8 in ALS cases. IL-6 immunoreactivity is found in scattered monocyte-derived macrophages/microglia and TNF-α in a few cells of unknown origin in ALS cases. Increased expression and abnormal distribution of IL-1β occurred in motor neurons of the lumbar spinal cord in ALS. Strong IL-10 immunoreactivity colocalizes with TDP-43-positive inclusions in motor neurons in ALS cases. The present observations show a complex participation of cytokines and mediators of the inflammatory response in ALS consistent with increased proinflammatory cytokines and sequestration of anti-inflammatory IL-10 in affected neurons.
Collapse
|
189
|
An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci Rep 2015; 5:12132. [PMID: 26166618 PMCID: PMC4499812 DOI: 10.1038/srep12132] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/01/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurological disorders and pericytes are implicated in brain inflammatory processes. Cellular inflammatory responses are orchestrated by transcription factors but information on transcriptional control in pericytes is lacking. Because the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) is induced in a number of inflammatory brain disorders, we sought to investigate its role in regulating pericyte immune responses. Our results reveal that C/EBPδ is induced in a concentration- and time-dependent fashion in human brain pericytes by interleukin-1β (IL-1β). To investigate the function of the induced C/EBPδ in pericytes we used siRNA to knockdown IL-1β-induced C/EBPδ expression. C/EBPδ knockdown enhanced IL-1β-induced production of intracellular adhesion molecule-1 (ICAM-1), interleukin-8, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, whilst attenuating cyclooxygenase-2 and superoxide dismutase-2 gene expression. Altered ICAM-1 and MCP-1 protein expression were confirmed by cytometric bead array and immunocytochemistry. Our results show that knock-down of C/EBPδ expression in pericytes following immune stimulation increased chemokine and adhesion molecule expression, thus modifying the human brain pericyte inflammatory response. The induction of C/EBPδ following immune stimulation may act to limit infiltration of peripheral immune cells, thereby preventing further inflammatory responses in the brain.
Collapse
|
190
|
Jones KJ, Lovett-Racke AE, Walker CL, Sanders VM. CD4 + T Cells and Neuroprotection: Relevance to Motoneuron Injury and Disease. J Neuroimmune Pharmacol 2015; 10:587-94. [PMID: 26148561 DOI: 10.1007/s11481-015-9625-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
We have established a physiologically relevant mechanism of CD4+ T cell-mediated neuroprotection involving axotomized wildtype (WT) mouse facial motoneurons (FMN) with significance in the treatment of amyotrophic lateral sclerosis (ALS), a fatal MN disease. Use of the transgenic mouse model of ALS involving expression of human mutant superoxide dismutase genes (SOD1(G93A); abbreviated here as mSOD1) has accelerated basic ALS research. Superimposition of facial nerve axotomy (FNA) on the mSOD1 mouse during pre-symptomatic stages indicates that they behave like immunodeficient mice in terms of increased FMN loss and decreased functional recovery, through a mechanism that, paradoxically, is not inherent within the MN itself, but, instead, involves a defect in peripheral immune: CNS glial cell interactions. Our goal is to utilize our WT mouse model of immune-mediated neuroprotection after FNA as a template to elucidate how a malfunctioning peripheral immune system contributes to motoneuron cell loss in the mSOD1 mouse. This review will discuss potential immune defects in ALS, as well as provide an up-to-date understanding of how the CD4+ effector T cells provide neuroprotection to motoneurons through regulation of the central microglial and astrocytic response to injury. We will discuss an IL-10 cascade within the facial nucleus that requires a functional CD4+ T cell trigger for activation. The review will discuss the role of T cells in ALS, and our recent reconstitution experiments utilizing our model of T cell-mediated neuroprotection in WT vs mSOD1 mice after FNA. Identification of defects in neural:immune interactions could provide targets for therapeutic intervention in ALS.
