151
|
Aminu N, Bello I, Umar NM, Tanko N, Aminu A, Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101961] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
152
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
153
|
Huang L, Zhao S, Fang F, Xu T, Lan M, Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2020; 268:120557. [PMID: 33260095 DOI: 10.1016/j.biomaterials.2020.120557] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Nanocarrier-based drug delivery systems hold impressive promise for biomedical application because of their excellent water dispersibility, prolonged blood circulation time, increased drug accumulation in tumors, and potential in combination therapeutics. However, most nanocarriers suffer from low drug-loading efficiency, poor therapeutic effectiveness, potential systematic toxicity, and unstable metabolism. As an alternative, carrier-free nanodrugs, completely formulated with one or more drugs, have attracted increasing attention in cancer therapy due to their advantage of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug-loading. In recent years, carrier-free nanodrugs have contributed to progress in a variety of therapeutic modalities. In this review, different common strategies for carrier-free nanodrugs preparation are first summarized, mainly including nanoprecipitation, template-assisted nanoprecipitation, thin-film hydration, spray-drying technique, supercritical fluid (SCF) technique, and wet media milling. Then we describe the recently reported carrier-free nanodrugs for cancer chemo-monotherapy or combination therapy. The advantages of anti-cancer drugs combined with other chemotherapeutic, photosensitizers, photothermal, immunotherapeutic or gene drugs have been demonstrated. Finally, a future perspective is introduced to highlight the existing challenges and possible solutions toward clinical application of currently developed carrier-free nanodrugs, which may be instructive to the design of effective carrier-free regimens in the future.
Collapse
Affiliation(s)
- Li Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
154
|
Kankala RK, Wang SB, Chen AZ. Nanoarchitecting Hierarchical Mesoporous Siliceous Frameworks: A New Way Forward. iScience 2020; 23:101687. [PMID: 33163941 PMCID: PMC7607446 DOI: 10.1016/j.isci.2020.101687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Owing to their attractive physicochemical and morphological attributes, mesoporous silica nanoparticles (MSNs) have attracted increasing attention over the past two decades for their utilization in diversified fields. Despite the success, these highly stable siliceous frameworks often suffer from several shortcomings of compatibility issues, uncontrollable degradability leading to long-term retention in vivo, and substantial unpredictable toxicity risks, as well as deprived drug encapsulation efficiency, which could limit their applicability in medicine. Along this line, various advancements have been made in re-engineering the stable siliceous frameworks, such as the incorporation of diverse molecular organic, as well as inorganic (cationic and anionic) species and monitoring the processing, as well as formulation parameters, resulting in the hetero-nanostructures of irregular-shaped (Janus and multi-podal) and dynamically-modulated (deformable solids) architectures with high morphological complexity. Insightfully, this review gives a brief emphasis on re-engineering such stable siliceous frameworks through modifying their intrinsic structural and physicochemical attributes. In conclusion, we recapitulate the review with exciting perspectives.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
155
|
Cinar G, Englert C, Schubert US, Nischang I. Salient features of medical nanoparticles in biological fluids from an analytical ultracentrifuge. NANOSCALE 2020; 12:22462-22466. [PMID: 33156303 DOI: 10.1039/d0nr06153k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
From the perspective of future translation, medical, biodegradable nanoparticles (NPs) have been investigated using an analytical ultracentrifuge in fluids of various complexity, including human serum, in the temperature range of 6 to 40 °C, and timescales relevant for a nanomedical targeting and clearance application. These studies provided salient insights into the integrity and degradation aspects of the NPs, imposed by varying solution environmental conditions. This was enabled by selective monitoring of the targeting dye moiety, cell-specifically directing the NPs to the desired location of interest, i.e. considering a future translative in vivo application. Our study provides experimental insights that are believed to be of key importance to gauge the feasibility of such translative applications in terms of (i) compatibility with patient sera, (ii) timescales of targeting success, and (iii) timescales of desired erosion enabling clearance from the target. All such aspects are provided a priori any in vivo implementation.
Collapse
Affiliation(s)
- Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | | | | | | |
Collapse
|
156
|
Sun Y, Liu N, Wang Y, Yin Y, Qu G, Shi J, Song M, Hu L, He B, Liu G, Cai Y, Liang Y, Jiang G. Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry with an Ultralow-Volume High-Efficiency Introduction System. Anal Chem 2020; 92:14872-14877. [PMID: 32972134 DOI: 10.1021/acs.analchem.0c02285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanoparticles (AuNPs) are increasingly being used as diagnostic and therapeutic agents owing to their excellent properties; however, there is not much data available on their dynamics in vivo on a single particle basis in a single mouse. Here, we developed a method for the direct analysis of nanoparticles in trace blood samples based on single particle inductively coupled plasma-mass spectrometry (spICP-MS). A flexible, highly configurable, and precisely controlled sample introduction system was designed by assembling an ultralow-volume autosampler (flow rate in the range of 5-5000 μL/min) and a customized cyclonic spray chamber (transfer efficiency up to 99%). Upon systematic optimization, the detection limit of the nanoparticle size (LODsize) of AuNPs in ultrapure water was 19 nm, and the detection limit of the nanoparticle number concentration (LODNP) was 8 × 104 particle/L. Using a retro-orbital blood sampling method and subsequent dilution, the system was successfully applied to track the dynamic changes in size and concentration for AuNPs in the blood of a single mouse, and the recovery for the blood sample was 111.74%. Furthermore, the concentration of AuNPs in mouse blood reached a peak in a short period of time and, then, gradually decreased. This study provides a promising technique for analyzing and monitoring the size and concentration of nanoparticles in ultralow-volume blood samples with low concentrations, making it a powerful tool for analyzing and understanding the fate of nanoparticles in vivo.
Collapse
Affiliation(s)
- Yuzhen Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China
| | - Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China.,School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
157
|
Ahmad J, Ameeduzzafar, Ahmad MZ, Akhter H. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Curr Pharm Des 2020; 26:1181-1190. [PMID: 32056517 DOI: 10.2174/1381612826666200214110645] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/18/2020] [Indexed: 01/02/2023]
Abstract
Cancer is highly heterogeneous in nature and characterized by abnormal, uncontrolled cells' growth. It is responsible for the second leading cause of death in the world. Nanotechnology is explored profoundly for sitespecific delivery of cancer chemotherapeutics as well as overcome multidrug-resistance (MDR) challenges in cancer. The progress in the design of various smart biocompatible materials (such as polymers, lipids and inorganic materials) has now revolutionized the area of cancer research for the rational design of nanomedicine by surface engineering with targeting ligands. The small tunable size and surface properties of nanomedicines provide the opportunity of multiple payloads and multivalent-ligand targeting to achieve drug efficacy even in MDR cancer. Furthermore, efforts are being carried out for the development of novel nano-pharmaceutical design, focusing on the delivery of therapeutic and diagnostic agents simultaneously which is called theranostics to assess the progress of therapy in cancer. This review aimed to discuss the physicochemical manipulation of cancer nanomedicine for rational design and recent progress in the area of surface engineering of nanomedicines to improve the efficacy of cancer chemotherapeutics in MDR cancer as well. Moreover, the problem of toxicity of the advanced functional materials that are used in nanomedicines and are exploited to achieve drug targeting in cancer is also addressed.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ameeduzzafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Saudi Arabia
| | - Mohammad Z Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Habban Akhter
- Faculty of Pharmacy, DIT University, Dehradun, India
| |
Collapse
|
158
|
Engineering bioactive surfaces on nanoparticles and their biological interactions. Sci Rep 2020; 10:19713. [PMID: 33184324 PMCID: PMC7665184 DOI: 10.1038/s41598-020-75465-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/21/2020] [Indexed: 01/19/2023] Open
Abstract
The successful integration of nanoparticles into biomedical applications requires modulation of their surface properties so that the interaction with biological systems is regulated to minimize toxicity for biological function. In the present work, we have engineered bioactive surfaces on gold (Au) and silver (Ag) nanoparticles and subsequently evaluated their interaction with mouse skin fibroblasts and macrophages. The Au and Ag nanoparticles were synthesized using tyrosine, tryptophan, isonicotinylhydrazide, epigallocatechin gallate, and curcumin as reducing and stabilizing agents. The nanoparticles thus prepared showed surface corona and exhibited free radical scavenging and enzyme activities with limited cytotoxicity and genotoxicity. We have thus developed avenues for engineering the surface of nanoparticles for biological applications.
