151
|
Brumer I, Bauer DF, Schad LR, Zöllner FG. Synthetic Arterial Spin Labeling MRI of the Kidneys for Evaluation of Data Processing Pipeline. Diagnostics (Basel) 2022; 12:1854. [PMID: 36010205 PMCID: PMC9406826 DOI: 10.3390/diagnostics12081854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Accurate quantification of perfusion is crucial for diagnosis and monitoring of kidney function. Arterial spin labeling (ASL), a completely non-invasive magnetic resonance imaging technique, is a promising method for this application. However, differences in acquisition (e.g., ASL parameters, readout) and processing (e.g., registration, segmentation) between studies impede the comparison of results. To alleviate challenges arising solely from differences in processing pipelines, synthetic data are of great value. In this work, synthetic renal ASL data were generated using body models from the XCAT phantom and perfusion was added using the general kinetic model. Our in-house developed processing pipeline was then evaluated in terms of registration, quantification, and segmentation using the synthetic data. Registration performance was evaluated qualitatively with line profiles and quantitatively with mean structural similarity index measures (MSSIMs). Perfusion values obtained from the pipeline were compared to the values assumed when generating the synthetic data. Segmentation masks obtained by semi-automated procedure of the processing pipeline were compared to the original XCAT organ masks using the Dice index. Overall, the pipeline evaluation yielded good results. After registration, line profiles were smoother and, on average, MSSIMs increased by 25%. Mean perfusion values for cortex and medulla were close to the assumed perfusion of 250 mL/100 g/min and 50 mL/100 g/min, respectively. Dice indices ranged 0.80-0.93, 0.78-0.89, and 0.64-0.84 for whole kidney, cortex, and medulla, respectively. The generation of synthetic ASL data allows flexible choice of parameters and the generated data are well suited for evaluation of processing pipelines.
Collapse
Affiliation(s)
- Irène Brumer
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (D.F.B.); (L.R.S.); (F.G.Z.)
| | | | | | | |
Collapse
|
152
|
Bhogal AA, Sayin ES, Poublanc J, Duffin J, Fisher JA, Sobcyzk O, Mikulis DJ. Quantifying cerebral blood arrival times using hypoxia-mediated arterial BOLD contrast. Neuroimage 2022; 261:119523. [PMID: 35907499 DOI: 10.1016/j.neuroimage.2022.119523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral blood arrival and tissue transit times are sensitive measures of the efficiency of tissue perfusion and can provide clinically meaningful information on collateral blood flow status. We exploit the arterial blood oxygen level dependent (BOLD) signal contrast established by precisely decreasing, and then increasing, arterial hemoglobin saturation using respiratory re-oxygenation challenges to quantify arterial blood arrival times throughout the brain. We term this approach the Step Hemoglobin re-Oxygenation Contrast Stimulus (SHOCS). Carpet plot analysis yielded measures of signal onset (blood arrival), global transit time (gTT) and calculations of relative total blood volume. Onset times averaged across 12 healthy subjects were 1.1 ± 0.4 and 1.9 ± 0.6 for cortical gray and deep white matter, respectively. The average whole brain gTT was 4.5 ± 0.9 seconds. The SHOCS response was 1.7 fold higher in grey versus white matter; in line with known differences in tissue-specific blood volume fraction. SHOCS was also applied in a patient with unilateral carotid artery occlusion revealing ipsilateral prolonged signal onset with normal perfusion in the unaffected hemisphere. We anticipate that SHOCS will further inform on the extent of collateral blood flow in patients with upstream steno-occlusive vascular disease, including those already known to manifest reductions in vasodilatory reserve capacity or vascular steal.
Collapse
Affiliation(s)
- Alex A Bhogal
- Center of Imaging Sciences, High Field Department, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, CX 3584, the Netherlands.
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, Toronto, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, Canada; Department of Anesthesiology and Pain Medicine, University Health Network and University of Toronto, Toronto, Canada
| | - Olivia Sobcyzk
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University Health Network and University of Toronto, Toronto, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| |
Collapse
|
153
|
Ahn HS, Jung Y, Park SH. Measuring glomerular blood transfer rate in kidney using diffusion-weighted arterial spin labeling. Magn Reson Med 2022; 88:2408-2418. [PMID: 35877788 DOI: 10.1002/mrm.29401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To propose a two-compartment renal perfusion model for calculating glomerular blood transfer rate ( k G $$ {k}_G $$ ) as a new measure of renal function. THEORY The renal perfusion signal was divided into preglomerular and postglomerular flows according to flow velocity. By analyzing perfusion signals acquired with and without diffusion gradients, we estimated k G $$ {k}_G $$ , the blood transfer rate from the afferent arterioles into the glomerulus. METHODS A multislice multidelay diffusion-weighted arterial spin labeling sequence was applied to subjects with no history of renal dysfunctions. In the multiple b-value experiment, images were acquired with seven b-values to validate the bi-exponential decays of the renal perfusion signal and to determine the appropriate b-value for suppressing preglomerular flow. In the caffeine challenge, six subjects were scanned twice on the caffeine day and the control day. The k G $$ {k}_G $$ values of the two dates were compared. RESULTS The perfusion signal showed a bi-exponential decay with b-values. There was no significant difference in renal blood flow and arterial transit time between caffeine and control days. In contrast, cortical k G $$ {k}_G $$ was significantly higher on the caffeine day (caffeine day: 106 . 0 ± 20 . 3 $$ 106.0\pm 20.3 $$ min - 1 $$ {}^{-1} $$ control day: 78 . 8 ± 22 . 9 $$ 78.8\pm 22.9 $$ min - 1 $$ {}^{-1} $$ ). These results were consistent with those from the literature. CONCLUSION We showed that the perfusion signal consists of two compartments of preglomerular flow and postglomerular flow. The proposed diffusion-weighted arterial spin labeling could measure the glomerular blood transfer rate ( k G $$ {k}_G $$ ), which was sensitive enough to noninvasively monitor the caffeine-induced vasodilation of afferent arterioles.
Collapse
Affiliation(s)
- Hyun-Seo Ahn
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yujin Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
154
|
Joo IL, Lam WW, Oakden W, Hill ME, Koletar MM, Morrone CD, Stanisz GJ, McLaurin J, Stefanovic B. Early alterations in brain glucose metabolism and vascular function in a transgenic rat model of Alzheimer's disease. Prog Neurobiol 2022; 217:102327. [PMID: 35870681 DOI: 10.1016/j.pneurobio.2022.102327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Alteration in brain metabolism predates clinical onset of Alzheimer's Disease (AD). Realizing its potential as an early diagnostic marker, however, requires understanding how early AD metabolic dysregulation manifests on non-invasive brain imaging. We presently utilized magnetic resonance imaging and spectroscopy to map glucose and ketone metabolic profiles and image cerebrovascular function in a rat model of early stage AD - 9-month-old TgF344-AD (TgAD) rats - and their age-matched non-transgenic (nTg) littermates. Compared to the nTg rats, TgAD rats displayed attenuation in global cerebral and hippocampal vasoreactivity to hypercapnia, by 49±17% and 58±19%, respectively, while their functional hyperemia to somatosensory stimulation diminished by 69±5%. To assess brain glucose uptake, rats were fasted overnight and then challenged with an intravenous infusion of 2-deoxy-D-glucose (2DG). Compared to their non-transgenic littermates, TgAD rats exhibited 99±10% and 52±5% smaller glucose uptake in the entorhinal cortex and the hippocampus, respectively. Moreover, hippocampal glucose uptake reduction in male TgAD rats compared to the nTg was 54±36% greater than the reduction seen in female TgAD rats. TgAD rats also showed a 59±42% increase in total choline level in the hippocampus, suggesting increased membrane turnover. In combination with our earlier findings of impaired electrophysiological metrics at this early stage of AD pathology progression, our findings suggest that subtle neuronal function alterations that would be difficult to assess in a clinical population may be accompanied by MRI-detectable changes in brain glucose metabolism and cerebrovascular function.
Collapse
Affiliation(s)
- Illsung L Joo
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Wilfred W Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Mary E Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Margaret M Koletar
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada.
| | - Christopher D Morrone
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Bojana Stefanovic
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
155
|
Coffin C, Suerken CK, Bateman JR, Whitlow CT, Williams BJ, Espeland MA, Sachs BC, Cleveland M, Yang M, Rogers S, Hayden KM, Baker LD, Williamson J, Craft S, Hughes TM, Lockhart SN. Vascular and microstructural markers of cognitive pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12332. [PMID: 35814618 PMCID: PMC9257520 DOI: 10.1002/dad2.12332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Introduction Arterial stiffness may play a role in the development of dementia through poorly understood effects on brain microstructural integrity and perfusion. Methods We examined markers of arterial stiffness (carotid-femoral pulse wave velocity [cfPWV]) and elevated systolic blood pressure (SBP) in relation to cognitive function and brain magnetic resonance imaging macrostructure (gray matter [GM] and white matter [WM] volumes), microstructure (diffusion based free water [FW] and fractional anisotropy [FA]), and cerebral blood flow (CBF) in WM and GM in models adjusted for age, race, sex, education, and apolipoprotein E ε4 status. Results Among 460 participants (70 ± 8 years; 44 dementia, 158 mild cognitive impairment, 258 normal cognition), higher cfPWV and SBP were independently associated with higher FW, higher WM hyperintensity volume, and worse cognition (global and executive function). Higher SBP alone was significantly associated with lower WM and GM CBF. Discussion Arterial stiffness is associated with impaired WM microstructure and global and executive cognitive function.
Collapse
Affiliation(s)
- Claudia Coffin
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cynthia K. Suerken
- Department of Biostatistics and Data ScienceDivision of Public Health SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - James R. Bateman
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Benjamin J. Williams
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mark A. Espeland
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Biostatistics and Data ScienceDivision of Public Health SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Bonnie C. Sachs
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Maryjo Cleveland
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mia Yang
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samantha Rogers
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kathleen M. Hayden
- Department of Social Sciences and Health PolicyDivision of Public Health SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Laura D. Baker
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeff Williamson
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Timothy M. Hughes
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal MedicineSection on Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
156
|
Zhu Z, Gong G, Wang L, Su Y, Lu J, Yin Y. Three-Dimensional Arterial Spin Labeling-Guided Sub-Volume Segmentation of Radiotherapy in Adult Non-Enhancing Low-Grade Gliomas. Front Oncol 2022; 12:914507. [PMID: 35860561 PMCID: PMC9291222 DOI: 10.3389/fonc.2022.914507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The present study aimed to evaluate the feasibility of sub-volume segmentation for radiotherapy planning of adult non-enhancing low-grade gliomas (NE-LGGs) guided by three-dimensional arterial spin labeling (3D-ASL). The differences in high- and low-perfusion areas of NE-LGGs were analyzed using multi-sequence magnetic resonance imaging (MRI) radiomics. Methods Fifteen adult patients with NE-LGGs were included in the study. MR images, including T1-weighted imaging (T1WI), T2 Propeller, T2 fluid-attenuated inversion recovery (T2 Flair), 3D-ASL, and contrast-enhanced T1WI (CE-T1WI), were obtained. The gross tumor volume (GTV) was delineated according to the hyperintensity on T2 Flair. The GTV was divided into high- and low-perfusion areas, namely GTV-ASL and GTV-SUB, respectively, based on the differences in cerebral blood flow (CBF) value. The volumes and CBF values of high- and low-perfusion areas were measured and compared. The least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal features of all MR maps. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic accuracy of the absolute CBFmean (aCBFmean), relative CBFmean (rCBFmean, normalized by the CBF value of the normal gray matter), and screened features in differentiating high- and low-perfusion areas. Results Among the enrolled patients, three (20%) patients with NE-LGGs showed focal intra- and post-radiotherapy contrast enhancement within a prior high-perfusion area of 3D-ASL. The volume ratio of the GTV-ASL to the GTV was (37.08% ± 17.88)% (46.26 ± 44.51 vs. 167.46 ± 209.64 cm3, P = 0.000). The CBFmean in the high-perfusion area was approximately two times of that in the edema area or normal gray matter (66.98 ± 18.03 vs. 35.19 ± 7.75 or 33.92 ± 8.48 ml/100g/min, P = 0.000). Thirteen features were screened, seven of which were extracted from 3D-ASL. The area undercurve (AUC) values of aCBFmean, rCBFmean, and firstorder_10Percentile from 3D-ASL were more than 0.9, of which firstorder_10Percentile was the highest. Their cut-off values were 44.16 ml/100 g/min, 1.49 and 31, respectively. Conclusion The difference in blood perfusion in the GTV can be quantified and analyzed based on 3D-ASL images for NE-LGGs, which could guide the sub-volume segmentation of the GTV. 3D-ASL should become a routine method for NE-LGGs during simulation and radiotherapy.
