151
|
Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy. NANOMATERIALS 2020; 10:nano10112104. [PMID: 33114052 PMCID: PMC7690690 DOI: 10.3390/nano10112104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The lack of efficient targeting strategies poses significant limitations on the effectiveness of chemotherapeutic treatments. This issue also affects drug-loaded nanocarriers, reducing nanoparticles cancer cell uptake. We report on the fabrication and in vitro characterization of doxorubicin-loaded magnetic liposomes for localized treatment of liver malignancies. Colloidal stability, superparamagnetic behavior and efficient drug loading of our formulation were demonstrated. The application of an external magnetic field guaranteed enhanced nanocarriers cell uptake under cell medium flow in correspondence of a specific area, as we reported through in vitro investigation. A numerical model was used to validate experimental data of magnetic targeting, proving the possibility of accurately describing the targeting strategy and predict liposomes accumulation under different environmental conditions. Finally, in vitro studies on HepG2 cancer cells confirmed the cytotoxicity of drug-loaded magnetic liposomes, with cell viability reduction of about 50% and 80% after 24 h and 72 h of incubation, respectively. Conversely, plain nanocarriers showed no anti-proliferative effects, confirming the formulation safety. Overall, these results demonstrated significant targeting efficiency and anticancer activity of our nanocarriers and superparamagnetic nanoparticles entrapment could envision the theranostic potential of the formulation. The proposed magnetic targeting study could represent a valid tool for pre-clinical investigation regarding the effectiveness of magnetic drug targeting.
Collapse
|
152
|
Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules 2020; 25:molecules25204758. [PMID: 33081296 PMCID: PMC7587607 DOI: 10.3390/molecules25204758] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a polymer that is extensively used to prepare nanoparticles (NPs) with tailored properties for applications in many fields of human activities. Among them, targeted drug delivery, especially when cancer therapy is the main interest, is a major application of chitosan-based NPs. Due to its positive charges, chitosan is used to produce the core of the NPs or to cover NPs made from other types of polymers, both strategies aiming to protect the carried drug until NPs reach the target sites and to facilitate the uptake and drug delivery into these cells. A major challenge in the design of these chitosan-based NPs is the formation of a protein corona (PC) upon contact with biological fluids. The composition of the PC can, to some extent, be modulated depending on the size, shape, electrical charge and hydrophobic / hydrophilic characteristics of the NPs. According to the composition of the biological fluids that have to be crossed during the journey of the drug-loaded NPs towards the target cells, the surface of these particles can be changed by covering their core with various types of polymers or with functionalized polymers carrying some special molecules, that will preferentially adsorb some proteins in their PC. The PC's composition may change by continuous processes of adsorption and desorption, depending on the affinity of these proteins for the chemical structure of the surface of NPs. Beside these, in designing the targeted drug delivery NPs one can take into account their toxicity, initiation of an immune response, participation (enhancement or inhibition) in certain metabolic pathways or chemical processes like reactive oxygen species, type of endocytosis of target cells, and many others. There are cases in which these processes seem to require antagonistic properties of nanoparticles. Products that show good behavior in cell cultures may lead to poor in vivo results, when the composition of the formed PC is totally different. This paper reviews the physico-chemical properties, cellular uptake and drug delivery applications of chitosan-based nanoparticles, specifying the factors that contribute to the success of the targeted drug delivery. Furthermore, we highlight the role of the protein corona formed around the NP in its intercellular fate.
Collapse
|
153
|
Poudel K, Park S, Hwang J, Ku SK, Yong CS, Kim JO, Byeon JH. Photothermally Modulatable and Structurally Disintegratable Sub-8-nm Au 1Ag 9 Embedded Nanoblocks for Combination Cancer Therapy Produced by Plug-in Assembly. ACS NANO 2020; 14:11040-11054. [PMID: 32816451 DOI: 10.1021/acsnano.9b09731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As well as the exploration of translatable delivery nanosystems for cancer therapeutic agents, the development of automatable continuous-flow manufacturing technology comprising digitally controlled reactions for the on-demand production of pharmaceuticals is an important challenge in anticancer nanomedicine. Most attempts to resolve these issues have involved the development of alternative reactions, formulations, or constructs containing stimulus components aimed at producing multiple approaches for highly efficacious combination cancer therapies. However, there has been no report of a platform based on plug-in execution that enables continuous-flow manufacture in a compact, reconfigurable manner, although an optimal platform technology may be a prerequisite for the timely translation of recently developed nanomedicines. To this end, we describe the development of a platform toward digitizable, continuous manufacture by a serial combination of plug-in reactionwares (heating plates, a spraying cup, and a photochamber) for single-pass flow fabrication. Specifically, we fabricated three different composite nanoblocks consisting of Au1Ag9 (<8 nm; stimulus component), docetaxel (an anticancer drug), and bovine serum albumin (a protective and targeting agent) using our system, with the result of producing nanoblocks with photothermally modulatable and structurally disintegratable properties. These were examined for effectiveness in near-infrared-induced chemothermal cancer therapy and renal excretion of Au1Ag9 particles and exhibited high anticancer efficacy and warrantable biosafety.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sungjae Park
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
154
|
Cai X, Ding S, Shi Q, Lyu Z, Liu D, Dong WJ, Du M, Dutta P, Song Y, Du D, Lin Y. Eyeball-Like Yolk-Shell Bimetallic Nanoparticles for Synergistic Photodynamic-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2020; 3:5922-5929. [PMID: 35021820 DOI: 10.1021/acsabm.0c00624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Noble metal-based nanomaterials offer great potential as cargoes for multifunctional cancer treatment. In this research, Au eyeball-like nanoparticles (NPs) with open-mouthed Pd shells were synthesized and their surface was functionalized with cell-targeting ligand folic acid (FA) and photodynamic agent Chlorin e6 (Ce6). Due to the broad near-infrared (NIR) absorption band of eyeball-like bimetallic Au and Pd, the photothermal therapy effects of this nanomaterial were studied in MCF-7 cancer cells. The anchored Ce6 not only addressed the hypoxia issue of tumor cells but also exhibited remarkable photodynamic efficacy upon irradiation. Results showed that the obtained Au@Pd-PEG-FA-Ce6 (APPFC) NPs were selectively accumulated at the tumor site and induced cell apoptosis effectively due to the target specificity and synergistic phototherapy effect. The high specificity, desirable biosafety, fast delivery, and drug functionalization demonstrated eyeball-like Au@Pd NPs are promising candidate for multifunctional therapy of breast cancer.
Collapse
Affiliation(s)
- Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Dong Liu
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164, United States
| |
Collapse
|
155
|
Yang J, Wang R, Xie D. Self-organization in suspensions of telechelic star polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
156
|
Middha E, Liu B. Nanoparticles of Organic Electronic Materials for Biomedical Applications. ACS NANO 2020; 14:9228-9242. [PMID: 32806064 DOI: 10.1021/acsnano.0c02651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organic electronic materials play important roles in modern electronic devices such as light-emitting diodes, solar cells, and transistors. Upon interaction with light, these optically active materials can undergo different photophysical and photochemical pathways, providing unique opportunities for optimization of light emission via radiative decay, heat generation via nonradiative decay, and singlet oxygen production or phosphorescence emission via intersystem crossing, all of which open alternative opportunities for their applications in sensing, imaging, and therapy. In this Perspective, we discuss all of the pathways that determine the optical properties of high-performance organic electronic materials, focusing on the optimization of each pathway for photogeneration and relaxation of electronic excited states. We also examine nanoparticle (NP) fabrication techniques tailored to macromolecules and small molecules to render them into NPs with optimized size and distribution for biomedical applications and endow organic electronic materials with water dispersibility and biocompatibility. Lastly, we illustrate the in vitro and in vivo applications of some representative organic electronic materials after optimization of each relaxation pathway.