Collapse
Affiliation(s)
- Kathryn J Jones
- Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | |
Collapse
|
191
|
Abstract
Neurodegenerative diseases (NDs) collectively afflict more than 40 million people worldwide. The majority of these diseases lack therapies to slow or stop progression due in large part to the challenge of disentangling the simultaneous presentation of broad, multifaceted pathophysiologic changes. Present technologies and computational capabilities suggest an optimistic future for deconvolving these changes to identify novel mechanisms driving ND onset and progression. In particular, integration of highly multi-dimensional omic analytical techniques (e.g., microarray, mass spectrometry) with computational systems biology approaches provides a systematic methodology to elucidate new mechanisms driving NDs. In this review, we begin by summarizing the complex pathophysiology of NDs associated with protein aggregation, emphasizing the shared complex dysregulation found in all of these diseases, and discuss available experimental ND models. Next, we provide an overview of technological and computational techniques used in systems biology that are applicable to studying NDs. We conclude by reviewing prior studies that have applied these approaches to NDs and comment on the necessity of combining analysis from both human tissues and model systems to identify driving mechanisms. We envision that the integration of computational approaches with multiple omic analyses of human tissues, and mouse and in vitro models, will enable the discovery of new therapeutic strategies for these devastating diseases.
Collapse
Affiliation(s)
- Levi B Wood
- Cancer Research Institute, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
192
|
Ehrhart J, Smith AJ, Kuzmin-Nichols N, Zesiewicz TA, Jahan I, Shytle RD, Kim SH, Sanberg CD, Vu TH, Gooch CL, Sanberg PR, Garbuzova-Davis S. Humoral factors in ALS patients during disease progression. J Neuroinflammation 2015; 12:127. [PMID: 26126965 PMCID: PMC4487852 DOI: 10.1186/s12974-015-0350-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression. METHODS Thirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit. RESULTS ALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits. CONCLUSIONS Our results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.
Collapse
Affiliation(s)
| | - Adam J Smith
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Theresa A Zesiewicz
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Israt Jahan
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - R Douglas Shytle
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA.
| | - Seol-Hee Kim
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Tuan H Vu
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Clifton L Gooch
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
193
|
Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 2015; 9:172. [PMID: 26089771 PMCID: PMC4453474 DOI: 10.3389/fnins.2015.00172] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
As we age, the immune system undergoes a process of senescence accompanied by the increased production of proinflammatory cytokines, a chronic subclinical condition named as “inflammaging”. Emerging evidence from human and experimental models suggest that immune senescence also affects the central nervous system and promotes neuronal dysfunction, especially within susceptible neuronal populations. In this review we discuss the potential role of immune aging, inflammation and metabolic derangement in neurological diseases. The discovery of novel therapeutic strategies targeting age-linked inflammation may promote healthy brain aging and the treatment of neurodegenerative as well as neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michela Deleidi
- Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Madeline Jäggle
- Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Graziella Rubino
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen Tübingen, Germany
| |
Collapse
|
194
|
Sasaki S, Iguchi Y, Katsuno M, Sobue G. Alterations in the blood-spinal cord barrier in TDP-43 conditional knockout mice. Neurosci Lett 2015; 598:1-5. [PMID: 25957558 DOI: 10.1016/j.neulet.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
We investigated whether the loss of motor neuron-specific TDP-43 protein causes any change in the blood-spinal cord barrier (BSCB) in the spinal cord of TDP-43 conditional knockout (TDP CKO) mice. The TDP CKO mice were divided into four groups: early presymptomatic, late presymptomatic, early symptomatic, and late symptomatic stages. The spinal cords were pathologically examined. TDP CKO mice showed the activation of MAC-2 (macrophages/microglia) and fibrinogen exclusively in the anterior horn from the early symptomatic through the late symptomatic stages. Immunohistochemical and western blot analyses detected no reduction in tight junction proteins in TDP CKO mice as compared to age-matched wild-type mice at any stage. Electron-microscopically, TDP CKO mice showed vacuoles in the cytoplasm of most endothelial cells at the early symptomatic stage. The endothelium occasionally exhibited swollen cytoplasm by edematous fluid with the intact tight junction. The cytoplasm of the pericytes was relatively well preserved in contrast to the endothelial disruption. Extravascular or perivascular spaces were frequently edematous and vacuolated. At other stages, the BSCB was well preserved as in the controls. Thus, the temporary and reversible breakdown of the BSCB with leakage or increased permeability at the early symptomatic stage observed in this study could be a direct pathogenic consequence of the loss of TDP-43 protein, and the temporal impairment of BSCB, in turn, might contribute to the motor neuron degeneration in TDP CKO mice.