Collapse
Affiliation(s)
- Zihong Zhu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanzhong Gong
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ya Su
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Lu
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Yong Yin,
| |
Collapse
|
157
|
Clement P, Petr J, Dijsselhof MBJ, Padrela B, Pasternak M, Dolui S, Jarutyte L, Pinter N, Hernandez-Garcia L, Jahn A, Kuijer JPA, Barkhof F, Mutsaerts HJMM, Keil VC. A Beginner's Guide to Arterial Spin Labeling (ASL) Image Processing. FRONTIERS IN RADIOLOGY 2022; 2:929533. [PMID: 37492666 PMCID: PMC10365107 DOI: 10.3389/fradi.2022.929533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 07/27/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive and cost-effective MRI technique for brain perfusion measurements. While it has developed into a robust technique for scientific and clinical use, its image processing can still be daunting. The 2019 Ann Arbor ISMRM ASL working group established that education is one of the main areas that can accelerate the use of ASL in research and clinical practice. Specifically, the post-acquisition processing of ASL images and their preparation for region-of-interest or voxel-wise statistical analyses is a topic that has not yet received much educational attention. This educational review is aimed at those with an interest in ASL image processing and analysis. We provide summaries of all typical ASL processing steps on both single-subject and group levels. The readers are assumed to have a basic understanding of cerebral perfusion (patho) physiology; a basic level of programming or image analysis is not required. Starting with an introduction of the physiology and MRI technique behind ASL, and how they interact with the image processing, we present an overview of processing pipelines and explain the specific ASL processing steps. Example video and image illustrations of ASL studies of different cases, as well as model calculations, help the reader develop an understanding of which processing steps to check for their own analyses. Some of the educational content can be extrapolated to the processing of other MRI data. We anticipate that this educational review will help accelerate the application of ASL MRI for clinical brain research.
Collapse
Affiliation(s)
- Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
| | - Mathijs B. J. Dijsselhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Maurice Pasternak
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, OT, Canada
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lina Jarutyte
- School of Psychological Science, University of Bristol, England, United Kingdom
| | - Nandor Pinter
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Dent Neurologic Institute, Buffalo, Amherst, NY, United States
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, United States
| | - Luis Hernandez-Garcia
- fMRI Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Jahn
- fMRI Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joost P. A. Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, United Kingdom
| | - Henk J. M. M. Mutsaerts
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, United Kingdom
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
158
|
Stotesbury H, Hales PW, Koelbel M, Hood AM, Kawadler JM, Saunders DE, Sahota S, Rees DC, Wilkey O, Layton M, Pelidis M, Inusa BPD, Howard J, Chakravorty S, Clark CA, Kirkham FJ. Venous cerebral blood flow quantification and cognition in patients with sickle cell anemia. J Cereb Blood Flow Metab 2022; 42:1061-1077. [PMID: 34986673 PMCID: PMC9121533 DOI: 10.1177/0271678x211072391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Prior studies have described high venous signal qualitatively using arterial spin labelling (ASL) in patients with sickle cell anemia (SCA), consistent with arteriovenous shunting. We aimed to quantify the effect and explored cross-sectional associations with arterial oxygen content (CaO2), disease-modifying treatments, silent cerebral infarction (SCI), and cognitive performance. 94 patients with SCA and 42 controls underwent cognitive assessment and MRI with single- and multi- inflow time (TI) ASL sequences. Cerebral blood flow (CBF) and bolus arrival time (BAT) were examined across gray and white matter and high-signal regions of the sagittal sinus. Across gray and white matter, increases in CBF and reductions in BAT were observed in association with reduced CaO2 in patients, irrespective of sequence. Across high-signal sagittal sinus regions, CBF was also increased in association with reduced CaO2 using both sequences. However, BAT was increased rather than reduced in patients across these regions, with no association with CaO2. Using the multiTI sequence in patients, increases in CBF across white matter and high-signal sagittal sinus regions were associated with poorer cognitive performance. These novel findings highlight the utility of multiTI ASL in illuminating, and identifying objectively quantifiable and functionally significant markers of, regional hemodynamic stress in patients with SCA.
Collapse
Affiliation(s)
- Hanne Stotesbury
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Patrick W Hales
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Melanie Koelbel
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Anna M Hood
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Jamie M Kawadler
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Dawn E Saunders
- Division of Psychology and Mental Health, Manchester Centre for Health Psychology, University of Manchester, Manchester, UK
| | - Sati Sahota
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - David C Rees
- Radiology, Great Ormond Hospital for Children NHS Trust, London, UK
| | | | - Mark Layton
- North Middlesex University Hospital NHS Foundation Trust, London, UK
| | - Maria Pelidis
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Baba PD Inusa
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Jo Howard
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, UK
| | | | - Chris A Clark
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Fenella J Kirkham
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| |
Collapse
|
159
|
Adebimpe A, Bertolero M, Dolui S, Cieslak M, Murtha K, Baller EB, Boeve B, Boxer A, Butler ER, Cook P, Colcombe S, Covitz S, Davatzikos C, Davila DG, Elliott MA, Flounders MW, Franco AR, Gur RE, Gur RC, Jaber B, McMillian C, Milham M, Mutsaerts HJMM, Oathes DJ, Olm CA, Phillips JS, Tackett W, Roalf DR, Rosen H, Tapera TM, Tisdall MD, Zhou D, Esteban O, Poldrack RA, Detre JA, Satterthwaite TD. ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nat Methods 2022; 19:683-686. [PMID: 35689029 PMCID: PMC10548890 DOI: 10.1038/s41592-022-01458-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Arterial spin labeled (ASL) magnetic resonance imaging (MRI) is the primary method for noninvasively measuring regional brain perfusion in humans. We introduce ASLPrep, a suite of software pipelines that ensure the reproducible and generalizable processing of ASL MRI data.
Collapse
Affiliation(s)
- Azeez Adebimpe
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell Bertolero
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudipto Dolui
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Murtha
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica B Baller
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Adam Boxer
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ellyn R Butler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phil Cook
- Penn Image Computing and Science Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stan Colcombe
- Child Mind Institute, New York, NY, USA
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Sydney Covitz
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego G Davila
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew W Flounders
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandre R Franco
- Child Mind Institute, New York, NY, USA
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Basma Jaber
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey McMillian
- Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Milham
- Child Mind Institute, New York, NY, USA
- Center for Brain Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Desmond J Oathes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Brain Science, Translation, Innovation, and Modulation Center, Perelmann School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Olm
- Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Phillips
- Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Will Tackett
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Tinashe M Tapera
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dale Zhou
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oscar Esteban
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, Stanford University, Stanford, CA, USA
| | | | - John A Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
160
|
Golay X, Ho ML. Multidelay ASL of the pediatric brain. Br J Radiol 2022; 95:20220034. [PMID: 35451851 PMCID: PMC10996417 DOI: 10.1259/bjr.20220034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast MRI technique for evaluation of cerebral blood flow (CBF). A key parameter in single-delay ASL is the choice of postlabel delay (PLD), which refers to the timing between the labeling of arterial free water and measurement of flow into the brain. Multidelay ASL (MDASL) utilizes several PLDs to improve the accuracy of CBF calculations using arterial transit time (ATT) correction. This approach is particularly helpful in situations where ATT is unknown, including young subjects and slow-flow conditions. In this article, we discuss the technical considerations for MDASL, including labeling techniques, quantitative metrics, and technical artefacts. We then provide a practical summary of key clinical applications with real-life imaging examples in the pediatric brain, including stroke, vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, tumor, infection, and metabolic disease.
Collapse
Affiliation(s)
- Xavier Golay
- MR Neurophysics and Translational Neuroscience, UCL Queen
Square Institute of Neurology London, London,
England, UK
| | - Mai-Lan Ho
- Radiology, Nationwide Children’s Hospital and The Ohio
State University, Columbus, OH,
USA
| |
Collapse
|
161
|
Laursen JC, Søndergaard-Heinrich N, Haddock B, Rasmussen IKB, Hansen CS, Larsson HBW, Groop PH, Bjornstad P, Frimodt-Møller M, Andersen UB, Rossing P. Kidney oxygenation, perfusion and blood flow in people with and without type 1 diabetes. Clin Kidney J 2022; 15:2072-2080. [PMID: 36825032 PMCID: PMC9942445 DOI: 10.1093/ckj/sfac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background We used magnetic resonance imaging (MRI) to study kidney energetics in persons with and without type 1 diabetes (T1D). Methods In a cross-sectional study, 15 persons with T1D and albuminuria and 15 non-diabetic controls (CONs) underwent multiparametric MRI (3 Tesla Philips Scanner) to quantify renal cortical and medullary oxygenation (R2*, higher values correspond to higher deoxyhaemoglobin concentration), renal perfusion (arterial spin labelling) and renal artery blood flow (phase contrast). Analyses were adjusted for age, sex, systolic blood pressure, plasma haemoglobin, body mass index and estimated glomerular filtration rate (eGFR). Results Participants with T1D had a higher median (Q1; Q3) urine albumin creatinine ratio (UACR) than CONs [46 (21; 58) versus 4 (3; 6) mg/g; P < .0001] and a lower mean ± SD eGFR (73 ± 32 mL/min/1.73 m2 versus 88 ± 15 mL/min/1.73 m2; P = .12), although not significantly. Mean medullary R2* was lower in T1D (34 ± 6/s versus 38 ± 5/s; P < .01) corresponding to a higher oxygenation. R2* was not different in the cortex. Cortical perfusion was lower in T1D (163 ± 40 versus 224 ± 49 mL/100 g/min; P < .001). Renal artery blood flow was lower in T1D than in CONs (360 ± 130 versus 430 ± 113 mL/min; P = .05). In T1D, lower cortical oxygenation and renal artery blood flow were both associated with higher UACR and lower eGFR (P < .05). Conclusions Participants with T1D and albuminuria exhibited higher medullary oxygenation than CONs, despite lower cortical perfusion and renal artery blood flow. This might reflect perturbed kidney energetics leading to a higher setpoint of medullary oxygenation in T1D. Lower cortical oxygenation and renal artery blood flow were associated with higher UACR and lower eGFR in T1D.