Collapse
Affiliation(s)
- Eshu Middha
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| |
Collapse
|
157
|
Zhang Y, Fang F, Li L, Zhang J. Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. ACS Biomater Sci Eng 2020; 6:4816-4833. [PMID: 33455214 DOI: 10.1021/acsbiomaterials.0c00883] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past few decades, tremendous progress has been made in the development of engineering nanomaterials, which opened new horizons in the field of diagnosis and treatment of various diseases. In particular, self-assembled organic nanomaterials with intriguing features including delicate structure tailoring, facile processability, low cost, and excellent biocompatibility have shown outstanding potential in biomedical applications because of the enhanced permeability and retention (EPR) effect and multifunctional properties. In this review, we briefly introduce distinctive merits of self-assembled organic nanomaterials for biomedical applications. The main focus will be placed on summarizing recent advances in self-assembled organic nanomedicine for drug delivery, bioimaging, and cancer phototherapy, followed by highlighting a critical perspective on further development of self-assembled organic nanomaterials for future clinical translation. We believe that the above themes will appeal to researchers from different fields, including material, chemical, and biological sciences, as well as pharmaceutics.
Collapse
Affiliation(s)
- Yinfeng Zhang
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100811, P. R. China
| | - Li Li
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100811, P. R. China
| |
Collapse
|
158
|
Ma W, Bi J, Wu H, Zhang G. An Amphiphilic Micromolecule Self-Assembles into Vesicles for Visualized and Targeted Drug Delivery. ACS Med Chem Lett 2020; 11:1562-1566. [PMID: 32832024 DOI: 10.1021/acsmedchemlett.0c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Described here is the first example of the construction of multifunctional drug delivery systems by employing an amphiphilic micromolecule. The intrinsic aggregation-induced emissive and tumor-targeting amphiphilic conjugate of β-d-galactose with tetraphenylethene (TPE-Gal), in which the hydrophobic TPE moiety spontaneously acts as the imaging chromophore and the hydrophilic Gal moiety spontaneously acts as the targeting ligand and galactosidase trigger, can self-assemble into fluorescent vesicles that can efficiently load both water-soluble and -insoluble anticancer drugs. In vitro and in vivo evaluations revealed that the pH/β-d-galactosidase dual-responsive doxorubicin (DOX)-loaded vesicles TPE-Gal@DOX exhibited good targeting effect and higher antitumor efficacy than free DOX. H&E staining analysis displayed remarkable necroses and weak cell proliferation in the tumor area and no toxicity to major organs, indicating the superior targeting antitumor therapeutic efficacy of TPE-Gal@DOX.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
159
|
Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Xu C, Zhu J, Fan L. Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomater Sci 2020; 8:4595-4602. [PMID: 32700684 DOI: 10.1039/d0bm00678e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Solid tumor cells in hypoxic regions resist chemotherapy treatment with conventional antitumor drugs (such as paclitaxel, PTX) because the inadequate O2 attenuates the intracellular generation of reactive oxygen species (ROS) and upregulates multidrug resistance protein expression. Hyperbaric O2 therapy concentrates on improving O2 delivery to the hypoxic tumor area, thereby enhancing the sensitivity of cancer cells to chemotherapy drugs. However, the implementation of this therapy often elicits immune response or potentiates toxicity of the drugs toward normal cells. In this work, we successfully fabricated RBC-based micro-vehicles for precise hypoxia-activated O2 delivery under the 980 nm laser irradiation. Interestingly, the subsequent chemotherapy of PTX for ovarian tumors was significantly enhanced owing to the alleviation of hypoxia tumor microenvironment. Meanwhile, the RBC-based micro-vehicles have low side tissue effects, superior biocompatibility, and ultra-low immune response. Overall, the RBC-based drug delivery system holds a fascinating perspective towards O2 delivery for chemotherapy enhancement in other clinical solid malignancies.
Collapse
Affiliation(s)
- Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
161
|
Cai Z, Zhang Y, He Z, Jiang LP, Zhu JJ. NIR-Triggered Chemo-Photothermal Therapy by Thermosensitive Gold Nanostar@Mesoporous Silica@Liposome-Composited Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2020; 3:5322-5330. [DOI: 10.1021/acsabm.0c00651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zheng Cai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yingwen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
162
|
Hu J, Wang M, Xiao X, Zhang B, Xie Q, Xu X, Li S, Zheng Z, Wei D, Zhang X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. NANOSCALE 2020; 12:10799-10808. [PMID: 32391836 DOI: 10.1039/d0nr01308k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical immunosuppressants have been widely used for the treatment of systemic lupus erythematosus (SLE). However, these small chemical drugs suffer from poor solubility, short circulating half-life and adverse side effects. One of the most effective strategies to extend the circulating time is loading drugs into nanocarriers to form nanomedicines, which is of particular interest for the treatment of cancer and viral diseases but has seldom been applied to autoimmune disorders. Herein, we successfully developed an easy but general drug delivery platform based on the new biocompatible polyhydroxyalkanoate (PHA) terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx). In this proof of concept study, we loaded the PHBVHHx nanocarrier with the immunosuppressant azathioprine (AZA) for SLE therapy for the first time. The AZA-PHA nanoparticles possessed ∼30% cytotoxicity and slow clearance from the kidneys. In a murine SLE model, AZA-PHA nanoparticles exhibited superior therapeutic efficacy to AZA and AZA-polylactic acid (PLA) nanoparticles without appreciable toxicity. This delivery system may provide a new and general platform for the development of nanomedicines with enhanced therapeutic efficacy and reduced side effects in SLE therapy.
Collapse
Affiliation(s)
- Jin Hu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. J Mol Model 2020; 26:135. [DOI: 10.1007/s00894-020-04410-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
164
|
Cheng L, Deng B, Luo W, Nie S, Liu X, Yin Y, Liu S, Wu Z, Zhan P, Zhang L, Chen J. pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5249-5258. [PMID: 32286845 DOI: 10.1021/acs.jafc.9b08171] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pH-stimuli amphiphilic lignin-based copolymer was prepared, and it could self-assemble to form spherical nanomicelles with the addition of "switching" water. The morphology, structure, and physical properties of micelles were characterized with transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), particle-size analysis, and zeta-potential measurement. In vitro drug release exemplified that the micelles were pH-sensitive, retaining more than 84.36% ibuprofen (IBU) in simulated gastric fluid (pH 1.5) and presenting a smooth release of 81.81% IBU in simulated intestinal fluid (pH 7.4) within 72 h. Cell culture studies showed that the nanomicelles were biocompatible and boosted the proliferation of human bone marrow stromal cells hBMSC and mouse embryonic fibroblast cells NIH-3T3. Interestingly, the nanomicelles inhibited the survival of human colon cancer cells HT-29 with a final survival rate of only 5.34%. Therefore, this work suggests a novel strategy to synthesize intelligent lignin-based nanomicelles that show a great potential as oral drug carriers.
