151
|
Popow O, Liu X, Haigis KM, Gygi SP, Paulo JA. A Compendium of Murine (Phospho)Peptides Encompassing Different Isobaric Labeling and Data Acquisition Strategies. J Proteome Res 2021; 20:3678-3688. [PMID: 34043369 PMCID: PMC8254770 DOI: 10.1021/acs.jproteome.1c00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted mass spectrometry-based assays typically rely on previously acquired large data sets for peptide target selection. Such repositories are widely available for unlabeled peptides. However, they are less common for isobaric tagged peptides. Here we have assembled two series of six data sets originating from a mouse embryonic fibroblast cell line (NIH/3T3). One series is of peptides derived from a tryptic digest of a whole cell proteome and a second from enriched phosphopeptides. These data sets encompass three labeling approaches (unlabeled, TMT11-labeled, and TMTpro16-labeled) and two data acquisition strategies (ion trap MS2 with and without FAIMS-based gas phase separation). We identified a total of 1 509 526 peptide-spectrum matches which covered 11 482 proteins from the whole cell proteome tryptic digest, and 188 849 phosphopeptides from the phosphopeptide enrichment. The data sets were of similar depth, and while overlap across data sets was modest, protein overlap was high, thus reinforcing the comprehensiveness of these data sets. The data also supported FAIMS as a means to increase data set depth. These data sets provide a rich resource of peptides that may be used as starting points for targeted assays. Future data sets may be compiled for any genome-sequenced organism using the technologies and strategies highlighted herein. The data have been deposited in the ProteomeXchange Consortium with data set identifier PXD024298.
Collapse
Affiliation(s)
- Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
152
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
153
|
Maier G, Delezie J, Westermark PO, Santos G, Ritz D, Handschin C. Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. J Physiol 2021; 600:769-796. [PMID: 34142717 PMCID: PMC9290843 DOI: 10.1113/jp281535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Key points Maximal endurance performance is greater in the early daytime. Timed exercise differentially alters the muscle transcriptome and (phospho)‐proteome. Early daytime exercise triggers energy provisioning and tissue regeneration. Early night‐time exercise activates stress‐related and catabolic pathways. Scheduled training has limited effects on the muscle and liver circadian clocks.
Abstract Timed physical activity might potentiate the health benefits of training. The underlying signalling events triggered by exercise at different times of day are, however, poorly understood. Here, we found that time‐dependent variations in maximal treadmill exercise capacity of naïve mice were associated with energy stores, mostly hepatic glycogen levels. Importantly, running at different times of day resulted in a vastly different activation of signalling pathways, e.g. related to stress response, vesicular trafficking, repair and regeneration. Second, voluntary wheel running at the opposite phase of the dark, feeding period surprisingly revealed a minimal zeitgeber (i.e. phase‐shifting) effect of training on the muscle clock. This integrated study provides important insights into the circadian regulation of endurance performance and the control of the circadian clock by exercise. In future studies, these results could contribute to better understanding circadian aspects of training design in athletes and the application of chrono‐exercise‐based interventions in patients.