Collapse
Affiliation(s)
| | - Niels Søndergaard-Heinrich
- Complications Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, the Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ida Kirstine Bull Rasmussen
- Complications Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, the Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Bo Wiberg Larsson
- Department of Clinical Medicine, the Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Per-Henrik Groop
- FinnDiane Study Group, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, Department of Paediatrics, Section of Endocrinology, University of Colorado School of Medicine, CO, USA
| | | | | | - Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, the Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
162
|
Neumann K, Günther M, Düzel E, Schreiber S. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Front Aging Neurosci 2022; 14:871612. [PMID: 35663571 PMCID: PMC9161030 DOI: 10.3389/fnagi.2022.871612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this pilot study, we investigated microvascular impairment in patients with cerebral small vessel disease (CSVD) using non-invasive arterial spin labeling (ASL) magnetic resonance imaging (MRI). This method enabled us to measure the perfusion parameters, cerebral blood flow (CBF), and arterial transit time (ATT), and the effective T1-relaxation time (T1eff) to research a novel approach of assessing perivascular clearance. CSVD severity was characterized using the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) and included a rating of white matter hyperintensities (WMHs), lacunes, enlarged perivascular spaces (EPVSs), and cerebral microbleeds (CMBs). Here, we found that CBF decreases and ATT increases with increasing CSVD severity in patients, most prominent for a white matter (WM) region-of-interest, whereas this relation was almost equally driven by WMHs, lacunes, EPVSs, and CMBs. Additionally, we observed a longer mean T1eff of gray matter and WM in patients with CSVD compared to elderly controls, providing an indication of impaired clearance in patients. Mainly T1eff of WM was associated with CSVD burden, whereas lobar lacunes and CMBs contributed primary to this relation compared to EPVSs of the centrum semiovale. Our results complement previous findings of CSVD-related hypoperfusion by the observation of retarded arterial blood arrival times in brain tissue and by an increased T1eff as potential indication of impaired clearance rates using ASL.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Katja Neumann
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
163
|
Ning Z, Chen S, Chen Z, Han H, Qiao H, Zhang N, Wang R, Shen R, Zhao X. Saturated multi-delay renal arterial spin labeling technique for simultaneous perfusion and T 1 quantification in kidneys. Magn Reson Med 2022; 88:1055-1067. [PMID: 35506512 DOI: 10.1002/mrm.29268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To propose a free-breathing simultaneous multi-delay arterial spin labeling (ASL) and T1 mapping technique with a stepwise kinetic model for renal assessment in a single 4-min scan at 3 T. METHODS The proposed saturated multi-delay renal arterial spin labeling (SAMURAI) sequence used flow-sensitive alternating inversion recovery (FAIR) preparation, followed by acquisition of 9 images with Look-Locker spoiled gradient recalled echo (SPGR). Pre-saturation at the imaging slice was used to achieve saturation-based T1 mapping. A 4-step 2-compartment kinetic model was proposed to characterize water transition through artery- and tissue-compartment. The impact of the Look-Locker sampling scheme on the ASL signal was corrected in this model. T1 estimation with dictionary searching method and perfusion quantification based on the proposed kinetic model fitting were conducted after groupwise registration of the acquired images. The feasibility and repeatability of SAMURAI were validated in healthy subjects (n = 11) and patients with different renal diseases (n = 4). RESULTS The proposed SAMURAI technique can provide accurate T1 map with strong correlation (R2 = 0.98) with inversion recovery spin echo (IR-SE) on phantom. SAMURAI provided equally reliable whole kidney and cortical ASL and T1 quantification results compared with multi-TI FAIR (intraclass correlation coefficient [ICC], 0.880-0.958) and IR-SPGR (ICC, 0.875-0.912), respectively. Low renal blood flow and increased T1 were detected by SAMURAI in the affected kidneys of the patients. SAMURAI had excellent scan-rescan repeatability (ICC, 0.905-0.992) and significantly reduced scan time (4 min 6 s vs. 45 min for 9 TIs) compared to multi-TI FAIR. CONCLUSION The proposed SAMURAI technique is feasible and repeatable for simultaneously quantifying T1 and perfusion of kidneys with high time-efficiency.
Collapse
Affiliation(s)
- Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
164
|
Stotesbury H, Hales PW, Hood AM, Koelbel M, Kawadler JM, Saunders DE, Sahota S, Rees DC, Wilkey O, Layton M, Pelidis M, Inusa BPD, Howard J, Chakravorty S, Clark CA, Kirkham FJ. Individual Watershed Areas in Sickle Cell Anemia: An Arterial Spin Labeling Study. Front Physiol 2022; 13:865391. [PMID: 35592036 PMCID: PMC9110791 DOI: 10.3389/fphys.2022.865391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022] Open
Abstract
Previous studies have pointed to a role for regional cerebral hemodynamic stress in neurological complications in patients with sickle cell anemia (SCA), with watershed regions identified as particularly at risk of ischemic tissue injury. Using single- and multi-inflow time (TI) arterial spin labeling sequences (ASL) in 94 patients with SCA and 42 controls, the present study sought to investigate cerebral blood flow (CBF) and bolus arrival times (BAT) across gray matter, white matter with early arrival times, and in individual watershed areas (iWSAs). In iWSAs, associations between hemodynamic parameters, lesion burden, white matter integrity, and general cognitive performance were also explored. In patients, increases in CBF and reductions in BAT were observed in association with reduced arterial oxygen content across gray matter and white matter with early arrival times using both sequences (all p < 0.001, d = -1.55--2.21). Across iWSAs, there was a discrepancy between sequences, with estimates based on the single-TI sequence indicating higher CBF in association with reduced arterial oxygen content in SCA patients, and estimates based on the multi-TI sequence indicating no significant between-group differences or associations with arterial oxygen content. Lesion burden was similar between white matter with early arrival times and iWSAs in both patients and controls, and using both sequences, only trend-level associations between iWSA CBF and iWSA lesion burden were observed in patients. Further, using the multi-TI sequence in patients, increased iWSA CBF was associated with reduced iWSA microstructural tissue integrity and slower processing speed. Taken together, the results highlight the need for researchers to consider BAT when estimating CBF using single-TI sequences. Moreover, the findings demonstrate the feasibility of multi-TI ASL for objective delineation of iWSAs and for detection of regional hemodynamic stress that is associated with reduced microstructural tissue integrity and slower processing speed. This technique may hold promise for future studies and treatment trials.
Collapse
Affiliation(s)
- Hanne Stotesbury
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Patrick W. Hales
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Anna M. Hood
- Division of Psychology and Mental Health, Manchester Centre for Health Psychology, University of Manchester, Manchester, United Kingdom
| | - Melanie Koelbel
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Jamie M. Kawadler
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Dawn E. Saunders
- Radiology, Great Ormond Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sati Sahota
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - David C. Rees
- Paediatric Haematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Olu Wilkey
- Paediatric Haematology and Oncology, North Middlesex University Hospital NHS Foundation Trust, London, United Kingdom
| | - Mark Layton
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, United Kingdom
| | - Maria Pelidis
- Department of Haematology and Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Baba P. D. Inusa
- Department of Haematology and Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jo Howard
- Department of Haematology and Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Subarna Chakravorty
- Paediatric Haematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Chris A. Clark
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Fenella J. Kirkham
- Clinical Neurosciences Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| |
Collapse
|
165
|
Deckers PT, Bhogal AA, Dijsselhof MBJ, Faraco CC, Liu P, Lu H, Donahue MJ, Siero JCW. Hemodynamic and metabolic changes during hypercapnia with normoxia and hyperoxia using pCASL and TRUST MRI in healthy adults. J Cereb Blood Flow Metab 2022; 42:861-875. [PMID: 34851757 PMCID: PMC9014679 DOI: 10.1177/0271678x211064572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Blood oxygenation level-dependent (BOLD) or arterial spin labeling (ASL) MRI with hypercapnic stimuli allow for measuring cerebrovascular reactivity (CVR). Hypercapnic stimuli are also employed in calibrated BOLD functional MRI for quantifying neuronally-evoked changes in cerebral oxygen metabolism (CMRO2). It is often assumed that hypercapnic stimuli (with or without hyperoxia) are iso-metabolic; increasing arterial CO2 or O2 does not affect CMRO2. We evaluated the null hypothesis that two common hypercapnic stimuli, 'CO2 in air' and carbogen, are iso-metabolic. TRUST and ASL MRI were used to measure the cerebral venous oxygenation and cerebral blood flow (CBF), from which the oxygen extraction fraction (OEF) and CMRO2 were calculated for room-air, 'CO2 in air' and carbogen. As expected, CBF significantly increased (9.9% ± 9.3% and 12.1% ± 8.8% for 'CO2 in air' and carbogen, respectively). CMRO2 decreased for 'CO2 in air' (-13.4% ± 13.0%, p < 0.01) compared to room-air, while the CMRO2 during carbogen did not significantly change. Our findings indicate that 'CO2 in air' is not iso-metabolic, while carbogen appears to elicit a mixed effect; the CMRO2 reduction during hypercapnia is mitigated when including hyperoxia. These findings can be important for interpreting measurements using hypercapnic or hypercapnic-hyperoxic (carbogen) stimuli.
Collapse
Affiliation(s)
- Pieter T Deckers
- Department of Neurosurgery, University Medical Center Utrecht,
Utrecht, Netherlands
| | - Alex A Bhogal
- Department of Radiology, Center for Image Sciences, University
Medical Center Utrecht, Utrecht, Netherlands
| | - Mathijs BJ Dijsselhof
- Department of Radiology, Center for Image Sciences, University
Medical Center Utrecht, Utrecht, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam
Neuroscience, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Carlos C Faraco
- Radiology and Radiological Sciences, Vanderbilt University
Medical Center, Nashville, Tennessee, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Manus J Donahue
- Radiology and Radiological Sciences, Vanderbilt University
Medical Center, Nashville, Tennessee, USA
| | - Jeroen CW Siero
- Department of Radiology, Center for Image Sciences, University
Medical Center Utrecht, Utrecht, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| |
Collapse
|
166
|
Hosford PS, Wells JA, Nizari S, Christie IN, Theparambil SM, Castro PA, Hadjihambi A, Barros LF, Ruminot I, Lythgoe MF, Gourine AV. CO 2 signaling mediates neurovascular coupling in the cerebral cortex. Nat Commun 2022; 13:2125. [PMID: 35440557 PMCID: PMC9019094 DOI: 10.1038/s41467-022-29622-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO2-sensitive vasodilatory brain mechanism with surplus of exogenous CO2 or disruption of brain CO2/HCO3- transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO2 and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO2 mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity.
Collapse
Affiliation(s)
- Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Pablo A Castro
- Centro de Estudios Científicos (CECs) & Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs) & Universidad San Sebastián, Valdivia, Chile
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs) & Universidad San Sebastián, Valdivia, Chile.