Collapse
Affiliation(s)
- Lianghao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Bin Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shaofei Nie
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinyi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yanan Yin
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shibo Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jienan Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
165
|
Morla-Folch J, Vargas-Nadal G, Zhao T, Sissa C, Ardizzone A, Kurhuzenkau S, Köber M, Uddin M, Painelli A, Veciana J, Belfield KD, Ventosa N. Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20253-20262. [PMID: 32268722 DOI: 10.1021/acsami.0c03040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent organic nanoparticles (FONs) are emerging as an attractive alternative to the well-established fluorescent inorganic nanoparticles or small organic dyes. Their proper design allows one to obtain biocompatible probes with superior brightness and high photostability, although usually affected by low colloidal stability. Herein, we present a type of FONs with outstanding photophysical and physicochemical properties in-line with the stringent requirements for biomedical applications. These FONs are based on quatsome (QS) nanovesicles containing a pair of fluorescent carbocyanine molecules that give rise to Förster resonance energy transfer (FRET). Structural homogeneity, high brightness, photostability, and high FRET efficiency make these FONs a promising class of optical bioprobes. Loaded QSs have been used for in vitro bioimaging, demonstrating the nanovesicle membrane integrity after cell internalization, and the possibility to monitor the intracellular vesicle fate. Taken together, the proposed QSs loaded with a FRET pair constitute a promising platform for bioimaging and theranostics.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Guillem Vargas-Nadal
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
| | - Tinghan Zhao
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Cristina Sissa
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Antonio Ardizzone
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
| | - Siarhei Kurhuzenkau
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Mariana Köber
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| | - Mehrun Uddin
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jaume Veciana
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Nora Ventosa
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| |
Collapse
|
166
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
167
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
168
|
Esposito E, Nastruzzi C, Sguizzato M, Cortesi R. Nanomedicines to Treat Skin Pathologies with Natural Molecules. Curr Pharm Des 2020; 25:2323-2337. [PMID: 31584367 DOI: 10.2174/1381612825666190709210703] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara, 19, 44121-Ferrara, Italy
| |
Collapse
|
169
|
Kankala RK, Lin WZ, Lee CH. Combating Antibiotic Resistance through the Synergistic Effects of Mesoporous Silica-Based Hierarchical Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E597. [PMID: 32214046 PMCID: PMC7153717 DOI: 10.3390/nano10030597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023]
Abstract
The enormous influence of bacterial resistance to antibiotics has led researchers toward the development of various advanced antibacterial modalities. In this vein, nanotechnology-based devices have garnered interest owing to their excellent morphological as well as physicochemical features, resulting in augmented therapeutic efficacy. Herein, to overcome the multidrug resistance (MDR) in bacteria, we demonstrate the fabrication of a versatile design based on the copper-doped mesoporous silica nanoparticles (Cu-MSNs). Indeed, the impregnated Cu species in the siliceous frameworks of MSNs establish pH-responsive coordination interactions with the guest molecules, tetracycline (TET), which not only enhance their loading efficiency but also assist in their release in the acidic environment precisely. Subsequently, the ultrasmall silver nanoparticles-stabilized polyethyleneimine (PEI-SNP) layer is coated over Cu-MSNs. The released silver ions from the surface-deposited SNPs are capable of sensitizing the resistant strains through establishing the interactions with the biomembranes, and facilitate the generation of toxic free radicals, damaging the bacterial components. In addition to SNPs, Cu species impregnated in MSN frameworks synergistically act through the production of free radicals by participating in the Fenton-like reaction. Various physical characterization techniques for confirming the synthesis and successful surface modification of functional nanomaterials, as well as different antibacterial tests performed against MDR bacterial strains, are highly commendable. Remarkably, this versatile formulation has shown no significant toxic effects on normal mammalian fibroblast cells accounting for its high biocompatibility. Together, these biocompatible MSN-based trio-hybrids with synergistic efficacy and pH-responsive delivery of antibiotics potentially allow for efficient combat against MDR in bacteria.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (R.K.K.); (W.-Z.L.)
- College of Chemical Engineering, Huaqiao University; Xiamen 361021, China
| | - Wei-Zhi Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (R.K.K.); (W.-Z.L.)
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (R.K.K.); (W.-Z.L.)
| |
Collapse
|
170
|
Wang C, Dong Y, Shi X, Guo J, Zhang J, Deng L, Lin Z, Huang P, Shi Y, Wang W, Dong A. "Off/on" fluorescence imaging-guided cancer diagnosis and multi-modal therapy. Biomater Sci 2020; 8:1442-1454. [PMID: 31960834 DOI: 10.1039/c9bm01854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient theranostic nanoplatform responding to tumour microenvironments with characters of simple and flexible combinations owns great potential in cancer diagnosis and therapy. Herein, a series of triblock copolymers, mPEG-b-PDPA-b-P(nBMA-r-cystamine) (EPB), were synthesized and among them, the structure of EPB-3 was optimized for both fluorescence imaging-guided cancer diagnosis and multi-modal therapy with good biocompatibility. (1) The self-assembled nanoparticles of EPB-3-ICG1 obtained by conjugating one ICG on EPB-3 via S-S bonds effectively performed reduction-sensitive OFF/ON fluorescence signal transition, thus inducing tumour cell-specific amplified fluorescence imaging in vitro and in vivo. (2) By entrapping Au nanorods into the co-assembled NPs of EPB-3 and EPB-3-ICG1, EPB-3-ICG1@Au NPs could synchronously induce strong tumour fluorescence imaging and high local photothermal effect, indicating the potential of imagine-guided photothermal therapy. (3) EPB-3 NPs could efficiently co-load paclitaxel (PTX) and ICG to form stable EPB-3@PTX@ICG NPs, which provided long periods of intracellular pH-sensitive sustainable drug release and highly enhanced apoptosis of 4T1 cells in vitro by the chemo-photothermal effect. Excitingly, a single intravenous injection of EPB-3@PTX@ICG NPs followed by a one-time local near-infrared light (NIR, 808 nm) irradiation treatment for 10 min could lead to significant inhibition of tumour growth, avoiding tumor metastasis and extending the survival of mice. All the above-mentioned results suggest that EPB-3 provides a nanoplatform with the characters of simple structure, convenience of use and flexible combination, holding potential for multi-modal diagnosis and therapy.
Collapse
Affiliation(s)
- Changrong Wang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Construction of redox-responsive tumor targeted cisplatin nano-delivery system for effective cancer chemotherapy. Int J Pharm 2020; 580:119190. [PMID: 32151664 DOI: 10.1016/j.ijpharm.2020.119190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 11/20/2022]
Abstract
Cisplatin is one of the most widely used platinum-based anticancer chemotherapeutic drugs. However, its low solubility, serious side effects and the development of cisplatin resistance limit its further use in the clinic. Controlling the delivery and release of cisplatin at the targeted site efficiently is a meaningful way to overcome these undesirable side effects of cisplatin. Herein, a tumor targeted and stimuli responsive nano-delivery system for cisplatin was constructed using branched polyethyleneimine (BPEI) as the backbone, disulfide bond as the redox-responsive covalent linker and hyaluronic acid (HA) as targeting recognition unit which can bind selectively to the receptor of CD44, which is highly expressed on the A549 tumor cells. The cisplatin-polyethyleneimine conjugate BPEI-SS-Pt was prepared and the drug loading of cisplatin was up to 32.66 ± 0.06%. After optimized the coating weight ratio of HA and BPEI-SS-Pt, the nanoparticle delivery system HA-(BPEI-SS-Pt)-1/4 outperformed with smaller particle size of 159.0 ± 21.0 nm, narrow polydispersity index (PDI) of 0.069 ± 0.022 and higher cisplatin loading of 29.23 ± 0.18%, showing specific tumor-targeting ability and redox-responsive drug release manner. Moreover, for the treatment of cancer in vivo, it achieved more effective antitumor performance along with minor side effects and systemic toxicity compared with cisplatin which is of great significance for the chemotherapeutic drug in the clinic.
Collapse
|
172
|
Nikravesh N, Borchard G, Hofmann H, Philipp E, Flühmann B, Wick P. Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102178. [PMID: 32145382 DOI: 10.1016/j.nano.2020.102178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Iron deficiency is an important subclinical disease affecting over one billion people worldwide. A growing body of clinical records supports the use of intravenous iron-carbohydrate complexes for patients where iron replenishment is necessary and oral iron supplements are either ineffective or cannot be tolerated by the gastrointestinal tract. A critical characteristic of iron-carbohydrate drugs is the complexity of their core-shell structure, which has led to differences in the efficacy and safety of various iron formulations. This review describes parameters influencing the safety and effectiveness of iron-carbohydrate complexes during production, storage, handling, and clinical application. We summarized the physicochemical and biological assessments of commercially available iron carbohydrate nanomedicines to provide an overview of publicly available data. Further, we reviewed studies that described how subtle differences in the manufacturing process of iron-carbohydrate complexes can impact on the physicochemical, biological, and clinical outcomes of original product versus their intended copies or so-called iron "similar" products.
