151
|
Minasyan A, Keisala T, Lou YR, Kalueff AV, Tuohimaa P. Neophobia, sensory and cognitive functions, and hedonic responses in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 2007; 104:274-80. [PMID: 17482806 DOI: 10.1016/j.jsbmb.2007.03.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D is a seco-steroid hormone with multiple actions in the brain, mediated through the nuclear vitamin D receptor (VDR). We have recently shown that mutant mice lacking functional VDR demonstrate altered emotional behavior and specific motor deficits. Here we further examine phenotype of these mice, testing their novelty responses, as well as cognitive and sensory (olfactory and gustatory) functions in the novel food, two-trial Y-maze and tastant consumption tests. In addition, we study depression-like behavior in these mice, using anhedonia-based sucrose preference test. Overall, VDR mutant mice showed neophobic response in several different tests, but displayed unimpaired olfactory and gustatory functions, spatial memory and baseline hedonic responses. Collectively, these data confirm that mutation of VDR in mice leads to altering emotional/anxiety states, but does not play a major role in depression, as well as in the regulation of some sensory and cognitive processes. These results support the role of the vitamin D/VDR neuroendocrine system in the regulation of behavior, and may have clinical relevance, enabling a better focus on psychiatric and behavioral disorders associated with dysfunctions in this neuroendocrine system.
Collapse
Affiliation(s)
- Anna Minasyan
- Department of Anatomy, Medical School, University of Tampere, Tampere 33014, Finland.
| | | | | | | | | |
Collapse
|
152
|
Thomson CA, Arendell LA, Bruhn RL, Maskarinec G, Lopez AM, Wright NC, Moll CE, Aickin M, Chen Z. Pilot study of dietary influences on mammographic density in pre- and postmenopausal Hispanic and non-Hispanic white women. Menopause 2007; 14:243-50. [PMID: 17091096 DOI: 10.1097/01.gme.0000235362.72899.7b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The extent to which modifiable dietary factors may account for some of the variability demonstrated in mammographic density across ethnic groups is unknown. The purpose of this study was to provide pilot data describing the relationship between dietary variables and mammographic density in pre- and postmenopausal Hispanic and non-Hispanic white (NHW) women (N=238) ranging in age from 41 to 50 years (premenopausal only) or 56 to 70 years (postmenopausal only). DESIGN Using a cross-sectional design, computer-assisted density assessments were performed on mammograms of both breasts and averaged for analysis. The Arizona Food Frequency Questionnaire was used to estimate dietary intake. RESULTS Study participants were well educated and overweight, with mean mammographic densities ranging from 20.25% for postmenopausal Hispanic women to 46.94% for premenopausal NHW women. Hispanic women reported higher energy intake than NHW women, but energy-adjusted intake of other nutrients was generally comparable. There was preliminary evidence of ethnic variability in diet-mammographic density associations. Among premenopausal Hispanic women, density was inversely associated with dairy, calcium, and vitamin D intakes (P<or=0.05 for all). Among premenopausal NHW women, lower mammographic density was associated with greater intake of vegetables (P<or=0.05), and higher density was associated with greater fruit intake (P<or=0.05). Among postmenopausal Hispanic women, for every 4.54 increase in the polyunsaturated-to-saturated fat ratio, there was a 9.0% reduction in mammograph density. CONCLUSIONS These preliminary results suggest that a differential pattern of dietary nutrient associations with mammographic density could potentially exist among Hispanic and NHW women. These ethnic differences in diet and mammographic density associations need to be further explored in larger studies.
Collapse
Affiliation(s)
- Cynthia A Thomson
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson 85721-0038, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Camargo CA, Rifas-Shiman SL, Litonjua AA, Rich-Edwards JW, Weiss ST, Gold DR, Kleinman K, Gillman MW. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr 2007; 85:788-95. [PMID: 17344501 PMCID: PMC4406411 DOI: 10.1093/ajcn/85.3.788] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Vitamin D deficiency and asthma are common at higher latitudes. Although vitamin D has important immunologic effects, its relation with asthma is unknown. OBJECTIVE We hypothesized that a higher maternal intake of vitamin D during pregnancy is associated with a lower risk of recurrent wheeze in children at 3 y of age. DESIGN The participants were 1194 mother-child pairs in Project Viva-a prospective prebirth cohort study in Massachusetts. We assessed the maternal intake of vitamin D during pregnancy from a validated food-frequency questionnaire. The primary outcome was recurrent wheeze, ie, a positive asthma predictive index (>or=2 wheezing attacks among children with a personal diagnosis of eczema or a parental history of asthma). RESULTS The mean (+/-SD) total vitamin D intake during pregnancy was 548 +/- 167 IU/d. By age 3 y, 186 children (16%) had recurrent wheeze. Compared with mothers in the lowest quartile of daily intake (median: 356 IU), those in the highest quartile (724 IU) had a lower risk of having a child with recurrent wheeze [odds ratio (OR): 0.39; 95% CI: 0.25, 0.62; P for trend < 0.001]. A 100-IU increase in vitamin D intake was associated with lower risk (OR: 0.81; 95% CI: 0.74, 0.89), regardless of whether vitamin D was from the diet (OR: 0.81; 95% CI: 0.69, 0.96) or supplements (OR: 0.82; 95% CI: 0.73, 0.92). Adjustment for 12 potential confounders, including maternal intake of other dietary factors, did not change the results. CONCLUSION In the northeastern United States, a higher maternal intake of vitamin D during pregnancy may decrease the risk of recurrent wheeze in early childhood.
Collapse
Affiliation(s)
- Carlos A Camargo
- Center for D-receptor Activation Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Santonocito C, Capizzi R, Concolino P, Lavieri MM, Paradisi A, Gentileschi S, Torti E, Rutella S, Rocchetti S, Di Carlo A, Di Stasio E, Ameglio F, Zuppi C, Capoluongo E. Association between cutaneous melanoma, Breslow thickness and vitamin D receptor BsmI polymorphism. Br J Dermatol 2007; 156:277-82. [PMID: 17223867 DOI: 10.1111/j.1365-2133.2006.07620.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Literature data report an association between some vitamin D receptor (VDR) polymorphisms and different kinds of tumours, including malignant melanoma (MM). Only three VDR polymorphisms (FokI, TaqI and A-1012G) have been investigated in association with the presence of cutaneous MM or the development of metastases. OBJECTIVES The present paper analyses for the first time the association between BsmI polymorphism and MM prevalence together with Breslow thickness. In addition, the FokI single nucleotide polymorphism was also determined. METHODS One hundred and one patients with MM and 101 healthy donors matched for age and sex were enrolled. Molecular VDR typing was performed by means of restriction fragment length polymorphism analysis. RESULTS All cases and controls were in Hardy-Weinberg equilibrium for BsmI, FokI and A-1012G. Significant associations were found between the BsmI bb genotype frequency and MM (P = 0.02) along with Breslow thickness (P = 0.001). This same behaviour was not observed for the FokI or A-1012G polymorphisms. Multivariate logistic regression analysis confirmed these significant results after correction for age, gender, skin type and MM localization. CONCLUSIONS Although the biological meaning of the effects exerted by BsmI polymorphism is still under debate, the statistical association found in the present study suggests that further work should be done to verify this variant as a possible risk marker for MM and its aggressiveness, also considering that the real association may be due to other unknown genes linked to the BsmI b allele.