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
167
|
Schneider SC, Archila-Meléndez ME, Göttler J, Kaczmarz S, Zott B, Priller J, Kallmayer M, Zimmer C, Sorg C, Preibisch C. Resting-state BOLD functional connectivity depends on the heterogeneity of capillary transit times in the human brain A combined lesion and simulation study about the influence of blood flow response timing. Neuroimage 2022; 255:119208. [PMID: 35427773 DOI: 10.1016/j.neuroimage.2022.119208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Functional connectivity (FC) derived from blood oxygenation level dependent (BOLD) functional magnetic resonance imaging at rest (rs-fMRI), is commonly interpreted as indicator of neuronal connectivity. In a number of brain disorders, however, metabolic, vascular, and hemodynamic impairments can be expected to alter BOLD-FC independently from neuronal activity. By means of a neurovascular coupling (NVC) model of BOLD-FC, we recently demonstrated that aberrant timing of cerebral blood flow (CBF) responses may influence BOLD-FC. In the current work, we support and extend this finding by empirically linking BOLD-FC with capillary transit time heterogeneity (CTH), which we consider as an indicator of delayed and broadened CBF responses. We assessed 28 asymptomatic patients with unilateral high-grade internal carotid artery stenosis (ICAS) as a hemodynamic lesion model with largely preserved neurocognitive functioning and 27 age-matched healthy controls. For each participant, we obtained rs-fMRI, arterial spin labeling, and dynamic susceptibility contrast MRI to study the dependence of left-right homotopic BOLD-FC on local perfusion parameters. Additionally, we investigated the dependency of BOLD-FC on CBF response timing by detailed simulations. Homotopic BOLD-FC was negatively associated with increasing CTH differences between homotopic brain areas. This relation was more pronounced in asymptomatic ICAS patients even after controlling for baseline CBF and relative cerebral blood volume influences. These findings match simulation results that predict an influence of delayed and broadened CBF responses on BOLD-FC. Results demonstrate that increasing CTH differences between homotopic brain areas lead to BOLD-FC reductions. Simulations suggest that CTH increases correspond to broadened and delayed CBF responses to fluctuations in ongoing neuronal activity.
Collapse
Affiliation(s)
- Sebastian C Schneider
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Mario E Archila-Meléndez
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Jens Göttler
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Stephan Kaczmarz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany; Philips GmbH Market DACH, Hamburg, Germany
| | - Benedikt Zott
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Josef Priller
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Psychiatry, Ismaningerstr. 22, 81675, Munich, Munich, Germany
| | - Michael Kallmayer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Vascular and Endovascular Surgery, Ismaningerstr. 22, 81675, Munich, Munich, Germany
| | - Claus Zimmer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany
| | - Christian Sorg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, Ismaningerstr. 22, 81675, Munich, Munich, Germany.
| |
Collapse
|
168
|
Kindler D, Maschio C, Ni R, Zerbi V, Razansky D, Klohs J. Arterial spin labeling demonstrates preserved regional cerebral blood flow in the P301L mouse model of tauopathy. J Cereb Blood Flow Metab 2022; 42:686-693. [PMID: 34822744 PMCID: PMC8943618 DOI: 10.1177/0271678x211062274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence for the vascular contribution to cognitive impairment and dementia in Alzheimer's disease (AD) and other neurodegenerative diseases. While perfusion deficits have been observed in patients with Alzheimer's disease and tauopaties, little is known about the role of tau in vascular dysfunction. In the present study, regional cerebral blood (rCBF) was characterized in P301L mice with arterial spin labeling. No differences in rCBF in P301L mice compared to their age-matched non-transgenic littermates at mid (10-12 months of age) and advanced (19-21 months of age) disease stages. This was concomitant with preservation of cortical brain structure as assessed with structural T2-weighted magnetic resonance imaging. These results show that hypoperfusion and neurodegeneration are not a phenotype of P301L mice. More studies are thus needed to understand the relationship of tau, neurodegeneration and vascular dysfunction and its modulators in AD and primary tauopathies.
Collapse
Affiliation(s)
- Diana Kindler
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Cinzia Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Valerio Zerbi
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
169
|
Kim HG, Choi JW, Lee JH, Jung DE, Gho SM. Association of Cerebral Blood Flow and Brain Tissue Relaxation Time With Neurodevelopmental Outcomes of Preterm Neonates: Multidelay Arterial Spin Labeling and Synthetic MRI Study. Invest Radiol 2022; 57:254-262. [PMID: 34743135 DOI: 10.1097/rli.0000000000000833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Both cerebral blood flow (CBF) and brain tissue relaxation times are known to reflect maturation in the neonatal brain. However, we do not yet know if these factors are associated with neurodevelopmental outcomes. The objective of this study was to acquire CBF and relaxation time in preterm neonates, using multidelay arterial spin labeling and synthetic magnetic resonance imaging (MRI), and show their association with later neurodevelopmental outcomes. MATERIALS AND METHODS In this prospective study, preterm neonates were recruited, and multidelay arterial spin labeling and synthetic MRI were performed between September 2017 and December 2018. These neonates underwent the Bayley Scales of Infant Development test at 18 months of age, and both cognitive and motor outcome scores were measured. Transit time-corrected CBF and T1 and T2 relaxation time values were measured for different brain regions. The measured values were correlated with gestational age (GA) at birth and corrected GA at the MRI scan. Simple and multiple linear regression analyses were performed for the measured values and neurodevelopmental outcome scores. RESULTS Forty-nine neonates (median [interquartile range] GA, 30 [2] weeks, 209 [17] days; 28 boys) underwent MRI scans at or near term-equivalent age (median [interquartile range] corrected GA, 37 [2] weeks, 258 [14] days). Transit time-corrected CBF (coefficient, 0.31-0.59) and relaxation time (coefficient, -0.39 to -0.86) values showed significant correlation with corrected GA but not with GA. After controlling for GA, the frontal white matter CBF in preterm neonates showed a negative relationship with cognitive outcome scores (β = -0.97; P = 0.029). Frontal white matter T1 relaxation times showed a positive relationship with cognitive outcome scores (β = 0.03; P = 0.025) after controlling for GA. CONCLUSIONS Higher CBF values and lower T1 relaxation times in frontal white matter were associated with poorer cognitive outcomes. As quantitative neuroimaging markers, CBF and relaxation times may help predict neurodevelopmental outcomes in preterm neonates.
Collapse
Affiliation(s)
| | | | - Jang Hoon Lee
- Pediatrics, Ajou University School of Medicine, Ajou University Medical Center, Suwon
| | - Da Eun Jung
- Pediatrics, Ajou University School of Medicine, Ajou University Medical Center, Suwon
| | - Sung-Min Gho
- MR Clinical Research and Development, GE Healthcare, Seoul, South Korea
| |
Collapse
|
170
|
Gong K, Han PK, El Fakhri G, Ma C, Li Q. Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning. NMR IN BIOMEDICINE 2022; 35:e4224. [PMID: 31865615 PMCID: PMC7306418 DOI: 10.1002/nbm.4224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/07/2023]
Abstract
Arterial spin labeling (ASL) imaging is a powerful magnetic resonance imaging technique that allows to quantitatively measure blood perfusion non-invasively, which has great potential for assessing tissue viability in various clinical settings. However, the clinical applications of ASL are currently limited by its low signal-to-noise ratio (SNR), limited spatial resolution, and long imaging time. In this work, we propose an unsupervised deep learning-based image denoising and reconstruction framework to improve the SNR and accelerate the imaging speed of high resolution ASL imaging. The unique feature of the proposed framework is that it does not require any prior training pairs but only the subject's own anatomical prior, such as T1-weighted images, as network input. The neural network was trained from scratch in the denoising or reconstruction process, with noisy images or sparely sampled k-space data as training labels. Performance of the proposed method was evaluated using in vivo experiment data obtained from 3 healthy subjects on a 3T MR scanner, using ASL images acquired with 44-min acquisition time as the ground truth. Both qualitative and quantitative analyses demonstrate the superior performance of the proposed txtc framework over the reference methods. In summary, our proposed unsupervised deep learning-based denoising and reconstruction framework can improve the image quality and accelerate the imaging speed of ASL imaging.
Collapse
Affiliation(s)
| | | | | | - Chao Ma
- Correspondence Chao Ma and Quanzheng Li, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, ,
| | - Quanzheng Li
- Correspondence Chao Ma and Quanzheng Li, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, ,
| |
Collapse
|
171
|
Fan H, Su P, Lin DDM, Goldberg EB, Walker A, Leigh R, Hillis AE, Lu H. Simultaneous Hemodynamic and Structural Imaging of Ischemic Stroke With Magnetic Resonance Fingerprinting Arterial Spin Labeling. Stroke 2022; 53:2016-2025. [PMID: 35291820 DOI: 10.1161/strokeaha.121.037066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Perfusion and structural imaging play an important role in ischemic stroke. Magnetic resonance fingerprinting (MRF) arterial spin labeling (ASL) is a novel noninvasive method of ASL perfusion that allows simultaneous estimation of cerebral blood flow (CBF), bolus arrival time (BAT), and tissue T1 map in a single scan of <4 minutes. Here, we evaluated the utility of MRF-ASL in patients with ischemic stroke in terms of detecting hemodynamic and structural damage and predicting neurological deficits and disability. METHODS A total of 34 patients were scanned on 3T magnetic resonance imaging. MRF-ASL, standard single-delay pseudo-continuous ASL, T2-weighted, and diffusion magnetic resonance imaging were performed. Regions of interest of lesion and contralateral normal tissues were manually delineated. CBF (with 2 different compartmental models), BAT, and tissue T1 parameters were quantified. Cross-sectional linear regression analyses were performed to examine the relationship between MRF-ASL parameters and National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale. Receiver operating characteristic analyses were performed to determine the utility of MRF-ASL in the classification of stroke lesion voxels. RESULTS MRF-ASL derived parameters revealed a significant difference between stroke lesion and contralateral normal regions of interest, in that lesion regions manifested a lower CBF1-compartment (P<0.001), lower CBF2-compartment (P<0.001), longer BAT (P=0.002), and longer T1 (P<0.001) compared with normal regions of interest. NIHSS scores at acute stage revealed a strong association with lesion-normal differences in CBF1-compartment,diff (β=-0.11, P=0.008), CBF2-compartment,diff (β=-0.16, P=0.003), and T1,diff (β=0.008, P=0.001). MRF-ASL parameters were also predictive of NIHSS score and modified Rankin Scale scale measured at a later stage, although the degree of the associations was weaker. These associations tended to be even stronger when the MRF-ASL data were acquired at the acute/subacute stage. Compared with standard pseudo-continuous ASL, the multiparametric capability of MRF-ASL yielded higher area under curve values in the receiver operating characteristic analyses of stroke voxel classifications. CONCLUSIONS MRF-ASL may provide a new approach for quantitative hemodynamic and structural imaging in ischemic stroke.
Collapse
Affiliation(s)
- Hongli Fan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD. (H.F., H.L.).,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD. (H.F., P.S., D.D.M.L., H.L.)
| | - Pan Su
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD. (H.F., P.S., D.D.M.L., H.L.)
| | - Doris Da May Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD. (H.F., P.S., D.D.M.L., H.L.)
| | - Emily B Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD. (E.B.G., A.W., R.L., A.E.H.)
| | - Alexandra Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD. (E.B.G., A.W., R.L., A.E.H.)