Collapse
Affiliation(s)
- Niusha Nikravesh
- Laboratory for Particles-Biology interactions, Department of materials meet life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Heinrich Hofmann
- Institute of Materials, School of Technology and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology interactions, Department of materials meet life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| |
Collapse
|
173
|
Machado LF, Sanfelice RA, Bosqui LR, Assolini JP, Scandorieiro S, Navarro IT, Depieri Cataneo AH, Wowk PF, Nakazato G, Bordignon J, Pavanelli WR, Conchon-Costa I, Costa IN. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction. Exp Parasitol 2020; 211:107853. [PMID: 32061628 DOI: 10.1016/j.exppara.2020.107853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022]
Abstract
The highlights of biogenic silver nanoparticles (AgNp-Bio) include low toxicity - depending on size and concentration - and efficient antiparasitic activity. Therefore, the objective of this study was to assess the action of the AgNp-Bio on HeLa cells in an infection with strain of RH Toxoplasma gondii. Firstly, we performed a cellular viability test and characterized the AgNp-Bio to proceed with the infection of HeLa cells with T. gondii to be treated using AgNp-Bio or conventional drugs. Subsequently, we determined the level of standard cytokines Th1/Th2 as well as the content of nitric oxide (NO) and reactive oxygen species (ROS). Results indicated a mean size of 69 nm in diameter for the AgNp-Bio and obtained a dose-dependent toxicity. In addition, the concentrations of 3 and 6 μM promoted a significant decrease in adherence, infection, and intracellular proliferation. We also found lower IL-8 and production of inflammatory mediators. Thus, the nanoparticles reduced the adherence, infection, and proliferation of ROS and NO, in addition to immunomodulating the IL-8. Therefore, our data proved relevant to introduce a promising therapeutic alternative to toxoplasmosis.
Collapse
Affiliation(s)
- Laís Fernanda Machado
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Raquel Arruda Sanfelice
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Larissa Rodrigues Bosqui
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - João Paulo Assolini
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Sara Scandorieiro
- Departamento de Microbiologia - Laboratório de Bacteriologia Básica e Aplicada. Universidade Estadual de Londrina, Paraná, Brazil
| | - Italmar Teodorico Navarro
- Departamento de Medicina Veterinária Preventiva - Laboratório de Zoonoses e Saúde Pública. Universidade Estadual de Londrina, PR, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular. Instituto Carlos Chagas, ICC/ Fiocruz, Curitiba, Paraná, Brazil
| | - Gerson Nakazato
- Departamento de Microbiologia - Laboratório de Bacteriologia Básica e Aplicada. Universidade Estadual de Londrina, Paraná, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular. Instituto Carlos Chagas, ICC/ Fiocruz, Curitiba, Paraná, Brazil
| | - Wander Rogerio Pavanelli
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Departamento de Patologia Experimental - Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
174
|
Lin X, Lin X, Gu N. Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. NANOSCALE 2020; 12:4101-4109. [PMID: 32022059 DOI: 10.1039/c9nr09226a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to different interactions between lipids and proteins, a plasma membrane can segregate into different membrane domains. Among them, ordered functional membrane domains are defined as "lipid rafts", which play key roles in many biological processes (e.g., signal transduction, endocytosis, etc.) in the cell. Hence, it will be of much biological significance to monitor and even regulate the dynamics of lipid rafts. In this work, we designed a ligand-modified spherical nanoparticle with coarse-grained molecular dynamics simulations, which can be encapsulated into the hydrophobic region of the lipid membrane and specifically target either raft or non-raft membrane domains. The preferred localization of the nanoparticle can be tuned by adjusting ligand hydrophobicity, length and density. Generally, more hydrophobic nanoparticles tend to target the raft domain, while less hydrophobic nanoparticles prefer the non-raft domain. Besides, ligand length and density jointly determine the exposure of nanoparticle cores and thus affect the roles of ligands in nanoparticles' final localization. Our results may provide insights into the experimental design of functional nanoparticles, targeting the lipid raft and regulating its dynamics.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
175
|
Gibot L, Demazeau M, Pimienta V, Mingotaud AF, Vicendo P, Collin F, Martins-Froment N, Dejean S, Nottelet B, Roux C, Lonetti B. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers (Basel) 2020; 12:E384. [PMID: 32046147 PMCID: PMC7072360 DOI: 10.3390/cancers12020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
The use of nanocarriers for hydrophobic photosensitizers, in the context of photodynamic therapy (PDT) to improve pharmacokinetics and bio-distribution, is well-established. However, the mechanisms at play in the internalization of nanocarriers are not well-elucidated, despite its importance in nanocarrier design. In this study, we focus on the mechanisms involved in copolymer poly(ethylene oxide)-block-poly(-caprolactone) PEO-PCL and poly(ethylene oxide)-block-poly styrene PEO-PS micelles - membrane interactions through complementary physico-chemical studies on biomimetic membranes, and biological experiments on two-dimensional (2D) and three-dimensional (3D) cell cultures. Förster Resonance Energy Transfer measurements on fluorescently-labelled lipid vesicles, and flow cytometry on two cancerous cell lines enabled the evaluation in the uptake of a photosensitizer, Pheophorbide a (Pheo), and copolymer chains towards model membranes, and cells, respectively. The effects of calibrated light illumination for PDT treatment on lipid vesicle membranes, i.e., leakage and formation of oxidized lipids, and cell viability, were assessed. No significant differences were observed between the ability of PEO-PCL and PEO-PS micelles in delivering Pheo to model membranes, but Pheo was found in higher concentrations in cells in the case of PEO-PCL. These higher Pheo concentrations did not correspond to better performances in PDT treatment. We demonstrated that there are subtle differences in PEO-PCL and PEO-PS micelles for the delivery of Pheo.
Collapse
Affiliation(s)
- Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Nathalie Martins-Froment
- Service Commun de Spectrométrie de Masse (FR2599), Université de Toulouse III (Paul Sabatier), 118, route de Narbonne, F-31062 Toulouse Cedex 9, France;
| | - Stéphane Dejean
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| |
Collapse
|
176
|
Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int J Nanomedicine 2020; 15:675-704. [PMID: 32103936 PMCID: PMC7008395 DOI: 10.2147/ijn.s226186] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
With the advent of nanotechnology, various modes of traditional treatment strategies have been transformed extensively owing to the advantageous morphological, physiochemical, and functional attributes of nano-sized materials, which are of particular interest in diverse biomedical applications, such as diagnostics, sensing, imaging, and drug delivery. Despite their success in delivering therapeutic agents, several traditional nanocarriers often end up with deprived selectivity and undesired therapeutic outcome, which significantly limit their clinical applicability. Further advancements in terms of improved selectivity to exhibit desired therapeutic outcome toward ablating cancer cells have been predominantly made focusing on the precise entry of nanoparticles into tumor cells via targeting ligands, and subsequent delivery of therapeutic cargo in response to specific biological or external stimuli. However, there is enough room intracellularly, where diverse small-sized nanomaterials can accumulate and significantly exert potentially specific mechanisms of antitumor effects toward activation of precise cancer cell death pathways that can be explored. In this review, we aim to summarize the intracellular pathways of nanoparticles, highlighting the principles and state of their destructive effects in the subcellular structures as well as the current limitations of conventional therapeutic approaches. Next, we give an overview of subcellular performances and the fate of internalized nanoparticles under various organelle circumstances, particularly endosome or lysosome, mitochondria, nucleus, endoplasmic reticulum, and Golgi apparatus, by comprehensively emphasizing the unique mechanisms with a series of interesting reports. Moreover, intracellular transformation of the internalized nanoparticles, prominent outcome and potential affluence of these interdependent subcellular components in cancer therapy are emphasized. Finally, we conclude with perspectives with a focus on the contemporary challenges in their clinical applicability.
