151
|
Regulation of the tumor immune microenvironment by cancer-derived circular RNAs. Cell Death Dis 2023; 14:132. [PMID: 36797245 PMCID: PMC9935907 DOI: 10.1038/s41419-023-05647-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Circular RNA (circRNAs) is a covalently closed circular non-coding RNA formed by reverse back-splicing from precursor messenger RNA. It is found widely in eukaryotic cells and can be released to the surrounding environment and captured by other cell types. This, circRNAs serve as connections between different cell types for the mediation of multiple signaling pathways. CircRNAs reshape the tumor microenvironment (TME), a key factor involved in all stages of cancer development, by regulating epithelial-stromal transformation, tumor vascularization, immune cell function, and inflammatory responses. Immune cells are the most abundant cellular TME components, and they have profound toxicity to cancer cells. This review summarizes circRNA regulation of immune cells, including T cells, natural killer cells, and macrophages; highlights the impact of circRNAs on tumor progression, treatment, and prognosis; and indicates new targets for tumor immunotherapy.
Collapse
|
152
|
Zheng A, Bai J, Ha Y, Yu Y, Fan Y, Liang M, Lu Y, Shen Z, Luo B, Jie W. Integrated analysis of the relation to tumor immune microenvironment and predicted value of Stonin1 gene for immune checkpoint blockage and targeted treatment in kidney renal clear cell carcinoma. BMC Cancer 2023; 23:135. [PMID: 36759775 PMCID: PMC9912524 DOI: 10.1186/s12885-023-10616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Stonin1 (STON1) is an endocytic protein but its role in cancer remains unclear. Here, we investigated the immune role of STON1 in kidney renal clear cell carcinoma (KIRC). METHODS We undertook bioinformatics analyses of the expression and clinical significance of STON1 in KIRC through a series of public databases, and the role of STON1 in the tumor microenvironment and the predictive value for immunotherapy and targeted treatment in KIRC were identified with R packages. STON1 expression was validated in clinical KIRC tissues as well as in KIRC and normal renal tubular epithelial cells. RESULTS Through public databases, STON1 mRNA was found to be significantly downregulated in KIRC compared with normal controls, and decreased STON1 was related to grade, TNM stage, distant metastasis and status of KIRC patients. Compared with normal controls, STON1 was found to be downregulated in KIRC tissues and cell lines. Furthermore, OncoLnc, Kaplan-Meier, and GEPIA2 analyses also suggested that KIRC patients with high STON1 expression had better overall survival. The high STON1 group with enriched immune cells had a more favorable prognosis than the low STON1 group with decreased immune cells. Single sample Gene Set Enrichment Analysis and Gene Set Variation Analysis indicated that STON1 creates an immune non-inflamed phenotype in KIRC. Moreover, STON1 was positively associated with mismatch repair proteins and negatively correlated with tumor mutational burden. Furthermore, Single sample Gene Set Enrichment Analysis algorithm and Pearson analysis found that the low STON1 group was more sensitive to immune checkpoint blockage whereas the high STON1 group was relatively suitable for targeted treatment. CONCLUSIONS Decreased STON1 expression in KIRC leads to clinical progression and poor survival. Mechanically, low STON1 expression is associated with an aberrant tumor immune microenvironment. Low STON1 is likely to be a favorable indicator for immunotherapy response but adverse indicator for targeted therapeutics in KIRC.
Collapse
Affiliation(s)
- Axiu Zheng
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China ,Department of Pathology, Shanghai Dongfang Hospital, Shanghai, 200120 PR China
| | - Jianrong Bai
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China
| | - Yanping Ha
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China
| | - Yaping Yu
- grid.443397.e0000 0004 0368 7493Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199 PR China
| | - Yonghao Fan
- grid.443397.e0000 0004 0368 7493Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199 PR China
| | - Meihua Liang
- grid.410560.60000 0004 1760 3078Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023 PR China
| | - Yanda Lu
- grid.443397.e0000 0004 0368 7493Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199 PR China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, PR China.
| | - Botao Luo
- Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, PR China.
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Sciences; Pathology Diagnosis and Research Center of Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, PR China. .,Department of Oncology of the First Affliated Hospital; Oncology Institute, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
153
|
Yang T, Zhang Y, Chen J, Sun L. Crosstalk between autophagy and immune cell infiltration in the tumor microenvironment. Front Med (Lausanne) 2023; 10:1125692. [PMID: 36814780 PMCID: PMC9939467 DOI: 10.3389/fmed.2023.1125692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Autophagy is a conserved process for self-degradation and provides cells with a rescue mechanism to respond to circumstances such as stress and starvation. The role of autophagy in cancer is extremely complex and often paradoxical. Most of the related published studies on tumors are always focused on cancer cells. However, present studies gradually noticed the significance of autophagy in the tumor microenvironment. These studies demonstrate that autophagy and immunity work synergistically to affect tumor progression, indicating that autophagy could become a potential target for cancer immunotherapy. Therefore, it is crucial to clarify the correlation between autophagy and various tumor-infiltrating immune cells in the tumor microenvironment. The context-dependent role of autophagy is critical in the design of therapeutic strategies for cancer.
Collapse
|
154
|
Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Mol Cancer 2023; 22:26. [PMID: 36739406 PMCID: PMC9898962 DOI: 10.1186/s12943-023-01714-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 02/06/2023] Open
Abstract
Several mechanisms and cell types are involved in the regulation of the immune response. These include mostly regulatory T cells (Tregs), regulatory macrophages (Mregs), myeloid suppressor cells (MDSCs) and other regulatory cell types such as tolerogenic dendritic cells (tolDCs), regulatory B cells (Bregs), and mesenchymal stem cells (MSCs). These regulatory cells, known for their ability to suppress immune responses, can also suppress the anti-tumor immune response. The infiltration of many regulatory cells into tumor tissues is therefore associated with a poor prognosis. There is growing evidence that elimination of Tregs enhances anti-tumor immune responses. However, the systemic depletion of Treg cells can simultaneously cause deleterious autoimmunity. Furthermore, since regulatory cells are characterized by their high level of expression of immune checkpoints, it is also expected that immune checkpoint inhibitors perform part of their function by blocking these molecules and enhancing the immune response. This indicates that immunotherapy does not only act by activating specific effector T cells but can also directly or indirectly attenuate the suppressive activity of regulatory cells in tumor tissues. This review aims to draw together our current knowledge about the effect of immunotherapy on the various types of regulatory cells, and how these effects may be beneficial in the response to immunotherapy.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Noelia Arias-González
- grid.411438.b0000 0004 1767 6330Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
155
|
Xiong DD, Li JD, He RQ, Li MX, Pan YQ, He XL, Dang YW, Chen G. Highly expressed carbohydrate sulfotransferase 11 correlates with unfavorable prognosis and immune evasion of hepatocellular carcinoma. Cancer Med 2023; 12:4938-4950. [PMID: 36062845 PMCID: PMC9972111 DOI: 10.1002/cam4.5186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/05/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022] Open
Abstract
Despite great advance has been made in multi-modality treatments for HCC patients, the effectiveness is far from satisfactory with worse survival outcome, which may be partly explainable by the anti-tumor deficiency of the immune system. It is necessary to clarify the molecular mechanism of HCC immunodeficiency. Here, we demonstrated that carbohydrate sulfotransferase 11 (CHST11) was upregulated in HCC and related to advanced TNM stage. HCC patients with TP53 mutation showed higher CHST11 expression. Survival analysis revealed that CHST11 was an independent prognostic biomarker in HCC. Cellular functional experiments indicated that knockdown of CHST11 in HCC inhibited cell proliferation and metastasis. Gene functional enrichment analyses indicated that CHST11 modulated pathways related to tumor growth, metastasis and immune regulation. Continuative immune-related analyses revealed that CHST11 expression facilitated Tregs infiltration in HCC and promoted the expression of checkpoints PD-L1/PD-1, resulting in the immunosuppression of HCC. Targeting CHST11 may inhibit Tregs infiltration and enhance the antineoplastic effect of immune checkpoint inhibitors, which provides a novel insight into the combination immunotherapy with Treg-modulating agents and PD-L1/PD-1 inhibitors.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian-di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-Qing Pan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Lian He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
156
|
LncRNA LINC01833 is a Prognostic Biomarker and Correlates with Immune Infiltrates in Patients with Lung Adenocarcinoma by Integrated Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2023; 2023:3965198. [PMID: 36742153 PMCID: PMC9897928 DOI: 10.1155/2023/3965198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Abstract
Due to the absence of accurate tools for early detection and successful treatment, lung adenocarcinoma (LUAD) is one of the most aggressive tumors with high morbidity and mortality globally. It is absolutely necessary to investigate the process behind its development and search for new biomarkers that could aid in the early detection of LUAD. There is a correlation between the immune microenvironment of the tumor and the prognosis of lung cancer as well as the efficacy of immunotherapy. Long noncoding RNAs (lncRNAs) have been identified as potential prognostic biomarkers linked to immunological activities. In this study, we identified 1 downregulated lncRNA and 76 upregulated lncRNAs in LUAD samples from TCGA datasets. Among the 77 dysregulated lncRNAs, our attention focused on lncRNA LINC01833 (LINC01833). When compared with nontumor specimens, the level of expression of LINC01833 was shown to be significantly elevated in LUAD samples. In addition, the data of the ROC study revealed that LUAD patients with high LINC01833 expression had an AUC value of 0.840 (95% confidence interval: 0.804 to 0.876). There was a correlation between high LINC01833 expression and an advanced clinical stage. Patients who had a high expression of LINC01833 were shown to have a lower overall survival rate (p < 0.001) and a lower disease-specific survival rate (p = 0.004) in comparison to patients who were in the low LINC01833 group, according to the data on survival. In addition, the results of the multivariate analysis revealed that high LINC01833 expression was an independent predictor of poor survival in LUAD. Moreover, the immune analysis revealed that we found that the expression of LINC01833 was positively associated with Th2 cells, aDC, and Tgd, while negatively associated with Mast cells, Tcm, Eosinophils, iDC, DC, Tem, Th17 cells, and pDC. Overall, our data point to the possibility that the unique lncRNA LINC01833 might be employed as a diagnostic and prognostic marker, and as a result, it has a significant impact on clinical practice.