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD. (E.B.G., A.W., R.L., A.E.H.)
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD. (E.B.G., A.W., R.L., A.E.H.)
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD. (H.F., H.L.).,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD. (H.F., P.S., D.D.M.L., H.L.).,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD (H.L.)
| |
Collapse
|
172
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
173
|
Zhu J, Wang C, Qian Y, Cai H, Zhang S, Zhang C, Zhao W, Zhang T, Zhang B, Chen J, Liu S, Yu Y. Multimodal neuroimaging fusion biomarkers mediate the association between gut microbiota and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110468. [PMID: 34736997 DOI: 10.1016/j.pnpbp.2021.110468] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Background The field of microbiota-gut-brain research in animals has progressed, while the exact nature of gut microbiota-brain-cognition relationship in humans is not completely elucidated, likely due to small sample sizes and single neuroimaging modality utilized to delineate limited aspects of the brain. We aimed to comprehensively investigate such association in a large sample using multimodal MRI. Methods Fecal samples were collected from 157 healthy young adults and 16S sequencing was used to assess gut microbial diversity and enterotypes. Five brain imaging measures, including regional homogeneity (ReHo) and functional connectivity density (FCD) from resting-state functional MRI, cerebral blood flow (CBF) from arterial spin labeling, gray matter volume (GMV) from structural MRI, and fractional anisotropy (FA) from diffusion tensor imaging, were jointly analyzed with a data-driven multivariate fusion method. Cognition was evaluated by 3-back and digit span tasks. Results We found significant associations of gut microbial diversity with ReHo, FCD, CBF, and GMV within the frontoparietal, default mode and visual networks, as well as with FA in a distributed set of juxtacortical white matter regions. In addition, there were FCD, CBF, GMV, and FA differences between Prevotella- versus Bacteroides-enterotypes in females and between Prevotella- versus Ruminococcaceae-enterotypes in males. Moreover, the identified neuroimaging fusion biomarkers could mediate the associations between microbial diversity and cognition. Conclusions Our findings not only expand existing knowledge of the microbiota-gut-brain axis, but also have potential clinical and translational implications by exposing the gut microbiota as a promising treatment and prevention target for cognitive impairment and related brain disorders.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Tingting Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
174
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
175
|
Ismail TF, Strugnell W, Coletti C, Božić-Iven M, Weingärtner S, Hammernik K, Correia T, Küstner T. Cardiac MR: From Theory to Practice. Front Cardiovasc Med 2022; 9:826283. [PMID: 35310962 PMCID: PMC8927633 DOI: 10.3389/fcvm.2022.826283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.
Collapse
Affiliation(s)
- Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Cardiology Department, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Wendy Strugnell
- Queensland X-Ray, Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Chiara Coletti
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
| | - Maša Božić-Iven
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | | | - Kerstin Hammernik
- Lab for AI in Medicine, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Centre of Marine Sciences, Faro, Portugal
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
176
|
Brain network modulation in Alzheimer's and frontotemporal dementia with transcranial electrical stimulation. Neurobiol Aging 2022; 111:24-34. [DOI: 10.1016/j.neurobiolaging.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
|
177
|
Huang W, Fang X, Li S, Mao R, Ye C, Liu W, Lin G. Shunt Surgery Efficacy Is Correlated With Baseline Cerebrum Perfusion in Idiopathic Normal Pressure Hydrocephalus: A 3D Pulsed Arterial-Spin Labeling Study. Front Aging Neurosci 2022; 14:797803. [PMID: 35283746 PMCID: PMC8906880 DOI: 10.3389/fnagi.2022.797803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigated the relationship between preoperative cerebral blood flow (CBF) in patients with idiopathic normal pressure hydrocephalus (INPH) and preoperative clinical symptoms and changes of clinical symptoms after shunt surgery. A total of 32 patients with diagnosed INPH and 18 age-matched healthy controls (HCs) were involved in this study. All subjects underwent magnetic resonance imaging (MRI), including 3D pulsed arterial-spin labeling (PASL) for non-invasive perfusion imaging, and clinical symptom evaluation at baseline, and all patients with INPH were reexamined with clinical tests 1 month postoperatively. Patients with INPH had significantly lower whole-brain CBF than HCs, with the most significant differences in the high convexity, temporal lobe, precuneus, and thalamus. At baseline, there was a significant correlation between the CBF in the middle frontal gyrus, calcarine, inferior and middle temporal gyrus, thalamus, and posterior cingulate gyrus and poor gait manifestation. After shunting, improvements were negatively correlated with preoperative perfusion in the inferior parietal gyrus, inferior occipital gyrus, and middle temporal gyrus. Preoperative CBF in the middle frontal gyrus was positively correlated with the severity of preoperative cognitive impairment and negatively correlated with the change of postoperative MMSE score. There was a moderate positive correlation between anterior cingulate hypoperfusion and improved postoperative urination. Our study revealed that widely distributed and intercorrelated cortical and subcortical pathways are involved in the development of INPH symptoms, and preoperative CBF may be correlative to short-term shunt outcomes.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shihong Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chuntao Ye
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Guangwu Lin,
| |
Collapse
|
178
|
Luciw NJ, Shirzadi Z, Black SE, Goubran M, MacIntosh BJ. Automated generation of cerebral blood flow and arterial transit time maps from multiple delay arterial spin-labeled MRI. Magn Reson Med 2022; 88:406-417. [PMID: 35181925 DOI: 10.1002/mrm.29193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Develop and evaluate a deep learning approach to estimate cerebral blood flow (CBF) and arterial transit time (ATT) from multiple post-labeling delay (PLD) ASL MRI. METHODS ASL MRI were acquired with 6 PLDs on a 1.5T or 3T GE system in adults with and without cognitive impairment (N = 99). Voxel-level CBF and ATT maps were quantified by training models with distinct convolutional neural network architectures: (1) convolutional neural network (CNN) and (2) U-Net. Models were trained and compared via 5-fold cross validation. Performance was evaluated using mean absolute error (MAE). Model outputs were trained on and compared against a reference ASL model fitting after data cleaning. Minimally processed ASL data served as another benchmark. Model output uncertainty was estimated using Monte Carlo dropout. The better-performing neural network was subsequently re-trained on inputs with missing PLDs to investigate generalizability to different PLD schedules. RESULTS Relative to the CNN, the U-Net yielded lower MAE on training data. On test data, the U-Net MAE was 8.4 ± 1.4 mL/100 g/min for CBF and 0.22 ± 0.09 s for ATT. A significant association was observed between MAE and Monte Carlo dropout-based uncertainty estimates. Neural network performance remained stable despite systematically reducing the number of input images (i.e., up to 3 missing PLD images). Mean processing time was 10.77 s for the U-Net neural network compared to 10 min 41 s for the reference pipeline. CONCLUSION It is feasible to generate CBF and ATT maps from 1.5T and 3T multi-PLD ASL MRI with a fast deep learning image-generation approach.
Collapse
Affiliation(s)
- Nicholas J Luciw
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Shirzadi
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| |
Collapse
|
179
|
Mast IH, Baas KPA, Jørstad HT, Wood JC, Nederveen AJ, Bakermans AJ. Dynamic MR imaging of cerebral perfusion during bicycling exercise. Neuroimage 2022; 250:118961. [PMID: 35121183 DOI: 10.1016/j.neuroimage.2022.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022] Open
Abstract
Habitual physical activity is beneficial for cerebrovascular health and cognitive function. Physical exercise therefore constitutes a clinically relevant cerebrovascular stimulus. This study demonstrates the feasibility of quantitative cerebral blood flow (CBF) measurements during supine bicycling exercise with pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) at 3 Tesla. Twelve healthy volunteers performed a steady-state exercise-recovery protocol on an MR-compatible bicycle ergometer, while dynamic pCASL data were acquired at rest, during moderate (60% of the age-predicted supine maximal heart rate (HRmax)) and vigorous (80% of supine HRmax) exercise, and subsequent recovery. These CBF measurements were compared with 2D phase-contrast MRI measurements of blood flow through the carotid arteries. Procedures were repeated on a separate day for an assessment of measurement repeatability. Whole-brain (WB) CBF was 41.2 ± 6.9 mL/100 g/min at rest (heart rate 63 [57-71] beats/min), remained similar at moderate exercise (102 [97-107] beats/min), decreased by 10% to 37.1 ± 5.7 mL/100 g/min (p = 0.001) during vigorous exercise (139 [136-142] beats/min) and decreased further to 34.2 ± 6.0 mL/100 g/min (p < 0.001) during recovery. Hippocampus CBF decreased by 12% (p = 0.001) during moderate exercise, decreased further during vigorous exercise (-21%; p < 0.001) and was even lower during recovery (-31%; p < 0.001). In contrast, motor cortex CBF increased by 12% (p = 0.027) during moderate exercise, returned to resting-state values during vigorous exercise, and decreased by 17% (p = 0.006) during recovery. The inter-session repeatability coefficients for WB CBF were approximately 20% for all stages of the exercise-recovery protocol. Phase-contrast blood flow measurements through the common carotid arteries overestimated the WB CBF because of flow directed to the face and scalp. This bias increased with exercise. We have demonstrated the feasibility of dynamic pCASL-MRI of the human brain for a quantitative evaluation of cerebral perfusion during bicycling exercise. Our spatially resolved measurements revealed a differential response of CBF in the motor cortex as well as the hippocampus compared with the brain as a whole. Caution is warranted when using flow through the common carotid arteries as a surrogate measure for cerebral perfusion.
Collapse
Affiliation(s)
- Isa H Mast
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Human Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Koen P A Baas
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Harald T Jørstad
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - John C Wood
- Division of Hematology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Adrianus J Bakermans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
180
|
Tang PLY, Méndez Romero A, Jaspers JPM, Warnert EAH. The potential of advanced MR techniques for precision radiotherapy of glioblastoma. MAGMA (NEW YORK, N.Y.) 2022; 35:127-143. [PMID: 35129718 PMCID: PMC8901515 DOI: 10.1007/s10334-021-00997-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
As microscopic tumour infiltration of glioblastomas is not visible on conventional magnetic resonance (MR) imaging, an isotropic expansion of 1-2 cm around the visible tumour is applied to define the clinical target volume for radiotherapy. An opportunity to visualize microscopic infiltration arises with advanced MR imaging. In this review, various advanced MR biomarkers are explored that could improve target volume delineation for radiotherapy of glioblastomas. Various physiological processes in glioblastomas can be visualized with different advanced MR techniques. Combining maps of oxygen metabolism (CMRO2), relative cerebral blood volume (rCBV), vessel size imaging (VSI), and apparent diffusion coefficient (ADC) or amide proton transfer (APT) can provide early information on tumour infiltration and high-risk regions of future recurrence. Oxygen consumption is increased 6 months prior to tumour progression being visible on conventional MR imaging. However, presence of the Warburg effect, marking a switch from an infiltrative to a proliferative phenotype, could result in CMRO2 to appear unaltered in high-risk regions. Including information on biomarkers representing angiogenesis (rCBV and VSI) and hypercellularity (ADC) or protein concentration (APT) can omit misinterpretation due to the Warburg effect. Future research should evaluate these biomarkers in radiotherapy planning to explore the potential of advanced MR techniques to personalize target volume delineation with the aim to improve local tumour control and/or reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Patrick L Y Tang
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Jaap P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
181
|
Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke. Sci Rep 2022; 12:1456. [PMID: 35087157 PMCID: PMC8795409 DOI: 10.1038/s41598-022-05465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
In acute ischemic stroke (AIS), the hemodynamics around the lesion are important because they determine the recurrence or prognosis of the disease. This study evaluated the effects of perfusion deficits in multiphase arterial spin labeling (ASL) and related radiological parameters on the occurrence of early recurrent ischemic lesions (ERILs) in AIS. We assessed AIS patients who underwent multiphase ASL within 24 h of symptom onset and follow-up diffusion-weighted imaging within 7 days. ASL perfusion deficit, arterial transit artifact (ATA), and intra-arterial high-intensity signal (IAS) were manually rated as ASL parameters. A total of 134 patients were evaluated. In the multivariable analyses, ASL perfusion deficit [adjusted odds ratio (aOR) = 2.82, 95% confidence interval = 1.27–6.27] was positively associated with ERIL. Furthermore, when ATA was accompanied, the ASL perfusion deficit was not associated with ERIL occurrence. Meanwhile, IAS showed a synergistic effect with ASL perfusion deficit on the occurrence of ERIL. In conclusion, we demonstrated the association between perfusion deficits in multiphase ASL with ERIL in patients with AIS. This close association was attenuated by ATA and was enhanced by IAS. ASL parameters may help identify high-risk patients of ERIL occurrence during the acute period.