Collapse
Affiliation(s)
- C Santonocito
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University, Largo A Gemeli 8, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Seasonal and geographical variations in lung cancer prognosis in Norway. Does Vitamin D from the sun play a role? Lung Cancer 2007; 55:263-70. [PMID: 17207891 DOI: 10.1016/j.lungcan.2006.11.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/26/2006] [Accepted: 11/05/2006] [Indexed: 01/30/2023]
Abstract
Vitamin D derivatives can modulate proliferation and differentiation of cancer cells. Our main source of Vitamin D is ultraviolet (UV) radiation-induced synthesis in skin following sun exposure. UV measurements show that the ambient annual UV exposures increase by about 50% from north to south in Norway. As judged from the incidence rates of squamous cell carcinoma, the same is true for the average personal UV exposures. Solar ultraviolet B (UVB) (280-320nm) exhibits a strong seasonal variation with a minimum during the winter months. The present work aims at investigating the impact of season of diagnosis and residential region, both influencing the Vitamin D level, on the risk of death from lung cancer in patients diagnosed in Norway. Data on all incident cases of lung cancer between 1964 and 2000 were collected. Risk estimates were calculated as relative risk (RR), with 95% confidence intervals using Cox regression model. The seasonal variation of 25-hydroxyvitamin D was assessed from routine measurements of 15,616 samples performed at The Hormone Laboratory of Aker University Hospital. Our results indicate that season of diagnosis is of prognostic value for lung cancer patients, with a approximately 15% lower case fatality for young male patients diagnosed during autumn versus winter (RR=0.85; 95% CI, -0.73 to 0.99; p=0.04). Residing in a high UV region resulted in a further lowering of the death risk than residing in a low UV region. We propose, in agreement with earlier findings for prostate-, breast- colon cancer and Hodgkins lymphoma, that a high level of sun-induced 25-hydroxyvitamin D can be a prognostic advantage for certain groups of lung cancer patients, notably for young men. Lung cancer has for several decades been the leading cause of cancer-related mortality in men in Norway and during the last two decades, became the second most common cause of cancer-related death in women . There are two main types of lung cancer: small cell lung cancer for which chemotherapy is the primary treatment and non-small cell lung cancer, which in its early stages is treated primarily with surgery. Gender-related differences have been described in the literature with respect to survival after therapy, male gender being a significant independent negative prognostic factor . In Norway the 5 years relative survival for localized tumours is about 30% for females and 20% for males. Calcitriol, which is the most active form of Vitamin D, is involved in key regulatory processes such as proliferation, differentiation and apoptosis in a wide variety of cells . Mechanisms for these actions have been proposed to be the interaction of active Vitamin D derivatives with a specific nuclear receptor (VDR receptor) and/or with membrane targets . In vitro studies, performed with lung cancer cell lines, have shown an inhibitive effect of Vitamin D derivatives on cell-growth and proliferation . Furthermore, animal studies have demonstrated the capability of these compounds to suppress invasion, metastasis and angiogenesis in vivo , suggesting that administration of Vitamin D derivatives may be used as adjuvant therapy for lung cancer. Humans get optimal Vitamin D levels by exposure to sun or artificial ultraviolet B (UVB, 280-320nm) sources , and possibly also by consumption of food rich in this nutrient (fat fish, eggs, margarine, etc.) or of vitamin supplements . Among these sources, solar radiation appears to be the most important one . Thus, the Vitamin D status (assessed by the serum levels of 25-hydroxyvitamin D, calcidiol) exhibits a strong seasonal variation that parallels the seasonal change in the fluence of solar UVB that reaches the ground. During winter, the UVB fluence rate in the Nordic countries (50-71 degrees N) is below the level required for Vitamin D synthesis in skin . The maximal level of calcidiol is reached between the months July and September, and is 20-120% higher than the corresponding winter level . Recently we hypothesised that the seasonal variation of calcidiol might be of prognostic significance for colon-, breast- prostate cancer as well as for Hodgkins lymphoma in Norway. Patients diagnosed during summer and autumn have a better survival after standard treatment than patients diagnosed during the winter season . This might be a consequence of a higher Vitamin D level. An American study investigated the effect of season of surgery and recent Vitamin D intake on the survival of non-small cell lung cancer patients. The authors reported a significant beneficial joint effect of summer season and high Vitamin D intake compared with winter season and low Vitamin D intake while Vitamin D intake alone did not affect prognosis. Similar results were recently reported from a large study in United Kingdom involving over a million cancer patients including over 190,000 patients diagnosed with lung cancer . Norway (58-71 degrees N) has a significant north-south variation in UV fluence. This makes the country suitable for studies relating cancer epidemiology to UV levels . We investigated whether variations in UV, and, consequently, in Vitamin D level, influence the prognosis of lung cancer, using season of diagnosis and residential regions as variables. Survival data obtained for patients diagnosed over a 40 years period were compared with variations in serum Vitamin D levels obtained from routine measurements performed in The Hormone Laboratory of Aker University Hospital during the period 1996-2001. Seasonal and gender variations in Vitamin D level have been estimated from the analyses.