Collapse
|
157
|
Sun Y, Wang Y, Lu F, Zhao X, Nie Z, He B. The prognostic values of FOXP3 + tumor-infiltrating T cells in breast cancer: a systematic review and meta-analysis. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1830-1843. [PMID: 36692642 DOI: 10.1007/s12094-023-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Tumor microenvironment is infiltrated by many immune cells, of which Regulatory T (Treg) cells are usually considered as negative regulators of the immune responses. However, the effect of FOXP3+ (forkhead box transcription factor 3) Treg cells infiltrated into the tumor areas on the prognosis of breast cancer is controversial. This meta-analysis aimed to dissect the potential values of FOXP3+ tumor-infiltrating lymphocytes (TILs) as a prognosis predictor of breast cancer. METHODS After systematic retrieval of all relevant studies, 28 eligible articles were identified for meta-analysis. Odd ratio (OR), hazard ratio (HR), and 95% confidence interval (CI) were obtained for pooled analyses of pathological complete response (pCR), overall survival (OS), and corresponding forest plots and funnel plots were plotted, respectively. RESULTS Pooled results revealed that patients with higher levels of FOXP3+ TILs experienced better pCR (OR: 1.24, 95% CI 1.09-1.41) and OS (HR: 0.79, 95% CI 0.64-0.97). Subgroup analysis revealed that elevated FOXP3+ TILs were significantly associated with improved pCR (OR: 1.20, 95% CI 1.02-1.40) and OS (HR: 0.22, 95% CI 0.06-0.88) in human epidermal growth factor receptor 2 positive (HER2+) breast cancer patients. Furthermore, FOXP3+ TILs in the stromal area were statistically correlated with the favorable pCR (OR: 1.22, 95% CI 1.08-1.38) and OS (HR: 0.68, 95% CI 0.49-0.96). CONCLUSIONS The predictive role of FOXP3+ TILs in the prognosis of breast cancer is influenced by various factors such as molecular subtype of breast cancer and the location of Treg. In HER2+ breast cancer and triple-negative breast cancer, FOXP3+ TILs are associated with better pCR and OS. Additionally, FOXP3+ TILs in stromal represent a favourable prognosis.
Collapse
Affiliation(s)
- Yalan Sun
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Ying Wang
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Fang Lu
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xianghong Zhao
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Bangshun He
- School of Basic-Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China. .,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
158
|
Bos PD, Yoshimura A, Rudra D. Editorial: Non-lymphoid functions of regulatory T cells in health and disease. Front Immunol 2023; 14:1109245. [PMID: 36726687 PMCID: PMC9885201 DOI: 10.3389/fimmu.2023.1109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Affiliation(s)
- Paula D. Bos
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States,*Correspondence: Paula D. Bos, ; Akihiko Yoshimura, ; Dipayan Rudra,
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,*Correspondence: Paula D. Bos, ; Akihiko Yoshimura, ; Dipayan Rudra,
| | - Dipayan Rudra
- School of Life Science & Technology, ShanghaiTech University, Shanghai, China,*Correspondence: Paula D. Bos, ; Akihiko Yoshimura, ; Dipayan Rudra,
| |
Collapse
|
159
|
Li R, Huang B, Tian H, Sun Z. Immune evasion in esophageal squamous cell cancer: From the perspective of tumor microenvironment. Front Oncol 2023; 12:1096717. [PMID: 36698392 PMCID: PMC9868934 DOI: 10.3389/fonc.2022.1096717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer (EC) is one of the most life-threatening malignancies worldwide. Esophageal squamous cell carcinoma (ESCC) is the dominant subtype, accounting for approximately 90% of new incident EC each year. Although multidisciplinary treatment strategies have advanced rapidly, patients with ESCC are often diagnosed at advanced stage and the long-term prognosis remains unsatisfactory. In recent decades, immunotherapy, such as immune checkpoint inhibitors (ICIs), tumor vaccines, and chimeric antigen receptor T-cell (CAR-T) therapy, has been successfully used in clinical practice as a novel therapy for treating tumors, bringing new hope to ESCC patients. However, only a small fraction of patients achieved clinical benefits due to primary or acquired resistance. Immune evasion plays a pivotal role in the initiation and progression of ESCC. Therefore, a thorough understanding of the mechanisms by which ESCC cells escape from anti-tumor immunity is necessary for a more effective multidisciplinary treatment strategy. It has been widely recognized that immune evasion is closely associated with the crosstalk between tumor cells and the tumor microenvironment (TME). TME is a dynamic complex and comprehensive system including not only cellular components but also non-cellular components, which influence hallmarks and fates of tumor cells from the outside. Novel immunotherapy targeting tumor-favorable TME represents a promising strategy to achieve better therapeutic responses for patients with ESCC. In this review, we provide an overview of immune evasion in ESCC, mainly focusing on the molecular mechanisms that underlie the role of TME in immune evasion of ESCC. In addition, we also discuss the challenges and opportunities of precision therapy for ESCC by targeting TME.
Collapse
|
160
|
Zhang Y, Ji Q, Wang J, Dong Y, Pang M, Fu S, Wei Y, Zhu Q. High expression of KNL1 in prostate adenocarcinoma is associated with poor prognosis and immune infiltration. Front Genet 2023; 13:1100787. [PMID: 36685823 PMCID: PMC9853456 DOI: 10.3389/fgene.2022.1100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Prostate adenocarcinoma (PRAD) is a common malignancy with increasing morbidity and mortality. Kinetochore scaffold 1 (KNL1) has been reported to be involved in tumor progression and prognosis in other tumors, but its role in PRAD has not been reported in detail. KNL1 expression analysis, clinicopathological parameters analysis, prognostic correlation analysis, molecular interaction network and functional abdominal muscle analysis and immune infiltration analysis by using multiple online databases and downloaded expression profile. The results suggest that KNL1 is highly expressed in PRAD, which is associated with worse prognosis in PRAD patients. KnL1-related genes are highly enriched in mitotic function, which is considered to be highly related to the development of cancer. Finally, KNL1 expression is associated with a variety of tumor infiltrating immune cells, especially Treg and Th2 cells. In conclusion, our findings provide preliminary evidence that KNL1 may be an independent prognostic predictor of PRAD and is associated with immune infiltration.
Collapse
Affiliation(s)
- Yetao Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianying Ji
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuxiang Dong
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyang Pang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengqiang Fu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Yong Wei, ; Qingyi Zhu,
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Yong Wei, ; Qingyi Zhu,
| |
Collapse
|
161
|
Sun X, Zhang Q, Shu P, Lin X, Gao X, Shen K. COLEC12 Promotes Tumor Progression and Is Correlated With Poor Prognosis in Gastric Cancer. Technol Cancer Res Treat 2023; 22:15330338231218163. [PMID: 38112409 PMCID: PMC10734338 DOI: 10.1177/15330338231218163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE Collectin subfamily member 12, a transmembrane scavenger receptor C-type lectin, is aberrantly expressed in various cancers. However, its physiological role in gastric cancer remains somewhat unclear. This study aimed to investigate the Collectin subfamily member 12 expression pattern in human gastric cancer and its role in gastric cancer progression. METHODS The Kaplan-Meier method was used for survival analysis. The univariate and multivariate Cox proportional hazards regression models were used to identify independent predictors for progression-free survival and overall survival. The effects of Collectin subfamily member 12 on gastric cancer cell proliferation, migration, invasion, and apoptosis were detected through the cell counting kit-8 assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry analysis, respectively. Additionally, the correlation between Collectin subfamily member 12 expression and immune cell infiltration was analyzed through bioinformatics. RESULTS Collectin subfamily member 12 was highly expressed in advanced gastric cancer (T3-T4, pathologic stage III-IV). High Collectin subfamily member 12 expression was correlated with a worse progression-free survival and overall survival in the gastric cancer patients. In vitro, cell line studies revealed that Collectin subfamily member 12 promoted gastric cancer cell proliferation, migration, and invasion and inhibited gastric cancer cell apoptosis. The bioinformatics analysis further demonstrated that the Collectin subfamily member 12 expression level positively correlated with infiltration of several immune cells, such as M2 macrophages, dendritic cells, neutrophils, and regulatory T cells, suggesting that Collectin subfamily member 12 may also play a role in suppressing tumor immune response in gastric cancer. CONCLUSIONS Collectin subfamily member 12 was identified as a novel predictive marker and target for the clinical treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiangfei Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Qiang Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Ping Shu
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Xiaohan Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| |
Collapse
|
162
|
Roy G, Chakraborty A, Swami B, Pal L, Ahuja C, Basak S, Bhaskar S. Type 1 interferon mediated signaling is indispensable for eliciting anti-tumor responses by Mycobacterium indicus pranii. Front Immunol 2023; 14:1104711. [PMID: 37122749 PMCID: PMC10140407 DOI: 10.3389/fimmu.2023.1104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The evolving tumor secretes various immunosuppressive factors that reprogram the tumor microenvironment (TME) to become immunologically cold. Consequently, various immunosuppressive cells like Tregs are recruited into the TME which in turn subverts the anti-tumor response of dendritic cells and T cells.Tumor immunotherapy is a popular means to rejuvenate the immunologically cold TME into hot. Mycobacterium indicus pranii (MIP) has shown strong immunomodulatory activity in different animal and human tumor models and has been approved for treatment of lung cancer (NSCLC) patients as an adjunct therapy. Previously, MIP has shown TLR2/9 mediated activation of antigen presenting cells/Th1 cells and their enhanced infiltration in mouse melanoma but the underlying mechanism by which it is modulating these immune cells is not yet known. Results This study reports for the first time that MIP immunotherapy involves type 1 interferon (IFN) signaling as one of the major signaling pathways to mediate the antitumor responses. Further, it was observed that MIP therapy significantly influenced frequency and activation of different subsets of T cells like regulatory T cells (Tregs) and CD8+ T cells in the TME. It reduces the migration of Tregs into the TME by suppressing the expression of CCL22, a Treg recruiting chemokine on DCs and this process is dependent on type 1 IFN. Simultaneously, in a type 1 IFN dependent pathway, it enhances the activation and effector function of the immunosuppressive tumor resident DCs which in turn effectively induce the proliferation and effector function of the CD8+ T cells. Conclusion This study also provides evidence that MIP induced pro-inflammatory responses including induction of effector function of conventional dendritic cells and CD8+ T cells along with reduction of intratumoral Treg frequency are essentially mediated in a type 1 IFN-dependent pathway.