Collapse
|
182
|
Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol 2022; 32:2976-2987. [DOI: 10.1007/s00330-021-08406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
|
183
|
Woods JG, Wong EC, Boyd EC, Bolar DS. VESPA ASL: VElocity and SPAtially Selective Arterial Spin Labeling. Magn Reson Med 2022; 87:2667-2684. [PMID: 35061920 DOI: 10.1002/mrm.29159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Spatially selective arterial spin labeling (ASL) perfusion MRI is sensitive to arterial transit times (ATT) that can result in inaccurate perfusion quantification when ATTs are long. Velocity-selective ASL is robust to this effect because blood is labeled within the imaging region, allowing immediate label delivery. However, velocity-selective ASL cannot characterize ATTs, which can provide important clinical information. Here, we introduce a novel pulse sequence, called VESPA ASL, that combines velocity-selective and pseudo-continuous ASL to simultaneously label different pools of arterial blood for robust cerebral blood flow (CBF) and ATT measurement. METHODS The VESPA ASL sequence is similar to velocity-selective ASL, but the velocity-selective labeling is made spatially selective, and pseudo-continuous ASL is added to fill the inflow time. The choice of inflow time and other sequence settings were explored. VESPA ASL was compared to multi-delay pseudo-continuous ASL and velocity-selective ASL through simulations and test-retest experiments in healthy volunteers. RESULTS VESPA ASL is shown to accurately measure CBF in the presence of long ATTs, and ATTs < TI can also be measured. Measurements were similar to established ASL techniques when ATT was short. When ATT was long, VESPA ASL measured CBF more accurately than multi-delay pseudo-continuous ASL, which tended to underestimate CBF. CONCLUSION VESPA ASL is a novel and robust approach to simultaneously measure CBF and ATT and offers important advantages over existing methods. It fills an important clinical need for noninvasive perfusion and transit time imaging in vascular diseases with delayed arterial transit.
Collapse
Affiliation(s)
- Joseph G Woods
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric C Wong
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA.,Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Emma C Boyd
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Divya S Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
184
|
Lang SS, Tucker AM, Schreiber C, Storm PB, Liu H, Li Y, Ichord R, Beslow LA, Sedora-Roman NI, Cox M, Nasser H, Vossough A, Fisher MJ, Kilbaugh TJ, Huh JW. Arterial spin labeling as an ancillary assessment to postoperative conventional angiogram in pediatric moyamoya disease. J Neurosurg Pediatr 2022; 29:40-47. [PMID: 34598159 DOI: 10.3171/2021.7.peds21302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Digital subtraction angiography (DSA) is commonly performed after pial synangiosis surgery for pediatric moyamoya disease to assess the degree of neovascularization. However, angiography is invasive, and the risk of ionizing radiation is a concern in children. In this study, the authors aimed to identify whether arterial spin labeling (ASL) can predict postoperative angiogram grading. In addition, they sought to determine whether patients who underwent ASL imaging without DSA had similar postoperative outcomes when compared with patients who received ASL imaging and postoperative DSA. METHODS The medical records of pediatric patients who underwent pial synangiosis for moyamoya disease at a quaternary children's hospital were reviewed during a 10-year period. ASL-only and ASL+DSA cohorts were analyzed. The frequency of preoperative and postoperative symptoms was analyzed within each cohort. Three neuroradiologists assigned a visual ASL grade for each patient indicating the change from the preoperative to postoperative ASL perfusion sequences. A postoperative neovascularization grade was also assigned for patients who underwent DSA. RESULTS Overall, 21 hemispheres of 14 patients with ASL only and 14 hemispheres of 8 patients with ASL+DSA were analyzed. The groups had similar rates of MRI evidence of acute or chronic stroke preoperatively (61.9% in the ASL-only group and 64.3% in the ASL+DSA group). In the entire cohort, transient ischemic attack (TIA) (p = 0.027), TIA composite (TIA or unexplained neurological symptoms; p = 0.0006), chronic headaches (p = 0.035), aphasia (p = 0.019), and weakness (p = 0.001) all had decreased frequency after intervention. The authors found a positive association between revascularization observed on DSA and the visual ASL grading (p = 0.048). The visual ASL grades in patients with an angiogram indicating robust neovascularization demonstrated improved perfusion when compared with the ASL grades of patients with a poor neovascularization. CONCLUSIONS Noninvasive ASL perfusion imaging had an association with postoperative DSA neoangiogenesis following pial synangiosis surgery in children. There were no significant postoperative stroke differences between the ASL-only and ASL+DSA cohorts. Both cohorts demonstrated significant improvement in preoperative symptoms after surgery. Further study in larger cohorts is necessary to determine whether the results of this study are validated in order to circumvent the invasive catheter angiogram.
Collapse
Affiliation(s)
- Shih-Shan Lang
- 1Division of Neurosurgery, Children's Hospital of Philadelphia, Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia.,2Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia
| | - Alexander M Tucker
- 1Division of Neurosurgery, Children's Hospital of Philadelphia, Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia.,2Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia
| | - Craig Schreiber
- 3Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia
| | - Phillip B Storm
- 1Division of Neurosurgery, Children's Hospital of Philadelphia, Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia.,2Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia
| | - Hongyan Liu
- 4Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Yimei Li
- 4Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia.,5Division of Oncology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia
| | - Rebecca Ichord
- 6Division of Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Lauren A Beslow
- 6Division of Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Neda I Sedora-Roman
- 7Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia; and
| | - Mougnyan Cox
- 7Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia; and
| | - Hussein Nasser
- 7Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia; and
| | - Arastoo Vossough
- 7Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia; and
| | - Michael J Fisher
- 5Division of Oncology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia
| | - Todd J Kilbaugh
- 8Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jimmy W Huh
- 8Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
185
|
Moon P, Theruvath J, Chang J, Song Y, Shpanskaya K, Maleki M, Cheng AG, Ahmad IN, Yeom KW. MRI Correlates of Ototoxicity in the Auditory Pathway in Children Treated for Medulloblastoma. Otol Neurotol 2022; 43:e97-e104. [PMID: 34739428 DOI: 10.1097/mao.0000000000003336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess diffusion and perfusion changes of the auditory pathway in pediatric medulloblastoma patients exposed to ototoxic therapies. STUDY DESIGN Retrospective cohort study. SETTING A single academic tertiary children's hospital. PATIENTS Twenty pediatric medulloblastoma patients (13 men; mean age 12.0 ± 4.8 yr) treated with platinum-based chemotherapy with or without radiation and 18 age-and-sex matched controls were included. Ototoxicity scores were determined using Chang Ototoxicity Grading Scale. INTERVENTIONS Three Tesla magnetic resonance was used for diffusion tensor and arterial spin labeling perfusion imaging. MAIN OUTCOME MEASURES Quantitative diffusion tensor metrics were extracted from the Heschl's gyrus, auditory radiation, and inferior colliculus. Arterial spin labeling perfusion of the Heschl's gyrus was also examined. RESULTS Nine patients had clinically significant hearing loss, or Chang grades more than or equal to 2a; 11 patients had mild/no hearing loss, or Chang grades less than 2a. The clinically significant hearing loss group showed reduced mean diffusivity in the Heschl's gyrus (p = 0.018) and auditory radiation (p = 0.037), and decreased perfusion in the Heschl's gyrus (p = 0.001). Mild/no hearing loss group showed reduced mean diffusivity (p = 0.036) in Heschl's gyrus only, with a decrease in perfusion (p = 0.008). There were no differences between groups in the inferior colliculus. There was no difference in fractional anisotropy between patients exposed to ototoxic therapies and controls. CONCLUSIONS Patients exposed to ototoxic therapies demonstrated microstructural and physiological alteration of the auditory pathway. The present study shows proof-of-concept use of diffusion tensor imaging to gauge ototoxicity along the auditory pathway. Future larger cohort studies are needed to assess significance of changes in diffusion tensor imaging longitudinally, and the relationship between these changes and hearing loss severity and longitudinal changes of the developing auditory white matter.
