151
|
Schmetterer KG, Pickl WF. The IL-10/STAT3 axis: Contributions to immune tolerance by thymus and peripherally derived regulatory T-cells. Eur J Immunol 2017. [PMID: 28631311 DOI: 10.1002/eji.201646710] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The signal transducer and activator of transcription (STAT) proteins are important mediators for the integration of extrinsic signals provided by cytokines and hormones and thereby adapt cellular processes to their surroundings. In the past decade, the involvement of STAT3 in the regulation of T-cell responses has become a topic of increasing interest. STAT3 is activated in response to multiple cytokines, many of which have been shown to influence T-cell responses. Interestingly, many of these factors have been described with apparent opposing roles, such as the highly pro-inflammatory potency of IL-6 and the anti-inflammatory properties of IL-10, thus raising the possibility that STAT3 signaling may fulfill diverse roles in CD4+ T-cells. Here, we review the contribution of STAT3 to the induction and function of both peripherally induced as well as thymus-derived regulatory T-cells. Indeed, experimental approaches as well as studies of human patients suffering from e.g. Job's (hyper IgE) syndrome or inflammatory bowel disease (IBD) have now established a clear-cut role for the IL-10/STAT3 axis in immune tolerance; further understanding of these processes could lead to novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
152
|
Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 2017; 276:97-111. [PMID: 28258697 DOI: 10.1111/imr.12520] [Citation(s) in RCA: 586] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/19/2016] [Indexed: 12/13/2022]
Abstract
Immunotherapy is being increasingly recognized as a key therapeutic modality to treat cancer and represents one of the most exciting treatments for the disease. Fighting cancer with immunotherapy has revolutionized treatment for some patients and therapies targeting the immune checkpoint molecules such as CTLA-4 and PD-1 have achieved durable responses in melanoma, renal cancer, Hodgkin's diseases and lung cancer. However, the success rate of these treatments has been low and a large number of cancers, including colorectal cancer remain largely refractory to CTLA-4 and PD-1 blockade. This has provided impetus to identify other co-inhibitory receptors that could be exploited to enhance response rates of current immunotherapeutic agents and achieve responses to the cancers that are refectory to immunotherapy. Tim-3 is a co-inhibitory receptor that is expressed on IFN-g-producing T cells, FoxP3+ Treg cells and innate immune cells (macrophages and dendritic cells) where it has been shown to suppress their responses upon interaction with their ligand(s). Tim-3 has gained prominence as a potential candidate for cancer immunotherapy, where it has been shown that in vivo blockade of Tim-3 with other check-point inhibitors enhances anti-tumor immunity and suppresses tumor growth in several preclinical tumor models. This review discusses the recent findings on Tim-3, the role it plays in regulating immune responses in different cell types and the rationale for targeting Tim-3 for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Madhumita Das
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Chen Zhu
- Discovery Biology, Research and Development, Sanofi US, Cambridge, MA, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
153
|
Jones A, Hawiger D. Peripherally Induced Regulatory T Cells: Recruited Protectors of the Central Nervous System against Autoimmune Neuroinflammation. Front Immunol 2017; 8:532. [PMID: 28536579 PMCID: PMC5422564 DOI: 10.3389/fimmu.2017.00532] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Defects in regulatory T cells (Treg cells) aggravate multiple sclerosis (MS) after its onset and the absence of Treg cell functions can also exacerbate the course of disease in an animal model of MS. However, autoimmune neuroinflammation in many MS models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the induction of immune tolerance in the thymus including thymically produced (t)Treg cells. In contrast, neuroinflammation can be ameliorated or even completely prevented by the antigen-specific Treg cells formed extrathymically in the peripheral immune system (pTreg cells) during tolerogenic responses to relevant neuronal antigens. This review discusses the specific roles of Treg cells in blocking neuroinflammation, examines the impact of peripheral tolerance and dendritic cells on a relevant regulation of neuroinflammation, and explores some of the most recent advances in elucidation of specific mechanisms of the conversion and function of pTreg cells including the roles of CD5 and Hopx in these processes.