Collapse
Affiliation(s)
- Gargi Roy
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Anush Chakraborty
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Bharati Swami
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Lalit Pal
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Charvi Ahuja
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Soumen Basak
- Systems Immunology Lab, National Institute of Immunology, New Delhi, India
| | - Sangeeta Bhaskar
- Product Development Cell, National Institute of Immunology, New Delhi, India
- *Correspondence: Sangeeta Bhaskar,
| |
Collapse
|
163
|
Nonami A, Matsuo R, Funakoshi K, Nakayama T, Goto S, Iino T, Takaishi S, Mizuno S, Akashi K, Eto M. Prospective study of adoptive activated αβT lymphocyte immunotherapy for refractory cancers: development and validation of a response scoring system. Cytotherapy 2023; 25:76-81. [PMID: 36253253 DOI: 10.1016/j.jcyt.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/25/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AIMS This prospective clinical study aimed to determine the efficacy and prognostic factors of adoptive activated αβT lymphocyte immunotherapy for various refractory cancers. The primary endpoint was overall survival (OS), and the secondary endpoint was radiological response. METHODS The authors treated 96 patients. Activated αβT lymphocytes were infused every 2 weeks for a total of six times. Prognostic factors were identified by analyzing clinical and laboratory data obtained before therapy. RESULTS Median survival time (MST) was 150 days (95% confidence interval, 105-191), and approximately 20% of patients achieved disease control (complete response + partial response + stable disease). According to the multivariate Cox proportional hazards model with Akaike information criterion-best subset selection, sex, concurrent therapy, neutrophil/lymphocyte ratio, albumin, lactate dehydrogenase, CD4:CD8 ratio and T helper (Th)1:Th2 ratio were strong prognostic factors. Using parameter estimates of the Cox analysis, the authors developed a response scoring system. The authors then determined the threshold of the response score between responders and non-responders. This threshold was able to significantly differentiate OS of responders from that of non-responders. MST of responders was longer than that of non-responders (317.5 days versus 74 days). The validity of this response scoring system was then confirmed by internal validation. CONCLUSIONS Adoptive activated αβT lymphocyte immunotherapy has clinical efficacy in certain patients. The authors' scoring system is the first prognostic model reported for this therapy, and it is useful for selecting patients who might obtain a better prognosis through this modality.
Collapse
Affiliation(s)
- Atsushi Nonami
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Medicine and Biosystemic Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ryu Matsuo
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouta Funakoshi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Tomohiro Nakayama
- Department of Radiology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Shigenori Goto
- Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan
| | - Tadafumi Iino
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| | - Shigeo Takaishi
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| | - Shinichi Mizuno
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Division of Medical Sciences and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Medicine and Biosystemic Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
164
|
Li Q, Lu J, Li J, Zhang B, Wu Y, Ying T. Antibody-based cancer immunotherapy by targeting regulatory T cells. Front Oncol 2023; 13:1157345. [PMID: 37182149 PMCID: PMC10174253 DOI: 10.3389/fonc.2023.1157345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Regulatory T cells (Tregs) are among the most abundant suppressive cells, which infiltrate and accumulate in the tumor microenvironment, leading to tumor escape by inducing anergy and immunosuppression. Their presence has been correlated with tumor progression, invasiveness and metastasis. Targeting tumor-associated Tregs is an effective addition to current immunotherapy approaches, but it may also trigger autoimmune diseases. The major limitation of current therapies targeting Tregs in the tumor microenvironment is the lack of selective targets. Tumor-infiltrating Tregs express high levels of cell surface molecules associated with T-cell activation, such as CTLA4, PD-1, LAG3, TIGIT, ICOS, and TNF receptor superfamily members including 4-1BB, OX40, and GITR. Targeting these molecules often attribute to concurrent depletion of antitumor effector T-cell populations. Therefore, novel approaches need to improve the specificity of targeting Tregs in the tumor microenvironment without affecting peripheral Tregs and effector T cells. In this review, we discuss the immunosuppressive mechanisms of tumor-infiltrating Tregs and the status of antibody-based immunotherapies targeting Tregs.
Collapse
Affiliation(s)
- Quanxiao Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| |
Collapse
|
165
|
Janakiraman M, Salei N, Krishnamoorthy G. High salt diet does not impact the development of acute myeloid leukemia in mice. Cancer Immunol Immunother 2023; 72:265-273. [PMID: 35802166 DOI: 10.1007/s00262-022-03244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/16/2022] [Indexed: 01/07/2023]
Abstract
The gut microbiota has not only been implicated in the development of some cancers but has also been shown to modulate the efficacy of cancer therapeutics. Although the microbiota is an attractive target in cancer therapy, there is limited data available regarding the relevance of microbiota and dietary interventions in the various types of tumors. Recently, a high salt diet (HSD) has attracted attention in cancer development owing to its profound effects on modulating microbiota and immune responses. Here, we investigated the impact of HSD on microbiota, immune responses, and the development of acute myeloid leukemia using two syngeneic transplantation models. HSD significantly changes the microbiota composition, TH17 responses, and NK cells. However, we found no influence of HSD on tumor development. The kinetics and characteristics of tumor development were similar despite varying the number of injected tumor cells. Our data show that the effects of the microbiome and dietary interventions can be tumor-specific and may not apply to all types of cancers.
Collapse
Affiliation(s)
- Mathangi Janakiraman
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Natallia Salei
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gurumoorthy Krishnamoorthy
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
166
|
Majedi FS, Hasani-Sadrabadi MM, Thauland TJ, Keswani SG, Li S, Bouchard LS, Butte MJ. Systemic enhancement of antitumour immunity by peritumourally implanted immunomodulatory macroporous scaffolds. Nat Biomed Eng 2023; 7:56-71. [PMID: 36550304 PMCID: PMC9940651 DOI: 10.1038/s41551-022-00977-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
A tumour microenvironment abundant in regulatory T (Treg) cells aids solid tumours to evade clearance by effector T cells. Systemic strategies to suppress Treg cells or to augment immunity can elicit autoimmune side effects, cytokine storms and other toxicities. Here we report the design, fabrication and therapeutic performance of a biodegradable macroporous scaffold, implanted peritumourally, that releases a small-molecule inhibitor of transforming growth factor β to suppress Treg cells, chemokines to attract effector T cells and antibodies to stimulate them. In two mouse models of aggressive tumours, the implant boosted the recruitment and activation of effector T cells into the tumour and depleted it of Treg cells, which resulted in an 'immunological abscopal effect' on distant metastases and in the establishment of long-term memory that impeded tumour recurrence. We also show that the scaffold can be used to deliver tumour-antigen-specific T cells into the tumour. Peritumourally implanted immunomodulatory scaffolds may represent a general strategy to enhance T-cell immunity and avoid the toxicities of systemic therapies.
Collapse
Affiliation(s)
- Fatemeh S Majedi
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Symphony Biosciences Inc, Los Angeles, CA, USA.
| | | | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California, Los Angeles, CA, USA
| | - Sundeep G Keswani
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| | - Louis-S Bouchard
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
167
|
Wing JB, Sakaguchi S. Regulatory Immune Cells. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
168
|
Tang Y, Ge S, Zheng X, Zheng J. High Hepcidin expression predicts poor prognosis in patients with clear cell renal cell carcinoma. Diagn Pathol 2022; 17:100. [PMID: 36585741 PMCID: PMC9805116 DOI: 10.1186/s13000-022-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a growing public health challenge worldwide. Hepcidin antimicrobial peptide (HAMP) is differentially expressed in various tumors. However, the roles and functions of HAMP in ccRCC remain unclear. In the present study, we integrated systematic bioinformatics approaches to investigate the roles and functions of HAMP and its association with immune cell infiltration in ccRCC. Compared with paracancerous tissue, HAMP expression was significantly upregulated in ccRCC patients. Meanwhile, we found good diagnostic performance of HAMP for ccRCC patients and its close associations with the clinicopathological features of ccRCC patients. In addition, we found that HAMP is closely related to multiple immune pathways and positively correlated with various immune cells. HAMP was a significant independent predictor for ccRCC. High expression of HAMP was associated with worse clinical prognosis and more immune cell infiltration in ccRCC patients. HAMP may offer potential as a biomarker to predict prognosis and the clinical treatment outcome of ccRCC patients.
Collapse
Affiliation(s)
- Yuting Tang
- grid.412540.60000 0001 2372 7462Department of Rehabilitation, Municipal Hospital of Traditional Chinese Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 People’s Republic of China
| | - Shengdong Ge
- grid.284723.80000 0000 8877 7471Department of Urology, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xiao Zheng
- grid.412540.60000 0001 2372 7462Department of Rehabilitation, Municipal Hospital of Traditional Chinese Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 People’s Republic of China
| | - Jiejiao Zheng
- grid.413597.d0000 0004 1757 8802Department of Rehabilitation, HuaDong Hospital, FuDan University, Shanghai, 200040 People’s Republic of China
| |
Collapse
|
169
|
Li Y, Zhao JF, Zhang J, Zhan GH, Li YK, Huang JT, Huang X, Xiang BD. Inflammation and Fibrosis in Patients with Non-Cirrhotic Hepatitis B Virus-Associated Hepatocellular Carcinoma: Impact on Prognosis after Hepatectomy and Mechanisms Involved. Curr Oncol 2022; 30:196-218. [PMID: 36661665 PMCID: PMC9858133 DOI: 10.3390/curroncol30010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background: We investigated whether the degree of inflammation and fibrosis in para-carcinoma tissue can predict prognosis of patients with non-cirrhotic hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) after hepatectomy. We also explored the mechanisms through which inflammation and fibrosis might affect prognosis. Methods: Clinicopathological data were retrospectively analyzed from 293 patients with non-cirrhotic HBV-associated HCC who were treated at our institution by curative resection from 2012 to 2017. Based on the Scheuer score system, patients were classified into those showing mild or moderate-to-severe inflammation and fibrosis. Rates of overall and recurrence-free survival were compared between the groups using Kaplan-Meier curves, and survival predictors were identified using Cox regression. Using tumor and para-tumor tissues from independent samples of patients with non-cirrhotic HBV-associated HCC who were treated at our institution by curative resection from 2018 to 2019, we performed next-generation sequencing and time-of-flight cytometry (CyTOF) to examine the influence of inflammation and fibrosis on gene expression and immune cell infiltration. Results: In the analysis of the 293 patients, those with mild inflammation and fibrosis showed significantly better overall and recurrence-free survival than those with moderate-to-severe inflammation and fibrosis. Multivariate Cox regression confirmed that moderate-to-severe inflammation and fibrosis were independent risk factors for worse survival. RNA sequencing and CyTOF showed that more severe inflammation and fibrosis were associated with stronger invasion and migration by hepatocytes. In cancerous tissues, the biological processes of cell proliferation were upregulated, the signaling pathways promoting tumor growth were activated, the proportion of Th17 cells promoting tumor progression was increased, and CD8+ T cells expressed higher levels of PD-L1. In para-cancerous tissues, biological processes of immune response and cell chemotaxis were downregulated, and the proportion of tumor-killing immune cells was decreased. Conclusion: Worse inflammation and fibrosis in non-cirrhotic HBV-associated HCC is associated with worse prognosis, which may reflect more aggressive tumor behavior and an immunosuppressed, pro-metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Yan Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jing-Fei Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Guo-Hua Zhan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yuan-Kuan Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jun-Tao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xi Huang
- The First Clinical School of Guangxi Medical University, Nanning 530021, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
170
|
Tao Y, Li X, Zhang Y, He L, Lu Q, Wang Y, Pan L, Wang Z, Feng C, Xie Y, Lai Z, Li T, Tang Z, Wang Q, Wang X. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet 2022; 13:1057302. [PMID: 36568387 PMCID: PMC9780475 DOI: 10.3389/fgene.2022.1057302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: The tumor suppressor gene TP53 is frequently mutated or inactivated in bladder cancer (BLCA), which is implicated in the pathogenesis of tumor. However, the cellular mechanisms of TP53 mutations are complicated, yet well-defined, but their clinical prognostic value in the management of BLCA remains controversial. This study aimed to explore the role of TP53 mutation in regulating the tumor microenvironment (TME), elucidate the effects of TP53 activity on BLCA prognosis and immunotherapy response. Methods: A TP53-related signature based on TP53-induced and TP53-repressed genes was used to construct a TP53 activity-related score and classifier. The abundance of different immune cell types was determined using CIBERSORT to estimate immune cell infiltration. Moreover, the heterogeneity of the tumor immune microenvironment between the high and low TP53 score groups was further evaluated using single-cell mass cytometry (CyTOF) and imaging mass cytometry (IMC). Moreover, pathway enrichment analysis was performed to explore the differential biological functions between tumor epithelial cells with high and low TP53 activity scores. Finally, the receptor-ligand interactions between immune cells and tumor epithelial cells harboring distinct TP53 activity were analyzed by single-cell RNA-sequencing. Results: The TP53 activity-related gene signature differentiated well between TP53 functional retention and inactivation in BLCA. BLCA patients with low TP53 scores had worse survival prognosis, more TP53 mutations, higher grade, and stronger lymph node metastasis than those with high TP53 scores. Additionally, CyTOF and IMC analyses revealed that BLCA patients with low TP53 scores exhibited a potent immunosuppressive TME. Consistently, single-cell sequencing results showed that tumor epithelial cells with low TP53 scores were significantly associated with high cell proliferation and stemness abilities and strongly interacted with immunosuppressive receptor-ligand pairs. Conclusion: BLCA patients with low TP53 scores have a worse prognosis and a more immunosuppressive TME. This TP53 activity-related signature can serve as a potential prognostic signature for predicting the immune response, which may facilitate the development of new strategies for immunotherapy in BLCA.