Collapse
Affiliation(s)
- Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| |
Collapse
|
177
|
The use of quantitative analysis and Hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds. Saudi Pharm J 2020; 28:308-315. [PMID: 32194332 PMCID: PMC7078564 DOI: 10.1016/j.jsps.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT < 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
Collapse
|
178
|
Huang LL, Nie W, Zhang J, Xie HY. Cell-Membrane-Based Biomimetic Systems with Bioorthogonal Functionalities. Acc Chem Res 2020; 53:276-287. [PMID: 31913016 DOI: 10.1021/acs.accounts.9b00559] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the past decade, there was a fast development of cell-based biomimetic systems, which are commonly derived from cell membranes, cell vesicles, or living cells. Such systems have unique and inherent bioinspired features originating from their parent biological systems. In particular, they are capable of (i) prolonging blood circulation time, (ii) avoiding immune response, (iii) targeting desired sites, (iv) providing antigens in cancer immunotherapy, and (v) loading and delivering therapeutic or imaging agents. Thus, these biomimetic systems are promising as prevention, detection, diagnosis, and therapeutic modalities. Though promising, these cell-based biomimetic systems are still far from wide application. One of the important reasons is the inevitable difficulty in their further efficient and precise functionalization. Bioorthogonal chemistry results in fast, specific, and high-yielding ligation under mild biological conditions without interactions with surrounding biomolecules or disturbance of the whole biosystem. Moreover, bioorthogonal chemical groups can be introduced into cells, especially into cell membranes, through cellular biosynthesis and metabolic incorporation. Hence, a specific and reliable approach for cell membrane functionalization based on bioorthogonal chemistry has been opportunely put forward and rapidly developed. In this Account, we summarize our recent research on the development of biomimetic systems by integrating bioorthogonal chemistry with biomimetic approaches. First, an exogenously supplied unnatural biosynthetic precursor (e.g., an amino acid or lipid) bearing a bioorthogonal group (e.g., azide or tetrazine) is fed to living cells and metabolically incorporated into targeted biomolecules via cellular biosynthesis regardless of the cell phenotype. After that, different functional molecules can be anchored to the cell membranes through bioorthogonal chemical reactions by using previously inserted "artificial chemical groups". Therefore, this safe, direct, and long-term engineering strategy endows the natural cell-based biomimetic systems with additional chemical or biological performances such as labeling, targeting, imaging, and therapeutic capabilities, providing a powerful tool for the construction of biomimetic systems. Interestingly, we have successfully fabricated various biomimetic systems and applied them in (1) living virus labeling, (2) targeting delivery and enrichment of drugs/imaging agents, and (3) disease theranostics. This Account may contribute to the further development of biomimetic systems and facilitate their biological and biomedical applications in the future. With this Account we also hope to attract more cooperative interests from different fields such as chemistry, materials science, biology, pharmacy, and medicine in promoting lab-to-clinic translation of cell-based biomimetic systems combined with these two cutting-edge techniques.
Collapse
Affiliation(s)
- Li-Li Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
179
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
180
|
Ahmad SS, Waheed T, Rozeen S, Mahmood S, Kamal MA. Therapeutic Study of Phytochemicals Against Cancer and Alzheimer's Disease Management. Curr Drug Metab 2020; 20:1006-1013. [PMID: 31902351 DOI: 10.2174/1389200221666200103092719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Phytochemicals are a significant piece of conventional prescription and have been researched in detail for conceivable consideration in current drug discovery. Medications and plants are firmly identified for traditional prescriptions and ethnomedicines that are basically arranged from plants. Recognizing the medical advantages of phytochemicals is of fundamental advancement in medication and useful sustenance improvement. Secondary metabolites of different plants have been customarily used for the improvement of human wellbeing. The phytochemicals are diets rich, which can upgrade neuroplasticity and protection from neurodegeneration. RESULTS Phytochemicals keep on entering clinical preliminaries or provide leads for the synthesis of medicinal agents. Phytochemicals are a great extent cancer prevention agents in nature at lower concentrations and under favorable cell conditions that adequately avoid the oxidation of different molecules that have an ability to produce free radicals and thus protect the body. CONCLUSION The purpose of this review is to describe the use of phytochemicals against cancer and Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Tayyaba Waheed
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sayed Rozeen
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sufia Mahmood
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
181
|
Patel P, Meghani N, Kansara K, Kumar A. Nanotherapeutics for the Treatment of Cancer and Arthritis. Curr Drug Metab 2020; 20:430-445. [PMID: 30479211 DOI: 10.2174/1389200220666181127102720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nanotechnology is gaining significant attention worldwide for the treatment of complex diseases such as AIDS (acquired immune deficiency syndrome), cancer and rheumatoid arthritis. Nanomedicine is the application of nanotechnology used for diagnosis and treatment for the disease that includes the preservation and improvement of human health by covering an area such as drug delivery using nanocarriers, nanotheranostics and nanovaccinology. The present article provides an insight into several aspects of nanomedicine such as usages of multiple types of nanocarriers, their status, advantages and disadvantages with reference to cancer and rheumatoid arthritis. METHODS An extensive search was performed on the bibliographic database for research article on nanotechnology and nanomedicine along with looking deeply into the aspects of these diseases, and how all of them are co-related. We further combined all the necessary information from various published articles and briefed to provide the current status. RESULTS Nanomedicine confers a unique technology against complex diseases which includes early diagnosis, prevention, and personalized therapy. The most common nanocarriers used globally are liposomes, polymeric nanoparticles, dendrimers, metallic nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, polymeric micelles and nanotubes among others. CONCLUSION Nanocarriers are used to deliver drugs and biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers.
Collapse
Affiliation(s)
- Pal Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Meghani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Krupa Kansara
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
182
|
Qin M, Zhang J, Li M, Yang D, Liu D, Song S, Fu J, Zhang H, Dai W, Wang X, Wang Y, He B, Zhang Q. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Am J Cancer Res 2020; 10:1213-1229. [PMID: 31938061 PMCID: PMC6956802 DOI: 10.7150/thno.38900] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The merits of nanomedicines are significantly impacted by the surrounding biological environment. Similar to the protein corona generated on the surface of nanoparticles in the circulation system, the intracellular protein corona (IPC) might be formed on nanoparticles when transported inside the cells. However, little is known currently about the formation of IPC and its possible biological influence. Methods: Caco-2 cells, a classical epithelial cell line, were cultured in Transwell plates to form a monolayer. Gold nanoparticles (AuNPs) were prepared as the model nanomedicine due to their excellent stability. Here we focused on identifying IPC formed on the surface of AuNPs during cell transport. The nanoparticles in the basolateral side of the Caco-2 monolayer were collected and analyzed by multiple techniques to verify IPC formation. High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics was utilized to analyze the composition of IPC proteins. In particular, we established a dual-filtration strategy to exclude various interference in IPC identification. Based on the subcellular localization of specific IPC proteins, we elicited the nano-trafficking network of AuNPs. The transport pathways of AuNPs identified by proteomic analysis were also verified by various conventional technologies. Finally, we explored the influence of IPC on the uptake and stress response of endothelium. Results: The existence of IPC was demonstrated on the surface of AuNPs, in which 227 proteins were identified. Among them, 40 proteins were finally ascertained as the specific IPC proteins. The subcellular location analysis indicated that these “specific” IPC proteins could back-track the transport pathways of nanoparticles in the epithelial cell monolayer. According to the subcellular distribution of IPC proteins and co-localization, we discovered a new pathway of nanoparticles from endosomes to secretory vesicles which was dominant during the transcytosis. After employing conventional imageology and pharmacology strategies to verify the result of proteomic analysis, we mapped a comprehensive intracellular transport network. Our study also revealed the merits of IPC analysis, which could readily elucidate the molecular mechanisms of transcytosis. Besides, the IPC proteins increased the uptake and stress response of endothelium, which was likely mediated by extracellular matrix and mitochondrion-related IPC proteins. Conclusion: The comprehensive proteomic analysis of IPC enabled tracing of transport pathways in epithelial cells as well as revealing the biological impact of nanoparticles on endothelium.