Collapse
|
156
|
Liu P, Stenger S, Li H, Wenzel L, Tan B, Krutzik S, Ochoa M, Schauber J, Wu K, Meinken C, Kamen D, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo R, Eisenberg D, Hewison M, Hollis B, Adams J, Bloom B, Modlin R. Vitamin D3–Triggered Antimicrobial Response—Another Pleiotropic Effect beyond Mineral and Bone Metabolism. J Am Soc Nephrol 2006. [DOI: 10.1681/asn.2006091030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
157
|
Evans KN, Nguyen L, Chan J, Innes BA, Bulmer JN, Kilby MD, Hewison M. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 2006; 75:816-22. [PMID: 16957024 DOI: 10.1095/biolreprod.106.054056] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) is a potent immunomodulatory seco-steroid. We have demonstrated that several components of vitamin D metabolism and signaling are strongly expressed in human uterine decidua from first trimester pregnancies, suggesting that locally produced 1,25(OH)(2)D(3) may exert immunosuppressive effects during early stages of gestation. To investigate this further, we used primary cultures of human decidual cells from first and third trimester pregnancies to demonstrate expression and activity of the enzyme that catalyzes synthesis of 1,25(OH)(2)D(3), 1alpha-hydroxylase (CYP27B1). Synthesis of 1,25(OH)(2)D(3) was higher in first trimester decidual cells (41 +/- 11.8 fmoles/h/mg protein) than in third trimester cells (8 +/- 4.4 fmoles/h/mg protein; P < 0.05). Purification of decidual cells followed by quantitative RT-PCR analysis showed that CYP27B1 was expressed by both CD10(+VE) stromal-enriched and CD10(-VE) stromal-depleted cells, with higher levels of mRNA in first trimester pregnancies. Expression of CYP27B1 correlated with TLR4 and IDO. Functional responses to 1,25(OH)(2)D(3) were studied using CD56(+VE) natural killer (NK) cells isolated from first trimester decidua. Decidual NK cells treated with 1,25(OH)(2)D(3) or precursor 25-hydroxyvitamin D(3) (25OHD(3)) for 28 h showed decreased synthesis of cytokines, such as granulocyte-macrophage colony stimulating factor 2 (CSF2), tumor necrosis factor, and interleukin 6, but increased expression of mRNA for the antimicrobial peptide cathelicidin antimicrobial peptide. These data indicate that human decidual cells are able to synthesize active 1,25(OH)(2)D(3), particularly in early gestation, and this may act in an autocrine/paracrine fashion to regulate both acquired and innate immune responses at the fetal-maternal interface.
Collapse
Affiliation(s)
- Katie N Evans
- Division of Medical Sciences, Institute of Biomedical Research, The University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
158
|
Slight association between type 1 diabetes and “ff” VDR FokI genotype in patients from the Italian Lazio Region. Lack of association with diabetes complications. Clin Biochem 2006; 39:888-92. [DOI: 10.1016/j.clinbiochem.2006.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 04/25/2006] [Accepted: 05/15/2006] [Indexed: 11/17/2022]
|
159
|
Tavera-Mendoza LE, Mader S, White JH. Genome-wide approaches for identification of nuclear receptor target genes. NUCLEAR RECEPTOR SIGNALING 2006; 4:e018. [PMID: 16862224 PMCID: PMC1513072 DOI: 10.1621/nrs.04018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 04/06/2006] [Indexed: 11/20/2022]
Abstract
Large-scale genomics analyses have grown by leaps and bounds with the rapid advances in high throughput DNA sequencing and synthesis techniques. Nuclear receptor signaling is ideally suited to genomics studies because receptors function as ligand-regulated gene switches. This review will survey the strengths and limitations of three major classes of high throughput techniques widely used in the nuclear receptor field to characterize ligand-dependent gene regulation: expression profiling studies (microarrays, SAGE and related techniques), chromatin immunoprecipitation followed by microarray (ChIP-on-chip), and genome-wide in silico hormone response element screens. We will discuss each technique, and how each has contributed to our understanding of nuclear receptor signaling.
Collapse
|
160
|
Wang X, Wang TT, White JH, Studzinski GP. Induction of kinase suppressor of RAS-1(KSR-1) gene by 1, alpha25-dihydroxyvitamin D3 in human leukemia HL60 cells through a vitamin D response element in the 5'-flanking region. Oncogene 2006; 25:7078-85. [PMID: 16732322 PMCID: PMC2843694 DOI: 10.1038/sj.onc.1209697] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Differentiation therapy is being developed as an additional therapeutic option for the treatment of several forms of cancer, including myeloid leukemia. In model systems, the physiologically active form of vitamin D, 1, alpha25-dihydroxyvitamin D3 (1,25D), induces monocytic differentiation of human myeloid cells, but the mechanism is not clear. We report here, the first direct connection between the signal provided by 1,25D and the molecular circuitry known to be involved in monocytic differentiation. Specifically, we show that 1,25D selectively increases the expression of the gene encoding kinase suppressor of Ras-1 (KSR-1) in HL60 cells, while other differentiation-inducing agents such as 12-O-tetradecanoylphorbol-13-acetate, retinoic acid or dimethyl sulfoxide do not significantly increase KSR-1 expression. Further, the upregulation of KSR-1 gene by 1,25D is competed by ZK159222, an antagonist of vitamin D receptor (VDR) action, and can occur in the presence of protein synthesis inhibitor cycloheximide, showing that the effect is direct. Most importantly, we have identified a vitamin D responsive element (VDRE) in the promoter region of the human KSR-1 gene, to which VDR binds in a 1,25D-dependent manner, in vitro and in vivo. This binding is paralleled by increased association of RNA polymerase II with the transcription start site of KSR-1 gene, and the VDRE is functional in reporter assays. Our findings offer a potential mechanism for a signaling pathway that contributes to 1,25D-induced monocytic differentiation of human myeloid leukemia cells.
Collapse
Affiliation(s)
- X Wang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | - T-T Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - JH White
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - GP Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
161
|
Posttranscriptional modulation of the human tissue–nonspecific alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 in MG-63 osteoblastic osteosarcoma cells. Nutr Res 2006. [DOI: 10.1016/j.nutres.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
162
|
Tavera-Mendoza L, Wang TT, Lallemant B, Zhang R, Nagai Y, Bourdeau V, Ramirez-Calderon M, Desbarats J, Mader S, White JH. Convergence of vitamin D and retinoic acid signalling at a common hormone response element. EMBO Rep 2006; 7:180-5. [PMID: 16322758 PMCID: PMC1369248 DOI: 10.1038/sj.embor.7400594] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 10/25/2005] [Accepted: 11/09/2005] [Indexed: 01/19/2023] Open
Abstract
Although 1,25-dihydroxyvitamin D3 (1,25D3) and retinoic acid (RA) have distinct developmental and physiological roles, both regulate the cell cycle. We provide molecular and genomic evidence that their cognate nuclear receptors regulate common genes through everted repeat TGA(C/T)TPyN8PuG(G/T)TCA (ER8) response elements. ER8 motifs were found in the promoters of several target genes of 1,25D3 and/or RA. Notably, an element was characterized in the cyclin-dependent kinase (CDK) inhibitor p19ink4d gene, and 1,25D3- or RA-induced p19INK4D) expression. P19ink4d knockdown together with depletion of p27kip1, another CDK inhibitor regulated by 1,25D3 and RA, rendered cells resistant to ligand-induced growth arrest. Remarkably, p19INK4D-deficient cells showed increased autophagic cell death, which was markedly enhanced by 1,25D3, but not RA, and attenuated by loss of p27KIP1. These results show a limited crosstalk between 1,25D3 and RA signalling by means of overlapping nuclear receptor DNA binding specificities, and uncover a role for p19INK4D in control of cell survival.