Collapse
Affiliation(s)
- Yuting Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xia Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yushan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Liangyu He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,Departments of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qinchen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yaobang Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Lixin Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Zhenxing Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Chao Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuanliang Xie
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,Departments of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyong Lai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,Departments of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhong Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,School of Information and Management, Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,*Correspondence: Qiuyan Wang, ; Xi Wang,
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,*Correspondence: Qiuyan Wang, ; Xi Wang,
| |
Collapse
|
171
|
Pro- and Anti-Tumoral Factors Involved in Total Body Irradiation and Interleukin-2 Conditioning in Adoptive T Cell Therapy of Melanoma-Bearing Rag1 Knock-Out Mice. Cells 2022; 11:cells11233894. [PMID: 36497152 PMCID: PMC9737859 DOI: 10.3390/cells11233894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
In adoptive T cell therapy (ACT), the transfer of tumor-specific T cells is paralleled by the conditioning regimen to increase therapeutic efficacy. Pre-conditioning depletes immune-suppressive cells and post-conditioning increases homeostatic signals to improve the persistence of administered T cells. Identifying the favorable immunological factors involved in a conditioning regimen is important to design effective strategies in ACT. Here, by using an ACT model of murine melanoma, we evaluate the effect of the total body irradiation (TBI) and interleukin-2 (IL-2) treatment combination. The use of a Rag1 knock-out strain, which lacks endogenous T cells, enables the identification of factors in a way that focuses more on transferred T cells. We demonstrate that the TBI/IL-2 combination has no additive effect in ACT, although each conditioning improves the therapeutic outcome. While the combination increases the frequency of transferred T cells in lymphoid and tumor tissues, the activation intensity of the cells is reduced compared to that of the sole TBI treatment. Notably, we show that in the presence of TBI, the IL-2 treatment reduces the frequency of intra-tumoral dendritic cells, which are crucial for T cell activation. The current study provides insights into the immunological events involved in the TBI/IL-2 combination in ACT.
Collapse
|
172
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
173
|
Chen FY, Geng CA, Chou CK, Zheng JB, Yang Y, Wang YF, Li TZ, Li P, Chen JJ, Chen X. Distepharinamide, a novel dimeric proaporphine alkaloid from Diploclisia glaucescens, inhibits the differentiation and proliferative expansion of CD4 +Foxp3 + regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154482. [PMID: 36202057 DOI: 10.1016/j.phymed.2022.154482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND CD4+Foxp3+ regulatory T cells (Tregs) represent the primary cellular mechanism of tumor immune evasion. Elimination of Treg activity by the pharmacological agent may enhance anti-tumor immune responses. However, Treg-eliminating agents, especially those with small molecules, are rarely reported. PURPOSE To identify small molecule inhibitors of Treg cells from natural products. METHODS Compounds from Diploclisia glaucescens were isolated by column chromatography, and structures were identified by spectroscopic evidence and quantum calculations. The tet-On system for Foxp3-GFP expression in Jurkat T cells was generated to screen Treg inhibitors based on Foxp3 expression. The effect of the compound on TNF-induced proliferative expansion of naturally occurring Tregs (nTregs) and TGF-β-induced generation of Tregs (iTregs) from naive CD4+ Tcells was further examined. RESULTS A novel dimeric proaporphine alkaloid, designated as distepharinamide (DSA) with a symmetric structure isolated from the stems of D. glaucescens, restrained the doxycycline (Doxy)-induced Foxp3-tGFP expression, decreased the half-life of Foxp3 mRNA as well as reduced the mRNA levels of chemokine receptors (CCR4, CCR8 and CCR10) in Jurkat T cells with inducible Foxp3-tGFP expression. In lymphocytes or purified Tregs from wild-type C57BL/6 mice or from C57BL/6-Tg(Foxp3-DTR/EGFP)23.2Spar/Mmjax mice, DSA markedly inhibited TNF-induced proliferative expansion of Tregs present in the unfractionated CD4+ T cells, accompanied by the down-regulation of TNFR2, CD25 and CTLA4 expression on Tregs. Furthermore, DSA potently inhibited TGF-β-induced differentiation of Foxp3-expressing iTregs. Importantly, the expression of Foxp3 mRNA by both nTregs and iTregs was decreased by DSA treatment. Nevertheless, DSA at the same concentrations did not inhibit the proliferation of conventional CD4+ and CD8+ T cells stimulated by anti-CD3/CD28 antibodies. CONCLUSION DSA, a novel dimeric proaporphine alkaloid, potently inhibited the expansion of nTregs and generation of iTregs. Therefore, DSA or its analogs may merit further investigation as novel immunotherapeutic agents.
Collapse
Affiliation(s)
- Feng-Yang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chon-Kit Chou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Jing-Bin Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Yi-Fei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China.
| |
Collapse
|
174
|
Ren J, Zhang H, Wang J, Xu Y, Zhao L, Yuan Q. Transcriptome analysis of adipocytokines and their-related LncRNAs in lung adenocarcinoma revealing the association with prognosis, immune infiltration, and metabolic characteristics. Adipocyte 2022; 11:250-265. [PMID: 35410586 PMCID: PMC9037474 DOI: 10.1080/21623945.2022.2064956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is amongst the major contributors to cancer-related deaths on a global scale. Adipocytokines and long non-coding RNAs (lncRNAs) are indispensable participants in cancer. We performed a pan-cancer analysis of the mRNA expression, single nucleotide variation, copy number variation, and prognostic value of adipocytokines. LUAD samples were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Simultaneously, train, internal and external cohorts were grouped. After a stepwise screening of optimized genes through least absolute shrinkage and selection operator regression analysis, random forest algorithm,, and Cox regression analysis, an adipocytokine-related prognostic signature (ARPS) with superior performance compared with four additional well-established signatures for survival prediction was constructed. After determination of risk levels, the discrepancy of immune microenvironment, immune checkpoint gene expression, immune subtypes, and immune response in low- and high-risk cohorts were explored through multiple bioinformatics methods. Abnormal pathways underlying high- and low-risk subgroups were identified through gene set enrichment analysis (GSEA). Immune-and metabolism-related pathways that were correlated with risk score were selected through single sample GSEA. Finally, a nomogram with satisfied predictive survival probability was plotted. In summary, this study offers meaningful information for clinical treatment and scientific investigation.
Collapse
Affiliation(s)
- Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Zhang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinna Wang
- Department of Oncology, Dalian Friendship Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| | - Yingsong Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
175
|
A single-cell analysis reveals tumor heterogeneity and immune environment of acral melanoma. Nat Commun 2022; 13:7250. [PMID: 36433984 PMCID: PMC9700682 DOI: 10.1038/s41467-022-34877-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Acral melanoma is a dismal subtype of melanoma occurring in glabrous acral skin, and has a higher incidence in East Asians. We perform single-cell RNA sequencing for 63,394 cells obtained from 5 acral and 3 cutaneous melanoma samples to investigate tumor heterogeneity and immune environment. We define 5 orthogonal functional cell clusters that are involved in TGF-beta signaling, Type I interferon, Wnt signaling, Cell cycle, and Cholesterol efflux signaling. Signatures of enriched TGF-beta, Type I interferon, and cholesterol efflux signaling are significantly associated with good prognosis of melanoma. Compared with cutaneous melanoma, acral melanoma samples have significantly severe immunosuppressive state including depletion of cytotoxic CD8+ T cells, enrichment of Treg cells, and exhausted CD8+ T cells. PD1 and TIM-3 have higher expression in the exhaustive CD8+ T cells of acral melanoma. Key findings are verified in two independent validation sets. This study contributes to our better understanding of acral melanoma.
Collapse
|
176
|
Montauti E, Weinberg SE, Chu P, Chaudhuri S, Mani NL, Iyer R, Zhou Y, Zhang Y, Liu C, Xin C, Gregory S, Wei J, Zhang Y, Chen W, Sun Z, Yan M, Fang D. A deubiquitination module essential for T reg fitness in the tumor microenvironment. SCIENCE ADVANCES 2022; 8:eabo4116. [PMID: 36427305 PMCID: PMC9699683 DOI: 10.1126/sciadv.abo4116] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tumor microenvironment (TME) enhances regulatory T (Treg) cell stability and immunosuppressive functions through up-regulation of lineage transcription factor Foxp3, a phenomenon known as Treg fitness or adaptation. Here, we characterize previously unknown TME-specific cellular and molecular mechanisms underlying Treg fitness. We demonstrate that TME-specific stressors including transforming growth factor-β (TGF-β), hypoxia, and nutrient deprivation selectively induce two Foxp3-specific deubiquitinases, ubiquitin-specific peptidase 22 (Usp22) and Usp21, by regulating TGF-β, HIF, and mTOR signaling, respectively, to maintain Treg fitness. Simultaneous deletion of both USPs in Treg cells largely diminishes TME-induced Foxp3 up-regulation, alters Treg metabolic signatures, impairs Treg-suppressive function, and alleviates Treg suppression on cytotoxic CD8+ T cells. Furthermore, we developed the first Usp22-specific small-molecule inhibitor, which dramatically reduced intratumoral Treg Foxp3 expression and consequently enhanced antitumor immunity. Our findings unveil previously unappreciated mechanisms underlying Treg fitness and identify Usp22 as an antitumor therapeutic target that inhibits Treg adaptability in the TME.