Collapse
|
183
|
Shang B, Zhang X, Ji R, Wang Y, Hu H, Peng B, Deng Z. Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110174. [DOI: 10.1016/j.msec.2019.110174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/27/2023]
|
184
|
Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine (Lond) 2020; 15:111-114. [DOI: 10.2217/nnm-2019-0401] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Deepika Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Fahima Dilnawaz
- Nanomedicine Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sanjeeb Kumar Sahoo
- Nanomedicine Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
185
|
Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive Nanotherapeutics by Metal Peroxide Based Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2000494. [PMID: 33437566 PMCID: PMC7788501 DOI: 10.1002/advs.202000494] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/23/2020] [Indexed: 05/29/2023]
Abstract
The advances of nanobiotechnology and nanomedicine enable the triggering of in situ chemical reactions in disease microenvironment for achieving disease-specific nanotherapeutics with both intriguing therapeutic efficacy and mitigated side effects. Metal peroxide based nanoparticles, as one of the important but generally ignored categories of metal-involved nanosystems, can function as the solid precursors to produce oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, both of which are the important chemical species for enhancing the therapeutic outcome of versatile modalities, accompanied with the unique bioactivity of metal ion based components. This progress report summarizes and discusses the most representative paradigms of metal peroxides in chemoreactive nanomedicine, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. Their reactions and corresponding products have been broadly explored in versatile disease treatments, including catalytic nanotherapeutics, photodynamic therapy, radiation therapy, antibacterial infection, tissue regeneration, and some synergistically therapeutic applications. This progress report particularly focuses on the underlying reaction mechanisms on enhancing the therapeutic efficacy of these modalities, accompanied with the discussion on their biological effects and biosafety. The existing gap between fundamental research and clinical translation of these metal peroxide based nanotherapeutic technologies is finally discussed in depth.
Collapse
Affiliation(s)
- Hui Hu
- Medmaterial Research CenterJiangsu University Affiliated People's HospitalZhenjiang212002P. R. China
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Luodan Yu
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiaoqin Qian
- Medmaterial Research CenterJiangsu University Affiliated People's HospitalZhenjiang212002P. R. China
| | - Yu Chen
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Baoding Chen
- Department of Medical UltrasoundThe Affiliated Hospital of Jiangsu UniversityZhenjiang212001P. R. China
| | - Yuehua Li
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| |
Collapse
|
186
|
Selyutina OY, Kononova PA, Babailov SP. Complex of praseodymium with lipid as a NMR temperature sensor and probe of liposome states. NEW J CHEM 2020. [DOI: 10.1039/d0nj03707a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The goal of the research was to show the limits within which Pr3+ can be used as a linear response probe.
Collapse
Affiliation(s)
| | - P. A. Kononova
- Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russia
| | - S. P. Babailov
- A. V. Nikolaev Institute of Inorganic Chemistry
- The Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russian Federation
| |
Collapse
|
187
|
Bronner H, Holzer AK, Finke A, Kunkel M, Marx A, Leist M, Polarz S. The influence of structural gradients in large pore organosilica materials on the capabilities for hosting cellular communities. RSC Adv 2020; 10:17327-17335. [PMID: 35521478 PMCID: PMC9053637 DOI: 10.1039/d0ra00927j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/28/2020] [Indexed: 11/21/2022] Open
Abstract
Cells exist in the so-called extracellular matrix (ECM) in their native state, and numerous future applications require reliable and potent ECM-mimics. A perspective, which goes beyond ECM emulation, is the design of a host-material with features which are not accessible in the biological portfolio. Such a feature would, for instance, be the creation of a structural or chemical gradient, and to explore how this special property influences the biological processes. First, we wanted to test if macroporous organosilica materials with appropriate surface modification can act as a host for the implementation of human cells like HeLa or LUHMES. It was possible to use a commercially available polymeric foam as a scaffold and coat it with a thiophenol-containing organosilica layer, followed by biofunctionalization with biotin using click chemistry and the subsequent coupling of streptavidin–fibronectin to it. More importantly, deformation of the scaffold allowed the generation of a permanent structural gradient. In this work, we show that the structural gradient has a tremendous influence on the capability of the described material for the accommodation of living cells. The introduction of a bi-directional gradient enabled the establishment of a cellular community comprising different cell types in spatially distinct regions of the material. An interesting perspective is to study communication between cell types or to create cellular communities, which can never exist in a natural environment. Chemical and structural gradients in biofunctionalized organosilica–polymer nanocomposites control cell adhesion properties and open perspectives for artificial cellular community systems.![]()
Collapse
Affiliation(s)
- Hannah Bronner
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Anna-Katharina Holzer
- Department of Biology
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Alexander Finke
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Marius Kunkel
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Andreas Marx
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Marcel Leist
- Department of Biology
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| | - Sebastian Polarz
- Department of Chemistry
- University of Konstanz
- Universitätsstraße 10
- D-78457 Konstanz
- Germany
| |
Collapse
|
188
|
Duan Y, Coreas R, Liu Y, Bitounis D, Zhang Z, Parviz D, Strano M, Demokritou P, Zhong W. Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NANOIMPACT 2020; 17:10.1016/j.impact.2020.100207. [PMID: 32104746 PMCID: PMC7043407 DOI: 10.1016/j.impact.2020.100207] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Effective in silico methods to predict protein corona compositions on engineered nanomaterials (ENMs) could help elucidate the biological outcomes of ENMs in biosystems without the need for conducting lengthy experiments for corona characterization. However, the physicochemical properties of ENMs, used as the descriptors in current modeling methods, are insufficient to represent the complex interactions between ENMs and proteins. Herein, we utilized the fluorescence change (FC) from fluorescamine labeling on a protein, with or without the presence of the ENM, as a novel descriptor of the ENM to build machine learning models for corona formation. FCs were significantly correlated with the abundance of the corresponding proteins in the corona on diverse classes of ENMs, including metal and metal oxides, nanocellulose, and 2D ENMs. Prediction models established by the random forest algorithm using FCs as the ENM descriptors showed better performance than the conventional descriptors, such as ENM size and surface charge, in the prediction of corona formation. Moreover, they were able to predict protein corona formation on ENMs with very heterogeneous properties. We believe this novel descriptor can improve in silico studies of corona formation, leading to a better understanding on the protein adsorption behaviors of diverse ENMs in different biological matrices. Such information is essential for gaining a comprehensive view of how ENMs interact with biological systems in ENM safety and sustainability assessments.
Collapse
Affiliation(s)
- Yaokai Duan
- Department of Chemistry, University of California, Riverside, CA 92507, United States
| | - Roxana Coreas
- Department of Environmental Toxicology Graduate Program, University of California, Riverside, CA 92507, United States
| | - Yang Liu
- Department of Environmental Toxicology Graduate Program, University of California, Riverside, CA 92507, United States
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington, Boston, MA 02115, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington, Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington, Boston, MA 02115, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, CA 92507, United States
- Department of Environmental Toxicology Graduate Program, University of California, Riverside, CA 92507, United States
| |
Collapse
|
189
|
Abstract
Taking advantage of the radiation properties of 99mTc and 186/188Re and the photophysical characteristics of the {M(CO)3}+ moiety (M = Re), we developed a multifunctional silica platform with the theranostic pair 99mTc/Re with high potential for (nano)medical applications. Starting with a general screening to evaluate the most suitable mesoporous silica construct and the development of appropriate chelate systems, multifunctional mesoporous silica microparticles (SBA-15) were synthesized. These particles act as a model towards the synthesis of the corresponding nanoconstructs. The particles can be modified at the external surface with a targeting function and labeled with the {M(CO)3}+ moiety (M = 99mTc, Re) at the pore surface. Thus, a silica platform is realized, whose bioprofile is not altered by the loaded modalities. The described synthetic procedures can be applied to establish a target-specific theranostic nanoplatform, which enables the combination of fluorescence and radio imaging, with the possibility of radio- and chemotherapy.