Collapse
Affiliation(s)
- Andrew Jones
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
154
|
Sun H, Gao W, Pan W, Zhang Q, Wang G, Feng D, Geng X, Yan X, Li S. Tim3+ Foxp3 + Treg Cells Are Potent Inhibitors of Effector T Cells and Are Suppressed in Rheumatoid Arthritis. Inflammation 2017; 40:1342-1350. [DOI: 10.1007/s10753-017-0577-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
155
|
Vazquez-Mateo C, Collins J, Fleury M, Dooms H. Broad induction of immunoregulatory mechanisms after a short course of anti-IL-7Rα antibodies in NOD mice. BMC Immunol 2017; 18:18. [PMID: 28356069 PMCID: PMC5372316 DOI: 10.1186/s12865-017-0201-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/22/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of the insulin-producing β-cells in the pancreas. Therefore, approaches that effectively halt the pathogenic T cell response are predicted to have preventive or therapeutic benefit for type 1 diabetes patients. We previously demonstrated that long-term blocking of IL-7 signaling, which is critical for the survival and function of T cells, prevented and reversed type 1 diabetes in non-obese diabetic mice. However, such persistent inhibition of T cell responses raises concerns about causing immunodeficiency. Here, we asked whether a reduced duration of the treatment with anti-IL-7Rα antibodies retained efficacy in preventing diabetes. Moreover, we sought to identify immunoregulatory mechanisms induced by anti-IL-7Rα administration. RESULTS Anti-IL-7Rα antibodies were administered to prediabetic NOD mice for 3 weeks and blood samples were taken at the end of treatment and 2 weeks later to analyze changes in T cell phenotypes in response to IL-7Rα blockade. We found that the co-inhibitory receptors LAG-3, Tim-3 and PD-1 were increased on peripheral blood CD4+ and CD8+ T cells from anti-IL-7Rα-treated mice. Expression of these receptors contributed to reduced T cell cytokine production in response to TCR stimulation. In addition, the frequency of Tregs within the circulating CD4+ T cells was increased at the end of anti-IL-7Rα antibody treatment and these Tregs showed a more activated phenotype. In vitro restimulation assays revealed that effector T cells from anti-IL-7Rα-treated mice were more sensitive to co-inhibitory receptor induction after TCR stimulation. Importantly, these changes were accompanied by delayed type 1 diabetes disease kinetics. CONCLUSIONS Together, our data show that short-term blockade of IL-7Rα induces detectable changes in co-inhibitory receptor expression and Treg frequencies in peripheral blood of NOD mice. These changes appear to have long-lasting effects by delaying or preventing type 1 diabetes incidence. Hence, our study provides further support for using anti-IL-7Rα antibodies to modulate autoreactive T cell responses.
Collapse
Affiliation(s)
- Cristina Vazquez-Mateo
- Department of Medicine, Arthritis Center/Rheumatology Section, Boston University School of Medicine, 72 East Concord Street, E519, Boston, MA, 02118, USA
| | - Justin Collins
- Department of Medicine, Arthritis Center/Rheumatology Section, Boston University School of Medicine, 72 East Concord Street, E519, Boston, MA, 02118, USA
| | - Michelle Fleury
- Department of Medicine, Arthritis Center/Rheumatology Section, Boston University School of Medicine, 72 East Concord Street, E519, Boston, MA, 02118, USA
| | - Hans Dooms
- Department of Medicine, Arthritis Center/Rheumatology Section, Boston University School of Medicine, 72 East Concord Street, E519, Boston, MA, 02118, USA.
| |
Collapse
|
156
|
Aguilar-Jimenez W, Saulle I, Trabattoni D, Vichi F, Lo Caputo S, Mazzotta F, Rugeles MT, Clerici M, Biasin M. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals. Front Immunol 2017; 8:136. [PMID: 28243241 PMCID: PMC5303892 DOI: 10.3389/fimmu.2017.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia; Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | - Daria Trabattoni
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | | | | | | | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; Fondazione Don C. Gnocchi, IRCCS, Milan, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| |
Collapse
|
157
|
Abstract
Co-inhibitory receptors play a key role in regulating T cell responses and maintaining immune homeostasis. Their inhibitory function prevents autoimmune responses but also restricts the ability of T cells to mount effective immune responses against tumors or persistent pathogens. T cells express a module of co-inhibitory receptors, which display great diversity in expression, structure, and function. Here, we focus on the co-inhibitory receptors Tim-3, Lag-3, and TIGIT and how they regulate T cell function, maintenance of self-tolerance, their role in regulating ongoing T cell responses at peripheral tissues, and their synergistic effects in regulating autoimmunity and antitumor responses.