Collapse
Affiliation(s)
- Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Samuel E. Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nikita L. Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yuanzhang Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Changhong Liu
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Chen Xin
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Shana Gregory
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Wantao Chen
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhaolin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ming Yan
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
177
|
Zhu Y, Gan X, Qin R, Lin Z. Identification of Six Diagnostic Biomarkers for Chronic Lymphocytic Leukemia Based on Machine Learning Algorithms. JOURNAL OF ONCOLOGY 2022; 2022:3652107. [PMID: 36467501 PMCID: PMC9715328 DOI: 10.1155/2022/3652107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 09/19/2023]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults. Thus, novel reliable biomarkers need to be further explored to increase diagnostic, therapeutic, and prognostic effectiveness. METHODS Six datasets containing CLL and control samples were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis, weighted gene coexpression network analysis (WGCNA), and the least absolute shrinkage and selection operator (LASSO) regression were applied to identify potential diagnostic biomarkers for CLL using R software. The diagnostic performance of the hub genes was then measured by the receiver operating characteristic (ROC) curve analysis. Functional analysis was implemented to uncover the underlying mechanisms. Additionally, correlation analysis was performed to assess the relationship between the hub genes and immunity characteristics. RESULTS A total number of 47 differentially expressed genes (DEGs) and 25 candidate hub genes were extracted through differential gene expression analysis and WGCNA, respectively. Based on the 14 overlapped genes between the DEGs and the candidate hub genes, LASSO regression analysis was used, which identified a final number of six hub genes as potential biomarkers for CLL: ABCA6, CCDC88A, PMEPA1, EBF1, FILIP1L, and TEAD2. The ROC curves of the six genes showed reliable predictive ability in the training and validation cohorts, with all area under the curve (AUC) values over 0.80. Functional analysis revealed an abnormal immune status in the CLL patients. A significant correlation was found between the hub genes and the immune-related pathways, indicating a possible tight connection between the hub genes and tumor immunity in CLL. CONCLUSION This study was based on machine learning algorithms, and we identified six genes that could be possible CLL markers, which may be involved in CLL pathogenesis and progression through immune-related signal pathways.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xinjin Gan
- Department of Hematology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruoyan Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhikang Lin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
178
|
Tang K, Zhang J, Cao H, Xiao G, Wang Z, Zhang X, Zhang N, Wu W, Zhang H, Wang Q, Xu H, Cheng Q. Identification of CD73 as a Novel Biomarker Encompassing the Tumor Microenvironment, Prognosis, and Therapeutic Responses in Various Cancers. Cancers (Basel) 2022; 14:5663. [PMID: 36428755 PMCID: PMC9688912 DOI: 10.3390/cancers14225663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
CD73 is essential in promoting tumor growth by prohibiting anti-tumor immunity in many cancer types. While the mechanism remains largely unknown, our paper comprehensively confirmed the onco-immunological characteristics of CD73 in the tumor microenvironment (TME) of pan-cancer. This paper explored the expression pattern, mutational profile, prognostic value, tumor immune infiltration, and response to immunotherapy of CD73 in a continuous cohort of cancers through various computational tools. The co-expression of CD73 on cancer cells, immune cells, and stromal cells in the TME was also detected. Especially, we examined the correlation between CD73 and CD8+ (a marker of T cell), CD68+ (a marker of macrophage), and CD163+ (a marker of M2 macrophage) cells using multiplex immunofluorescence staining of tissue microarrays. CD73 expression is significantly associated with a patient's prognosis and could be a promising predictor of these cancers. High CD73 levels are strongly linked to immune infiltrations, neoantigens, and immune checkpoint expression in the TME. In particular, enrichment signaling pathway analysis demonstrated that CD73 was obviously related to activation pathways of immune cells, including T cells, macrophages, and cancer-associated fibroblasts (CAFs). Meanwhile, single-cell sequencing algorithms found that CD73 is predominantly co-expressed on cancer cells, CAFs, M2 macrophages, and T cells in several cancers. In addition, we explored the cellular communication among 14 cell types in glioblastoma (GBM) based on CD73 expression. Based on the expression of CD73 as well as macrophage and T cell markers, we predicted the methylation and enrichment pathways of these markers in pan-cancer. Furthermore, a lot of therapeutic molecules sensitive to these markers were predicted. Finally, potential anticancer inhibitors, immunotherapies, and gene therapy responses targeting CD73 were identified from a series of immunotherapy cohorts. CD73 is closely linked to clinical prognosis and immune infiltration in many cancers. Targeting CD73-dependent signaling pathways may be a promising therapeutic strategy for future tumor immunotherapy.
Collapse
Affiliation(s)
- Kun Tang
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410008, China
- Department of Discipline Construction, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Hui Cao
- Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha 410007, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Nan Zhang
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Qianrong Wang
- Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, Central South University, Ministry of Education, Changsha 410011, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Huilan Xu
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
179
|
Zhang Q, Tang D, Zha A, He J, Li D, Chen Y, Cai W, Dai J, Luan S, Yin L, Zhang W, Dai Y. NFE2L3 as a Potential Functional Gene Regulating Immune Microenvironment in Human Kidney Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9085186. [PMID: 36337840 PMCID: PMC9629961 DOI: 10.1155/2022/9085186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2025]
Abstract
With the increasing incidence and mortality of renal cancer, it is pressing to find new biomarkers and drug targets for diagnosis and treatment. However, as one negative upstream regulator of p53, the prognostic and immunological role of NFE2L3 in renal cancer is still barely known. We investigated the expression, prognostic value, and relevant pathways of NFE2L3 using the datasets from public databases, including The Cancer Genome Atlas Program (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and UALCAN. Furthermore, we analyzed the relationship between NFE2L3 expression and the immune microenvironment using distinct methods. We found that NFE2L3 was higher expressed in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) tissues than adjacent normal tissues. Additionally, we identified NFE2L3 as one survival-related factor for KIRC and KIRP. The enrichment analyses revealed that NFE2L3 was associated with a variety of immune-relevant pathways in KIRC and related to the infiltration ratios of 17 types of immune cells in KIRC patients. Ultimately, we demonstrated nine significantly enriched mutations, such as TP53 and MET, in NFE2L3-expression-changing groups. The elevated expression of NFE2L3 in renal cancerous tissues versus normal tissues is associated with poor outcomes in patients. Besides, NFE2L3 has a role in the regulation of the immune microenvironment in renal cancer patients. The findings of our study provide a potential prognostic biomarker and a new drug target for renal cancer.
Collapse
Affiliation(s)
- Qian Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
- Institute of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Aiyun Zha
- Institute of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yumei Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jian Dai
- Department of Biomedical Engineering, Jinan University, Guangzhou 510630, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Lianghong Yin
- Institute of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Institute of Nephrology and Blood Purification, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
- Institute of Nephrology and Blood Purification, Jinan University, Guangzhou 510632, China
| |
Collapse
|
180
|
Hao S, Xu S, Li L, Li Y, Zhao M, Chen J, Zhu S, Xie Y, Jiang H, Zhu J, Wu M. Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4. BMC Cancer 2022; 22:1092. [PMID: 36284271 PMCID: PMC9594910 DOI: 10.1186/s12885-022-10165-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background: Antibodies and derivative drugs targeting immune checkpoints have been approved for the treatment of several malignancies, but there are fewer responses in patients with pancreatic cancer. Here, we designed a nanobody molecule with bi-targeting on PD-L1 and CXCR4, as both targets are overexpressed in many cancer cells and play important roles in tumorigenesis. We characterized the biochemical and anti-tumour activities of the bispecific nanobodies in vitro and in vivo. Methods: A nanobody molecule was designed and constructed. The nanobody sequences targeting PD-L1 and CXCR4 were linked by the (G4S)3 flexible peptide to construct the anti-PD-L1/CXCR4 bispecific nanobody. The bispecific nanobody was expressed in E. coli cells and purified by affinity chromatography. The purified nanobody was biochemically characterized by mass spectrometry, Western blotting and flow cytometry to confirm the molecule and its association with both PD-L1 and CXCR4. The biological function of the nanobody and its anti-tumour effects were examined by an in vitro tumour cell-killing assay and in vivo tumour inhibition in mouse xenograft models. Results: A novel anti-PD-L1/CXCR4 bispecific nanobody was designed, constructed and characterized. The molecule specifically bound to two targets on the surface of human cancer cells and inhibited CXCL12-induced Jurkat cell migration. The bispecific nanobody increased the level of IFN-γ secreted by T-cell activation. The cytotoxicity of human peripheral blood mononuclear cells (hPBMCs) against pancreatic cancer cells was enhanced by the molecule in combination with IL-2. In a human pancreatic cancer xenograft model, the anti-PD-L1/CXCR4 nanobody markedly inhibited tumour growth and was superior to the combo-treatment by anti-PD-L1 nanobody and anti-CXCR4 nanobody or treatment with atezolizumab as a positive control. Immunofluorescence and immunohistochemical staining of xenograft tumours showed that the anti-tumour effects were associated with the inhibition of angiogenesis and the infiltration of immune cells. Conclusion: These results clearly revealed that the anti-PD-L1/CXCR4 bispecific nanobody exerted anti-tumour efficacy in vitro and inhibited tumour growth in vivo. This agent can be further developed as a therapeutic reagent to treat human pancreatic cancer by simultaneously blocking two critical targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10165-7.