Collapse
Affiliation(s)
| | | | | | - Yohan Song
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Katie Shpanskaya
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina
| | - Maryam Maleki
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine
| | - Iram N Ahmad
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford, California
| |
Collapse
|
186
|
Wang H, Han X, Li M, Yang ZH, Liu WH, Wang ZC. Long-term hemodialysis may affect enlarged perivascular spaces in maintenance hemodialysis patients: evidence from a pilot MRI study. Quant Imaging Med Surg 2022; 12:341-353. [PMID: 34993083 DOI: 10.21037/qims-20-1246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/23/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hemodialysis (HD) causes various nervous system abnormalities. Alterations in white matter (WM) microstructure after long-term HD have been reported in a few previous studies; however, no studies have been performed to investigate enlarged perivascular spaces (PVS) in WM regions. We measured cerebral blood flow (CBF) and white matter volume (WMV) in HD patients to assess enlarged PVS severity in the WM across the whole brain and suggest possible explanations for this. METHODS Fifty-one HD patients and 51 age-, sex-, and education-matched healthy controls (HCs) were recruited. The number of enlarged PVS in the centrum semiovale (CS), cerebral watershed (CW), and basal ganglia (BG) regions were assessed by T2-weighted MRI. CBF was estimated by arterial spin labeling (ASL), which is a non-invasive perfusion imaging technique. WMV was assessed by the computational anatomy toolbox (CAT12), which is a statistical analysis package. Differences in descriptive variables (two-tailed t-tests, χ2 tests, Mann-Whitney U tests, and Friedman M tests), an intra-class correlation between radiologists, the relationship between enlarged PVS number and HD duration, normalized CBF and WMV (multiple regression), and group differences in CBF and WMV {voxel-wise t-tests with age and sex as covariates [cluster size >50 voxels, false discovery rate (FDR) corrected, P<0.05]} were assessed. RESULTS HD patients displayed a more significant number of CS-PVS and CW-PVS in WM regions compared with the HCs, but there was no significant difference in the number of BG-PVS. The number of CS-PVS and CW-PVS were positively associated with HD duration. The number of CW-PVS was positively associated with CBF changes and WMV alteration in HD patients. Meanwhile, significant differences in the blood pressure (BP) readings pre-HD, intra-HD, and post-HD were observed in HD patients. Compared with the HCs, the HD patients showed higher CBF in the CS, CW, and BG regions (P<0.05). Hence, decreased WMV in the CS, CW, and BG regions were shown in the HD patients compared with the HCs (P<0.05). CONCLUSIONS Enlarged CS-PVS and CW-PVS on MRI might be a feature of long-term HD patients. Enlarged CW-PVS number is associated with higher CBF in the CW region and lower WMV in the CW region in HD patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue Han
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen-Hu Liu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
187
|
Lansberg MG, Wintermark M, Kidwell CS, Albers GW. Magnetic Resonance Imaging of Cerebrovascular Diseases. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
188
|
Chen YW, Wengler K, He X, Canli T. Individual Differences in Cerebral Perfusion as a Function of Age and Loneliness. Exp Aging Res 2022; 48:1-23. [PMID: 34036895 PMCID: PMC8617054 DOI: 10.1080/0361073x.2021.1929748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Loneliness is defined as the subjective feeling that one's social needs are not satisfied by both quantity and quality of one's social relationships. Loneliness has been linked to a broad range of adverse physical and mental health consequences. There is an interest in identifying the neural and molecular processes by which loneliness adversely affects health. Prior imaging studies reported divergent networks involved in cognitive, emotional, and social processes associated with loneliness. Although loneliness is common among both younger and older adults, it is experienced differently across the lifespan and has different antecedents and consequences. The current study measured regional cerebral blood flow (CBF) using pulsed arterial spin labeling imaging. Forty-five older (Mage = 63.4) and forty-four younger adults (Mage = 20.9) with comparable degrees of loneliness were included. Whole-brain voxel-wise analysis revealed a main effect of age (in superior temporal and supramarginal gyri), but no main effect of loneliness. Furthermore, the age effect was only observed among people who reported higher level of loneliness. These regions have previously been implicated in social- and attention-related functions. The moderation of loneliness on age and regional CBF suggests that younger and older individuals present differential neural manifestations in response to loneliness, even with comparable levels of loneliness.
Collapse
Affiliation(s)
- Yen-Wen Chen
- Department of Psychology, Stony Brook University, Stony Brook, NY,Corresponding author: Yen-Wen Chen, Department of Psychology, Stony Brook University, Psychology B Building, Room 325, Stony Brook, NY 11794-2500, USA.
| | - Kenneth Wengler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Xiang He
- Department of Radiology, Stony Brook University, Stony Brook, NY
| | - Turhan Canli
- Department of Psychology, Stony Brook University, Stony Brook, NY,Department of Psychiatry, Stony Brook University, Stony Brook, NY
| |
Collapse
|
189
|
Hughes TM, Lockhart SN, Suerken CK, Jung Y, Whitlow CT, Bateman JR, Williams BJ, Espeland MA, Sachs BC, Williamson J, Cleveland M, Yang M, Rogers S, Hayden KM, Baker LD, Craft S. Hypertensive Aspects of Cardiometabolic Disorders Are Associated with Lower Brain Microstructure, Perfusion, and Cognition. J Alzheimers Dis 2022; 90:1589-1599. [PMID: 36314205 PMCID: PMC9764872 DOI: 10.3233/jad-220646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cardiometabolic disorders (hypertension, diabetes) are key modifiable risk factors for Alzheimer's disease and related disorders. They often co-occur; yet, the extent to which they independently affect brain structure and function is unclear. OBJECTIVE We hypothesized their combined effect is greater in associations with cognitive function and neuroimaging biomarkers of white matter (WM) health and cerebral perfusion in a diverse older adult cohort. METHODS Participants aged 50-85 years received: clinical evaluation, oral glucose tolerance testing, neuroimaging, cognitive testing, and adjudication. Neuroimaging included: T1 (gray [GM]/WM segmentation, regional volumes/thicknesses); FLAIR (WM hyperintensity volume [WMHv]; arterial spin labeling (cerebral blood flow); diffusion tensor imaging (fractional anisotropy [FA]); and neurite orientation dispersion and density imaging (Free Water). Hypertension (HTN) and impaired glucose tolerance (IGT) were staged and cardiometabolic status was categorized (HTN only, IGT only, IGT+HTN, neither). Multivariable linear regression modeled associations with cognitive and neuroimaging measures (covariates: age, gender, race). RESULTS MRI was available for 478 participants (35% mild cognitive impairment, 10% dementia) with mean age 70±8 years, 74% with HTN, 61% with IGT, and 15% self-identified as Black/African-American. IGT+HTN was significantly associated with cognitive impairment, higher WM Free Water and WMHv, lower FA, and lower GM perfusion compared to neither factor. HTN alone was associated with poorer cognition and lower GM perfusion. Cardiometabolic factors were not associated with GM macrostructure (volumes, temporal lobe cortical thickness) or cognitive status. CONCLUSION HTN and its co-occurrence with IGT (HTN+IGT) were associated with lower global cognitive performance and reduced GM perfusion and impaired WM microstructure.
Collapse
Affiliation(s)
- Timothy M. Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel N. Lockhart
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,Correspondence to: Samuel N. Lockhart, PhD, Wake Forest School of Medicine, Medical Center Blvd. Winston-Salem, NC 27157, USA. Tel.: +1 336 716 8145;
| | - Cynthia K. Suerken
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Youngkyoo Jung
- Department of Radiology, School of Medicine, University of California, Davis, CA, USA
| | | | - James R. Bateman
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Mark A. Espeland
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Bonnie C. Sachs
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff Williamson
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maryjo Cleveland
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mia Yang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samantha Rogers
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kathleen M. Hayden
- Department of Social Sciences and Health Policy, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Laura D. Baker
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
190
|
Bibic A, Sordia T, Henningsson E, Knutsson L, Ståhlberg F, Wirestam R. Effects of red blood cells with reduced deformability on cerebral blood flow and vascular water transport: measurements in rats using time-resolved pulsed arterial spin labelling at 9.4 T. Eur Radiol Exp 2021; 5:53. [PMID: 34935093 PMCID: PMC8692551 DOI: 10.1186/s41747-021-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Background Our aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric. Methods Damaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05). Results After injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18–20 percentage points) and for relative CTT in putamen (up to 35–40 percentage points). Conclusions Haemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-021-00243-z.
Collapse
Affiliation(s)
- Adnan Bibic
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Tea Sordia
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| |
Collapse
|
191
|
Shao X, Guo F, Shou Q, Wang K, Jann K, Yan L, Toga AW, Zhang P, Wang DJJ. Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla. Neuroimage 2021; 245:118724. [PMID: 34780918 PMCID: PMC8727512 DOI: 10.1016/j.neuroimage.2021.118724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022] Open
Abstract
Laminar fMRI based on BOLD and CBV contrast at ultrahigh magnetic fields has been applied for studying the dynamics of mesoscopic brain networks. However, the quantitative interpretations of BOLD/CBV fMRI results are confounded by different baseline physiology across cortical layers. Here we introduce a novel 3D zoomed pseudo-continuous arterial spin labeling (pCASL) technique at 7T that offers the capability for quantitative measurements of laminar cerebral blood flow (CBF) both at rest and during task activation with high spatial specificity and sensitivity. We found arterial transit time in superficial layers is ∼100 ms shorter than in middle/deep layers revealing the time course of labeled blood flowing from pial arteries to downstream microvasculature. Resting state CBF peaked in the middle layers which is highly consistent with microvascular density measured from human cortex specimens. Finger tapping induced a robust two-peak laminar profile of CBF increases in the superficial (somatosensory and premotor input) and deep (spinal output) layers of M1, while finger brushing task induced a weaker CBF increase in superficial layers (somatosensory input). This observation is highly consistent with reported laminar profiles of CBV activation on M1. We further demonstrated that visuospatial attention induced a predominant CBF increase in deep layers and a smaller CBF increase on top of the lower baseline CBF in superficial layers of V1 (feedback cortical input), while stimulus driven activity peaked in the middle layers (feedforward thalamic input). With the capability for quantitative CBF measurements both at baseline and during task activation, high-resolution ASL perfusion fMRI at 7T provides an important tool for in vivo assessment of neurovascular function and metabolic activities of neural circuits across cortical layers.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Fanhua Guo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
192
|
Ultra-long-TE arterial spin labeling reveals rapid and brain-wide blood-to-CSF water transport in humans. Neuroimage 2021; 245:118755. [PMID: 34826596 PMCID: PMC7612938 DOI: 10.1016/j.neuroimage.2021.118755] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
The study of brain clearance mechanisms is an active area of research. While we know that the cerebrospinal fluid (CSF) plays a central role in one of the main existing clearance pathways, the exact processes for the secretion of CSF and the removal of waste products from tissue are under debate. CSF is thought to be created by the exchange of water and ions from the blood, which is believed to mainly occur in the choroid plexus. This exchange has not been thoroughly studied in vivo. We propose a modified arterial spin labeling (ASL) MRI sequence and image analysis to track blood water as it is transported to the CSF, and to characterize its exchange from blood to CSF. We acquired six pseudo-continuous ASL sequences with varying labeling duration (LD) and post-labeling delay (PLD) and a segmented 3D-GRASE readout with a long echo train (8 echo times (TE)) which allowed separation of the very long-T2 CSF signal. ASL signal was observed at long TEs (793 ms and higher), indicating presence of labeled water transported from blood to CSF. This signal appeared both in the CSF proximal to the choroid plexus and in the subarachnoid space surrounding the cortex. ASL signal was separated into its blood, gray matter and CSF components by fitting a triexponential function with T2s taken from literature. A two-compartment dynamic model was introduced to describe the exchange of water through time and TE. From this, a water exchange time from the blood to the CSF (Tbl->CSF) was mapped, with an order of magnitude of approximately 60 s.
Collapse
|
193
|
Rao VL, Prolo LM, Santoro JD, Zhang M, Quon JL, Jin M, Iyer A, Yedavalli V, Lober RM, Steinberg GK, Yeom KW, Grant GA. Acetazolamide-Challenged Arterial Spin Labeling Detects Augmented Cerebrovascular Reserve After Surgery for Moyamoya. Stroke 2021; 53:1354-1362. [PMID: 34865510 DOI: 10.1161/strokeaha.121.036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebrovascular reserve (CVR) inversely correlates with stroke risk in children with Moyamoya disease and may be improved by revascularization surgery. We hypothesized that acetazolamide-challenged arterial spin labeling MR perfusion quantifies augmentation of CVR achieved by revascularization and correlates with currently accepted angiographic scoring criteria. METHODS We retrospectively identified pediatric patients with Moyamoya disease or syndrome who received cerebral revascularization at ≤18 years of age between 2012 and 2019 at our institution. Using acetazolamide-challenged arterial spin labeling, we compared postoperative CVR to corresponding preoperative values and to postoperative perfusion outcomes classified by Matsushima grading. RESULTS In this cohort, 32 patients (17 males) with Moyamoya underwent 29 direct and 16 indirect extracranial-intracranial bypasses at a median 9.7 years of age (interquartile range, 7.6-15.7). Following revascularization, median CVR increased within the ipsilateral middle cerebral artery territory (6.9 mL/100 g per minute preoperatively versus 16.5 mL/100 g per minute postoperatively, P<0.01). No differences were observed in the ipsilateral anterior cerebral artery (P=0.13) and posterior cerebral artery (P=0.48) territories. Postoperative CVR was higher in the ipsilateral middle cerebral artery territories of patients who achieved Matsushima grade A perfusion, in comparison to those with grades B or C (25.8 versus 17.5 mL, P=0.02). The method of bypass (direct or indirect) did not alter relative increases in CVR (8 versus 3.8 mL/100 g per minute, P=0.7). CONCLUSIONS Acetazolamide-challenged arterial spin labeling noninvasively quantifies augmentation of CVR following surgery for Moyamoya disease and syndrome.