Collapse
Affiliation(s)
- Nicole Joller
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K Kuchroo
- Harvard Medical School and Brigham & Women's Hospital, Evergrande Center for Immunologic Diseases, Boston, MA, USA.
| |
Collapse
|
158
|
Tim-3: Expression on immune cells and roles at the maternal-fetal interface. J Reprod Immunol 2016; 118:92-99. [PMID: 27792886 DOI: 10.1016/j.jri.2016.10.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/28/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022]
Abstract
Successful pregnancy relies on the accurate regulation of the maternal-fetal immune system. Without enough tolerance in the uterine microenvironment, the mother and the hemiallogeneic fetus could not peacefully coexist. T cell immunoglobulin and mucin domain (Tim)-3 is a molecule originally regarded as to be expressed on terminally differentiated IFN-γ expressing CD4+ T cells (Th1). The engagement of Tim-3 with its ligand, galectin-9 (Gal-9) could induce the exhaustion or apoptosis of effector T cells, and thus might regulate the tolerance. Tim-3 pathway also participates in regulating the activities of CD4+ regulatory T cells, monocyte-macrophages, dendritic cells and natural killer cells. Dysregulation of Tim-3 expression can elicit excessive or inhibited inflammatory responses and ultimately result in autoimmune diseases, viral or tumor evasion and pregnancy complications. In this review, we will mainly focus on the expression of Tim-3 on local immune cells and its function in pregnancy. In addition, meaningful questions that need further investigation and the potential roles of Tim-3 in fetal tolerance will be discussed. Deeper understanding of the immune checkpoint receptor Tim-3 will shed new light on exploring the pathogenesis of some pregnancy complications, including pre-eclampsia, intrauterine growth restriction, recurrent spontaneous abortion and preterm birth. Tim-3 pathway might be a new target of immune therapy for pregnancy complications in the future.
Collapse
|
159
|
White AM, Wraith DC. Tr1-Like T Cells - An Enigmatic Regulatory T Cell Lineage. Front Immunol 2016; 7:355. [PMID: 27683580 PMCID: PMC5021682 DOI: 10.3389/fimmu.2016.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 11/30/2022] Open
Abstract
The immune system evolved to respond to foreign invaders and prevent autoimmunity to self-antigens. Several types of regulatory T cells facilitate the latter process. These include a subset of Foxp3− CD4+ T cells able to secrete IL-10 in an antigen-specific manner, type 1 regulatory (Tr1) T cells. Although their suppressive function has been confirmed both in vitro and in vivo, their phenotype remains poorly defined. It has been suggested that the surface markers LAG-3 and CD49b are biomarkers for murine and human Tr1 cells. Here, we discuss these findings in the context of our data regarding the expression pattern of inhibitory receptors (IRs) CD49b, TIM-3, PD-1, TIGIT, LAG-3, and ICOS on Tr1-like human T cells generated in vitro from CD4+ memory T cells stimulated with αCD3 and αCD28 antibodies. We found that there were no differences in IR expression between IL-10+ and IL-10− T cells. However, CD4+IL-10+ T cells isolated ex vivo, following a short stimulation and cytokine secretion assay, contained significantly higher proportions of TIM-3+ and PD-1+ cells. They also expressed significantly higher TIGIT mRNA and showed a trend toward increased TIM-3 mRNA levels. These data led us to conclude that large pools of IRs may be stored intracellularly; hence, they may not represent ideal candidates as cell surface biomarkers for Tr1-like T cells.
Collapse
Affiliation(s)
| | - David C Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
160
|
de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 2016; 12:595-609. [PMID: 27557887 DOI: 10.1007/s11302-016-9529-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.
Collapse
Affiliation(s)
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Center, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
161
|
Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H, Mathios D, Jackson CM, Harris-Bookman S, Garzon-Muvdi T, Sheu M, Martin AM, Tyler BM, Tran PT, Ye X, Olivi A, Taube JM, Burger PC, Drake CG, Brem H, Pardoll DM, Lim M. Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas. Clin Cancer Res 2016; 23:124-136. [PMID: 27358487 DOI: 10.1158/1078-0432.ccr-15-1535] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 05/01/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Checkpoint molecules like programmed death-1 (PD-1) and T-cell immunoglobulin mucin-3 (TIM-3) are negative immune regulators that may be upregulated in the setting of glioblastoma multiforme. Combined PD-1 blockade and stereotactic radiosurgery (SRS) have been shown to improve antitumor immunity and produce long-term survivors in a murine glioma model. However, tumor-infiltrating lymphocytes (TIL) can express multiple checkpoints, and expression of ≥2 checkpoints corresponds to a more exhausted T-cell phenotype. We investigate TIM-3 expression in a glioma model and the antitumor efficacy of TIM-3 blockade alone and in combination with anti-PD-1 and SRS. EXPERIMENTAL DESIGN C57BL/6 mice were implanted with murine glioma cell line GL261-luc2 and randomized into 8 treatment arms: (i) control, (ii) SRS, (iii) anti-PD-1 antibody, (iv) anti-TIM-3 antibody, (v) anti-PD-1 + SRS, (vi) anti-TIM-3 + SRS, (vii) anti-PD-1 + anti-TIM-3, and (viii) anti-PD-1 + anti-TIM-3 + SRS. Survival and immune activation were assessed. RESULTS Dual therapy