Collapse
Affiliation(s)
- Shoichi Sasaki
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
195
|
Murdock BJ, Bender DE, Segal BM, Feldman EL. The dual roles of immunity in ALS: Injury overrides protection. Neurobiol Dis 2015; 77:1-12. [DOI: 10.1016/j.nbd.2015.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
|
196
|
Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG. The ischemic environment drives microglia and macrophage function. Front Neurol 2015; 6:81. [PMID: 25904895 PMCID: PMC4389404 DOI: 10.3389/fneur.2015.00081] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
Cells of myeloid origin, such as microglia and macrophages, act at the crossroads of several inflammatory mechanisms during pathophysiology. Besides pro-inflammatory activity (M1 polarization), myeloid cells acquire protective functions (M2) and participate in the neuroprotective innate mechanisms after brain injury. Experimental research is making considerable efforts to understand the rules that regulate the balance between toxic and protective brain innate immunity. Environmental changes affect microglia/macrophage functions. Hypoxia can affect myeloid cell distribution, activity, and phenotype. With their intrinsic differences, microglia and macrophages respond differently to hypoxia, the former depending on ATP to activate and the latter switching to anaerobic metabolism and adapting to hypoxia. Myeloid cell functions include homeostasis control, damage-sensing activity, chemotaxis, and phagocytosis, all distinctive features of these cells. Specific markers and morphologies enable to recognize each functional state. To ensure homeostasis and activate when needed, microglia/macrophage physiology is finely tuned. Microglia are controlled by several neuron-derived components, including contact-dependent inhibitory signals and soluble molecules. Changes in this control can cause chronic activation or priming with specific functional consequences. Strategies, such as stem cell treatment, may enhance microglia protective polarization. This review presents data from the literature that has greatly advanced our understanding of myeloid cell action in brain injury. We discuss the selective responses of microglia and macrophages to hypoxia after stroke and review relevant markers with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site. We also cover the functional consequences of chronically active microglia and review pivotal works on microglia regulation that offer new therapeutic possibilities for acute brain injury.
Collapse
Affiliation(s)
- Stefano Fumagalli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy ; Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Carlo Perego
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Francesca Pischiutta
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| |
Collapse
|
197
|
Amirzagar N, Nafissi S, Tafakhori A, Modabbernia A, Amirzargar A, Ghaffarpour M, Siroos B, Harirchian MH. Granulocyte colony-stimulating factor for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled study of Iranian patients. J Clin Neurol 2015; 11:164-71. [PMID: 25851895 PMCID: PMC4387482 DOI: 10.3988/jcn.2015.11.2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose The aim of this study was to determine the efficacy and tolerability of granulocyte colony-stimulating factor (G-CSF) in subjects with amyotrophic lateral sclerosis (ALS). Methods Forty subjects with ALS were randomly assigned to two groups, which received either subcutaneous G-CSF (5 µg/kg/q12h) or placebo for 5 days. The subjects were then followed up for 3 months using the ALS Functional Rating Scale-Revised (ALSFRS-R), manual muscle testing, ALS Assessment Questionnaire-40, and nerve conduction studies. CD34+/CD133+ cell count and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated at baseline. Results The rate of disease progression did not differ significantly between the two groups. The reduction in ALSFRS-R scores was greater in female subjects in the G-CSF group than in their counterparts in the placebo group. There was a trend toward a positive correlation between baseline CSF MCP-1 levels and the change in ALSFRS-R scores in both groups (Spearman's ρ=0.370, p=0.070). Conclusions With the protocol implemented in this study, G-CSF is not a promising option for the treatment of ALS. Furthermore, it may accelerate disease progression in females.