Collapse
Affiliation(s)
- Luz Tavera-Mendoza
- Department of Medicine, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
| | - Tian-Tian Wang
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
| | - Benjamin Lallemant
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
| | - Rui Zhang
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
| | - Yoshihiko Nagai
- Department of Medicine, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
- McGill University and Genome Quebec Innovation Centre, McGill University, 740 Ave. Dr. Penfield, Montreal, Quebec, Canada H3G 1Y6
| | - Véronique Bourdeau
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | - Mario Ramirez-Calderon
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
| | - Julie Desbarats
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
| | - Sylvie Mader
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | - John H White
- Department of Medicine, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
- Department of Physiology, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6
- Tel: +1 514 398 8498; Fax: +1 514 398 7452; E-mail:
| |
Collapse
|
163
|
Song CS, Echchgadda I, Seo YK, Oh T, Kim S, Kim SA, Cho S, Shi L, Chatterjee B. An Essential Role of the CAAT/Enhancer Binding Protein-α in the Vitamin D-Induced Expression of the Human Steroid/Bile Acid-Sulfotransferase (SULT2A1). Mol Endocrinol 2006; 20:795-808. [PMID: 16357103 DOI: 10.1210/me.2005-0428] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractThe vitamin D receptor (VDR) regulates steroid and drug metabolism by inducing the genes encoding phase I and phase II enzymes. SULT2A1 is a liver- and intestine-expressed sulfo-conjugating enzyme that converts the alcohol-OH of neutral steroids, bile acids, and drugs to water-soluble sulfated metabolites. 1α,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] induces SULT2A1 gene transcription after the recruitment of VDR to the vitamin D-responsive chromatin region of SULT2A1. A composite element in human SULT2A1 directs the 1,25-(OH)2D3-mediated induction of natural and heterologous promoters. This element combines a VDR/retinoid X receptor-α-binding site [vitamin D response element (VDRE)], which is an imperfect inverted repeat 2 of AGCTCA, and a CAAT/enhancer binding protein (C/EBP)-binding site located 9 bp downstream to VDRE. The binding sites were identified by EMSA, antibody supershift, and deoxyribonuclease I footprinting. C/EBP-α at the composite element plays an essential role in the VDR regulation of SULT2A1, because 1) induction was lost for promoters with inactivating mutations at the VDRE or C/EBP element; 2) SULT2A1 induction by 1,25-(OH)2D3 in C/EBP-α-deficient cells required the expression of cotransfected C/EBP-α; and 3) C/EBP-β did not substitute for C/EBP-α in this regulation. VDR and C/EBP-α were recruited concurrently to the composite element along with the coactivators p300, steroid receptor coactivator 1 (SRC-1), and SRC-2, but not SRC-3. VDR and C/EBP-α associated endogenously as a DNA-dependent, coimmunoprecipitable complex, which was detected at a markedly higher level in 1,25-(OH)2D3-treated cells. These results provide the first example of the essential role of the interaction in cis between C/EBP-α and VDR in directing 1,25-(OH)2D3-induced expression of a VDR target gene.
Collapse
Affiliation(s)
- Chung S Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Chatterjee B, Echchgadda I, Song CS. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol 2006; 400:165-91. [PMID: 16399349 DOI: 10.1016/s0076-6879(05)00010-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SULT2A1 is a sulfo-conjugating phase II enzyme expressed at very high levels in the liver and intestine, the two major first-pass metabolic tissues, and in the steroidogenic adrenal tissue. SULT2A1 acts preferentially on the hydroxysteroids dehydroepiandrosterone, testosterone/dihydrotestosterone, and pregnenolone and on cholesterol-derived amphipathic sterol bile acids. Several therapeutic drugs and other xenobiotics, which include xenoestrogens, are also sulfonated by this cytosolic steroid/bile acid sulfotransferase. Nonsteroid nuclear receptors with key roles in the metabolism and detoxification of endobiotics and xenobiotics, such as bile acid-activated farnesoid X receptor, xenobiotic-activated pregnane X receptor and constitutive androstane receptor, and lipid-activated peroxisome proliferator-activated receptor-alpha, mediate transcription induction of SULT2A1 in the enterohepatic system. The ligand-activated vitamin D receptor (VDR) is another nuclear receptor that stimulates SULT2A1 transcription, and the regulatory elements in human, mouse, and rat promoters directing this induction have been characterized. Given that bile acid sulfonation is catalyzed exclusively by SULT2A1 and that the 3alpha-sulfate of the highly toxic lithocholic acid is a major excretory metabolite in humans, we speculate that a role for the VDR pathway in SULT2A1 expression may have emerged to shield first-pass tissues from the cytotoxic effects of a bile acid overload arising from disrupted sterol homeostasis triggered by endogenous and exogenous factors.
Collapse
Affiliation(s)
- Bandana Chatterjee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System, USA
| | | | | |
Collapse
|
165
|
Abstract
Psoriasis is considered as a T-cell-mediated inflammatory skin disease which is characterized by hyperproliferation and poor differentiation of epidermal keratinocytes. While susceptibility to psoriasis is inherited, the disease is influenced by environmental factors such as infections and stress. Diet has been suggested to play a role in the aetiology and pathogenesis of psoriasis. Fasting periods, low-energy diets and vegetarian diets improved psoriasis symptoms in some studies, and diets rich in n-3 polyunsaturated fatty acids from fish oil also showed beneficial effects. All these diets modify the polyunsaturated fatty acid metabolism and influence the eicosanoid profile, so that inflammatory processes are suppressed. Some patients with psoriasis show an elevated sensitivity to gluten. In patients with IgA and/or IgG antigliadin antibodies the symptoms have been shown to improve on a gluten-free diet. The active form of vitamin D, 1,25-dihydroxyvitamin D(3), exhibits antiproliferative and immunoregulatory effects via the vitamin D receptor, and thus is successfully used in the topical treatment of psoriasis. In this review, dietary factors which play a role in psoriasis are assessed and their potential benefit is evaluated. Furthermore, the risk of drug-nutrient interactions in psoriasis therapy is discussed.