Collapse
Affiliation(s)
- Geraldine Maier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Julien Delezie
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Pål O Westermark
- Leibniz-Institut für Nutztierbiologie, Institut für Genetik und Biometrie, Wilhelm-Stahl-Allee 2, Dummerstorf, D-18196, Germany
| | - Gesa Santos
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| |
Collapse
|
154
|
Chen H, Bühler K, Zhu Y, Nie X, Liu W. Proteomics analysis reveals the effect of 1α,25(OH) 2VD 3-glycosides on development of early testes in piglets. Sci Rep 2021; 11:11341. [PMID: 34059707 PMCID: PMC8167176 DOI: 10.1038/s41598-021-90676-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
1α,25(OH)2VD3 is the most active form of VD3 in animals. It plays an important role in regulating mineral metabolism but also in reproduction. Testes are the main reproductive organs of male mammals. Our research aims to reveal the effect of 1α,25(OH)2VD3-glycosides on development of early testes in piglets. 140 weaned 21-day old piglets were selected. The piglets were randomly divided into four groups and were fed a commercial diet supplemented with 0, 1, 2 and 4 μg/kg of 1α,25(OH)2VD3, provided as 1α,25(OH)2VD3-glycosides. Sixty days after the start of the experiment, at piglet age 82 days, testes were harvested. The morphology and histology of early testicular development were assessed. In addition, the proteomic TMT/iTRAQ labelling technique was used to analyse the protein profile of the testes in each group. Western blotting was applied to verify the target of differentially abundant proteins (DAPs). The analysis of morphology and histology of testes showed that a certain concentration of 1α,25(OH)2VD3-glycosides had a positive and significant effect on testicular development. And the results of proteomics analysis showed that of the identified 132,715 peptides, 122,755 were unique peptides. 7852 proteins, of which 6573 proteins contain quantitative information. Screening for DAPs focused on proteins closely related to the regulation of testicular development such as steroid hormone synthesis, steroid biosynthesis, peroxisome and fatty acid metabolism pathways. These results indicated that 1α,25(OH)2VD3 is involved in the regulation of early testicular development in piglets. At the same time, these findings provide valuable information for the proteins involved in the regulation of testicular development, and help to better understand the mechanisms of 1α,25(OH)2VD3 in regulating the development of piglets’ testes.
Collapse
Affiliation(s)
- Haodong Chen
- College of Animal Science and Technology, Huazhong Agricultural University, Hongshan District, No.1 Shizishan Road, Wuhan, 430070, China.,National Engineering and Technology Research Center for Livestock, Wuhan, 430070, China.,The Breeding Swine Quality Supervision and Testing Center, Ministry of Agriculture, Wuhan, 430070, China
| | - Kathrin Bühler
- Herbonis Animal Health GmbH, Rheinstrasse 30, CH-4302, Augst BL, Switzerland
| | - Yan Zhu
- College of Animal Science and Technology, Huazhong Agricultural University, Hongshan District, No.1 Shizishan Road, Wuhan, 430070, China
| | - Xiongwei Nie
- College of Animal Science and Technology, Huazhong Agricultural University, Hongshan District, No.1 Shizishan Road, Wuhan, 430070, China
| | - Wanghong Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Hongshan District, No.1 Shizishan Road, Wuhan, 430070, China. .,National Engineering and Technology Research Center for Livestock, Wuhan, 430070, China. .,The Breeding Swine Quality Supervision and Testing Center, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
155
|
Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun 2021; 12:3208. [PMID: 34050173 PMCID: PMC8163764 DOI: 10.1038/s41467-021-23545-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging.
Collapse
|
156
|
Abbasi DA, Nguyen TTA, Hall DA, Robertson-Dick E, Berry-Kravis E, Cologna SM. Characterization of the Cerebrospinal Fluid Proteome in Patients with Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2021; 21:86-98. [PMID: 34046842 DOI: 10.1007/s12311-021-01262-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 01/11/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS), first described in 2001, is a neurodegenerative and movement disorder, caused by a premutation in the fragile X mental retardation 1 (FMR1) gene. To date, the biological mechanisms causing this condition are still not well understood, as not all premutation carriers develop FXTAS. To further understand this syndrome, we quantitatively compared the cerebrospinal fluid (CSF) proteome of FXTAS patients with age-matched controls using mass spectrometry. We identified 415 proteins of which 97 were altered in FXTAS patients. These proteins suggest changes in acute phase response signaling, liver X receptor/ retinoid X receptor (LXR/RXR) activation, and farnesoid X receptor (FXR)/RXR activation, which are the main pathways found to be affected. Additionally, we detected changes in many other proteins including amyloid-like protein 2, contactin-1, afamin, cell adhesion molecule 4, NPC intracellular cholesterol transporter 2, and cathepsin B, that had been previously noted to hold important roles in other movement disorders. Specific to RXR pathways, several apolipoproteins (APOA1, APOA2, APOA4, APOC2, and APOD) showed significant changes in the CSF of FXTAS patients. Lastly, CSF parameters were analyzed to investigate abnormalities in blood brain barrier function. Correlations were observed between patient albumin quotient values, a measure of permeability, and CGG repeat length as well as FXTAS rating scale scores.