Collapse
Affiliation(s)
- Nasibeh Amirzagar
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Neurology Department, Tehran Shariati Hospital, University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aliakbar Amirzargar
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Ghaffarpour
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahaddin Siroos
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
198
|
Hooten KG, Beers DR, Zhao W, Appel SH. Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:364-75. [PMID: 25567201 PMCID: PMC4404435 DOI: 10.1007/s13311-014-0329-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous disorder characterized by loss of motor neurons, resulting in paralysis and death. Multiple mechanisms of motor neuron injury have been implicated based upon the more than 20 different genetic causes of familial ALS. These inherited mutations compromise diverse motor neuron pathways leading to cell-autonomous injury. In the ALS transgenic mouse models, however, motor neurons do not die alone. Cell death is noncell-autonomous dependent upon a well orchestrated dialogue between motor neurons and surrounding glia and adaptive immune cells. The pathogenesis of ALS consists of 2 stages: an early neuroprotective stage and a later neurotoxic stage. During early phases of disease progression, the immune system is protective with glia and T cells, especially M2 macrophages/microglia, and T helper 2 cells and regulatory T cells, providing anti-inflammatory factors that sustain motor neuron viability. As the disease progresses and motor neuron injury accelerates, a second rapidly progressing phase develops, characterized by M1 macrophages/microglia, and proinflammatory T cells. In rapidly progressing ALS patients, as in transgenic mice, neuroprotective regulatory T cells are significantly decreased and neurotoxicity predominates. Our own therapeutic efforts are focused on modulating these neuroinflammatory pathways. This review will focus on the cellular players involved in neuroinflammation in ALS and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity with the goal of arresting the progressive and devastating nature of ALS.
Collapse
Affiliation(s)
- Kristopher G. Hooten
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
- />Department of Neurological Surgery, University of Florida, Box 100265, Gainesville, FL 32610-0261 USA
| | - David R. Beers
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Weihua Zhao
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Stanley H. Appel
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| |
Collapse
|
199
|
Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, Neumann H, Vallières L, Amor S, Ohl K, Tenbrock K, Beyer C, Kipp M. CXCL10 Triggers Early Microglial Activation in the Cuprizone Model. THE JOURNAL OF IMMUNOLOGY 2015; 194:3400-13. [DOI: 10.4049/jimmunol.1401459] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
200
|
Janssen K, Rickert M, Clarner T, Beyer C, Kipp M. Absence of CCL2 and CCL3 Ameliorates Central Nervous System Grey Matter But Not White Matter Demyelination in the Presence of an Intact Blood-Brain Barrier. Mol Neurobiol 2015; 53:1551-1564. [PMID: 25663168 DOI: 10.1007/s12035-015-9113-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022]
Abstract
A broad spectrum of diseases is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation, among multiple sclerosis (MS). Our knowledge regarding the factors triggering gliosis and demyelination is scanty. Chemokines are pivotal for microglia and astrocyte activation and orchestrate critical steps during the formation of central nervous system (CNS) demyelinating lesions. Redundant functions of chemokines complicate, however, the study of their functional relevance. We used the cuprizone model to study redundant functions of two chemokines, CCL2/MCP1 and CCL3/MIP1α, which are critically involved in the pathological process of cuprizone-induced demyelination. First, we generated a mutant mouse strain lacking functional genes of both chemokines and demonstrated that double-mutant animals are viable, fertile, and do not present with gross abnormalities. Astrocytes and peritoneal macrophages, cultured form tissues of these animals did neither express CCL2 nor CCL3. Exposure to cuprizone resulted in increased CCL2 and CCL3 brain levels in wild-type but not mutant animals. Cuprizone-induced demyelination, oligodendrocyte loss, and astrogliosis were significantly ameliorated in the cortex but not corpus callosum of chemokine-deficient animals. In summary, we provide a novel powerful model to study the redundant function of two important chemokines. Our study reveals that chemokine function in the CNS redounds to region-specific pathophysiological events.
Collapse
Affiliation(s)
- Katharina Janssen
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mira Rickert
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Markus Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|