Collapse
Affiliation(s)
- M Wolters
- Nutrition Physiology and Human Nutrition Unit, Institute of Food Science, University of Hannover, Wunstorfer Strasse 14, D-30453 Hannover, Germany.
| |
Collapse
|
166
|
Obradovic D, Gronemeyer H, Lutz B, Rein T. Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J Neurochem 2006; 96:500-9. [PMID: 16336217 DOI: 10.1111/j.1471-4159.2005.03579.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is growing evidence for a role of vitamin D3 signalling in the brain. In this study, we investigated the influence of vitamin D3, in combination with glucocorticoids, on differentiation of the hippocampal progenitor line HIB5, as well as survival of rat primary hippocampal cells. In HIB5, pre-treatment with dexamethasone (Dex) alone inhibited neurite outgrowth and abolished activation of the mitogen-activated protein kinase (MAPK) pathway during platelet-derived growth factor (PDGF)-induced differentiation, consistent with previous findings. Interestingly, pre-treating HIB5 with vitamin D3 significantly reduced these effects of Dex and, in addition, lowered the transactivational function of the glucocorticoid receptor (GR) in transient reporter gene assays. A further impact of vitamin D3 on glucocorticoid effects was observed in a rat primary hippocampal culture known to be particularly sensitive to prolonged GR activation. In this model, Dex induced considerable cell death after 72 h of exposure in vitro. However, 24 h of pre-treatment with low doses of vitamin D3 substantially reduced the degree of Dex-induced apoptosis in primary hippocampal cells. Taken together, our experiments demonstrate a cross-talk between vitamin D3 and glucocorticoids in two hippocampal models, a feature that may have important implications in disorders with dysregulated glucocorticoid signalling, including major depression.
Collapse
|
167
|
Matusiak D, Murillo G, Carroll RE, Mehta RG, Benya RV. Expression of vitamin D receptor and 25-hydroxyvitamin D3-1{alpha}-hydroxylase in normal and malignant human colon. Cancer Epidemiol Biomarkers Prev 2005; 14:2370-6. [PMID: 16214919 DOI: 10.1158/1055-9965.epi-05-0257] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Considerable evidence exists to support the use of vitamin D to prevent and/or treat colorectal cancer. However, the routine use of bioactive vitamin D, 1,25-dihydroxyvitamin D3, is limited by the side effect of toxic hypercalcemia. Recent studies, however, suggest that colonic epithelial cells express 25-hydroxyvitamin D3-1alpha-hydroxylase, an enzyme that converts nontoxic pro-vitamin D, 25-hydroxycholecalciferol [25(OH)D3], to its bioactive form. Yet, nothing is known as to the cellular expression of 1alpha-hydroxylase and the vitamin D receptor (VDR) in the earliest histopathologic structures associated with malignant transformation such as aberrant crypt foci (ACF) and polyps [addressing the possibility of using nontoxic 25(OH)D3 for chemoprevention], nor is anything known as to the expression of these proteins in colorectal cancer as a function of tumor cell differentiation or metastasis [relevant to using 25(OH)D3 for chemotherapy]. In this study, we show that 1alpha-hydroxylase is present at equal high levels in normal colonic epithelium as in ACFs, polyps, and colorectal cancer irrespective of tumor cell differentiation. In contrast, VDR levels were low in normal colonic epithelial cells; were increased in ACFs, polyps, and well-differentiated tumor cells; and then declined as a function of tumor cell de-differentiation. Both 1alpha-hydroxylase and VDR levels were negligible in tumor cells metastasizing to regional lymph nodes. Overall, these data support using 25(OH)D3 for colorectal cancer chemoprevention but suggest that pro-vitamin D is less likely to be useful for colorectal cancer chemotherapy.
Collapse
Affiliation(s)
- Damien Matusiak
- Department of Medicine, University of Illinois at Chicago, 840 South Wood Street (M/C 716), Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
168
|
Sanchez-Rodriguez J, Kaninda-Tshilumbu J, Santos A, Perez-Castillo A. The spot 14 protein inhibits growth and induces differentiation and cell death of human MCF-7 breast cancer cells. Biochem J 2005; 390:57-65. [PMID: 15819613 PMCID: PMC1188266 DOI: 10.1042/bj20042080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The S14 (spot 14) gene encodes a protein that is predominantly expressed in lipogenic tissues, such as the liver, white and brown adipose tissues and the lactating mammary glands. Accumulated evidence suggests that S14 could play an important role in the induction of lipogenic enzymes. In humans, the S14 locus resides in the chromosome region 11q13, which is frequently amplified in breast tumours, and as a result, it has been suggested that this protein could play a role in the metabolism and growth of these kinds of tumours. In the present study, we have examined the effects of S14 overexpression in MCF-7 human breast cancer cells. We found that S14 causes (i) an inhibition of cell proliferation and of anchorage-independent growth, (ii) a marked reduction in the number of viable cells and (iii) the induction of differentiation and cell death of these cells. The inhibition of cell growth was associated with a decrease in the expression of cyclin D1 and a reduction of cyclin D1 promoter activity. Increased expression of S14 also caused the accumulation of cytochrome c in the cytosol and loss of mitochondrial membrane potential. These findings suggest that S14 may function as an important modulator of tumorigenesis in human breast by decreasing cell growth and inducing cell death and differentiation.
Collapse
Affiliation(s)
- Jinny Sanchez-Rodriguez
- *Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- †Sección de Investigaciones Metabólicas y Nutricionales, Instituto de Medicina Experimental, Universidad Central de Venezuela, Ciudad Universitania, Caracas DC, Venezuela
| | - John P. Kaninda-Tshilumbu
- *Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel Santos
- ‡Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Correspondence may be addressed to either of these authors (email or )
| | - Ana Perez-Castillo
- *Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
169
|
|
170
|
Slominski A, Semak I, Zjawiony J, Wortsman J, Li W, Szczesniewski A, Tuckey RC. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. FEBS J 2005; 272:4080-90. [PMID: 16098191 PMCID: PMC2234577 DOI: 10.1111/j.1742-4658.2005.04819.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The role of vitamin D in left ventricular hypertrophy and cardiac function. Cardiovascular disease is the leading cause of death among patients with end-stage renal disease (ESRD). Traditional cardiac risk factors, as well as other factors specific to the ESRD population such as hyperphosphatemia, elevated calcium and phosphate product, abnormal lipid metabolism, hyperhomocysteinemia, and chronic inflammation play a role in the excessive risk of cardiovascular death in this population. Left ventricular disorders are proven risk factors for cardiac mortality in hemodialysis patients. These disorders are present in incident ESRD patients at rates far above the general population. There is an accumulating body of evidence that suggests that vitamin D plays a role in cardiovascular disease. Abnormal vitamin metabolism, through deficiency of the active form of 1,25-dihydroxyvitamin D(3), and acquired vitamin D resistance through the uremic state, have been shown to be important in ESRD. Vitamin D deficiency has long been known to affect cardiac contractility, vascular tone, cardiac collagen content, and cardiac tissue maturation. Recent studies using vitamin D receptor deficient mice as a model demonstrate a crucial role of vitamin D in regulation of the renin-angiotensin system. Additionally, there is emerging evidence linking treatment with vitamin D to improved survival on hemodialysis and improvement in cardiac function. The emergence of this data is focusing attention on the previously underappreciated nonmineral homeostatic effects of vitamin D that very likely play an important role in the pathogenesis of cardiac disease in ESRD.