Collapse
|
159
|
Dong C, Feng W, Xu W, Yu L, Xiang H, Chen Y, Zhou J. The Coppery Age: Copper (Cu)-Involved Nanotheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001549. [PMID: 33173728 PMCID: PMC7610332 DOI: 10.1002/advs.202001549] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/07/2020] [Indexed: 05/10/2023]
Abstract
As an essential trace element in the human body, transitional metal copper (Cu) ions are the bioactive components within the body featuring dedicated biological effects such as promoting angiogenesis and influencing lipid/glucose metabolism. The recent substantial advances of nanotechnology and nanomedicine promote the emerging of distinctive Cu-involved biomaterial nanoplatforms with intriguing theranostic performances in biomedicine, which are originated from the biological effects of Cu species and the physiochemical attributes of Cu-composed nanoparticles. Based on the very-recent significant progresses of Cu-involved nanotheranostics, this work highlights and discusses the principles, progresses, and prospects on the elaborate design and rational construction of Cu-composed functional nanoplatforms for a diverse array of biomedical applications, including photonic nanomedicine, catalytic nanotherapeutics, antibacteria, accelerated tissue regeneration, and bioimaging. The engineering of Cu-based nanocomposites for synergistic nanotherapeutics is also exemplified, followed by revealing their intrinsic biological effects and biosafety for revolutionizing their clinical translation. Finally, the underlying critical concerns, unresolved hurdles, and future prospects on their clinical uses are analyzed and an outlook is provided. By entering the "Copper Age," these Cu-involved nanotherapeutic modalities are expected to find more broad biomedical applications in preclinical and clinical phases, despite the current research and developments still being in infancy.
Collapse
Affiliation(s)
- Caihong Dong
- Department of UltrasoundZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Wei Feng
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Wenwen Xu
- Department of UltrasoundRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Luodan Yu
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Huiijng Xiang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yu Chen
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Jianqiao Zhou
- Department of UltrasoundRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
160
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
161
|
|
162
|
Li S, Chen H, Liu H, Liu L, Yuan Y, Mao C, Zhang W, Zhang X, Guo W, Lee CS, Liang XJ. In Vivo Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS NANO 2020; 14:13681-13690. [PMID: 32926626 DOI: 10.1021/acsnano.0c05885] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pharmaceutical evaluations of nanomedicines are of great significance for their further launch into industry and clinic. Near-infrared (NIR) fluorescence imaging plays essential roles in preclinical drug development by providing important insights into the biodistributions of drugs in vivo with deep tissue penetration and high spatiotemporal resolution. However, NIR-II fluorescence imaging has rarely been exploited for in vivo real-time pharmaceutical evaluations of nanomedicine. Herein, we developed a highly emissive NIR-II luminophore to establish a versatile nanoplatform to noninvasively monitor the in vivo metabolism of nanomedicines bound various polyethylene glycol (PEG) ligands in a real-time manner. An alternative D-A-D conjugated oligomer (DTTB) was synthesized to achieve NIR-II emission peaked at ∼1050 nm with high fluorescence QYs of 13.4% and a large absorption coefficient. By anchoring with the DTTB molecule, intrinsically fluorescent micelles were fabricated and bound with PEG ligands at various chain lengths. In vivo NIR-II fluorescence and photoacoustic imaging results revealed that an appropriate PEG chain length could effectively contribute to the longer blood circulation and better tumor targeting. In vivo therapeutic experiments also confirmed the optimized nanomedicines have efficient photothermal elimination of tumors and good biosafety. This work offered an alternative highly fluorescent NIR-II material and demonstrated a promising approach for real-time pharmaceutical evaluation of nanomedicine in vivo.
Collapse
Affiliation(s)
- Shengliang Li
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haoting Chen
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Yuan Yuan
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Cong Mao
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Wei Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xing-Jie Liang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
163
|
Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy. NANOMATERIALS 2020; 10:nano10112104. [PMID: 33114052 PMCID: PMC7690690 DOI: 10.3390/nano10112104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The lack of efficient targeting strategies poses significant limitations on the effectiveness of chemotherapeutic treatments. This issue also affects drug-loaded nanocarriers, reducing nanoparticles cancer cell uptake. We report on the fabrication and in vitro characterization of doxorubicin-loaded magnetic liposomes for localized treatment of liver malignancies. Colloidal stability, superparamagnetic behavior and efficient drug loading of our formulation were demonstrated. The application of an external magnetic field guaranteed enhanced nanocarriers cell uptake under cell medium flow in correspondence of a specific area, as we reported through in vitro investigation. A numerical model was used to validate experimental data of magnetic targeting, proving the possibility of accurately describing the targeting strategy and predict liposomes accumulation under different environmental conditions. Finally, in vitro studies on HepG2 cancer cells confirmed the cytotoxicity of drug-loaded magnetic liposomes, with cell viability reduction of about 50% and 80% after 24 h and 72 h of incubation, respectively. Conversely, plain nanocarriers showed no anti-proliferative effects, confirming the formulation safety. Overall, these results demonstrated significant targeting efficiency and anticancer activity of our nanocarriers and superparamagnetic nanoparticles entrapment could envision the theranostic potential of the formulation. The proposed magnetic targeting study could represent a valid tool for pre-clinical investigation regarding the effectiveness of magnetic drug targeting.
Collapse
|
164
|
Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules 2020; 25:molecules25204758. [PMID: 33081296 PMCID: PMC7587607 DOI: 10.3390/molecules25204758] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a polymer that is extensively used to prepare nanoparticles (NPs) with tailored properties for applications in many fields of human activities. Among them, targeted drug delivery, especially when cancer therapy is the main interest, is a major application of chitosan-based NPs. Due to its positive charges, chitosan is used to produce the core of the NPs or to cover NPs made from other types of polymers, both strategies aiming to protect the carried drug until NPs reach the target sites and to facilitate the uptake and drug delivery into these cells. A major challenge in the design of these chitosan-based NPs is the formation of a protein corona (PC) upon contact with biological fluids. The composition of the PC can, to some extent, be modulated depending on the size, shape, electrical charge and hydrophobic / hydrophilic characteristics of the NPs. According to the composition of the biological fluids that have to be crossed during the journey of the drug-loaded NPs towards the target cells, the surface of these particles can be changed by covering their core with various types of polymers or with functionalized polymers carrying some special molecules, that will preferentially adsorb some proteins in their PC. The PC's composition may change by continuous processes of adsorption and desorption, depending on the affinity of these proteins for the chemical structure of the surface of NPs. Beside these, in designing the targeted drug delivery NPs one can take into account their toxicity, initiation of an immune response, participation (enhancement or inhibition) in certain metabolic pathways or chemical processes like reactive oxygen species, type of endocytosis of target cells, and many others. There are cases in which these processes seem to require antagonistic properties of nanoparticles. Products that show good behavior in cell cultures may lead to poor in vivo results, when the composition of the formed PC is totally different. This paper reviews the physico-chemical properties, cellular uptake and drug delivery applications of chitosan-based nanoparticles, specifying the factors that contribute to the success of the targeted drug delivery. Furthermore, we highlight the role of the protein corona formed around the NP in its intercellular fate.