Collapse
Affiliation(s)
| | - Laura M Prolo
- Department of Neurosurgery, Stanford University School of Medicine, CA. (L.M.P., M.Z., J.L.Q., A.I., G.K.S., G.A.G.)
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, CA (J.D.S.).,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles (J.D.S.)
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, CA. (L.M.P., M.Z., J.L.Q., A.I., G.K.S., G.A.G.)
| | - Jennifer L Quon
- Department of Neurosurgery, Stanford University School of Medicine, CA. (L.M.P., M.Z., J.L.Q., A.I., G.K.S., G.A.G.)
| | - Michael Jin
- Stanford University School of Medicine, CA (V.L.R., M.J.)
| | - Aditya Iyer
- Department of Neurosurgery, Stanford University School of Medicine, CA. (L.M.P., M.Z., J.L.Q., A.I., G.K.S., G.A.G.)
| | - Vivek Yedavalli
- Johns Hopkins Hospital, Department of Radiological Sciences, Baltimore, MD (V.Y.)
| | - Robert M Lober
- Dayton Children's Hospital Division of Neurosurgery and Wright State University Boonshoft School of Medicine Department of Pediatrics, Dayton, OH (R.M.L.)
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, CA. (L.M.P., M.Z., J.L.Q., A.I., G.K.S., G.A.G.)
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, CA. (K.W.Y.)
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, CA. (L.M.P., M.Z., J.L.Q., A.I., G.K.S., G.A.G.)
| |
Collapse
|
194
|
Sander CY, Bovo S, Torrado-Carvajal A, Albrecht D, Deng H, Napadow V, Price JC, Hooker JM, Loggia ML. [ 11C]PBR28 radiotracer kinetics are not driven by alterations in cerebral blood flow. J Cereb Blood Flow Metab 2021; 41:3069-3084. [PMID: 34159823 PMCID: PMC8756484 DOI: 10.1177/0271678x211023387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The positron emission tomography (PET) radiotracer [11C]PBR28 has been increasingly used to image the translocator protein (TSPO) as a marker of neuroinflammation in a variety of brain disorders. Interrelatedly, similar clinical populations can also exhibit altered brain perfusion, as has been shown using arterial spin labelling in magnetic resonance imaging (MRI) studies. Hence, an unsolved debate has revolved around whether changes in perfusion could alter delivery, uptake, or washout of the radiotracer [11C]PBR28, and thereby influence outcome measures that affect interpretation of TSPO upregulation. In this simultaneous PET/MRI study, we demonstrate that [11C]PBR28 signal elevations in chronic low back pain patients are not accompanied, in the same regions, by increases in cerebral blood flow (CBF) compared to healthy controls, and that areas of marginal hypoperfusion are not accompanied by decreases in [11C]PBR28 signal. In non-human primates, we show that hypercapnia-induced increases in CBF during radiotracer delivery or washout do not alter [11C]PBR28 outcome measures. The combined results from two methodologically distinct experiments provide support from human data and direct experimental evidence from non-human primates that changes in CBF do not influence outcome measures reported by [11C]PBR28 PET imaging studies and corresponding interpretations of the biological meaning of TSPO upregulation.
Collapse
Affiliation(s)
- Christin Y Sander
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Stefano Bovo
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Information Engineering, University of Padova, Padova, Italy
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Daniel Albrecht
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hongping Deng
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Julie C Price
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jacob M Hooker
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
195
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
196
|
Liu S, Wang C, Yang Y, Cai H, Zhang M, Si L, Zhang S, Xu Y, Zhu J, Yu Y. Brain structure and perfusion in relation to serum renal function indexes in healthy young adults. Brain Imaging Behav 2021; 16:1014-1025. [PMID: 34709557 DOI: 10.1007/s11682-021-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
Abstract
Prior neuroimaging studies of the relationship between the kidney and the brain have been limited to clinical populations and have largely relied on a single modality. We sought to examine the kidney-brain associations in healthy subjects using a combined analysis of multi-modal imaging data. Structural, diffusion, and perfusion magnetic resonance imaging (MRI) scans were performed to measure cortical thickness, white matter integrity, and cerebral blood flow in 157 healthy young adults. Peripheral venous blood samples were collected to measure serum renal function indexes. Correlation analyses were performed to investigate the relations between brain MRI measures and renal function indexes. Results showed that higher serum uric acid level was associated with increased cortical thickness in the transverse temporal gyrus. We also found that decreased serum creatinine level was linked to lower white matter integrity in the sagittal stratum, anterior corona radiata, superior corona radiata, and external capsule. Furthermore, we observed that increased serum uric acid level was related to hyperperfusion in the opercular and triangular parts of inferior frontal gyrus and supramarginal gyrus, and hypoperfusion in the calcarine sulcus, cuneus and lingual gyrus. More importantly, mediation analysis revealed that the relationship between serum uric acid and working memory performance was mediated by perfusion in the supramarginal gyrus and lingual gyrus. These findings not only may extend current knowledge regarding the relationship between the kidney and the brain, but also may inform real-world clinical practice by identification of potential brain regions vulnerable to renal dysfunction.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Huanhuan Cai
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
197
|
Bones IK, Bos C, Moonen C, Hendrikse J, van Stralen M. Workflow for automatic renal perfusion quantification using ASL-MRI and machine learning. Magn Reson Med 2021; 87:800-809. [PMID: 34672029 PMCID: PMC9297892 DOI: 10.1002/mrm.29016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Clinical applicability of renal arterial spin labeling (ASL) MRI is hampered because of time consuming and observer dependent post-processing, including manual segmentation of the cortex to obtain cortical renal blood flow (RBF). Machine learning has proven its value in medical image segmentation, including the kidneys. This study presents a fully automatic workflow for renal cortex perfusion quantification by including machine learning-based segmentation. METHODS Fully automatic workflow was achieved by construction of a cascade of 3 U-nets to replace manual segmentation in ASL quantification. All 1.5T ASL-MRI data, including M0 , T1 , and ASL label-control images, from 10 healthy volunteers was used for training (dataset 1). Trained cascade performance was validated on 4 additional volunteers (dataset 2). Manual segmentations were generated by 2 observers, yielding reference and second observer segmentations. To validate the intended use of the automatic segmentations, manual and automatic RBF values in mL/min/100 g were compared. RESULTS Good agreement was found between automatic and manual segmentations on dataset 1 (dice score = 0.78 ± 0.04), which was in line with inter-observer variability (dice score = 0.77 ± 0.02). Good agreement was confirmed on dataset 2 (dice score = 0.75 ± 0.03). Moreover, similar cortical RBF was obtained with automatic or manual segmentations, on average and at subject level; with 211 ± 31 mL/min/100 g and 208 ± 31 mL/min/100 g (P < .05), respectively, with narrow limits of agreement at -11 and 4.6 mL/min/100 g. RBF accuracy with automated segmentations was confirmed on dataset 2. CONCLUSION Our proposed method automates ASL quantification without compromising RBF accuracy. With quick processing and without observer dependence, renal ASL-MRI is more attractive for clinical application as well as for longitudinal and multi-center studies.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
198
|
Impact of the inversion time on regional brain perfusion estimation with clinical arterial spin labeling protocols. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:349-363. [PMID: 34643853 PMCID: PMC9188620 DOI: 10.1007/s10334-021-00964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Objective Evaluating the impact of the Inversion Time (TI) on regional perfusion estimation in a pediatric cohort using Arterial Spin Labeling (ASL). Materials and methods Pulsed ASL (PASL) was acquired at 3 T both at TI 1500 ms and 2020 ms from twelve MRI-negative patients (age range 9–17 years). A volume of interest (VOIs) and a voxel-wise approach were employed to evaluate subject-specific TI-dependent Cerebral Blood Flow (CBF) differences, and grey matter CBF Z-score differences. A visual evaluation was also performed. Results CBF was higher for TI 1500 ms in the proximal territories of the arteries (PTAs) (e.g. insular cortex and basal ganglia — P < 0.01 and P < 0.05 from the VOI analysis, respectively), and for TI 2020 ms in the distal territories of the arteries (DTAs), including the watershed areas (e.g. posterior parietal and occipital cortex — P < 0.001 and P < 0.01 from the VOI analysis, respectively). Similar differences were also evident when analyzing patient-specific CBF Z-scores and at a visual inspection. Conclusions TI influences ASL perfusion estimates with a region-dependent effect. The presence of intraluminal arterial signal in PTAs and the longer arterial transit time in the DTAs (including watershed areas) may account for the TI-dependent differences. Watershed areas exhibiting a lower perfusion signal at short TIs (~ 1500 ms) should not be misinterpreted as focal hypoperfused areas. Supplementary Information The online version contains supplementary material available at 10.1007/s10334-021-00964-7.
Collapse
|
199
|
The Longitudinal Effect of Meditation on Resting-State Functional Connectivity Using Dynamic Arterial Spin Labeling: A Feasibility Study. Brain Sci 2021; 11:brainsci11101263. [PMID: 34679328 PMCID: PMC8533789 DOI: 10.3390/brainsci11101263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
We aimed to assess whether dynamic arterial spin labeling (dASL), a novel quantitative MRI technique with minimal contamination of subject motion and physiological noises, could detect the longitudinal effect of focused attention meditation (FAM) on resting-state functional connectivity (rsFC). A total of 10 novice meditators who recorded their FAM practice time were scanned at baseline and at the 2-month follow-up. Two-month meditation practice caused significantly increased rsFC between the left medial temporal (LMT) seed and precuneus area and between the right frontal eye (RFE) seed and medial prefrontal cortex. Meditation practice time was found to be positively associated with longitudinal changes of rsFC between the default mode network (DMN) and dorsal attention network (DAN), between DMN and insula, and between DAN and the frontoparietal control network (FPN) but negatively associated with changes of rsFC between DMN and FPN, and between DAN and visual regions. These findings demonstrate the capability of dASL in identifying the FAM-induced rsFC changes and suggest that the practice of FAM can strengthen the efficient control of FPN on fast switching between DMN and DAN and enhance the utilization of attentional resources with reduced focus on visual processing.
Collapse
|
200
|
Neumann K, Schidlowski M, Günther M, Stöcker T, Düzel E. Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly. Front Neurosci 2021; 15:711898. [PMID: 34489631 PMCID: PMC8417446 DOI: 10.3389/fnins.2021.711898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Martin Schidlowski
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Center for Behavioral Brain Science, Magdeburg, Germany
| |
Collapse
|