Collapse
Affiliation(s)
- Diana A Abbasi
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson-Dick
- Department of Communication Sciences and Disorders, Northwestern University, Chicago, IL, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA.
- Laboratory of Integrated Neuroscience, University of Illinois At Chicago, 845 W Taylor Street, Room 4500, Chicago, IL, 60607, USA.
| |
Collapse
|
157
|
Hixson KK, Marques JV, Wendler JP, McDermott JE, Weitz KK, Clauss TR, Monroe ME, Moore RJ, Brown J, Lipton MS, Bell CJ, Paša-Tolić L, Davin LB, Lewis NG. New Insights Into Lignification via Network and Multi-Omics Analyses of Arogenate Dehydratase Knock-Out Mutants in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:664250. [PMID: 34113365 PMCID: PMC8185232 DOI: 10.3389/fpls.2021.664250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Multiple Arabidopsis arogenate dehydratase (ADT) knock-out (KO) mutants, with phenotypes having variable lignin levels (up to circa 70% reduction), were studied to investigate how differential reductions in ADTs perturb its overall plant systems biology. Integrated "omics" analyses (metabolome, transcriptome, and proteome) of wild type (WT), single and multiple ADT KO lines were conducted. Transcriptome and proteome data were collapsed into gene ortholog (GO) data, with this allowing for enzymatic reaction and metabolome cross-comparisons to uncover dominant or likely metabolic biosynthesis reactions affected. Network analysis of enzymes-highly correlated to stem lignin levels-deduced the involvement of novel putative lignin related proteins or processes. These included those associated with ribosomes, the spliceosome, mRNA transport, aminoacyl tRNA biosynthesis, and phosphorylation. While prior work helped explain lignin biosynthesis regulation at the transcriptional level, our data here provide support for a new hypothesis that there are additional post-transcriptional and translational level processes that need to be considered. These findings are anticipated to lead to development of more accurate depictions of lignin/phenylpropanoid biosynthesis models in situ, with new protein targets identified for further biochemical analysis and/or plant bioengineering. Additionally, using KEGG defined functional categorization of proteomics and transcriptomics analyses, we detected significant changes to glucosinolate, α-linolenic acid, nitrogen, carotenoid, aromatic amino acid, phenylpropanoid, and photosynthesis-related metabolic pathways in ADT KO mutants. Metabolomics results also revealed that putative carotenoid and galactolipid levels were generally increased in amount, whereas many glucosinolates and phenylpropanoids (including flavonoids and lignans) were decreased in the KO mutants.
Collapse
Affiliation(s)
- Kim K. Hixson
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Joaquim V. Marques
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jason P. Wendler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jason E. McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Karl K. Weitz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Therese R. Clauss
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Matthew E. Monroe
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ronald J. Moore
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Joseph Brown
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Mary S. Lipton
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Callum J. Bell
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Ljiljana Paša-Tolić
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Laurence B. Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Norman G. Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
158
|
Peck Justice S, McCracken NA, Victorino JF, Qi GD, Wijeratne AB, Mosley AL. Boosting Detection of Low-Abundance Proteins in Thermal Proteome Profiling Experiments by Addition of an Isobaric Trigger Channel to TMT Multiplexes. Anal Chem 2021; 93:7000-7010. [PMID: 33908254 PMCID: PMC8153406 DOI: 10.1021/acs.analchem.1c00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
The study of low-abundance proteins is a challenge to discovery-based proteomics. Mass spectrometry (MS) applications, such as thermal proteome profiling (TPP), face specific challenges in the detection of the whole proteome as a consequence of the use of nondenaturing extraction buffers. TPP is a powerful method for the study of protein thermal stability, but quantitative accuracy is highly dependent on consistent detection. Therefore, TPP can be limited in its amenability to study low-abundance proteins that tend to have stochastic or poor detection by MS. To address this challenge, we incorporated an affinity-purified protein complex sample at submolar concentrations as an isobaric trigger channel into a mutant TPP (mTPP) workflow to provide reproducible detection and quantitation of the low-abundance subunits of the cleavage and polyadenylation factor (CPF) complex. The inclusion of an isobaric protein complex trigger channel increased detection an average of 40× for previously detected subunits and facilitated detection of CPF subunits that were previously below the limit of detection. Importantly, these gains in CPF detection did not cause large changes in melt temperature (Tm) calculations for other unrelated proteins in the samples, with a high positive correlation between Tm estimates in samples with and without isobaric trigger channel addition. Overall, the incorporation of an affinity-purified protein complex as an isobaric trigger channel within a tandem mass tag (TMT) multiplex for mTPP experiments is an effective and reproducible way to gather thermal profiling data on proteins that are not readily detected using the original TPP or mTPP protocols.