Collapse
|
165
|
Poudel K, Park S, Hwang J, Ku SK, Yong CS, Kim JO, Byeon JH. Photothermally Modulatable and Structurally Disintegratable Sub-8-nm Au 1Ag 9 Embedded Nanoblocks for Combination Cancer Therapy Produced by Plug-in Assembly. ACS NANO 2020; 14:11040-11054. [PMID: 32816451 DOI: 10.1021/acsnano.9b09731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As well as the exploration of translatable delivery nanosystems for cancer therapeutic agents, the development of automatable continuous-flow manufacturing technology comprising digitally controlled reactions for the on-demand production of pharmaceuticals is an important challenge in anticancer nanomedicine. Most attempts to resolve these issues have involved the development of alternative reactions, formulations, or constructs containing stimulus components aimed at producing multiple approaches for highly efficacious combination cancer therapies. However, there has been no report of a platform based on plug-in execution that enables continuous-flow manufacture in a compact, reconfigurable manner, although an optimal platform technology may be a prerequisite for the timely translation of recently developed nanomedicines. To this end, we describe the development of a platform toward digitizable, continuous manufacture by a serial combination of plug-in reactionwares (heating plates, a spraying cup, and a photochamber) for single-pass flow fabrication. Specifically, we fabricated three different composite nanoblocks consisting of Au1Ag9 (<8 nm; stimulus component), docetaxel (an anticancer drug), and bovine serum albumin (a protective and targeting agent) using our system, with the result of producing nanoblocks with photothermally modulatable and structurally disintegratable properties. These were examined for effectiveness in near-infrared-induced chemothermal cancer therapy and renal excretion of Au1Ag9 particles and exhibited high anticancer efficacy and warrantable biosafety.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sungjae Park
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
166
|
Cai X, Ding S, Shi Q, Lyu Z, Liu D, Dong WJ, Du M, Dutta P, Song Y, Du D, Lin Y. Eyeball-Like Yolk-Shell Bimetallic Nanoparticles for Synergistic Photodynamic-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2020; 3:5922-5929. [PMID: 35021820 DOI: 10.1021/acsabm.0c00624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Noble metal-based nanomaterials offer great potential as cargoes for multifunctional cancer treatment. In this research, Au eyeball-like nanoparticles (NPs) with open-mouthed Pd shells were synthesized and their surface was functionalized with cell-targeting ligand folic acid (FA) and photodynamic agent Chlorin e6 (Ce6). Due to the broad near-infrared (NIR) absorption band of eyeball-like bimetallic Au and Pd, the photothermal therapy effects of this nanomaterial were studied in MCF-7 cancer cells. The anchored Ce6 not only addressed the hypoxia issue of tumor cells but also exhibited remarkable photodynamic efficacy upon irradiation. Results showed that the obtained Au@Pd-PEG-FA-Ce6 (APPFC) NPs were selectively accumulated at the tumor site and induced cell apoptosis effectively due to the target specificity and synergistic phototherapy effect. The high specificity, desirable biosafety, fast delivery, and drug functionalization demonstrated eyeball-like Au@Pd NPs are promising candidate for multifunctional therapy of breast cancer.
Collapse
Affiliation(s)
- Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Dong Liu
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| |
Collapse
|
167
|
Yang J, Wang R, Xie D. Self-organization in suspensions of telechelic star polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
168
|
Middha E, Liu B. Nanoparticles of Organic Electronic Materials for Biomedical Applications. ACS NANO 2020; 14:9228-9242. [PMID: 32806064 DOI: 10.1021/acsnano.0c02651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organic electronic materials play important roles in modern electronic devices such as light-emitting diodes, solar cells, and transistors. Upon interaction with light, these optically active materials can undergo different photophysical and photochemical pathways, providing unique opportunities for optimization of light emission via radiative decay, heat generation via nonradiative decay, and singlet oxygen production or phosphorescence emission via intersystem crossing, all of which open alternative opportunities for their applications in sensing, imaging, and therapy. In this Perspective, we discuss all of the pathways that determine the optical properties of high-performance organic electronic materials, focusing on the optimization of each pathway for photogeneration and relaxation of electronic excited states. We also examine nanoparticle (NP) fabrication techniques tailored to macromolecules and small molecules to render them into NPs with optimized size and distribution for biomedical applications and endow organic electronic materials with water dispersibility and biocompatibility. Lastly, we illustrate the in vitro and in vivo applications of some representative organic electronic materials after optimization of each relaxation pathway.
Collapse
Affiliation(s)
- Eshu Middha
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| |
Collapse
|
169
|
Zhang Y, Fang F, Li L, Zhang J. Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. ACS Biomater Sci Eng 2020; 6:4816-4833. [PMID: 33455214 DOI: 10.1021/acsbiomaterials.0c00883] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past few decades, tremendous progress has been made in the development of engineering nanomaterials, which opened new horizons in the field of diagnosis and treatment of various diseases. In particular, self-assembled organic nanomaterials with intriguing features including delicate structure tailoring, facile processability, low cost, and excellent biocompatibility have shown outstanding potential in biomedical applications because of the enhanced permeability and retention (EPR) effect and multifunctional properties. In this review, we briefly introduce distinctive merits of self-assembled organic nanomaterials for biomedical applications. The main focus will be placed on summarizing recent advances in self-assembled organic nanomedicine for drug delivery, bioimaging, and cancer phototherapy, followed by highlighting a critical perspective on further development of self-assembled organic nanomaterials for future clinical translation. We believe that the above themes will appeal to researchers from different fields, including material, chemical, and biological sciences, as well as pharmaceutics.