Collapse
Affiliation(s)
- Steven G Achinger
- Division of Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
172
|
Reis AF, Hauache OM, Velho G. Vitamin D endocrine system and the genetic susceptibility to diabetes, obesity and vascular disease. A review of evidence. DIABETES & METABOLISM 2005; 31:318-25. [PMID: 16369193 DOI: 10.1016/s1262-3636(07)70200-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Vitamin D endocrine system regulates multiple aspects of calcium metabolism and cellular differentiation and replication in the immune system, endocrine pancreas, liver, skeletal muscles and adipocytes. It plays an important role in glucose homeostasis, notably, in the mechanism of insulin release. Actions of vitamin D are mediated by the binding of 1, 25-(OH)2D3 to a specific cytosolic/nuclear vitamin D receptor (VDR), a member of the steroid/thyroid hormone receptor superfamily. Several frequent polymorphisms are found in the VDR gene and were reported to be associated with a variety of physiological and pathological phenotypes in many populations. In this paper, we will review the evidences suggesting associations of allelic variations in the VDR gene and phenotypes related to body weight, glucose homeostasis, diabetes and its vascular complications.
Collapse
Affiliation(s)
- A F Reis
- Inserm Unité 695, Faculté de Médecine Xavier Bichat, 16, rue Henri Huchard, 75018 Paris, France
| | | | | |
Collapse
|
173
|
Sutton ALM, Zhang X, Ellison TI, Macdonald PN. The 1,25(OH)2D3-Regulated Transcription Factor MN1 Stimulates Vitamin D Receptor-Mediated Transcription and Inhibits Osteoblastic Cell Proliferation. Mol Endocrinol 2005; 19:2234-44. [PMID: 15890672 DOI: 10.1210/me.2005-0081] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe vitamin D endocrine system is essential for maintaining mineral ion homeostasis and preserving bone density. The most bioactive form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] elicits its effects by binding to the vitamin D receptor (VDR) and regulating the transcription of target genes. In osteoblasts, the bone-forming cells of the skeleton, 1,25-(OH)2D3 regulates cell proliferation, differentiation, and mineralization of the extracellular matrix. Despite these well-characterized biological functions, relatively few 1,25-(OH)2D3 target genes have been described in osteoblasts. In this study, we characterize the regulation and function of MN1, a novel 1,25-(OH)2D3-induced gene in osteoblastic cells. MN1 is a nuclear protein first identified as a gene disrupted in some meningiomas and leukemias. Our studies demonstrate that MN1 preferentially stimulates VDR-mediated transcription through its ligand-binding domain and synergizes with the steroid receptor coactivator family of coactivators. Furthermore, forced expression of MN1 in osteoblastic cells results in a profound decrease in cell proliferation by slowing S-phase entry, suggesting that MN1 is an antiproliferative factor that may mediate 1,25-(OH)2D3-dependent inhibition of cell growth. Collectively, these data indicate that MN1 is a 1,25-(OH)2D3-induced VDR coactivator that also may have critical roles in modulating osteoblast proliferation.
Collapse
Affiliation(s)
- Amelia L M Sutton
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
174
|
Mooijaart SP, Brandt BW, Baldal EA, Pijpe J, Kuningas M, Beekman M, Zwaan BJ, Slagboom PE, Westendorp RGJ, van Heemst D. C. elegans DAF-12, Nuclear Hormone Receptors and human longevity and disease at old age. Ageing Res Rev 2005; 4:351-71. [PMID: 16051528 DOI: 10.1016/j.arr.2005.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 01/12/2023]
Abstract
In Caenorhabditis elegans, DAF-12 appears to be a decisive checkpoint for many life history traits including longevity. The daf-12 gene encodes a Nuclear Hormone Receptor (NHR) and is member of a superfamily that is abundantly represented throughout the animal kingdom, including humans. It is, however, unclear which of the human receptor representatives are most similar to DAF-12, and what their role is in determining human longevity and disease at old age. Using a sequence similarity search, we identified human NHRs similar to C. elegans DAF-12 and found that, based on sequence similarity, Liver X Receptor A and B are most similar to C. elegans DAF-12, followed by the Pregnane X Receptor, Vitamin D Receptor, Constitutive Andosteron Receptor and the Farnesoid X Receptor. Their biological functions include, amongst others, detoxification and immunomodulation. Both are processes that are involved in protecting the body from harmful environmental influences. Furthermore, the DAF-12 signalling systems seem to be functionally conserved and all six human NHRs have cholesterol derived compounds as their ligands. We conclude that the DAF-12 signalling system seems to be evolutionary conserved and that NHRs in man are critical for body homeostasis and survival. Genomic variations in these NHRs or their target genes are prime candidates for the regulation of human lifespan and disease at old age.