with anti-TIM-3 antibody + SRS or anti-TIM-3 + anti-PD-1 improved survival compared with anti-TIM-3 antibody alone. Triple therapy resulted in 100% overall survival (P < 0.05), a significant improvement compared with other arms. Long-term survivors demonstrated increased immune cell infiltration and activity and immune memory. Finally, positive staining for TIM-3 was detected in 7 of 8 human GBM samples. CONCLUSIONS This is the first preclinical investigation on the effects of dual PD-1 and TIM-3 blockade with radiation. We also demonstrate the presence of TIM-3 in human glioblastoma multiforme and provide preclinical evidence for a novel treatment combination that can potentially result in long-term glioma survival and constitutes a novel immunotherapeutic strategy for the treatment of glioblastoma multiforme. Clin Cancer Res; 23(1); 124-36. ©2016 AACR.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Mira A Patel
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | | | - Eileen S Kim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Debebe Theodros
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Eric W Sankey
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Ada Tam
- Flow Cytometry Core, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Haiying Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | | | | | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Mary Sheu
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland
| | - Allison M Martin
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Phuoc T Tran
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Janis M Taube
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Peter C Burger
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Charles G Drake
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
162
|
Wang P, Han W, Ma D. Electronic Sorting of Immune Cell Subpopulations Based on Highly Plastic Genes. THE JOURNAL OF IMMUNOLOGY 2016; 197:665-73. [PMID: 27288532 DOI: 10.4049/jimmunol.1502552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
Immune cells are highly heterogeneous and plastic with regard to gene expression and cell phenotype. In this study, we categorized genes into those with low and high gene plasticity, and those categories revealed different functions and applications. We proposed that highly plastic genes could be suited for the labeling of immune cell subpopulations; thus, novel immune cell subpopulations could be identified by gene plasticity analysis. For this purpose, we systematically analyzed highly plastic genes in human and mouse immune cells. In total, 1,379 human and 883 mouse genes were identified as being extremely plastic. We also expanded our previous immunoinformatic method, electronic sorting, which surveys big data to perform virtual analysis. This approach used correlation analysis and took dosage changes into account, which allowed us to identify the differentially expressed genes. A test with human CD4(+) T cells supported the method's feasibility, effectiveness, and predictability. For example, with the use of human nonregulatory T cells, we found that FOXP3(hi)CD4(+) T cells were highly expressive of certain known molecules, such as CD25 and CTLA4, and that this process of investigation did not require isolating or inducing these immune cells in vitro. Therefore, the sorting process helped us to discover the potential signature genes or marker molecules and to conduct functional evaluations for immune cell subpopulations. Finally, in human CD4(+) T cells, 747 potential immune cell subpopulations and their candidate signature genes were identified, which provides a useful resource for big data-driven knowledge discoveries.
Collapse
Affiliation(s)
- Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China; and Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China; and Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China; and Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| |
Collapse
|
163
|
YAGHOOBI E, ABEDIAN S, BABANI O, IZAD M. TIM-3 Rs10515746 (A/C) and Rs10053538 (C/A) Gene Polymorphisms and Risk of Multiple Sclerosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2016; 45:644-9. [PMID: 27398337 PMCID: PMC4935708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) caused by auto-reactive T cells against myelin antigens. T-cell immunoglobulin mucin -3 (TIM-3) is a negative regulator glycoprotein expressed by a range of immune cells, including, Th1 cells, activated CD8+ T cells and in a lower level on Th17 cells. A defect in TIM-3 regulation has been shown in multiple sclerosis patients. In humans, several single nucleotide polymorphisms (SNPs) have been identified in the TIM-3 gene and are associated with inflammatory diseases. The aim of this study was to analyze the association between TIM-3 -574A>C and -1516 C>A SNPs in the promoter region, and susceptibility to MS. METHODS DNA samples from 102 patients and 102 healthy controls were genotyped using RFLP-PCR method. RESULTS In this case-control study, analysis of the alleles and genotypes revealed a significant higher frequency of C/C and lower frequency of A/C genotypes for -574 locus of TIM-3 gene in MS patients (P=0.0002). We also found that C/C genotype for locus of -1516 increased in MS patients, while A/C genotype decreased (P=0.012). Allele C of -574C/C and -1516 C>A SNPs were also more frequent in MS patients (P=0.036 and 0.0027 respectively). CONCLUSION -574 A>C and -1516 C>A SNPs in the promoter region of TIM3 gene may affect the disease susceptibility.