Collapse
Affiliation(s)
- Yinfeng Zhang
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100811, P. R. China
| | - Li Li
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100811, P. R. China
| |
Collapse
|
170
|
Ma W, Bi J, Wu H, Zhang G. An Amphiphilic Micromolecule Self-Assembles into Vesicles for Visualized and Targeted Drug Delivery. ACS Med Chem Lett 2020; 11:1562-1566. [PMID: 32832024 DOI: 10.1021/acsmedchemlett.0c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Described here is the first example of the construction of multifunctional drug delivery systems by employing an amphiphilic micromolecule. The intrinsic aggregation-induced emissive and tumor-targeting amphiphilic conjugate of β-d-galactose with tetraphenylethene (TPE-Gal), in which the hydrophobic TPE moiety spontaneously acts as the imaging chromophore and the hydrophilic Gal moiety spontaneously acts as the targeting ligand and galactosidase trigger, can self-assemble into fluorescent vesicles that can efficiently load both water-soluble and -insoluble anticancer drugs. In vitro and in vivo evaluations revealed that the pH/β-d-galactosidase dual-responsive doxorubicin (DOX)-loaded vesicles TPE-Gal@DOX exhibited good targeting effect and higher antitumor efficacy than free DOX. H&E staining analysis displayed remarkable necroses and weak cell proliferation in the tumor area and no toxicity to major organs, indicating the superior targeting antitumor therapeutic efficacy of TPE-Gal@DOX.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
171
|
Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Xu C, Zhu J, Fan L. Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomater Sci 2020; 8:4595-4602. [PMID: 32700684 DOI: 10.1039/d0bm00678e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Solid tumor cells in hypoxic regions resist chemotherapy treatment with conventional antitumor drugs (such as paclitaxel, PTX) because the inadequate O2 attenuates the intracellular generation of reactive oxygen species (ROS) and upregulates multidrug resistance protein expression. Hyperbaric O2 therapy concentrates on improving O2 delivery to the hypoxic tumor area, thereby enhancing the sensitivity of cancer cells to chemotherapy drugs. However, the implementation of this therapy often elicits immune response or potentiates toxicity of the drugs toward normal cells. In this work, we successfully fabricated RBC-based micro-vehicles for precise hypoxia-activated O2 delivery under the 980 nm laser irradiation. Interestingly, the subsequent chemotherapy of PTX for ovarian tumors was significantly enhanced owing to the alleviation of hypoxia tumor microenvironment. Meanwhile, the RBC-based micro-vehicles have low side tissue effects, superior biocompatibility, and ultra-low immune response. Overall, the RBC-based drug delivery system holds a fascinating perspective towards O2 delivery for chemotherapy enhancement in other clinical solid malignancies.
Collapse
Affiliation(s)
- Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
173
|
Cai Z, Zhang Y, He Z, Jiang LP, Zhu JJ. NIR-Triggered Chemo-Photothermal Therapy by Thermosensitive Gold Nanostar@Mesoporous Silica@Liposome-Composited Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2020; 3:5322-5330. [DOI: 10.1021/acsabm.0c00651] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zheng Cai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yingwen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
174
|
Hu J, Wang M, Xiao X, Zhang B, Xie Q, Xu X, Li S, Zheng Z, Wei D, Zhang X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. NANOSCALE 2020; 12:10799-10808. [PMID: 32391836 DOI: 10.1039/d0nr01308k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical immunosuppressants have been widely used for the treatment of systemic lupus erythematosus (SLE). However, these small chemical drugs suffer from poor solubility, short circulating half-life and adverse side effects. One of the most effective strategies to extend the circulating time is loading drugs into nanocarriers to form nanomedicines, which is of particular interest for the treatment of cancer and viral diseases but has seldom been applied to autoimmune disorders. Herein, we successfully developed an easy but general drug delivery platform based on the new biocompatible polyhydroxyalkanoate (PHA) terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx). In this proof of concept study, we loaded the PHBVHHx nanocarrier with the immunosuppressant azathioprine (AZA) for SLE therapy for the first time. The AZA-PHA nanoparticles possessed ∼30% cytotoxicity and slow clearance from the kidneys. In a murine SLE model, AZA-PHA nanoparticles exhibited superior therapeutic efficacy to AZA and AZA-polylactic acid (PLA) nanoparticles without appreciable toxicity. This delivery system may provide a new and general platform for the development of nanomedicines with enhanced therapeutic efficacy and reduced side effects in SLE therapy.
Collapse
Affiliation(s)
- Jin Hu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. J Mol Model 2020; 26:135. [DOI: 10.1007/s00894-020-04410-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
176
|
Cheng L, Deng B, Luo W, Nie S, Liu X, Yin Y, Liu S, Wu Z, Zhan P, Zhang L, Chen J. pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5249-5258. [PMID: 32286845 DOI: 10.1021/acs.jafc.9b08171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pH-stimuli amphiphilic lignin-based copolymer was prepared, and it could self-assemble to form spherical nanomicelles with the addition of "switching" water. The morphology, structure, and physical properties of micelles were characterized with transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), particle-size analysis, and zeta-potential measurement. In vitro drug release exemplified that the micelles were pH-sensitive, retaining more than 84.36% ibuprofen (IBU) in simulated gastric fluid (pH 1.5) and presenting a smooth release of 81.81% IBU in simulated intestinal fluid (pH 7.4) within 72 h. Cell culture studies showed that the nanomicelles were biocompatible and boosted the proliferation of human bone marrow stromal cells hBMSC and mouse embryonic fibroblast cells NIH-3T3. Interestingly, the nanomicelles inhibited the survival of human colon cancer cells HT-29 with a final survival rate of only 5.34%. Therefore, this work suggests a novel strategy to synthesize intelligent lignin-based nanomicelles that show a great potential as oral drug carriers.
Collapse
Affiliation(s)
- Lianghao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Bin Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shaofei Nie
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinyi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yanan Yin
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shibo Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jienan Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
177
|
Morla-Folch J, Vargas-Nadal G, Zhao T, Sissa C, Ardizzone A, Kurhuzenkau S, Köber M, Uddin M, Painelli A, Veciana J, Belfield KD, Ventosa N. Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20253-20262. [PMID: 32268722 DOI: 10.1021/acsami.0c03040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent organic nanoparticles (FONs) are emerging as an attractive alternative to the well-established fluorescent inorganic nanoparticles or small organic dyes. Their proper design allows one to obtain biocompatible probes with superior brightness and high photostability, although usually affected by low colloidal stability. Herein, we present a type of FONs with outstanding photophysical and physicochemical properties in-line with the stringent requirements for biomedical applications. These FONs are based on quatsome (QS) nanovesicles containing a pair of fluorescent carbocyanine molecules that give rise to Förster resonance energy transfer (FRET). Structural homogeneity, high brightness, photostability, and high FRET efficiency make these FONs a promising class of optical bioprobes. Loaded QSs have been used for in vitro bioimaging, demonstrating the nanovesicle membrane integrity after cell internalization, and the possibility to monitor the intracellular vesicle fate. Taken together, the proposed QSs loaded with a FRET pair constitute a promising platform for bioimaging and theranostics.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Guillem Vargas-Nadal
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
| | - Tinghan Zhao
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Cristina Sissa
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Antonio Ardizzone
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
| | - Siarhei Kurhuzenkau
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Mariana Köber
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| | - Mehrun Uddin
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jaume Veciana
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Nora Ventosa
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| |
Collapse
|
178
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
179
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
180
|
Esposito E, Nastruzzi C, Sguizzato M, Cortesi R. Nanomedicines to Treat Skin Pathologies with Natural Molecules. Curr Pharm Des 2020; 25:2323-2337. [PMID: 31584367 DOI: 10.2174/1381612825666190709210703] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| |
Collapse
|
181
|
Kankala RK, Lin WZ, Lee CH. Combating Antibiotic Resistance through the Synergistic Effects of Mesoporous Silica-Based Hierarchical Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E597. [PMID: 32214046 PMCID: PMC7153717 DOI: 10.3390/nano10030597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023]
Abstract
The enormous influence of bacterial resistance to antibiotics has led researchers toward the development of various advanced antibacterial modalities. In this vein, nanotechnology-based devices have garnered interest owing to their excellent morphological as well as physicochemical features, resulting in augmented therapeutic efficacy. Herein, to overcome the multidrug resistance (MDR) in bacteria, we demonstrate the fabrication of a versatile design based on the copper-doped mesoporous silica nanoparticles (Cu-MSNs). Indeed, the impregnated Cu species in the siliceous frameworks of MSNs establish pH-responsive coordination interactions with the guest molecules, tetracycline (TET), which not only enhance their loading efficiency but also assist in their release in the acidic environment precisely. Subsequently, the ultrasmall silver nanoparticles-stabilized polyethyleneimine (PEI-SNP) layer is coated over Cu-MSNs. The released silver ions from the surface-deposited SNPs are capable of sensitizing the resistant strains through establishing the interactions with the biomembranes, and facilitate the generation of toxic free radicals, damaging the bacterial components. In addition to SNPs, Cu species impregnated in MSN frameworks synergistically act through the production of free radicals by participating in the Fenton-like reaction. Various physical characterization techniques for confirming the synthesis and successful surface modification of functional nanomaterials, as well as different antibacterial tests performed against MDR bacterial strains, are highly commendable. Remarkably, this versatile formulation has shown no significant toxic effects on normal mammalian fibroblast cells accounting for its high biocompatibility. Together, these biocompatible MSN-based trio-hybrids with synergistic efficacy and pH-responsive delivery of antibiotics potentially allow for efficient combat against MDR in bacteria.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (R.K.K.); (W.-Z.L.)