Collapse
Affiliation(s)
- Shuai Hao
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Shuyi Xu
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Liangzhu Li
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Yaxian Li
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Meiqi Zhao
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Junsheng Chen
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Shunying Zhu
- grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| | - Yueqing Xie
- Jecho Laboratories, Inc, 7320 Executive Way, 21704 Frederick, MD USA
| | - Hua Jiang
- Jecho Laboratories, Inc, 7320 Executive Way, 21704 Frederick, MD USA
| | - Jianwei Zhu
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China ,Jecho Laboratories, Inc, 7320 Executive Way, 21704 Frederick, MD USA
| | - Mingyuan Wu
- grid.16821.3c0000 0004 0368 8293Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, People’s Republic of China
| |
Collapse
|
181
|
Pęczek P, Gajda M, Rutkowski K, Fudalej M, Deptała A, Badowska-Kozakiewicz AM. Cancer-associated inflammation: pathophysiology and clinical significance. J Cancer Res Clin Oncol 2022; 149:2657-2672. [PMID: 36260158 PMCID: PMC9579684 DOI: 10.1007/s00432-022-04399-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
Purpose Cancer cells, despite stemming from the own cells of their host, usually elicit an immune response. This response usually enables elimination of cancer at its earliest stages. However, some tumors develop mechanisms of escaping immune destruction and even profiting from tumor-derived inflammation. Methods We summarized the roles of different immune cell populations in various processes associated with cancer progression and possible methods of reshaping tumor-associated inflammation to increase the efficacy of cancer therapy. Results Changes in various signaling pathways result in attraction of immunosuppressive, pro-tumorigenic cells, such as myeloid-derived suppressor cells, tumor-associated macrophages, and neutrophils, while at the same time suppressing the activity of lymphocytes, which have the potential of destroying cancer cells. These changes promote tumor progression by increasing angiogenesis and growth, accelerating metastasis, and impairing drug delivery to the tumor site. Conclusion Due to its multi-faceted role in cancer, tumor-associated inflammation can serve as a valuable therapy target. By increasing it, whether through decreasing overall immunosuppression with immune checkpoint inhibitor therapy or through more specific methods, such as cancer vaccines, oncolytic viruses, or chimeric antigen receptor T cells, cancer-derived immunosuppression can be overcome, resulting in immune system destroying cancer cells. Even changes occurring in the microbiota can influence the shape of antitumor response, which could provide new attractive diagnostic or therapeutic methods. Interestingly, also decreasing the distorted tumor-associated inflammation with non-steroidal anti-inflammatory drugs can lead to positive outcomes.
Collapse
Affiliation(s)
- Piotr Pęczek
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Gajda
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Kacper Rutkowski
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, Erazma Ciołka 27, Warsaw, Poland.,Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Medical University of Warsaw, Erazma Ciołka 27, Warsaw, Poland.,Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | | |
Collapse
|
182
|
Peripheral T cell cytotoxicity predicts the efficacy of anti-PD-1 therapy for advanced non-small cell lung cancer patients. Sci Rep 2022; 12:17461. [PMID: 36261600 PMCID: PMC9582215 DOI: 10.1038/s41598-022-22356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Anti-programmed cell death-1 (PD-1) therapy exerts beneficial effects in a limited population of cancer patients. Therefore, more accurate diagnostics to predict the efficacy of anti-PD-1 therapy are desired. The present study investigated whether peripheral T cell cytotoxicity predicts the efficacy of anti-PD-1 therapy for advanced non-small cell lung cancer (NSCLC) patients. Advanced NSCLC patients treated with anti-PD-1 monotherapy (nivolumab or pembrolizumab) were consecutively enrolled in the present study. Peripheral blood samples were subjected to an analysis of peripheral T cell cytotoxicity and flow cytometry prior to the initiation of anti-PD-1 therapy. Peripheral T cell cytotoxicity was assessed using bispecific T-cell engager (BiTE) technology. We found that progression-free survival was significantly longer in patients with high peripheral T cell cytotoxicity (p = 0.0094). In the multivariate analysis, treatment line and peripheral T cell cytotoxicity were independent prognostic factors for progression-free survival. The analysis of T cell profiles revealed that peripheral T cell cytotoxicity correlated with the ratio of the effector memory population in CD4+ or CD8+ T cells. Furthermore, the results of flow cytometry showed that the peripheral CD45RA+CD25+/CD4+ T cell ratio was higher in patients with than in those without severe adverse events (p = 0.0076). These results indicated that the peripheral T cell cytotoxicity predicted the efficacy of anti-PD-1 therapy for advanced NSCLC patients.
Collapse
|
183
|
Zhou B, Ying X, Chen Y, Cai X. A Comprehensive Pan-Cancer Analysis of the Tumorigenic Effect of Leucine-Zipper-Like Transcription Regulator (LZTR1) in Human Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2663748. [PMID: 36304963 PMCID: PMC9593223 DOI: 10.1155/2022/2663748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The elucidation of the action site, mechanism of Leucine-Zipper-like Transcription Regulator-1 (LZTR1) and its relationship with RAS-MAPK signaling pathway attracts more and more scholars to focus on the researches of LZTR1 and its role in tumorigenesis. However, there was no pan-cancer analysis between LZTR1 and human tumors reported before. Therefore, we are the first to investigate the potential oncogenic roles of LZTR1 across all tumor types based on the datasets of TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus). LZTR1 plays a double-edged role in tumor development and prognosis. We found that the high expression of LZTR1 brings better outcomes in esophageal carcinoma (ESCA) and head and neck squamous cell carcinoma (HNSC) but brings worth outcomes in uveal melanoma (UVM), adrenocortical carcinoma (ACC), liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD). Moreover, the expression of LZTR1 also strongly associated with pathological in ACC and bladder urothelial carcinoma (BLCA). We also found that the LZTR1 expression was associated with some immune cell infiltration including endothelial cells, regulatory T cells (Tregs), T cell CD8+, natural killer cells (NK cell), macrophages, neutrophil granulocyte, and cancer-associated fibroblasts in different cancers. Missense mutation in LZTR1 was detected in most cancers from TCGA datasets. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Body (GO) method was used to explain the pathogenesis of LZTR1. Our pan-cancer study provides a relatively comprehensive understanding of the carcinogenic role of LZTR1 in human tumors.
Collapse
Affiliation(s)
- Bo Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Xinyu Ying
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Yingcong Chen
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Xingchen Cai
- Medical School, Ningbo University, Ningbo 315211, China
| |
Collapse
|
184
|
Ma X, Zhu H, Cheng L, Chen X, Shu K, Zhang S. Targeting FGL2 in glioma immunosuppression and malignant progression. Front Oncol 2022; 12:1004700. [PMID: 36313679 PMCID: PMC9606621 DOI: 10.3389/fonc.2022.1004700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant type of glioma with the worst prognosis. Traditional therapies (surgery combined with radiotherapy and chemotherapy) have limited therapeutic effects. As a novel therapy emerging in recent years, immunotherapy is increasingly used in glioblastoma (GBM), so we expect to discover more effective immune targets. FGL2, a member of the thrombospondin family, plays an essential role in regulating the activity of immune cells and tumor cells in GBM. Elucidating the role of FGL2 in GBM can help improve immunotherapy efficacy and design treatment protocols. This review discusses the immunosuppressive role of FGL2 in the GBM tumor microenvironment and its ability to promote malignant tumor progression while considering FGL2-targeted therapeutic strategies. Also, we summarize the molecular mechanisms of FGL2 expression on various immune cell types and discuss the possibility of FGL2 and its related mechanisms as new GBM immunotherapy.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Suojun Zhang,
| |
Collapse
|
185
|
Handoko, Louisa M, Permata TBM, Gondhowiardjo SA. Deciphering Driver of Nasopharyngeal Cancer Development. Oncol Rev 2022; 16:10654. [PMID: 36531162 PMCID: PMC9756839 DOI: 10.3389/or.2022.10654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/14/2022] [Indexed: 09/10/2024] Open
Abstract
A great deal of progress has been made on understanding nasopharyngeal cancer in recent decades. Genomic, transcriptomic, and proteomic studies have enabled us to gain a deeper understanding on the biology of nasopharyngeal cancer, and though this new information is elaborate and detailed, an overall picture of the driver of nasopharyngeal cancer that includes all this information is lacking. This review will focus on providing a broad overview, with plausible and simple language, on nasopharyngeal carcinogenesis based on current updated information. This will help readers to gain a broad understanding, which may be necessary to provide common ground for further research on nasopharyngeal cancer.
Collapse
Affiliation(s)
- Handoko
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | | | - Soehartati A. Gondhowiardjo
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
186
|
Tumor HPV Status, Level of Regulatory T Cells and Macrophage Infiltration Predict up to 20-Year Non-Disease-Specific Survival in Oropharynx Squamous Cell Carcinoma Patients. Biomedicines 2022; 10:biomedicines10102484. [PMID: 36289746 PMCID: PMC9599108 DOI: 10.3390/biomedicines10102484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Oropharynx squamous cell carcinoma (OPSCC) is of special interest because human papilloma virus (HPV) and/or smoking cause this disease. Influxes of inflammatory cells into such tumors are known to vary with prognoses. AIMS To study whether the density of tumor-infiltrating T lymphocytes and tumor-infiltrating macrophages predicted general 20-year overall survival (OS), as well as OS with only disease-specific survival (DSS) patients included. METHODS Biopsies from patients treated for OPSCC (n = 180) were stained by immunohistochemistry and the tumor cell macrophage (CD68), pan T lymphocytes (CD3), and regulatory T lymphocytes (Foxp3) densities were determined. The HE-determined percentage of matured tumor cells and the rate of invasion were calculated, and stromal desmoplasia were performed. Tumor HPV presence was studied by PCR. Twenty-year OS and five-year DSS patients were determined. RESULTS Tumor HPV status strongly predicted survival. High tumor infiltration of CD3, Foxp3 and CD68-positive cells predicted better twenty-year OS, with and without HPV stratification. Foxp3 and CD68 levels predicted OS, and 20-year among DSS patients, primarily among HPV(+) patients. Tumor HE-derived variables did not predict such survival. CONCLUSIONS Tumor HPV status, level of Foxp3 tumor-infiltrating lymphocytes and CD68 tumor-infiltrating macrophages predicted up to 20-year OS of both all patients and disease-specific survived patients.