Collapse
Affiliation(s)
| | - Neil A. McCracken
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| | | | - Guihong D. Qi
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| | - Aruna B. Wijeratne
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| | - Amber L. Mosley
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
159
|
Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras AC, Warscheid B, Lehtiö J, Cristea IM, Foster LJ, Emili A, Lilley KS. Subcellular proteomics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:32. [PMID: 34549195 PMCID: PMC8451152 DOI: 10.1038/s43586-021-00029-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
Collapse
Affiliation(s)
- Josie A. Christopher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Charlotte Stadler
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David G. Rattray
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Mahdessian
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signaling Research Centers, University of Freiburg, Freiburg, Germany
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| |
Collapse
|
160
|
Mena EL, Donahue CJ, Vaites LP, Li J, Rona G, O'Leary C, Lignitto L, Miwatani-Minter B, Paulo JA, Dhabaria A, Ueberheide B, Gygi SP, Pagano M, Harper JW, Davey RA, Elledge SJ. ORF10-Cullin-2-ZYG11B complex is not required for SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021; 118:e2023157118. [PMID: 33827988 PMCID: PMC8092598 DOI: 10.1073/pnas.2023157118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B (CRL2ZYG11B). Since CRL2ZYG11B mediates protein degradation, one possible role for ORF10 is to "hijack" CRL2ZYG11B in order to target cellular, antiviral proteins for ubiquitylation and subsequent proteasomal degradation. Here, we investigated whether ORF10 hijacks CRL2ZYG11B or functions in other ways, for example, as an inhibitor or substrate of CRL2ZYG11B While we confirm the ORF10-ZYG11B interaction and show that the N terminus of ORF10 is critical for it, we find no evidence that ORF10 is functioning to inhibit or hijack CRL2ZYG11B Furthermore, ZYG11B and its paralog ZER1 are dispensable for SARS-CoV-2 infection in cultured cells. We conclude that the interaction between ORF10 and CRL2ZYG11B is not relevant for SARS-CoV-2 infection in vitro.
Collapse
Affiliation(s)
- Elijah L Mena
- Division of Genetics, Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115
| | - Callie J Donahue
- Department of Microbiology, National Emerging Infectious Disease Laboratories, Boston University Medical Campus, Boston, MA 02118
| | - Laura Pontano Vaites
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016
| | - Colin O'Leary
- Division of Genetics, Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Luca Lignitto
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016;
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Disease Laboratories, Boston University Medical Campus, Boston, MA 02118;
| | - Stephen J Elledge
- Division of Genetics, Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
161
|
Donato C, Buczak K, Schmidt A, Aceto N. Mass spectrometry analysis of circulating breast cancer cells from a Xenograft mouse model. STAR Protoc 2021; 2:100480. [PMID: 33982014 PMCID: PMC8082161 DOI: 10.1016/j.xpro.2021.100480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Circulating tumor cells (CTCs) are precursors of metastasis in various cancer types. Many aspects regarding CTC biology remain poorly understood. Here, we describe mass spectrometric analysis of CTCs from a breast cancer xenograft mouse model, including procedures comprising CTC enrichment, separation of different CTC subpopulations, and their quantitative proteomic assessment. This protocol aims to facilitate the identification of protein content dynamics in human CTCs that are physiologically shed from tumor-bearing xenografts, providing a framework for investigating metastasis biology. For complete details on the use and execution of this protocol, please refer to Donato et al. (2020).