Collapse
Affiliation(s)
- Esmat YAGHOOBI
- Dept. of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed ABEDIAN
- Dept. of Immunology, Mazandaran University Medical of Sciences, Sari, Iran
| | - Omid BABANI
- Amirkola Children’s Hospital, Amirkola, Babol, Iran
| | - Maryam IZAD
- Dept. of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Sina Hospital, Tehran, Iran,Corresponding Author:
| |
Collapse
|
164
|
Lowther DE, Goods BA, Lucca LE, Lerner BA, Raddassi K, van Dijk D, Hernandez AL, Duan X, Gunel M, Coric V, Krishnaswamy S, Love JC, Hafler DA. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 2016; 1. [PMID: 27182555 DOI: 10.1172/jci.insight.85935] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunotherapies targeting the immune checkpoint receptor programmed cell death protein 1 (PD-1) have shown remarkable efficacy in treating cancer. CD4+CD25hiFoxP3+ Tregs are critical regulators of immune responses in autoimmunity and malignancies, but the functional status of human Tregs expressing PD-1 remains unclear. We examined functional and molecular features of PD-1hi Tregs in healthy subjects and patients with glioblastoma multiforme (GBM), combining functional assays, RNA sequencing, and cytometry by time of flight (CyTOF). In both patients with GBM and healthy subjects, circulating PD-1hi Tregs displayed reduced suppression of CD4+ effector T cells, production of IFN-γ, and molecular signatures of exhaustion. Transcriptional profiling of tumor-resident Tregs revealed that several genes coexpressed with PD-1 and associated with IFN-γ production and exhaustion as well as enrichment in exhaustion signatures compared with circulating PD-1hi Tregs. CyTOF analysis of circulating and tumor-infiltrating Tregs from patients with GBM treated with PD-1-blocking antibodies revealed that treatment shifts the profile of circulating Tregs toward a more exhausted phenotype reminiscent of that of tumor-infiltrating Tregs, further increasing IFN-γ production. Thus, high PD-1 expression on human Tregs identifies dysfunctional, exhausted Tregs secreting IFN-γ that exist in healthy individuals and are enriched in tumor infiltrates, possibly losing function as they attempt to modulate the antitumoral immune responses.
Collapse
Affiliation(s)
- Daniel E Lowther
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brittany A Goods
- Departments of Biological Engineering and Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liliana E Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin A Lerner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Khadir Raddassi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - David van Dijk
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Amanda L Hernandez
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiangguo Duan
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Murat Gunel
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vlad Coric
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - J Christopher Love
- Departments of Biological Engineering and Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
165
|
Liu Y, Gao LF, Liang XH, Ma CH. Role of Tim-3 in hepatitis B virus infection: An overview. World J Gastroenterol 2016; 22:2294-2303. [PMID: 26900291 PMCID: PMC4735003 DOI: 10.3748/wjg.v22.i7.2294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/08/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection has received increasing public attention. HBV is the prototypical member of hepadnaviruses, which naturally infect only humans and great apes and induce the acute and persistent chronic infection of hepatocytes. A large body of evidence has demonstrated that dysfunction of the host anti-viral immune response is responsible for persistent HBV replication, unresolved inflammation and disease progression. Many regulatory factors are involved in immune dysfunction. Among these, T cell immunoglobulin domain and mucin domain-3 (Tim-3), one of the immune checkpoint proteins, has attracted increasing attention due to its critical role in regulating both adaptive and innate immune cells. In chronic HBV infection, Tim-3 expression is elevated in many types of immune cells, such as T helper cells, cytotoxic T lymphocytes, dendritic cells, macrophages and natural killer cells. Tim-3 over-expression is often accompanied by impaired function of the above-mentioned immunocytes, and Tim-3 inhibition can at least partially rescue impaired immune function and thus promote viral clearance. A better understanding of the regulatory role of Tim-3 in host immunity during HBV infection will shed new light on the mechanisms of HBV-related liver disease and suggest new therapeutic methods for intervention.
Collapse
|
166
|
Abstract
Advanced hepatocellular carcinoma (HCC) is a serious therapeutic challenge and targeted therapies only provide a modest benefit in terms of overall survival. Novel approaches are urgently needed for the treatment of this prevalent malignancy. Evidence demonstrating the antigenicity of tumour cells, the discovery that immune checkpoint molecules have an essential role in immune evasion of tumour cells, and the impressive clinical results achieved by blocking these inhibitory receptors, are revolutionizing cancer immunotherapy. Here, we review the data on HCC immunogenicity, the mechanisms for HCC immune subversion and the different immunotherapies that have been tested to treat HCC. Taking into account the multiplicity of hyperadditive immunosuppressive forces acting within the HCC microenvironment, a combinatorial approach is advised. Strategies include combinations of systemic immunomodulation and gene therapy, cell therapy or virotherapy.