Collapse
|
187
|
Hernandez R, Põder J, LaPorte KM, Malek TR. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol 2022; 22:614-628. [PMID: 35217787 DOI: 10.1038/s41577-022-00680-w] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Preclinical studies of the T cell growth factor activity of IL-2 resulted in this cytokine becoming the first immunotherapy to be approved nearly 30 years ago by the US Food and Drug Administration for the treatment of cancer. Since then, we have learnt the important role of IL-2 in regulating tolerance through regulatory T cells (Treg cells) besides promoting immunity through its action on effector T cells and memory T cells. Another pivotal event in the history of IL-2 research was solving the crystal structure of IL-2 bound to its tripartite receptor, which spurred the development of cell type-selective engineered IL-2 products. These new IL-2 analogues target Treg cells to counteract the dysregulated immune system in the context of autoimmunity and inflammatory disorders or target effector T cells, memory T cells and natural killer cells to enhance their antitumour responses. IL-2 biologics have proven to be effective in preclinical studies and clinical assessment of some is now underway. These studies will soon reveal whether engineered IL-2 biologics are truly capable of harnessing the IL-2-IL-2 receptor pathway as effective monotherapies or combination therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Janika Põder
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
188
|
Lei S, Jin J, Zhao X, Zhou L, Qi G, Yang J. The role of IL-33/ST2 signaling in the tumor microenvironment and Treg immunotherapy. Exp Biol Med (Maywood) 2022; 247:1810-1818. [PMID: 35733343 PMCID: PMC9679353 DOI: 10.1177/15353702221102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 is a tissue-derived nuclear cytokine belonging to the IL-1 family. Stimulation-2 (ST2) is the only known IL-33 receptor. ST2 signals mostly on immune cells found within tissues, such as regulatory T cells (Treg cells), CD8+ T cells, and natural killer (NK) cells. Therefore, the IL-33/ST2 signaling pathway is important in the immune system. IL-33 deficiency impairs Treg cell function. ST2 signaling is also increased in active Treg cells, providing a new approach for Treg-related immunotherapy. The IL-33/ST2 signaling pathway regulates multiple immune-related cells by activating various intracellular kinases and factors in the tumor microenvironment (TME). Here, we review the latest studies on the role of the IL-33/ST2 signaling pathway in TME and Treg immunotherapy.
Collapse
Affiliation(s)
- Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Lihua Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Guangying Qi
- Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jinfeng Yang
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China,Jinfeng Yang.
| |
Collapse
|
189
|
Li Z, Yu Q, Zhu Q, Yang X, Li Z, Fu J. Applications of machine learning in tumor-associated macrophages. Front Immunol 2022; 13:985863. [PMID: 36211379 PMCID: PMC9538115 DOI: 10.3389/fimmu.2022.985863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Evaluation of tumor-host interaction and intratumoral heterogeneity in the tumor microenvironment (TME) is gaining increasing attention in modern cancer therapies because it can reveal unique information about the tumor status. As tumor-associated macrophages (TAMs) are the major immune cells infiltrating in TME, a better understanding of TAMs could help us further elucidate the cellular and molecular mechanisms responsible for cancer development. However, the high-dimensional and heterogeneous data in biology limit the extensive integrative analysis of cancer research. Machine learning algorithms are particularly suitable for oncology data analysis due to their flexibility and scalability to analyze diverse data types and strong computation power to learn underlying patterns from massive data sets. With the application of machine learning in analyzing TME, especially TAM’s traceable status, we could better understand the role of TAMs in tumor biology. Furthermore, we envision that the promotion of machine learning in this field could revolutionize tumor diagnosis, treatment stratification, and survival predictions in cancer research. In this article, we described key terms and concepts of machine learning, reviewed the applications of common methods in TAMs, and highlighted the challenges and future direction for TAMs in machine learning.
Collapse
Affiliation(s)
- Zhen Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qijun Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyuan Zhu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Yang
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhaobin Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Fu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Jie Fu,
| |
Collapse
|
190
|
Regulatory T-Cells Suppress Cytotoxic T Lymphocyte Responses against Microglia. Cells 2022; 11:cells11182826. [PMID: 36139401 PMCID: PMC9496959 DOI: 10.3390/cells11182826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Regulatory T-cells (Tregs) play pivotal roles during infection, cancer, and autoimmunity. In our previous study, we demonstrated a role for the PD-1:PD-L1 pathway in controlling cytolytic responses of CD8+ T lymphocytes against microglial cells presenting viral peptides. In this study, we investigated the role of Tregs in suppressing CD8+ T-cell-mediated cytotoxicity against primary microglial cells. Using in vitro cytotoxicity assays and flow cytometry, we demonstrated a role for Tregs in suppressing antigen-specific cytotoxic T-lymphocyte (CTL) responses against microglia loaded with a model peptide (SIINFEKL). We went on to show a significant decrease in the frequency of IFN-γ- and TNF-producing CD8+ T-cells when cultured with Tregs. Interestingly, a significant increase in the frequency of granzyme B- and Ki67-producing CTLs was observed. We also observed a significant decrease in the production of interleukin (IL)-6 by microglia. On further investigation, we found that Tregs significantly reduced MHC class 1 (MHC-1) expression on IFN-γ-treated microglial cells. Taken together, these studies demonstrate an immunosuppressive role for Tregs on CTL responses generated against primary microglia. Hence, modulation of Treg cell activity in combination with negative immune checkpoint blockade may stimulate anti-viral T-cell responses to more efficiently clear viral infection from microglial cell reservoirs.
Collapse
|
191
|
Santiago-Sánchez GS, Hodge JW, Fabian KP. Tipping the scales: Immunotherapeutic strategies that disrupt immunosuppression and promote immune activation. Front Immunol 2022; 13:993624. [PMID: 36159809 PMCID: PMC9492957 DOI: 10.3389/fimmu.2022.993624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has emerged as an effective therapeutic approach for several cancer types. However, only a subset of patients exhibits a durable response due in part to immunosuppressive mechanisms that allow tumor cells to evade destruction by immune cells. One of the hallmarks of immune suppression is the paucity of tumor-infiltrating lymphocytes (TILs), characterized by low numbers of effector CD4+ and CD8+ T cells in the tumor microenvironment (TME). Additionally, the proper activation and function of lymphocytes that successfully infiltrate the tumor are hampered by the lack of co-stimulatory molecules and the increase in inhibitory factors. These contribute to the imbalance of effector functions by natural killer (NK) and T cells and the immunosuppressive functions by myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the TME, resulting in a dysfunctional anti-tumor immune response. Therefore, therapeutic regimens that elicit immune responses and reverse immune dysfunction are required to counter immune suppression in the TME and allow for the re-establishment of proper immune surveillance. Immuno-oncology (IO) agents, such as immune checkpoint blockade and TGF-β trapping molecules, have been developed to decrease or block suppressive factors to enable the activity of effector cells in the TME. Therapeutic agents that target immunosuppressive cells, either by direct lysis or altering their functions, have also been demonstrated to decrease the barrier to effective immune response. Other therapies, such as tumor antigen-specific vaccines and immunocytokines, have been shown to activate and improve the recruitment of CD4+ and CD8+ T cells to the tumor, resulting in improved T effector to Treg ratio. The preclinical data on these diverse IO agents have led to the development of ongoing phase I and II clinical trials. This review aims to provide an overview of select therapeutic strategies that tip the balance from immunosuppression to immune activity in the TME.
Collapse
|
192
|
Immune Infiltration-Related ceRNA Network Revealing Potential Biomarkers for Prognosis of Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:1014347. [PMID: 36097539 PMCID: PMC9463596 DOI: 10.1155/2022/1014347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a frequently lethal malignancy, and the mortality is considerably high. The tumor microenvironment (TME) has been identified as a critical participation in cancer development, treatment, and prognosis. However, competing endogenous RNA (ceRNA) networks grouping with immune/stromal scores of HNSCC patients need to be further illustrated. Therefore, our study aimed to provide clues for searching promising prognostic markers of TME in HNSCC. Materials and Methods ESTIMATE algorithm was used to calculate immune scores and stromal scores of the enrolled HNSCC patients. Differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified by comparing the expression difference between high and low immune/stromal scores. Then, a ceRNA network and protein-protein interaction (PPI) network were constructed for selecting hub regulators. In addition, survival analysis was performed to access the association between immune scores, stromal scores, and differentially expressed RNAs in the ceRNA network and the overall survival (OS) of HNSCC patients. Then, the GSE65858 datasets from Gene Expression Omnibus (GEO) database was used for verification. At last, the difference between the clinical characteristics and immune cell infiltration in different expression groups of IL10RA, PRF1, and IL2RA was analyzed. Results Survival analysis showed a better OS in the high immune score group, and then we constructed a ceRNA network composed of 97 DEGs, 79 DELs and 22 DEMs. Within the ceRNA network, FOXP3, IL10RA, STAT5A, PRF1, IL2RA, miR-148a-3p, miR-3065-3p, and lncRNAs, including CXCR2P1, HNRNPA1P21, CTA-384D8.36, and IGHV1OR15-2, were closely correlated with the OS of HNSCC patients. Especially, using the data from GSE65858, we successfully verified that IL10RA, PRF1, and IL2RA were not only significantly upregulated in patients high immune scores, but also their high expressions were associated with longer survival time. In addition, stratified analysis showed that PRF1 and IL2RA might be involved in the mechanism of tumor progress. Conclusion In conclusion, we constructed a ceRNA network related to the TME of HNSCC, which provides candidates for therapeutic intervention and prognosis evaluation.
Collapse
|
193
|
Abstract
MRI is a widely available clinical tool for cancer diagnosis and treatment monitoring. MRI provides excellent soft tissue imaging, using a wide range of contrast mechanisms, and can non-invasively detect tissue metabolites. These approaches can be used to distinguish cancer from normal tissues, to stratify tumor aggressiveness, and to identify changes within both the tumor and its microenvironment in response to therapy. In this review, the role of MRI in immunotherapy monitoring will be discussed and how it could be utilized in the future to address some of the unique clinical questions that arise from immunotherapy. For example, MRI could play a role in identifying pseudoprogression, mixed response, T cell infiltration, cell tracking, and some of the characteristic immune-related adverse events associated with these agents. The factors to be considered when developing MRI imaging biomarkers for immunotherapy will be reviewed. Finally, the advantages and limitations of each approach will be discussed, as well as the challenges for future clinical translation into routine clinical care. Given the increasing use of immunotherapy in a wide range of cancers and the ability of MRI to detect the microstructural and functional changes associated with successful response to immunotherapy, the technique has great potential for more widespread and routine use in the future for these applications.
Collapse
Affiliation(s)
- Doreen Lau
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Pippa G Corrie
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
194
|
Chen D, Zhang C, Zang Y, Wang W, Zhang J. Identification of an immune-related gene prognostic index for predicting survival and immunotherapy efficacy in papillary renal cell carcinoma. Front Genet 2022; 13:970900. [PMID: 36159976 PMCID: PMC9499392 DOI: 10.3389/fgene.2022.970900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Despite considerable progress has been made in the understanding of the genetics and molecular biology of renal cell carcinoma (RCC), therapeutic options of patients with papillary renal cell carcinoma (PRCC) are limited. Immunotherapy based on immune checkpoint inhibitors (ICIs) has become a hot point in researching new drug for tumor and been tested in a number of human clinical trials. In this study, an immune-related gene prognostic index (IRGPI) was developed and provided a comprehensive and systematic analysis of distinct phenotypic and molecular portraits in the recognition, surveillance, and prognosis of PRCC. The reliability of the IRGPI was evaluated using independent datasets from GEO database and the expression levels of the genes in the IRGPI detected by real-time PCR. Collectively, the currently established IRGPI could be used as a potential biomarker to evaluate the response and efficacy of immunotherapy in PRCC.