Collapse
Affiliation(s)
- Cinzia Donato
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058 Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058 Basel, Switzerland
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
- Corresponding author
| |
Collapse
|
162
|
Olsson N, Heberling ML, Zhang L, Jhunjhunwala S, Phung QT, Lin S, Anania VG, Lill JR, Elias JE. An Integrated Genomic, Proteomic, and Immunopeptidomic Approach to Discover Treatment-Induced Neoantigens. Front Immunol 2021; 12:662443. [PMID: 33936100 PMCID: PMC8082494 DOI: 10.3389/fimmu.2021.662443] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
All nucleated mammalian cells express major histocompatibility complex (MHC) proteins that present peptides on cell surfaces for immune surveillance. These MHC-presented peptides (pMHC) are necessary for directing T-cell responses against cells harboring non-self antigens derived from pathogens or from somatic mutations. Alterations in tumor-specific antigen repertoires - particularly novel MHC presentation of mutation-bearing peptides (neoantigens) - can be potent targets of anti-tumor immune responses. Here we employed an integrated genomic and proteomic antigen discovery strategy aimed at measuring how interferon gamma (IFN-γ) alters antigen presentation, using a human lymphoma cell line, GRANTA-519. IFN-γ treatment resulted in 126 differentially expressed proteins (2% of all quantified proteins), which included components of antigen presentation machinery and interferon signaling pathways, and MHC molecules themselves. In addition, several proteasome subunits were found to be modulated, consistent with previous reports of immunoproteasome induction by IFN-γ exposure. This finding suggests that a modest proteomic response to IFN-γ could create larger alteration to cells' antigen/epitope repertoires. Accordingly, MHC immunoprecipitation followed by mass spectrometric analysis of eluted peptide repertoires revealed exclusive signatures of IFN-γ induction, with 951 unique peptides reproducibly presented by MHC-I and 582 presented by MHC-II. Furthermore, an additional set of pMHCs including several candidate neoantigens, distinguished control and the IFN-γ samples by their altered relative abundances. Accordingly, we developed a classification system to distinguish peptides which are differentially presented due to altered expression from novel peptides resulting from changes in antigen processing. Taken together, these data demonstrate that IFN-γ can re-shape antigen repertoires by identity and by abundance. Extending this approach to models with greater clinical relevance could help develop strategies by which immunopeptide repertoires are intentionally reshaped to improve endogenous or vaccine-induced anti-tumor immune responses and potentially anti-viral immune responses.
Collapse
Affiliation(s)
- Niclas Olsson
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Marlene L. Heberling
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Lichao Zhang
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, Stanford, CA, United States
| | - Suchit Jhunjhunwala
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, United States
| | - Qui T. Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, United States
- Department of OMNI Biomarker Development, Genentech, South San Francisco, CA, United States
| | - Sarah Lin
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, Stanford, CA, United States
| | - Veronica G. Anania
- Department of OMNI Biomarker Development, Genentech, South San Francisco, CA, United States
| | - Jennie R. Lill
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, United States
| | - Joshua E. Elias
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, Stanford, CA, United States
| |
Collapse
|
163
|
Swensen AC, He J, Fang AC, Ye Y, Nicora CD, Shi T, Liu AY, Sigdel TK, Sarwal MM, Qian WJ. A Comprehensive Urine Proteome Database Generated From Patients With Various Renal Conditions and Prostate Cancer. Front Med (Lausanne) 2021; 8:548212. [PMID: 33928097 PMCID: PMC8076675 DOI: 10.3389/fmed.2021.548212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Urine proteins can serve as viable biomarkers for diagnosing and monitoring various diseases. A comprehensive urine proteome database, generated from a variety of urine samples with different disease conditions, can serve as a reference resource for facilitating discovery of potential urine protein biomarkers. Herein, we present a urine proteome database generated from multiple datasets using 2D LC-MS/MS proteome profiling of urine samples from healthy individuals (HI), renal transplant patients with acute rejection (AR) and stable graft (STA), patients with non-specific proteinuria (NS), and patients with prostate cancer (PC). A total of ~28,000 unique peptides spanning ~2,200 unique proteins were identified with a false discovery rate of <0.5% at the protein level. Over one third of the annotated proteins were plasma membrane proteins and another one third were extracellular proteins according to gene ontology analysis. Ingenuity Pathway Analysis of these proteins revealed 349 potential biomarkers in the literature-curated database. Forty-three percentage of all known cluster of differentiation (CD) proteins were identified in the various human urine samples. Interestingly, following comparisons with five recently published urine proteome profiling studies, which applied similar approaches, there are still ~400 proteins which are unique to this current study. These may represent potential disease-associated proteins. Among them, several proteins such as serpin B3, renin receptor, and periostin have been reported as pathological markers for renal failure and prostate cancer, respectively. Taken together, our data should provide valuable information for future discovery and validation studies of urine protein biomarkers for various diseases.