Collapse
Affiliation(s)
- S P Mooijaart
- Department of Gerontology and Geriatrics, C-2-R, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y, Bourdeau V, Konstorum A, Lallemant B, Zhang R, Mader S, White JH. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 2005; 19:2685-95. [PMID: 16002434 DOI: 10.1210/me.2005-0106] [Citation(s) in RCA: 409] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1alpha,25-Dihydroxyvitamin D3 [1,25(OH)2D3] regulates calcium homeostasis and controls cellular differentiation and proliferation. The vitamin D receptor (VDR) is a ligand-regulated transcription factor that recognizes cognate vitamin D response elements (VDREs) formed by direct or everted repeats of PuG(G/T)TCA motifs separated by 3 or 6 bp (DR3 or ER6). Here, we have identified direct 1,25(OH)2D3 target genes by combining 35,000+ gene microarrays and genome-wide screens for consensus DR3 and ER6 elements, and DR3 elements containing single nucleotide substitutions. We find that the effect of a nucleotide substitution on VDR binding in vitro does not predict VDRE function in vivo, because substitutions that disrupted binding in vitro were found in several functional elements. Hu133A microarray analyses, performed with RNA from human SCC25 cells treated with 1,25(OH)2D3 and protein synthesis inhibitor cycloheximide, identified more than 900 regulated genes. VDREs lying within -10 to +5 kb of 5'-ends were assigned to 65% of these genes, and VDR binding was confirmed to several elements in vivo. A screen of the mouse genome identified more than 3000 conserved VDREs, and 158 human genes containing conserved elements were 1,25(OH2)D3-regulated on Hu133A microarrays. These experiments also revealed 16 VDREs in 11 of 12 genes induced more than 10-fold in our previous microarray study, five elements in the human gene encoding the epithelial calcium channel TRPV6, as well as novel 1,25(OH2)D3 target genes implicated in regulation of cell cycle progression. The combined approaches used here thus provide numerous insights into the direct target genes underlying the broad physiological actions of 1,25(OH)2D3.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Physiology, McIntyre Building, Room 1128, McGill University, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Bérubé S, Diorio C, Mâsse B, Hébert-Croteau N, Byrne C, Côté G, Pollak M, Yaffe M, Brisson J. Vitamin D and Calcium Intakes from Food or Supplements and Mammographic Breast Density. Cancer Epidemiol Biomarkers Prev 2005; 14:1653-9. [PMID: 16030097 DOI: 10.1158/1055-9965.epi-05-0068] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A better understanding of factors that affect breast density, one of the strongest breast cancer risk indicators, may provide important clues about breast cancer etiology and prevention. This study evaluates the association of vitamin D and calcium, from food and/or supplements, to breast density in premenopausal and postmenopausal women separately. METHODS A total of 777 premenopausal and 783 post-menopausal women recruited at two radiology clinics in Quebec City, Canada, in 2001 to 2002, completed a food frequency questionnaire to assess vitamin D and calcium. Breast density from screening mammograms was assessed using a computer-assisted method. Associations between vitamin D or calcium and breast density were evaluated using linear regression models. Adjusted means in breast density were assessed according to the combined daily intakes of the two nutrients using generalized linear models. RESULTS In premenopausal women, total intakes of vitamin D and calcium were inversely related to breast density (beta = -1.4; P = 0.004 for vitamin D; beta = -0.8; P = 0.0004 for calcium). In multivariate linear regression, simultaneous increments in daily total intakes of 400 IU vitamin D and 1,000 mg calcium were associated with an 8.5% (95% confidence interval, 1.8-15.1) lower mean breast density. The negative association between dietary vitamin D intake and breast density tended to be stronger at higher levels of calcium intake and vice versa. Among postmenopausal women, intakes of vitamin D and calcium were not associated with breast density. CONCLUSION These findings show that higher intakes of vitamin D and calcium from food and supplements are related to lower levels of breast density among premenopausal women. They suggest that increasing intakes of vitamin D and calcium may represent a safe and inexpensive strategy for breast cancer prevention.
Collapse
Affiliation(s)
- Sylvie Bérubé
- Unité de recherche en santé des populations, Hôpital St-Sacrement du Centre hospitalier affilié universitaire de Québec, 1050 Chemin Sainte-Foy, Quebec, Quebec, Canada G1S 4L8
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
The prevalence of osteoporosis is raising worldwide as improving conditions of living and treatment of other common diseases continuously increases life expectancy. Thus, osteoporosis affects most women above 80 years of age and, at the age of 50, the lifetime risk of suffering an osteoporosis-related fracture approaches 50% in women and 20% in men. Numerous genetic, hormonal, nutritional and life-style factors contribute to the acquisition and maintenance of bone mass. Among them, genetic variations explain as much as 70% of the variance for bone mineral density (BMD) in the population. Dozens of quantitative trait loci (QTLs) for BMD have been identified by genome screening and linkage approaches in humans and mice, and more than 100 candidate gene polymorphisms tested for association with BMD and/or fracture. Sequence variants in the vitamin D receptor (VDR), collagen 1 alpha 1 chain (Col1A1), estrogen receptor alpha (ESR1), interleukin-6 (IL-6) and LDL receptor-related protein 5 (LRP5) genes were all found to be significantly associated with differences in BMD and/or fracture risk in multiple replication studies. Moreover, some genes, such as VDR and IL-6, were shown to interact with non-genetic factors, i.e. calcium intake and estrogens, to modulate BMD. Since these gene variants have also been associated with other complex disorders, including cancer and coronary heart disease, they may represent common genetic susceptibility factors exerting pleiotropic effects during the aging process.
Collapse
Affiliation(s)
- Serge L Ferrari
- Service of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, Geneva University Hospital, Switzerland.
| | | |
Collapse
|
178
|
McCarthy TC, Li X, Sinal CJ. Vitamin D Receptor-dependent Regulation of Colon Multidrug Resistance-associated Protein 3 Gene Expression by Bile Acids. J Biol Chem 2005; 280:23232-42. [PMID: 15824121 DOI: 10.1074/jbc.m411520200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance-associated protein 3 (MRP3) is a multispecific anion transporter that is capable of transporting a number of conjugated and unconjugated bile acids. Expression of the MRP3 gene is increased during pathological states associated with elevated bile acid concentrations indicating a role for this transporter in adaptive and homeostatic bile acid metabolism. Analysis of Mrp3 mRNA levels in various mouse tissues with known relevance and/or exposure to bile acids revealed the highest levels of basal expression in the colon followed in order by the liver, duodenum, jejunum, ileum, and kidney. Functional analysis of a murine Mrp3 promoter reporter construct revealed vitamin D receptor (VDR)-dependent activation by 1,25-dihydroxyvitamin D(3) (VD3), 9-cis-retinoic acid (RA), and the cholestatic secondary bile acid, lithocholic acid (LCA). Using a series of deletion constructs combined with sequence analysis, a candidate VDR response element (VDRE) was identified between -1028 and -1014 bp of the Mrp3 promoter. Activation of the Mrp3 promoter in response to VD3, RA, or LCA, as well as binding of VDR/RXR heterodimers, was attenuated substantially by mutation of this VDRE. Treatment of mice with VD3 or LCA demonstrated in vivo modulation of the Mrp3 gene in colon but not in the liver. Reduction of endogenous VDR expression in colon adenocarcinoma MCA-38 cells by siRNA transfection was associated with reduced constitutive and inducible expression of the Mrp3 gene. These data support a regulatory role for the VDR in the protection of colon cells from bile acid toxicity through regulation of the Mrp3 expression.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bile Acids and Salts/metabolism
- Calcitriol/metabolism
- Cell Line, Tumor
- Cloning, Molecular
- Colon/metabolism
- DNA, Complementary/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Exons
- Gene Deletion
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Intestinal Mucosa/metabolism
- Kidney/metabolism
- Ligands
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Multidrug Resistance-Associated Proteins/metabolism
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Calcitriol/chemistry
- Receptors, Calcitriol/metabolism
- Transfection
Collapse
Affiliation(s)
- Tanya C McCarthy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
179
|
Daniel C, Schlauch T, Zügel U, Steinmeyer A, Radeke HH, Steinhilber D, Stein J. 22-ene-25-oxa-vitamin D: a new vitamin D analogue with profound immunosuppressive capacities. Eur J Clin Invest 2005; 35:343-9. [PMID: 15860047 DOI: 10.1111/j.1365-2362.2005.01492.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The biologic role of 1,25-dihydroxyvitamin D(3), such as anti-inflammatory functions, reduction of cytokine production by T cells and immunoglobulin production by B cells, is well established. However, its clinical use as an immunosuppressive agent is limited because of the hypercalcemic toxicity occurring after systemic application. The purpose of this study was to investigate the immunmodulatory effects of 22-ene-25-oxa-vitamin D (ZK156979), a novel low calcemic vitamin D analogue. MATERIALS AND METHODS Human peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated using the Ficoll Hypaque technique, cultured for 24 h and treated with different concentrations of ZK156979 ranging from 10(-5) to 10(-10) mol L(-1) compared with 1,25-dihydroxyvitamin D(3)[10(-5)-10(-10) mol L(-1)] following phytohaemagglutinin (PHA) stimulation. Interferon gamma (IFNgamma), tumour necrosis factor alpha (TNFalpha), interleukin 1 beta (IL-1beta), interleukin 10 (IL-10) and interleukin 4 (IL-4) secretion in supernatants were measured by ELISA. RESULTS ZK156979 inhibited the PHA-induced Th1-response (IFNgamma and TNFalpha levels) and the macrophage-product IL-1beta in a concentration-dependent manner (10(-10)-10(-5) mol L(-1)) with the efficiency on cytokine expression compared with 1,25-dihydroxyvitamin D(3) being slightly reduced. In contrast, ZK156979 and 1,25-dihydroxyvitamin D(3) both affected the Th2 response, leading to significantly increased IL-10- and IL-4 secretion. CONCLUSIONS ZK156979 is a member of novel vitamin D analogues revealing prominent immunomodulatory and suppressive characteristics with distinctive inhibition of Th1-cytokines whereas the Th2 compartment is augmented, thus providing a considerable therapeutic potential in T-cell -mediated diseases.