Collapse
Affiliation(s)
- Dongshan Chen
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Wuhan, China
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, China
| | - Chen Zhang
- School of Life Science and Engineering, Handan University, Handan, China
| | - Yuanwei Zang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Wuhan, China
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, China
| |
Collapse
|
195
|
Li F, Shao X, Liu D, Jiao X, Yang X, Yang W, Liu X. Vascular Disruptive Hydrogel Platform for Enhanced Chemotherapy and Anti-Angiogenesis through Alleviation of Immune Surveillance. Pharmaceutics 2022; 14:1809. [PMID: 36145556 PMCID: PMC9505154 DOI: 10.3390/pharmaceutics14091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients undergoing immunotherapy always exhibit a low-response rate due to tumor heterogeneity and immune surveillance in the tumor. Angiogenesis plays an important role in affecting the status of tumor-infiltrated lymphocytes by inducing hypoxia and acidosis microenvironment, suggesting its synergistic potential in immunotherapy. However, the antitumor efficacy of singular anti-angiogenesis therapy often suffers from failure in the clinic due to the compensatory pro-angiogenesis signaling pathway. In this work, classic injectable thermosensitive PLGA-PEG-PLGA copolymer was used to construct a platform to co-deliver CA4P (vascular disruptive agent) and EPI for inducing immunogenic cell death of cancer cells by targeting the tumor immune microenvironment. Investigation of 4T1 tumor-bearing mouse models suggests that local administration of injectable V+E@Gel could significantly inhibit the proliferation of cancer cells and prolong the survival rate of 4T1 tumor-bearing mouse models. Histological analysis further indicates that V+E@Gel could effectively inhibit tumor angiogenesis and metastasis by down-regulating the expression of CD34, CD31, MTA1 and TGF-β. Moreover, due to the sustained release kinetics of V+E@Gel, its local administration relieves the immune surveillance in tumor tissues and thus induces a robust and long-lasting specific antitumor immune response. Overall, this work provides a new treatment strategy through the mediation of the tumor immune microenvironment by vascular disruption to fulfill enhanced chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fasheng Li
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xinmei Shao
- Department of Neurology, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Dehui Liu
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xiaogang Jiao
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xinqi Yang
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Wencai Yang
- Department of Interventional, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xiaoyan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| |
Collapse
|
196
|
Weißenborn C, von Lenthe S, Hinz N, Langwisch S, Busse M, Schumacher A, Zenclussen AC, Fest S. Depletion of Foxp3+ regulatory T cells but not the absence of
CD19
+
IL
‐10+ regulatory B cells hinders tumor growth in a para‐orthotopic neuroblastoma mouse model. Int J Cancer 2022; 151:2031-2042. [DOI: 10.1002/ijc.34262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Christine Weißenborn
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Sophie von Lenthe
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Nicole Hinz
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Stefanie Langwisch
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
| | - Anne Schumacher
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Ana C. Zenclussen
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Stefan Fest
- Pediatric Immunotherapy Group, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Experimental Obstetrics and Gynecology, Medical Faculty Otto‐von Guericke University of Magdeburg Germany
- Department of Environmental Immunology Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Städtisches Klinikum Dessau, Academic Hospital of University Brandenburg Dessau Germany
| |
Collapse
|
197
|
Sugie T, Salgado R, Fong L. Editorial: Advancements in immunology and immunotherapy for breast cancer. Front Oncol 2022; 12:979806. [PMID: 36016626 PMCID: PMC9396301 DOI: 10.3389/fonc.2022.979806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tomoharu Sugie
- Breast Surgery, Kansai Medical University Hospital, Hirakata, Japan
- *Correspondence: Tomoharu Sugie,
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA-Hospitals, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, VIC, Australia
| | - Lawrence Fong
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
198
|
Ryan NM, Lamenza FF, Upadhaya P, Pracha H, Springer A, Swingler M, Siddiqui A, Oghumu S. Black raspberry extract inhibits regulatory T-cell activity in a murine model of head and neck squamous cell carcinoma chemoprevention. Front Immunol 2022; 13:932742. [PMID: 36016924 PMCID: PMC9395668 DOI: 10.3389/fimmu.2022.932742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are one of the most diagnosed malignancies globally, with a 5-year survival rate of approximately 40% to 50%. Current therapies are limited to highly invasive surgery, aggressive radiation, and chemotherapies. Recent reports have demonstrated the potential phytochemical properties of black raspberries in inhibiting the progression of various cancers including HNSCCs. However, the effects of black raspberry extracts on immune cells of the tumor microenvironment, specifically regulatory T cells during HNSCC, have not been investigated. We used a mouse model of 4-nitroquinoline-1-oxide (4NQO) chemically induced HNSCC carcinogenesis to determine these effects. C57BL/6 mice were exposed to 4NQO for 16 weeks and regular water for 8 weeks. 4NQO-exposed mice were fed the AIN-76A control mouse diet or the AIN76 diet supplemented with black raspberry extract. At terminal sacrifice, tumor burdens and immune cell recruitment and activity were analyzed in the tumor microenvironment, draining lymph nodes, and spleens. Mice fed the BRB extract-supplemented diet displayed decreased tumor burden compared to mice provided the AIN-76A control diet. Black raspberry extract administration did not affect overall T-cell populations as well as Th1, Th2, or Th17 differentiation in spleens and tumor draining lymph nodes. However, dietary black raspberry extract administration inhibited regulatory T-cell recruitment to HNSCC tumor sites. This was associated with an increased cytotoxic immune response in the tumor microenvironment characterized by increased CD8+ T cells and enhanced Granzyme B production during BRB extract-mediated HNSCC chemoprevention. Interestingly, this enhanced CD8+ T-cell antitumoral response was localized at the tumor sites but not at spleens and draining lymph nodes. Furthermore, we found decreased levels of PD-L1 expression by myeloid populations in draining lymph nodes of black raspberry-administered carcinogen-induced mice. Taken together, our findings demonstrate that black raspberry extract inhibits regulatory T-cell recruitment and promotes cytotoxic CD8 T-cell activity at tumor sites during HNSCC chemoprevention. These results demonstrate the immunomodulatory potential of black raspberry extracts and support the use of black raspberry-derived phytochemicals as a complementary approach to HNSCC chemoprevention and treatment.
Collapse
Affiliation(s)
- Nathan M. Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael Swingler
- Department of Microbiology, Immunology, and Inflammation, Center of Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Arham Siddiqui
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Steve Oghumu,
| |
Collapse
|
199
|
Zhong J, Wang Z, Hounye AH, Liu J, Zhang J, Qi M, Hou M. A novel pyroptosis-related LncRNA signature predicts prognosis and indicates tumor immune microenvironment in skin cutaneous melanoma. Life Sci 2022; 307:120832. [DOI: 10.1016/j.lfs.2022.120832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
|
200
|
Xu T, Xu W, Zheng Y, Li X, Cai H, Xu Z, Zou Q, Yu B. Comprehensive FGFR3 alteration-related transcriptomic characterization is involved in immune infiltration and correlated with prognosis and immunotherapy response of bladder cancer. Front Immunol 2022; 13:931906. [PMID: 35958598 PMCID: PMC9360490 DOI: 10.3389/fimmu.2022.931906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bladder cancer (BC) threatens the health of human beings worldwide because of its high recurrence rate and mortality. As an actionable biomarker, fibroblast growth factor receptor 3 (FGFR3) alterations have been revealed as a vital biomarker and associated with favorable outcomes in BC. However, the comprehensive relationship between the FGFR3 alteration associated gene expression profile and the prognosis of BC remains ambiguous. Materials and Methods Genomic alteration profile, gene expression data, and related clinical information of BC patients were downloaded from The Cancer Genomics database (TCGA), as a training cohort. Subsequently, the Weighted Gene Co-expression Network Analysis (WGCNA) was conducted to identify the hub modules correlated with FGFR3 alteration. The univariate, multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to obtain an FGFR3 alteration-related gene (FARG) prognostic signature and FARG-based nomogram. The receiver operating characteristic (ROC) curve analysis was used for evaluation of the ability of prognosis prediction. The FARG signature was validated in four independent datasets, namely, GSE13507, GSE31684, GSE32548, and GSE48075, from Gene Expression Omnibus (GEO). Then, clinical feature association analysis, functional enrichment, genomic alteration enrichment, and tumor environment analysis were conducted to reveal differential clinical and molecular characterizations in different risk groups. Lastly, the treatment response was evaluated in the immunotherapy-related dataset of the IMvigor210 cohort and the frontline chemotherapy dataset of GSE48276, and the chemo-drug sensitivity was estimated via Genomics of Drug Sensitivity in Cancer (GDSC). Results There were a total of eleven genes (CERCAM, TPST1, OSBPL10, EMP1, CYTH3, NCRNA00201, PCDH10, GAP43, COLQ, DGKB, and SETBP1) identified in the FARG signature, which divided BC patients from the TCGA cohort into high- and low-risk groups. The Kaplan–Meier curve analysis demonstrated that BC patients in the low-risk group have superior overall survival (OS) than those in the high-risk group (median OS: 27.06 months vs. 104.65 months, p < 0.0001). Moreover, the FARG signature not only showed a good performance in prognosis prediction, but also could distinguish patients with different neoplasm disease stages, notably whether patients presented with muscle invasive phenotype. Compared to clinicopathological features, the FARG signature was found to be the only independent prognostic factor, and subsequently, a FARG-based prognostic nomogram was constructed with better ability of prognosis prediction, indicated by area under ROC curve (AUC) values for 1-, 3-, and 5-year OS of 0.69, 0.71, and 0.79, respectively. Underlying the FARG signature, multiple kinds of metabolism- and immune-related signaling pathways were enriched. Genomic alteration enrichment further identified that FGFR3 alterations, especially c.746C>G (p.Ser249Cys), were more prevalent in the low-risk group. Additionally, FARG score was positively correlated with ESTIMATE and TIDE scores, and the low-risk group had abundant enrichment of plasma B cells, CD8+ T cells, CD4+ naive T cells, and helper follicular T cells, implying that patients in the low-risk group were likely to make significant responses to immunotherapy, which was further supported by the analysis in the IMvigor210 cohort as there was a significantly higher response rate among patients with lower FARG scores. The analysis of the GDSC database finally demonstrated that low-risk samples were more sensitive to methotrexate and tipifarnib, whereas those in the high-risk group had higher sensitivities in cisplatin, docetaxel, and paclitaxel, instead. Conclusion The novel established FARG signature based on a comprehensive FGFR3 alteration-related transcriptomic profile performed well in prognosis prediction and was also correlated with immunotherapy and chemotherapy treatment responses, which had great potential in future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yu
- *Correspondence: Bin Yu, ;
| |
Collapse
|