Collapse
|
167
|
Nilsson J, Lichtman A, Tedgui A. Atheroprotective immunity and cardiovascular disease: therapeutic opportunities and challenges. J Intern Med 2015; 278:507-19. [PMID: 25659809 DOI: 10.1111/joim.12353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging knowledge of the role of atheroprotective immune responses in modulating inflammation and tissue repair in atherosclerotic lesions has provided promising opportunities to develop novel therapies directly targeting the disease process in the artery wall. Regulatory T (Treg) cells have a protective role through release of anti-inflammatory cytokines and suppression of autoreactive effector T cells. Studies in experimental animals have shown that blocking the generation or action of Treg cells is associated with more aggressive development of atherosclerosis. Conversely, cell transfer and other approaches to expand Treg cell populations in vivo result in reduced atherosclerosis. There have been relatively few clinical studies of Treg cells and cardiovascular disease, but the available evidence also supports a protective function. These observations have raised hope that it may be possible to develop therapies that act by enforcing the suppressive activities of Treg cells in atherosclerotic lesions. One approach to achieve this goal has been through development of vaccines that stimulate immunological tolerance for plaque antigens. Several pilot vaccines based on LDL-derived antigens have demonstrated promising results in preclinical testing. If such therapies can be shown to be effective also in clinical trials, this could have an important impact on cardiovascular prevention and treatment. Here, we review the current knowledge of the mode of action of atheroprotective immunity and of the ways to stimulate such pathways in experimental settings. The challenges in translating this knowledge into the clinical setting are also discussed within the perspective of the experience of introducing immune-based therapies for other chronic noninfectious diseases.
Collapse
Affiliation(s)
- J Nilsson
- Experimental Cardiovascular Research Unit, Clinical Sciences, Clinical Research Center, Lund University, Lund, Sweden
| | - A Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Tedgui
- INSERM U970, Paris-Cardiovascular Research Center, Paris, France
| |
Collapse
|
168
|
Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, Deng S, Herold KC, Kuchroo VK, Kleinewietfeld M, Hafler DA. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest 2015; 125:4212-22. [PMID: 26524592 DOI: 10.1172/jci81151] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
FOXP3+ Tregs are central for the maintenance of self-tolerance and can be defective in autoimmunity. In multiple sclerosis and type-1 diabetes, dysfunctional self-tolerance is partially mediated by a population of IFNγ-secreting Tregs. It was previously reported that increased NaCl concentrations promote the induction of proinflammatory Th17 cells and that high-salt diets exacerbate experimental models of autoimmunity. Here, we have shown that increasing NaCl, either in vitro or in murine models via diet, markedly impairs Treg function. NaCl increased IFNγ secretion in Tregs, and reducing IFNγ - either by neutralization with anti-IFNγ antibodies or shRNA-mediated knockdown - restored suppressive activity in Tregs. The heightened IFNγ secretion and loss of Treg function were mediated by the serum/glucocorticoid-regulated kinase (SGK1). A high-salt diet also impaired human Treg function and was associated with the induction of IFNγ-secreting Tregs in a xenogeneic graft-versus-host disease model and in adoptive transfer models of experimental colitis. Our results demonstrate a putative role for an environmental factor that promotes autoimmunity by inducing proinflammatory responses in CD4 effector cells and Treg pathways.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Neutralizing/immunology
- Autoimmunity/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Coculture Techniques
- Colitis/immunology
- Cytokines/biosynthesis
- Cytokines/genetics
- Forkhead Transcription Factors/analysis
- Forkhead Transcription Factors/genetics
- Gene Expression Profiling
- Genes, Reporter
- Graft vs Host Disease/immunology
- Heterografts
- Humans
- Immediate-Early Proteins/physiology
- Inflammation
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Leukocytes, Mononuclear/transplantation
- Male
- Mice
- Protein Serine-Threonine Kinases/physiology
- RNA Interference
- RNA, Small Interfering/genetics
- Sodium Chloride/pharmacology
- Sodium Chloride, Dietary/adverse effects
- Sodium Chloride, Dietary/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
|
169
|
Bu M, Shen Y, Seeger WL, An S, Qi R, Sanderson JA, Cai Y. Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8(+) T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumour Biol 2015; 37:3949-56. [PMID: 26482613 DOI: 10.1007/s13277-015-4237-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/12/2015] [Indexed: 01/15/2023] Open
Abstract
Ovarian carcinoma is one of the most severe cancers in women, with a high relapse rate and limited secondary treatment options. To assist research in novel treatment technologies, including CD8(+) T cell-base immunotherapy, we examined the effect of tumor-infiltrating regulatory T cells (Tregs) in inhibiting CD8(+) T cell inflammation. We found that compared to their peripheral blood counterparts, tumor-infiltrating Tregs exhibited more potent inhibitory function, which was associated with higher interleukin 10 (IL-10) production in tumor-infiltrating Tregs. Blockade of T cell immunoglobulin mucin 3 (TIM3), a regulatory molecule overrepresented on tumor-infiltrating Tregs, had significantly reverted Treg-mediated suppression. Moreover, expression of TIM3 on tumor-infiltrating Tregs was directly correlated with tumor size. Together, our results demonstrated that ovarian tumor-infiltrating Treg cells were more immunosuppressive than their peripheral blood counterparts in a TIM3-dependent fashion.