Collapse
|
190
|
Qi Z, Shi J, Zhang Z, Cao Y, Li J, Cao S. PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109889. [DOI: 10.1016/j.msec.2019.109889] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023]
|
191
|
Drijvers E, Liu J, Harizaj A, Wiesner U, Braeckmans K, Hens Z, Aubert T. Efficient Endocytosis of Inorganic Nanoparticles with Zwitterionic Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38475-38482. [PMID: 31559824 DOI: 10.1021/acsami.9b12398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PEGylation, which has traditionally been the method of choice to enhance the colloidal stability of nanostructures designed for biological applications and to prevent nonspecific protein adsorption, is now being challenged by short zwitterionic ligands. Inspired by the zwitterionic nature of cell membranes, these ligands have the potential to push forward the field of nanoparticles for nanomedicine. In this work, we report a thorough analysis of the surface chemistry of silica-coated luminescent CdSe/CdS quantum dots functionalized with either PEG-silane or zwitterionic sulfobetaine-silane by quantitative nuclear magnetic resonance spectroscopy. We demonstrate the differences in the cellular uptake propensity between particles with these two ligands. Although both ligands offer good colloidal stability in a crowded cell culture medium, the zwitterionic-functionalized nanoparticles with an optimized ligand density showed to be more easily endocytosed by HeLa cells. This approach can readily be transferred to other nanoparticle systems offering a wealth of unique properties, with great potential for intracellular bioapplications.
Collapse
Affiliation(s)
| | | | | | - Ulrich Wiesner
- Department of Materials Science and Engineering , Cornell University , Ithaca , New York 14853 , United States
| | | | | | - Tangi Aubert
- Department of Materials Science and Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
192
|
Soleymani J, Hasanzadeh M, Somi MH, Jouyban A. Differentiation and targeting of HT 29 cancer cells based on folate bioreceptor using cysteamine functionalized gold nano-leaf. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110320. [PMID: 31761196 DOI: 10.1016/j.msec.2019.110320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022]
Abstract
Cancer is one of the main causes of death worldwide. To decrease the mortality of cancer, early stage detection of cancer is of great importance. An innovative platform was developed for differentiation and detection of HT 29 cancer cells based on interactions between folate (FA) and folate receptors (FRs) of the membrane of cancer cells. In summary, FA and cysteamine (CA)-functionalized gold nanoparticles (AuNPs) were synthesized and characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier-transform infrared (IR) spectroscopy. Also, the surface charge was determined by measuring of the zeta potential. Fluorescence imaging and flow cytometry analyses were used to approve the selective uptake of the synthesized probe to the cancer cells. HEK 293 FR-negative cells were applied to assess the selectivity of AuNPs/CA/FA towards FR-negative cells. The differential pulse voltammetry (DPV) technique was used to determine the HT 29 cells from 250 to 5000 cells/mL with a lower limit of quantification (LLOQ) of 250 cells/mL. The produced AuNPs/CA/FA based nanoprobe could not only detect the signaling of HT 29 cells but also improve the specificity of cytosensor towards FR-positive cancer cells. According to the obtained results, the newly developed nano-probe could be used as a portable biomedical device for cancer diagnosis.
Collapse
Affiliation(s)
- Jafar Soleymani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
193
|
Zor F, Selek FN, Orlando G, Williams DF. Biocompatibility in regenerative nanomedicine. Nanomedicine (Lond) 2019; 14:2763-2775. [PMID: 31612774 DOI: 10.2217/nnm-2019-0140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biocompatibility is a very common word that is used within biomaterial science and used for description of the interactions between the foreign material and the body. However, the meaning of biocompatibility as well as the mechanisms that collectively constitutes is still unclear. With the advance of nanotechnology, new concerns have been observed related to biocompatibility of these biomaterials. Due to their small size and variability of their physical and chemical properties, nanoparticles' (NP) distribution within the body and interactions with the target cells and tissues are highly variable. Here, we tried to provide an overview about NPs, the concept of biocompatibility and biocompatibility-related issues in nanomedicine and several different NPs.
Collapse
Affiliation(s)
- Fatih Zor
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Fatma Nurefsan Selek
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - David F Williams
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
194
|
Munjal S, Deka SR, Yadav S, Goyal P, Sharma AK, Kumar P. Core/shell nanoassembly of amphiphilic naproxen-polyethylene glycol: synthesis, characterisation and evaluation as drug delivery system. IET Nanobiotechnol 2019; 12:814-821. [PMID: 30104456 DOI: 10.1049/iet-nbt.2017.0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small molecule-based amphiphiles self-assemble into nanostructures (micelles) in aqueous medium which are currently being explored as novel drug delivery systems. Here, naproxen-polyethylene glycol (N-PEG), a small molecule-derived amphiphile, has been synthesised, characterised and evaluated as hydrophobic drug carrier. 1H, 13C Nuclear magnetic resonance (NMR), mass spectrometry (MS) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of N-PEG and dynamic light scattering (DLS) revealed the formation of nano-sized structures of ∼228 nm. Transmission electron microscope (TEM) analysis showed aggregation behaviour of the structures with average size of ∼230 nm. Biodegradability aspect of the micellar-structured N-PEG was demonstrated by lipase-mediated degradation studies using DLS and TEM. High encapsulation efficiency followed by release in a sustained manner of a well-known anticancer drug, doxorubicin, demonstrated the feasibility of the new drug delivery system. These results advocate the promising potential of N-PEG micelles as efficient drug delivery system for specific delivery to cancerous cells in vitro and in vivo.
Collapse
Affiliation(s)
- Srishti Munjal
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Smriti R Deka
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Santosh Yadav
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Preeti Goyal
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Ashwani K Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
195
|
Moura RP, Sarmento B. Therapeutic Approaches toward Multiple Sclerosis: Where Do We Stand and Where Are We Headed? ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rui Pedro Moura
- CESPU – Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde Rua Central de Gandra 1317 4585‐116 Gandra Portugal
| | - Bruno Sarmento
- CESPU – Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde Rua Central de Gandra 1317 4585‐116 Gandra Portugal
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do Porto Rua Alfredo Allen 208 4200‐135 Porto Portugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do Porto Rua Alfredo Allen 208 4200‐135 Porto Portugal
| |
Collapse
|
196
|
Oliveira CR, Garcia TD, Franco-Belussi L, Salla RF, Souza BFS, de Melo NFS, Irazusta SP, Jones-Costa M, Silva-Zacarin ECM, Fraceto LF. Pyrethrum extract encapsulated in nanoparticles: Toxicity studies based on genotoxic and hematological effects in bullfrog tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1009-1020. [PMID: 31434178 DOI: 10.1016/j.envpol.2019.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The environment receives about 2.7 kg.ha-1 annually of pesticides, used in crop production. Pesticides may have a negative impact on environmental biodiversity and potentially induce physiological effects on non-target species. Advances in technology and nanocarrier systems for agrochemicals led to new alternatives to minimize these impacts, such as nanopesticides, considered more efficient, safe and sustainable. However, it is important to evaluate the risk potential, action and toxicity of nanopesticides in aquatic and terrestrial organisms. This study aims to evaluate genotoxic and hematological biomarkers in bullfrog tadpoles (Lithobates catesbeianus) submitted to acute exposure (48 h) to pyrethrum extract (PYR) and solid lipid nanoparticles loaded with PYR. Results showed increased number of leukocytes during acute exposure, specifically eosinophils in nanoparticle-exposed groups, and basophil in PYR-exposed group. Hematological analysis showed that PYR encapsulated in nanoparticles significantly increased the erythrocyte number compared to the other exposed groups. Data from the comet assay indicated an increase in frequency of the classes that correspond to more severe DNA damages in exposed groups, being that the PYR-exposed group showed a high frequency of class-4 DNA damage. Moreover, erythrocyte nuclear abnormalities were triggered by short-time exposure in all treatments, which showed effects significantly higher than the control group. These results showed genotoxic responses in tadpoles, which could trigger cell death pathways. Concluding, these analyses are important for applications in assessment of contaminated aquatic environments and their biomonitoring, which will evaluate the potential toxicity of xenobiotics, for example, the nanoparticles and pyrethrum extract in frog species. However, further studies are needed to better understand the effects of nanopesticides and botanical insecticides on non-target organisms, in order to contribute to regulatory aspects of future uses for these systems.