Collapse
Affiliation(s)
- C Daniel
- First Department of Internal Medicine, ZAFES, JWG University of Frankfurt/Main, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
180
|
Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 2005; 589:47-65. [PMID: 15652226 DOI: 10.1016/j.mrrev.2004.08.001] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 07/27/2004] [Accepted: 08/06/2004] [Indexed: 02/07/2023]
Abstract
Bile acids were first proposed to be carcinogens in 1939 and 1940. On the basis of later work with rodent models, bile acids came to be regarded as cancer promoters rather than carcinogens. However, considerable indirect evidence, obtained more recently, supports the view that bile acids are carcinogens in humans. At least 15 reports, from 1980 through 2003, indicate that bile acids cause DNA damage. The mechanism is probably indirect, involving induction of oxidative stress and production of reactive oxygen species that then damage DNA. Repeated DNA damage likely increases the mutation rate, including the mutation rate of tumor suppressor genes and oncogenes. Additional reports, from 1994 through 2002, indicate that bile acids, at the increased concentrations accompanying a high fat diet, induce frequent apoptosis. Those cells within the exposed population with reduced apoptosis capability tend to survive and selectively proliferate. That bile acids cause DNA damage and may select for apoptosis-resistant cells (both leading to increased mutation), indicates that bile acids are likely carcinogens. In humans, an increased incidence of cancer of the laryngopharyngeal tract, esophagus, stomach, pancreas, the small intestine (near the Ampulla of Vater) and the colon are associated with high levels of bile acids. The much larger number of cell generations in the colonic (and, likely, other gastrointestinal) epithelia of humans compared to rodents may allow time for induction and selection of mutations leading to cancer in humans, although not in rodents.
Collapse
Affiliation(s)
- H Bernstein
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson AZ 85724, USA
| | | | | | | | | |
Collapse
|
181
|
Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH, Hanrahan JH. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. THE JOURNAL OF IMMUNOLOGY 2004; 173:2909-12. [PMID: 15322146 DOI: 10.4049/jimmunol.173.5.2909] [Citation(s) in RCA: 1145] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hormonal form of vitamin D(3), 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is an immune system modulator and induces expression of the TLR coreceptor CD14. 1,25(OH)(2)D(3) signals through the vitamin D receptor, a ligand-stimulated transcription factor that recognizes specific DNA sequences called vitamin D response elements. In this study, we show that 1,25(OH)(2)D(3) is a direct regulator of antimicrobial innate immune responses. The promoters of the human cathelicidin antimicrobial peptide (camp) and defensin beta2 (defB2) genes contain consensus vitamin D response elements that mediate 1,25(OH)(2)D(3)-dependent gene expression. 1,25(OH)(2)D(3) induces antimicrobial peptide gene expression in isolated human keratinocytes, monocytes and neutrophils, and human cell lines, and 1,25(OH)(2)D(3) along with LPS synergistically induce camp expression in neutrophils. Moreover, 1,25(OH)(2)D(3) induces corresponding increases in antimicrobial proteins and secretion of antimicrobial activity against pathogens including Pseudomonas aeruginosa. 1,25(OH)(2)D(3) thus directly regulates antimicrobial peptide gene expression, revealing the potential of its analogues in treatment of opportunistic infections.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
White JH, Fernandes I, Mader S, Yang XJ. Corepressor Recruitment by Agonist-Bound Nuclear Receptors. NUCLEAR RECEPTOR COREGULATORS 2004; 68:123-43. [PMID: 15193453 DOI: 10.1016/s0083-6729(04)68004-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Members of the nuclear receptor superfamily are ligand-regulated transcription factors that are composed of a series of conserved domains. These receptors are targets of a wide range of lipophilic signaling molecules that modulate many aspects of physiology and metabolism. Binding of cognate ligands to receptors induces a conformational change in the ligand binding domain (LBD) that creates a pocket for recruitment of coregulatory proteins, which are essential for ligand-dependent regulation of transcription. Several coregulatory proteins that interact with hormone-bound receptors contain characteristic helical LXXLL motifs, known as nuclear receptor (NR) boxes. Generally, ligand binding to receptors is associated with activation of transcription, and most of the NR box-containing proteins characterized to date are coactivators. However, a full understanding of the function of hormone-bound receptors must also incorporate their recruitment of corepressors. The recent identification of ligand-dependent corepressor (LCoR) is a case in point. LCoR contains a single NR box that mediates its hormone-dependent interaction with several nuclear receptors. It functions as a molecular scaffold that recruits several proteins that function in transcriptional repression. Remarkably, although the two proteins share only very limited homology, LCoR and another NR box-containing corepressor RIP140 recruit similar cofactors implicated in transcriptional repression, suggesting many parallels in their mechanisms of action. Corepressors such as LCoR and RIP140 may function in negative feedback loops to attenuate hormone-induced transactivation, act more transiently as part of a cycle of cofactors recruited to target promoters by ligand-bound receptors, or function in hormone-induced target gene repression.
Collapse
Affiliation(s)
- John H White
- Department of Physiology, McGill University, McIntyre Medical Sciences Bldg, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|