Collapse
Affiliation(s)
- Meimei Bu
- Department of Anesthesiology, The Maternal and Child Health Hospital of Jinan City, Jinan, Shandong, 250001, China
| | - Yizhen Shen
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, 250031, China
| | | | - Shizhi An
- Department of Anesthesiology, The Maternal and Child Health Hospital of Jinan City, Jinan, Shandong, 250001, China
| | - Rongqin Qi
- Department of Anesthesiology, The Maternal and Child Health Hospital of Jinan City, Jinan, Shandong, 250001, China
| | | | - Yan Cai
- Department of Prenatal Diagnosis, The Maternal and Child Health Hospital of Jinan City, No.2 Jian Guo Xiao Jing San Road, Jinan, Shandong, 250001, China.
| |
Collapse
|
170
|
Seyedin SN, Schoenhals JE, Lee DA, Cortez MA, Wang X, Niknam S, Tang C, Hong DS, Naing A, Sharma P, Allison JP, Chang JY, Gomez DR, Heymach JV, Komaki RU, Cooper LJ, Welsh JW. Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy 2015; 7:967-980. [PMID: 26310908 DOI: 10.2217/imt.15.65] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Radiation therapy controls local disease but also prompts the release of tumor-associated antigens and stress-related danger signals that primes T cells to promote tumor regression at unirradiated sites known as the abscopal effect. This may be enhanced by blocking inhibitory immune signals that modulate immune activity through a variety of mechanisms. Indeed, abscopal responses have occurred in patients with lung cancer or melanoma when given anti-CTLA4 antibody and radiation. Other approaches involve expanding and reinfusing T or NK cells or engineered T cells to express receptors that target specific tumor peptides. These approaches may be useful for immunocompromised patients receiving radiation. Preclinical and clinical studies are testing both immune checkpoint-based strategies and adoptive immunotherapies with radiation.
Collapse
Affiliation(s)
- Steven N Seyedin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jonathan E Schoenhals
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, TX, USA
| | - Dean A Lee
- Faculty, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, USA
| | - Maria A Cortez
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, TX, USA
| | - Xiaohong Wang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, TX, USA
| | - Sharareh Niknam
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Allison
- Department of Immunology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ritsuko U Komaki
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Laurence J Cooper
- Department of Pediatrics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
171
|
Turnis ME, Andrews LP, Vignali DAA. Inhibitory receptors as targets for cancer immunotherapy. Eur J Immunol 2015; 45:1892-905. [PMID: 26018646 PMCID: PMC4549156 DOI: 10.1002/eji.201344413] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/25/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
Abstract
Inhibitory receptors expressed on T cells control immune responses while limiting autoimmunity. However, tumors can hijack these "checkpoints" for protection from immune attack. Tumor-specific T cells that exhibit an exhausted, unresponsive phenotype express high levels of inhibitory receptors including CTLA4, PD1, and LAG3, among others. Intratumoral regulatory T cells promote immunosuppression and also express multiple inhibitory receptors. Overcoming this inhibitory receptor-mediated immune tolerance has thus been a major focus of recent cancer immunotherapeutic developments. Here, we review how boosting the host's immune system by blocking inhibitory receptor signaling with antagonistic mAbs restores the capacity of T cells to drive durable antitumor immune responses. Clinical trials targeting the CTLA4 and PD1 pathways have shown durable effects in multiple tumor types. Many combinatorial therapies are currently being investigated with encouraging results that highlight enhanced antitumor immunogenicity and improved patient survival. Finally, we will discuss the ongoing identification and dissection of novel T-cell inhibitory receptor pathways, which could lead to the development of new combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Meghan E Turnis
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
172
|
Wu J, Waxman DJ. Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8 + T-cell responses and immune memory. Oncoimmunology 2015; 4:e1005521. [PMID: 26137402 PMCID: PMC4485826 DOI: 10.1080/2162402x.2015.1005521] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 11/13/2022] Open
Abstract