Collapse
Affiliation(s)
- C R Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - T D Garcia
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - L Franco-Belussi
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Biociências, Laboratório de Patologia Experimental, Avenida Costa e Silva, s/n, Bairro Universitário, 79002-970, Campo Grande, MS, Brazil
| | - R F Salla
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Animal, R. Monteiro Lobato, 255, Cidade Universitária, 13083-862, Campinas, SP, Brazil
| | - B F S Souza
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - N F S de Melo
- Faculdade de Medicina São Leopoldo Mandic, Campus Araras, Av. Dona Renata, 71, Santa Cândida, 13600-001, Araras, SP, Brazil
| | - S P Irazusta
- Faculdade de Tecnologia de Sorocaba (FATEC), Centro Estadual de Educação Tecnológica Paula Souza, Campus Sorocaba, Laboratório de Ecotoxicologia, Av. Eng. Carlos R. Mendes, 2015, Além Ponte, 18013-280, Sorocaba, SP, Brazil
| | - M Jones-Costa
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil.
| | - E C M Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - L F Fraceto
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
197
|
Li W, Tao C, Wang J, Le Y, Zhang J. MMP-responsive in situ forming hydrogel loaded with doxorubicin-encapsulated biodegradable micelles for local chemotherapy of oral squamous cell carcinoma. RSC Adv 2019; 9:31264-31273. [PMID: 35527962 PMCID: PMC9072589 DOI: 10.1039/c9ra04343h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
The complex construction within the oral cavity causes incomplete surgical resection of oral squamous cell carcinoma (OSCC) that may enhance the risk of recurrence and metastasis in the treatment. In situ forming injectable hydrogels with minimally invasive procedures, encapsulation stability and stimuli-responsive degradation have emerged as promising carriers for local drug delivery. In this study, doxorubicin (DOX) was first encapsulated in biodegradable poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA) micelles and then loaded into an in situ injectable hyaluronic acid (HA) hydrogel, which was cross-linked by a matrix metalloproteinase-2 (MMP-2)-responsive peptide (GCRDGPQGIWGQDRCG) through a Michael addition reaction. In vitro studies demonstrated that the HA hydrogel had a sensitive MMP-2-responsive drug release profile. Investigations including MTT, live-dead, apoptosis, and wound healing assays illustrated that DOX micelle-loaded HA hydrogels exhibited outstanding cytotoxicity against squamous carcinoma cells (SCC-15). Furthermore, by in vivo studies, we also proved that HA hydrogels degraded faster in the tumor site than in normal tissue, which led to a local sustained release of DOX-loaded micelles and tumor growth inhibition of oral squamous cell carcinoma (OSCC) without any damage to the organs. Therefore, this work provides a remarkable drug delivery platform for local chemotherapy and other applications.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Cheng Tao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Jiexin Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Jianjun Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| |
Collapse
|
198
|
Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1365. [PMID: 31554176 PMCID: PMC6835394 DOI: 10.3390/nano9101365] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Collapse
Affiliation(s)
- Carlota Auría-Soro
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Tabata Nesma
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Helena Fidalgo-Gomez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Vanessa Acebes-Fernandez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rafael Gongora
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - María Jesus Almendral Parra
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano-Roman
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
199
|
He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. Acc Chem Res 2019; 52:2445-2461. [PMID: 31424909 DOI: 10.1021/acs.accounts.9b00228] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1995, the year the first cancer nanomedicine, Doxil, was approved by the Food and Drug Administration (FDA), only 23 manuscripts appeared in a PubMed search for "nanoparticles for cancer" keywords. Now, over 25 000 manuscripts can be found using those same keywords, yet only 15 nanoparticle-based cancer nanomedicines are approved globally. Based on the clinicaltrials.gov database, a total of 75 cancer nanomedicines are under clinical investigation involving 190 clinical trials summarized here. In this Account, we focus on cancer nanomedicines that have been approved or reached clinical trials to understand this high attrition rate. We classify the various nanomedicines, summarize their clinical outcomes, and discuss possible reasons for product failures and discontinuation of product development efforts. Among ongoing and completed clinical trials, 91 (48 completed) are phase 1, 78 (59 completed) phase 2, and 21 (11 completed) phase 3. The success rate of phase 1 trials has been high-roughly 94%. Of those phase 1 trials with identified outcomes, 45 showed positive safety and efficacy results, with only one negative result (low efficacy) and two terminated due to adverse reactions. In some cases, findings from these trials have not only shown improved pharmacokinetics, but also avid drug accumulation within tumor tissues among active-targeting nanoparticles, including BIND-014, CALAA-01, and SGT-94. However, the success rate drops to ∼48% among completed phase 2 trials with identified outcomes (31 positive, 15 negative, and 4 terminated for toxicity or poor efficacy). A majority of failures in phase 2 trials were due to poor efficacy (15 of 19), rather than toxicity (4 of 19). Unfortunately, the success rate for phase 3 trials slumps to a mere ∼14%, with failures stemming from lack of efficacy. Although the chance of success for cancer nanomedicines starting from the proof-of-concept idea in the laboratory to valuable marketed product may seem daunting, we should not be discouraged. Despite low success rates, funding from the government, foundations, and research organizations are still strong-an estimated > $130 M spent by the National Institutes of Health (NIH) on R01s focused on nanomedicine in 2018 alone. In addition, the NIH created several special initiatives/programs, such as the National Cancer Institute (NCI) Alliance, to facilitate clinical translation of nanomedicines. Companies developing cancer nanomedicines raised diverse ranges of funds from venture capital, capital markets, and industry partnerships. In some cases, the development efforts resulted in regulatory approvals of cancer nanomedicines. In other cases, clinical failures and market pressure from improving standard of care products resulted in product terminations and business liquidation. Yet, recent approvals of nanomedicine products for orphan cancers and continuing development of nanoparticle based drugs for immune-oncology applications fuel continuing industrial and academic interest in cancer nanomedicines.
Collapse
Affiliation(s)
- Hongliang He
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Lisha Liu
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Emily E Morin
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , PR China
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , United States
- Biointerfaces Institute , NCRC Building, 2800 Plymouth Road , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
200
|
Liang B, Yu K, Ling Y, Kolios M, Exner A, Wang Z, Hu B, Zuo G, Chen Y, Zheng Y. An artificially engineered "tumor bio-magnet" for collecting blood-circulating nanoparticles and magnetic hyperthermia. Biomater Sci 2019; 7:1815-1824. [PMID: 30916668 DOI: 10.1039/c8bm01658e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is a great challenge to directly endow a tumor with specific functions for theranostic treatment. In this study, we report on a novel approach to transform a tumor into a "bio-magnet", to be magnetized on demand, in order to create an intrinsic tumor magnetic field that would collect magnetic nanoparticles (MNPs) circulating in the blood and achieve simultaneous magnetic hyperthermia. This was achieved by the localized intratumoral injection of liquid Nd2Fe14B/Fe3O4-PLGA, followed by solvent exchange that induces a liquid-to-solid transformation. After the magnetism charging process, the solid Nd2Fe14B/Fe3O4-PLGA implant was endowed with permanent magnetic properties and in situ created the magnetic field within the tumor tissue, making the tumor a "bio-magnet". After the creation of the bio-magnet, intravenously injected MNPs accumulated into the tumor tissue due to the tumor magnetic field. Importantly, both the in vitro and ex vivo results demonstrated the high efficiency of the implanted bio-magnet for magnetic hyperthermia. This new approach achieves magnetic targeting by creating a tumor "bio-magnet", which generates a strong magnetic field within the tumor, paving a new way for the development of an efficient targeting strategy for tumor therapy.
Collapse
Affiliation(s)
- Bing Liang
- Institute of Ultrasound Imaging of Chongqing Medical University, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|