- College of Chemical Engineering, Huaqiao University; Xiamen 361021, China
| | - Wei-Zhi Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (R.K.K.); (W.-Z.L.)
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (R.K.K.); (W.-Z.L.)
| |
Collapse
|
182
|
Wang C, Dong Y, Shi X, Guo J, Zhang J, Deng L, Lin Z, Huang P, Shi Y, Wang W, Dong A. "Off/on" fluorescence imaging-guided cancer diagnosis and multi-modal therapy. Biomater Sci 2020; 8:1442-1454. [PMID: 31960834 DOI: 10.1039/c9bm01854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient theranostic nanoplatform responding to tumour microenvironments with characters of simple and flexible combinations owns great potential in cancer diagnosis and therapy. Herein, a series of triblock copolymers, mPEG-b-PDPA-b-P(nBMA-r-cystamine) (EPB), were synthesized and among them, the structure of EPB-3 was optimized for both fluorescence imaging-guided cancer diagnosis and multi-modal therapy with good biocompatibility. (1) The self-assembled nanoparticles of EPB-3-ICG1 obtained by conjugating one ICG on EPB-3 via S-S bonds effectively performed reduction-sensitive OFF/ON fluorescence signal transition, thus inducing tumour cell-specific amplified fluorescence imaging in vitro and in vivo. (2) By entrapping Au nanorods into the co-assembled NPs of EPB-3 and EPB-3-ICG1, EPB-3-ICG1@Au NPs could synchronously induce strong tumour fluorescence imaging and high local photothermal effect, indicating the potential of imagine-guided photothermal therapy. (3) EPB-3 NPs could efficiently co-load paclitaxel (PTX) and ICG to form stable EPB-3@PTX@ICG NPs, which provided long periods of intracellular pH-sensitive sustainable drug release and highly enhanced apoptosis of 4T1 cells in vitro by the chemo-photothermal effect. Excitingly, a single intravenous injection of EPB-3@PTX@ICG NPs followed by a one-time local near-infrared light (NIR, 808 nm) irradiation treatment for 10 min could lead to significant inhibition of tumour growth, avoiding tumor metastasis and extending the survival of mice. All the above-mentioned results suggest that EPB-3 provides a nanoplatform with the characters of simple structure, convenience of use and flexible combination, holding potential for multi-modal diagnosis and therapy.
Collapse
Affiliation(s)
- Changrong Wang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Construction of redox-responsive tumor targeted cisplatin nano-delivery system for effective cancer chemotherapy. Int J Pharm 2020; 580:119190. [PMID: 32151664 DOI: 10.1016/j.ijpharm.2020.119190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 11/20/2022]
Abstract
Cisplatin is one of the most widely used platinum-based anticancer chemotherapeutic drugs. However, its low solubility, serious side effects and the development of cisplatin resistance limit its further use in the clinic. Controlling the delivery and release of cisplatin at the targeted site efficiently is a meaningful way to overcome these undesirable side effects of cisplatin. Herein, a tumor targeted and stimuli responsive nano-delivery system for cisplatin was constructed using branched polyethyleneimine (BPEI) as the backbone, disulfide bond as the redox-responsive covalent linker and hyaluronic acid (HA) as targeting recognition unit which can bind selectively to the receptor of CD44, which is highly expressed on the A549 tumor cells. The cisplatin-polyethyleneimine conjugate BPEI-SS-Pt was prepared and the drug loading of cisplatin was up to 32.66 ± 0.06%. After optimized the coating weight ratio of HA and BPEI-SS-Pt, the nanoparticle delivery system HA-(BPEI-SS-Pt)-1/4 outperformed with smaller particle size of 159.0 ± 21.0 nm, narrow polydispersity index (PDI) of 0.069 ± 0.022 and higher cisplatin loading of 29.23 ± 0.18%, showing specific tumor-targeting ability and redox-responsive drug release manner. Moreover, for the treatment of cancer in vivo, it achieved more effective antitumor performance along with minor side effects and systemic toxicity compared with cisplatin which is of great significance for the chemotherapeutic drug in the clinic.
Collapse
|
184
|
Nikravesh N, Borchard G, Hofmann H, Philipp E, Flühmann B, Wick P. Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102178. [PMID: 32145382 DOI: 10.1016/j.nano.2020.102178] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Iron deficiency is an important subclinical disease affecting over one billion people worldwide. A growing body of clinical records supports the use of intravenous iron-carbohydrate complexes for patients where iron replenishment is necessary and oral iron supplements are either ineffective or cannot be tolerated by the gastrointestinal tract. A critical characteristic of iron-carbohydrate drugs is the complexity of their core-shell structure, which has led to differences in the efficacy and safety of various iron formulations. This review describes parameters influencing the safety and effectiveness of iron-carbohydrate complexes during production, storage, handling, and clinical application. We summarized the physicochemical and biological assessments of commercially available iron carbohydrate nanomedicines to provide an overview of publicly available data. Further, we reviewed studies that described how subtle differences in the manufacturing process of iron-carbohydrate complexes can impact on the physicochemical, biological, and clinical outcomes of original product versus their intended copies or so-called iron "similar" products.