Cancer chemotherapy using cytotoxic drugs can induce immunogenic tumor cell death; however, dosing regimens and schedules that enable single-agent chemotherapy to induce adaptive immune-dependent ablation of large, established tumors with activation of long-term immune memory have not been identified. Here, we investigate this issue in a syngeneic, implanted GL261 glioma model in immune-competent mice given cyclophosphamide on a 6-day repeating metronomic schedule. Two cycles of metronomic cyclophosphamide treatment induced sustained upregulation of tumor-associated CD8+ cytotoxic T lymphocyte (CTL) cells, natural killer (NK) cells, macrophages, and other immune cells. Expression of CTL- and NK–cell-shared effectors peaked on Day 6, and then declined by Day 9 after the second cyclophosphamide injection and correlated inversely with the expression of the regulatory T cell (Treg) marker Foxp3. Sustained tumor regression leading to tumor ablation was achieved after several cyclophosphamide treatment cycles. Tumor ablation required CD8+ T cells, as shown by immunodepletion studies, and was associated with immunity to re-challenge with GL261 glioma cells, but not B16-F10 melanoma or Lewis lung carcinoma cells. Rejection of GL261 tumor re-challenge was associated with elevated CTLs in blood and increased CTL infiltration in tumors, consistent with the induction of long-term, specific CD8+ T-cell anti-GL261 tumor memory. Co-depletion of CD8+ T cells and NK cells did not inhibit tumor regression beyond CD8+ T-cell depletion alone, suggesting that the metronomic cyclophosphamide-activated NK cells function via CD8a+ T cells. Taken together, these findings provide proof-of-concept that single-agent chemotherapy delivered on an optimized metronomic schedule can eradicate large, established tumors and induce long-term immune memory.
Collapse
Key Words
- B6, C57BL/6 mouse strain
- CD8+ T cells
- CPA, cyclophosphamide
- CPA-90 and CPA-140, metronomic CPA scheduling at 90 and 140 mg CPA/kg body weight, respectively, repeated every 6 days
- CTL, cytotoxic T lymphocyte
- FACS, fluorescence-activated cell sorting
- GL261 glioma
- LLC, Lewis lung carcinoma
- MDSC, myeloid-derived suppressor cells
- MTD, maximum-tolerated dose
- NK cell, natural killer cell
- NK cells
- PEB, phosphate-EDTA buffer
- chemoimmunotherapy
- chemotherapy
- cyclophosphamide
- drug scheduling
- glioblastoma
- immune memory
- metronomic chemotherapy
- qPCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Junjie Wu
- Division of Cell and Molecular Biology; Department of Biology and Graduate Program in Molecular and Translational Medicine; Boston University ; Boston, MA USA
| | - David J Waxman
- Division of Cell and Molecular Biology; Department of Biology and Graduate Program in Molecular and Translational Medicine; Boston University ; Boston, MA USA
| |
Collapse
|
173
|
Regulation of T cell trafficking by the T cell immunoglobulin and mucin domain 1 glycoprotein. Trends Mol Med 2014; 20:675-84. [DOI: 10.1016/j.molmed.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
|
174
|
Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H, Watanabe K, Niki T, Katoh S, Miyake M, Nagahata SI, Hirabayashi J, Kuchroo VK, Yamauchi A, Hirashima M. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. THE JOURNAL OF IMMUNOLOGY 2008; 181:7660-9. [PMID: 19017954 DOI: 10.4049/jimmunol.181.11.7660] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A Tim-3 ligand, galectin-9 (Gal-9), modulates various functions of innate and adaptive immune responses. In this study, we demonstrate that Gal-9 prolongs the survival of Meth-A tumor-bearing mice in a dose- and time-dependent manner. Although Gal-9 did not prolong the survival of tumor-bearing nude mice, transfer of naive spleen cells restored a prolonged Gal-9-induced survival in nude mice, indicating possible involvement of T cell-mediated immune responses in Gal-9-mediated antitumor activity. Gal-9 administration increased the number of IFN-gamma-producing Tim-3(+) CD8(+) T cells with enhanced granzyme B and perforin expression, although it induced CD4(+) T cell apoptosis. It simultaneously increased the number of Tim-3(+)CD86(+) mature dendritic cells (DCs) in vivo and in vitro. Coculture of CD8(+) T cells with DCs from Gal-9-treated mice increased the number of IFN-gamma producing cells and IFN-gamma production. Depletion of Tim-3(+) DCs from DCs of Gal-9-treated tumor-bearing mice decreased the number of IFN-gamma-producing CD8(+) T cells. Such DC activity was significantly abrogated by Tim-3-Ig, suggesting that Gal-9 potentiates CD8(+) T cell-mediated antitumor immunity via Gal-9-Tim-3 interactions between DCs and CD8(+) T cells.
Collapse
Affiliation(s)
- Keiko Nagahara
- Department of Immunology and Immunopathology, Kagawa University, Kita-gun, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|