Collapse
Affiliation(s)
- Niusha Nikravesh
- Laboratory for Particles-Biology interactions, Department of materials meet life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Heinrich Hofmann
- Institute of Materials, School of Technology and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology interactions, Department of materials meet life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| |
Collapse
|
185
|
Machado LF, Sanfelice RA, Bosqui LR, Assolini JP, Scandorieiro S, Navarro IT, Depieri Cataneo AH, Wowk PF, Nakazato G, Bordignon J, Pavanelli WR, Conchon-Costa I, Costa IN. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction. Exp Parasitol 2020; 211:107853. [PMID: 32061628 DOI: 10.1016/j.exppara.2020.107853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022]
Abstract
The highlights of biogenic silver nanoparticles (AgNp-Bio) include low toxicity - depending on size and concentration - and efficient antiparasitic activity. Therefore, the objective of this study was to assess the action of the AgNp-Bio on HeLa cells in an infection with strain of RH Toxoplasma gondii. Firstly, we performed a cellular viability test and characterized the AgNp-Bio to proceed with the infection of HeLa cells with T. gondii to be treated using AgNp-Bio or conventional drugs. Subsequently, we determined the level of standard cytokines Th1/Th2 as well as the content of nitric oxide (NO) and reactive oxygen species (ROS). Results indicated a mean size of 69 nm in diameter for the AgNp-Bio and obtained a dose-dependent toxicity. In addition, the concentrations of 3 and 6 μM promoted a significant decrease in adherence, infection, and intracellular proliferation. We also found lower IL-8 and production of inflammatory mediators. Thus, the nanoparticles reduced the adherence, infection, and proliferation of ROS and NO, in addition to immunomodulating the IL-8. Therefore, our data proved relevant to introduce a promising therapeutic alternative to toxoplasmosis.
Collapse
Affiliation(s)
- Laís Fernanda Machado
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Raquel Arruda Sanfelice
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Larissa Rodrigues Bosqui
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - João Paulo Assolini
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Sara Scandorieiro
- Departamento de Microbiologia - Laboratório de Bacteriologia Básica e Aplicada. Universidade Estadual de Londrina, Paraná, Brazil
| | - Italmar Teodorico Navarro
- Departamento de Medicina Veterinária Preventiva - Laboratório de Zoonoses e Saúde Pública. Universidade Estadual de Londrina, PR, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular. Instituto Carlos Chagas, ICC/ Fiocruz, Curitiba, Paraná, Brazil
| | - Gerson Nakazato
- Departamento de Microbiologia - Laboratório de Bacteriologia Básica e Aplicada. Universidade Estadual de Londrina, Paraná, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular. Instituto Carlos Chagas, ICC/ Fiocruz, Curitiba, Paraná, Brazil
| | - Wander Rogerio Pavanelli
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
186
|
Lin X, Lin X, Gu N. Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. NANOSCALE 2020; 12:4101-4109. [PMID: 32022059 DOI: 10.1039/c9nr09226a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to different interactions between lipids and proteins, a plasma membrane can segregate into different membrane domains. Among them, ordered functional membrane domains are defined as "lipid rafts", which play key roles in many biological processes (e.g., signal transduction, endocytosis, etc.) in the cell. Hence, it will be of much biological significance to monitor and even regulate the dynamics of lipid rafts. In this work, we designed a ligand-modified spherical nanoparticle with coarse-grained molecular dynamics simulations, which can be encapsulated into the hydrophobic region of the lipid membrane and specifically target either raft or non-raft membrane domains. The preferred localization of the nanoparticle can be tuned by adjusting ligand hydrophobicity, length and density. Generally, more hydrophobic nanoparticles tend to target the raft domain, while less hydrophobic nanoparticles prefer the non-raft domain. Besides, ligand length and density jointly determine the exposure of nanoparticle cores and thus affect the roles of ligands in nanoparticles' final localization. Our results may provide insights into the experimental design of functional nanoparticles, targeting the lipid raft and regulating its dynamics.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
187
|
Gibot L, Demazeau M, Pimienta V, Mingotaud AF, Vicendo P, Collin F, Martins-Froment N, Dejean S, Nottelet B, Roux C, Lonetti B. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers (Basel) 2020; 12:E384. [PMID: 32046147 PMCID: PMC7072360 DOI: 10.3390/cancers12020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
The use of nanocarriers for hydrophobic photosensitizers, in the context of photodynamic therapy (PDT) to improve pharmacokinetics and bio-distribution, is well-established. However, the mechanisms at play in the internalization of nanocarriers are not well-elucidated, despite its importance in nanocarrier design. In this study, we focus on the mechanisms involved in copolymer poly(ethylene oxide)-block-poly(-caprolactone) PEO-PCL and poly(ethylene oxide)-block-poly styrene PEO-PS micelles - membrane interactions through complementary physico-chemical studies on biomimetic membranes, and biological experiments on two-dimensional (2D) and three-dimensional (3D) cell cultures. Förster Resonance Energy Transfer measurements on fluorescently-labelled lipid vesicles, and flow cytometry on two cancerous cell lines enabled the evaluation in the uptake of a photosensitizer, Pheophorbide a (Pheo), and copolymer chains towards model membranes, and cells, respectively. The effects of calibrated light illumination for PDT treatment on lipid vesicle membranes, i.e., leakage and formation of oxidized lipids, and cell viability, were assessed. No significant differences were observed between the ability of PEO-PCL and PEO-PS micelles in delivering Pheo to model membranes, but Pheo was found in higher concentrations in cells in the case of PEO-PCL. These higher Pheo concentrations did not correspond to better performances in PDT treatment. We demonstrated that there are subtle differences in PEO-PCL and PEO-PS micelles for the delivery of Pheo.
Collapse
Affiliation(s)
- Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Nathalie Martins-Froment
- Service Commun de Spectrométrie de Masse (FR2599), Université de Toulouse III (Paul Sabatier), 118, route de Narbonne, F-31062 Toulouse Cedex 9, France;
| | - Stéphane Dejean
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| |
Collapse
|
188
|
Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int J Nanomedicine 2020; 15:675-704. [PMID: 32103936 PMCID: PMC7008395 DOI: 10.2147/ijn.s226186] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
With the advent of nanotechnology, various modes of traditional treatment strategies have been transformed extensively owing to the advantageous morphological, physiochemical, and functional attributes of nano-sized materials, which are of particular interest in diverse biomedical applications, such as diagnostics, sensing, imaging, and drug delivery. Despite their success in delivering therapeutic agents, several traditional nanocarriers often end up with deprived selectivity and undesired therapeutic outcome, which significantly limit their clinical applicability. Further advancements in terms of improved selectivity to exhibit desired therapeutic outcome toward ablating cancer cells have been predominantly made focusing on the precise entry of nanoparticles into tumor cells via targeting ligands, and subsequent delivery of therapeutic cargo in response to specific biological or external stimuli. However, there is enough room intracellularly, where diverse small-sized nanomaterials can accumulate and significantly exert potentially specific mechanisms of antitumor effects toward activation of precise cancer cell death pathways that can be explored. In this review, we aim to summarize the intracellular pathways of nanoparticles, highlighting the principles and state of their destructive effects in the subcellular structures as well as the current limitations of conventional therapeutic approaches. Next, we give an overview of subcellular performances and the fate of internalized nanoparticles under various organelle circumstances, particularly endosome or lysosome, mitochondria, nucleus, endoplasmic reticulum, and Golgi apparatus, by comprehensively emphasizing the unique mechanisms with a series of interesting reports. Moreover, intracellular transformation of the internalized nanoparticles, prominent outcome and potential affluence of these interdependent subcellular components in cancer therapy are emphasized. Finally, we conclude with perspectives with a focus on the contemporary challenges in their clinical applicability.
Collapse
Affiliation(s)
- Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| |
Collapse
|
189
|
The use of quantitative analysis and Hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds. Saudi Pharm J 2020; 28:308-315. [PMID: 32194332 PMCID: PMC7078564 DOI: 10.1016/j.jsps.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT < 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
Collapse
|
190
|
Huang LL, Nie W, Zhang J, Xie HY. Cell-Membrane-Based Biomimetic Systems with Bioorthogonal Functionalities. Acc Chem Res 2020; 53:276-287. [PMID: 31913016 DOI: 10.1021/acs.accounts.9b00559] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the past decade, there was a fast development of cell-based biomimetic systems, which are commonly derived from cell membranes, cell vesicles, or living cells. Such systems have unique and inherent bioinspired features originating from their parent biological systems. In particular, they are capable of (i) prolonging blood circulation time, (ii) avoiding immune response, (iii) targeting desired sites, (iv) providing antigens in cancer immunotherapy, and (v) loading and delivering therapeutic or imaging agents. Thus, these biomimetic systems are promising as prevention, detection, diagnosis, and therapeutic modalities. Though promising, these cell-based biomimetic systems are still far from wide application. One of the important reasons is the inevitable difficulty in their further efficient and precise functionalization. Bioorthogonal chemistry results in fast, specific, and high-yielding ligation under mild biological conditions without interactions with surrounding biomolecules or disturbance of the whole biosystem. Moreover, bioorthogonal chemical groups can be introduced into cells, especially into cell membranes, through cellular biosynthesis and metabolic incorporation. Hence, a specific and reliable approach for cell membrane functionalization based on bioorthogonal chemistry has been opportunely put forward and rapidly developed. In this Account, we summarize our recent research on the development of biomimetic systems by integrating bioorthogonal chemistry with biomimetic approaches. First, an exogenously supplied unnatural biosynthetic precursor (e.g., an amino acid or lipid) bearing a bioorthogonal group (e.g., azide or tetrazine) is fed to living cells and metabolically incorporated into targeted biomolecules via cellular biosynthesis regardless of the cell phenotype. After that, different functional molecules can be anchored to the cell membranes through bioorthogonal chemical reactions by using previously inserted "artificial chemical groups". Therefore, this safe, direct, and long-term engineering strategy endows the natural cell-based biomimetic systems with additional chemical or biological performances such as labeling, targeting, imaging, and therapeutic capabilities, providing a powerful tool for the construction of biomimetic systems. Interestingly, we have successfully fabricated various biomimetic systems and applied them in (1) living virus labeling, (2) targeting delivery and enrichment of drugs/imaging agents, and (3) disease theranostics. This Account may contribute to the further development of biomimetic systems and facilitate their biological and biomedical applications in the future. With this Account we also hope to attract more cooperative interests from different fields such as chemistry, materials science, biology, pharmacy, and medicine in promoting lab-to-clinic translation of cell-based biomimetic systems combined with these two cutting-edge techniques.
Collapse
Affiliation(s)
- Li-Li Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
191
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
192
|
Ahmad SS, Waheed T, Rozeen S, Mahmood S, Kamal MA. Therapeutic Study of Phytochemicals Against Cancer and Alzheimer's Disease Management. Curr Drug Metab 2020; 20:1006-1013. [PMID: 31902351 DOI: 10.2174/1389200221666200103092719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Phytochemicals are a significant piece of conventional prescription and have been researched in detail for conceivable consideration in current drug discovery. Medications and plants are firmly identified for traditional prescriptions and ethnomedicines that are basically arranged from plants. Recognizing the medical advantages of phytochemicals is of fundamental advancement in medication and useful sustenance improvement. Secondary metabolites of different plants have been customarily used for the improvement of human wellbeing. The phytochemicals are diets rich, which can upgrade neuroplasticity and protection from neurodegeneration. RESULTS Phytochemicals keep on entering clinical preliminaries or provide leads for the synthesis of medicinal agents. Phytochemicals are a great extent cancer prevention agents in nature at lower concentrations and under favorable cell conditions that adequately avoid the oxidation of different molecules that have an ability to produce free radicals and thus protect the body. CONCLUSION The purpose of this review is to describe the use of phytochemicals against cancer and Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Tayyaba Waheed
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sayed Rozeen
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sufia Mahmood
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
193
|
Patel P, Meghani N, Kansara K, Kumar A. Nanotherapeutics for the Treatment of Cancer and Arthritis. Curr Drug Metab 2020; 20:430-445. [PMID: 30479211 DOI: 10.2174/1389200220666181127102720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nanotechnology is gaining significant attention worldwide for the treatment of complex diseases such as AIDS (acquired immune deficiency syndrome), cancer and rheumatoid arthritis. Nanomedicine is the application of nanotechnology used for diagnosis and treatment for the disease that includes the preservation and improvement of human health by covering an area such as drug delivery using nanocarriers, nanotheranostics and nanovaccinology. The present article provides an insight into several aspects of nanomedicine such as usages of multiple types of nanocarriers, their status, advantages and disadvantages with reference to cancer and rheumatoid arthritis. METHODS An extensive search was performed on the bibliographic database for research article on nanotechnology and nanomedicine along with looking deeply into the aspects of these diseases, and how all of them are co-related. We further combined all the necessary information from various published articles and briefed to provide the current status. RESULTS Nanomedicine confers a unique technology against complex diseases which includes early diagnosis, prevention, and personalized therapy. The most common nanocarriers used globally are liposomes, polymeric nanoparticles, dendrimers, metallic nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, polymeric micelles and nanotubes among others. CONCLUSION Nanocarriers are used to deliver drugs and biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers.
Collapse
Affiliation(s)
- Pal Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Meghani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Krupa Kansara
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
194
|
Qin M, Zhang J, Li M, Yang D, Liu D, Song S, Fu J, Zhang H, Dai W, Wang X, Wang Y, He B, Zhang Q. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Am J Cancer Res 2020; 10:1213-1229. [PMID: 31938061 PMCID: PMC6956802 DOI: 10.7150/thno.38900] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The merits of nanomedicines are significantly impacted by the surrounding biological environment. Similar to the protein corona generated on the surface of nanoparticles in the circulation system, the intracellular protein corona (IPC) might be formed on nanoparticles when transported inside the cells. However, little is known currently about the formation of IPC and its possible biological influence. Methods: Caco-2 cells, a classical epithelial cell line, were cultured in Transwell plates to form a monolayer. Gold nanoparticles (AuNPs) were prepared as the model nanomedicine due to their excellent stability. Here we focused on identifying IPC formed on the surface of AuNPs during cell transport. The nanoparticles in the basolateral side of the Caco-2 monolayer were collected and analyzed by multiple techniques to verify IPC formation. High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics was utilized to analyze the composition of IPC proteins. In particular, we established a dual-filtration strategy to exclude various interference in IPC identification. Based on the subcellular localization of specific IPC proteins, we elicited the nano-trafficking network of AuNPs. The transport pathways of AuNPs identified by proteomic analysis were also verified by various conventional technologies. Finally, we explored the influence of IPC on the uptake and stress response of endothelium. Results: The existence of IPC was demonstrated on the surface of AuNPs, in which 227 proteins were identified. Among them, 40 proteins were finally ascertained as the specific IPC proteins. The subcellular location analysis indicated that these “specific” IPC proteins could back-track the transport pathways of nanoparticles in the epithelial cell monolayer. According to the subcellular distribution of IPC proteins and co-localization, we discovered a new pathway of nanoparticles from endosomes to secretory vesicles which was dominant during the transcytosis. After employing conventional imageology and pharmacology strategies to verify the result of proteomic analysis, we mapped a comprehensive intracellular transport network. Our study also revealed the merits of IPC analysis, which could readily elucidate the molecular mechanisms of transcytosis. Besides, the IPC proteins increased the uptake and stress response of endothelium, which was likely mediated by extracellular matrix and mitochondrion-related IPC proteins. Conclusion: The comprehensive proteomic analysis of IPC enabled tracing of transport pathways in epithelial cells as well as revealing the biological impact of nanoparticles on endothelium.
Collapse
|
195
|
Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine (Lond) 2020; 15:111-114. [DOI: 10.2217/nnm-2019-0401] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Deepika Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Fahima Dilnawaz
- Nanomedicine Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sanjeeb Kumar Sahoo
- Nanomedicine Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
196
|
Shang B, Zhang X, Ji R, Wang Y, Hu H, Peng B, Deng Z. Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110174. [DOI: 10.1016/j.msec.2019.110174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/27/2023]
|
197
|
Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive Nanotherapeutics by Metal Peroxide Based Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2000494. [PMID: 33437566 PMCID: PMC7788501 DOI: 10.1002/advs.202000494] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/23/2020] [Indexed: 05/29/2023]
Abstract
The advances of nanobiotechnology and nanomedicine enable the triggering of in situ chemical reactions in disease microenvironment for achieving disease-specific nanotherapeutics with both intriguing therapeutic efficacy and mitigated side effects. Metal peroxide based nanoparticles, as one of the important but generally ignored categories of metal-involved nanosystems, can function as the solid precursors to produce oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, both of which are the important chemical species for enhancing the therapeutic outcome of versatile modalities, accompanied with the unique bioactivity of metal ion based components. This progress report summarizes and discusses the most representative paradigms of metal peroxides in chemoreactive nanomedicine, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. Their reactions and corresponding products have been broadly explored in versatile disease treatments, including catalytic nanotherapeutics, photodynamic therapy, radiation therapy, antibacterial infection, tissue regeneration, and some synergistically therapeutic applications. This progress report particularly focuses on the underlying reaction mechanisms on enhancing the therapeutic efficacy of these modalities, accompanied with the discussion on their biological effects and biosafety. The existing gap between fundamental research and clinical translation of these metal peroxide based nanotherapeutic technologies is finally discussed in depth.
Collapse
Affiliation(s)
- Hui Hu
- Medmaterial Research CenterJiangsu University Affiliated People's HospitalZhenjiang212002P. R. China
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Luodan Yu
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiaoqin Qian
- Medmaterial Research CenterJiangsu University Affiliated People's HospitalZhenjiang212002P. R. China
| | - Yu Chen
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Baoding Chen
- Department of Medical UltrasoundThe Affiliated Hospital of Jiangsu UniversityZhenjiang212001P. R. China
| | - Yuehua Li
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| |
Collapse
|
198
|
Selyutina OY, Kononova PA, Babailov SP. Complex of praseodymium with lipid as a NMR temperature sensor and probe of liposome states. NEW J CHEM 2020. [DOI: 10.1039/d0nj03707a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The goal of the research was to show the limits within which Pr3+ can be used as a linear response probe.
Collapse
Affiliation(s)
| | - P. A. Kononova
- Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russia
| | - S. P. Babailov
- A. V. Nikolaev Institute of Inorganic Chemistry
- The Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russian Federation
| |
Collapse
|
199
|
Bronner H, Holzer AK, Finke A, Kunkel M, Marx A, Leist M, Polarz S. The influence of structural gradients in large pore organosilica materials on the capabilities for hosting cellular communities. RSC Adv 2020; 10:17327-17335. [PMID: 35521478 PMCID: PMC9053637 DOI: 10.1039/d0ra00927j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/28/2020] [Indexed: 11/21/2022] Open
Abstract
Cells exist in the so-called extracellular matrix (ECM) in their native state, and numerous future applications require reliable and potent ECM-mimics. A perspective, which goes beyond ECM emulation, is the design of a host-material with features which are not accessible in the biological portfolio. Such a feature would, for instance, be the creation of a structural or chemical gradient, and to explore how this special property influences the biological processes. First, we wanted to test if macroporous organosilica materials with appropriate surface modification can act as a host for the implementation of human cells like HeLa or LUHMES. It was possible to use a commercially available polymeric foam as a scaffold and coat it with a thiophenol-containing organosilica layer, followed by biofunctionalization with biotin using click chemistry and the subsequent coupling of streptavidin–fibronectin to it. More importantly, deformation of the scaffold allowed the generation of a permanent structural gradient. In this work, we show that the structural gradient has a tremendous influence on the capability of the described material for the accommodation of living cells. The introduction of a bi-directional gradient enabled the establishment of a cellular community comprising different cell types in spatially distinct regions of the material. An interesting perspective is to study communication between cell types or to create cellular communities, which can never exist in a natural environment. Chemical and structural gradients in biofunctionalized organosilica–polymer nanocomposites control cell adhesion properties and open perspectives for artificial cellular community systems.![]()
Collapse
Affiliation(s)
- Hannah Bronner
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Anna-Katharina Holzer
- Department of Biology
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Alexander Finke
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Marius Kunkel
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Andreas Marx
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Marcel Leist
- Department of Biology
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Sebastian Polarz
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| |
Collapse
|
200
|
Duan Y, Coreas R, Liu Y, Bitounis D, Zhang Z, Parviz D, Strano M, Demokritou P, Zhong W. Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NANOIMPACT 2020; 17:10.1016/j.impact.2020.100207. [PMID: 32104746 PMCID: PMC7043407 DOI: 10.1016/j.impact.2020.100207] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Effective in silico methods to predict protein corona compositions on engineered nanomaterials (ENMs) could help elucidate the biological outcomes of ENMs in biosystems without the need for conducting lengthy experiments for corona characterization. However, the physicochemical properties of ENMs, used as the descriptors in current modeling methods, are insufficient to represent the complex interactions between ENMs and proteins. Herein, we utilized the fluorescence change (FC) from fluorescamine labeling on a protein, with or without the presence of the ENM, as a novel descriptor of the ENM to build machine learning models for corona formation. FCs were significantly correlated with the abundance of the corresponding proteins in the corona on diverse classes of ENMs, including metal and metal oxides, nanocellulose, and 2D ENMs. Prediction models established by the random forest algorithm using FCs as the ENM descriptors showed better performance than the conventional descriptors, such as ENM size and surface charge, in the prediction of corona formation. Moreover, they were able to predict protein corona formation on ENMs with very heterogeneous properties. We believe this novel descriptor can improve in silico studies of corona formation, leading to a better understanding on the protein adsorption behaviors of diverse ENMs in different biological matrices. Such information is essential for gaining a comprehensive view of how ENMs interact with biological systems in ENM safety and sustainability assessments.
Collapse
Affiliation(s)
- Yaokai Duan
- Department of Chemistry, University of California, Riverside, CA 92507, United States
| | - Roxana Coreas
- Department of Environmental Toxicology Graduate Program, University of California, Riverside, CA 92507, United States
| | - Yang Liu
- Department of Environmental Toxicology Graduate Program, University of California, Riverside, CA 92507, United States
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington, Boston, MA 02115, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington, Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington, Boston, MA 02115, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, CA 92507, United States
- Department of Environmental Toxicology Graduate Program, University of California, Riverside, CA 92507, United States
| |
Collapse
|