Collapse
Affiliation(s)
- Adam C Swensen
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Jingtang He
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Alexander C Fang
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Yinyin Ye
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Carrie D Nicora
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Tujin Shi
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Tara K Sigdel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Wei-Jun Qian
- Integrative Omics, Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| |
Collapse
|
164
|
Agelidis A, Turturice BA, Suryawanshi RK, Yadavalli T, Jaishankar D, Ames J, Hopkins J, Koujah L, Patil CD, Hadigal SR, Kyzar EJ, Campeau A, Wozniak JM, Gonzalez DJ, Vlodavsky I, Li JP, Perkins DL, Finn PW, Shukla D. Disruption of innate defense responses by endoglycosidase HPSE promotes cell survival. JCI Insight 2021; 6:144255. [PMID: 33621216 PMCID: PMC8119219 DOI: 10.1172/jci.insight.144255] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
The drive to withstand environmental stresses and defend against invasion is a universal trait extant in all forms of life. While numerous canonical signaling cascades have been characterized in detail, it remains unclear how these pathways interface to generate coordinated responses to diverse stimuli. To dissect these connections, we followed heparanase (HPSE), a protein best known for its endoglycosidic activity at the extracellular matrix but recently recognized to drive various forms of late-stage disease through unknown mechanisms. Using herpes simplex virus-1 (HSV-1) infection as a model cellular perturbation, we demonstrate that HPSE acts beyond its established enzymatic role to restrict multiple forms of cell-intrinsic defense and facilitate host cell reprogramming by the invading pathogen. We reveal that cells devoid of HPSE are innately resistant to infection and counteract viral takeover through multiple amplified defense mechanisms. With a unique grasp of the fundamental processes of transcriptional regulation and cell death, HPSE represents a potent cellular intersection with broad therapeutic potential.
Collapse
Affiliation(s)
- Alex Agelidis
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | - Benjamin A. Turturice
- Department of Microbiology and Immunology
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | - Dinesh Jaishankar
- Department of Ophthalmology and Visual Sciences, and
- Department of Dermatology, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Joshua Ames
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | - James Hopkins
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | - Lulia Koujah
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | | | | | - Evan J. Kyzar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anaamika Campeau
- Department of Pharmacology and
- Skaggs School of Pharmacy, UCSD, San Diego, La Jolla, California, USA
| | - Jacob M. Wozniak
- Department of Pharmacology and
- Skaggs School of Pharmacy, UCSD, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology and
- Skaggs School of Pharmacy, UCSD, San Diego, La Jolla, California, USA
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Jin-ping Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, and
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Patricia W. Finn
- Department of Microbiology and Immunology
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| |
Collapse
|
165
|
Takahashi M, Lio CWJ, Campeau A, Steger M, Ay F, Mann M, Gonzalez DJ, Jain M, Sharma S. The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING-IFN-β pathway. Nat Immunol 2021; 22:485-496. [PMID: 33767426 PMCID: PMC8300883 DOI: 10.1038/s41590-021-00896-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Evasion of host immunity is a hallmark of cancer; however, mechanisms linking oncogenic mutations and immune escape are incompletely understood. Through loss-of-function screening of 1,001 tumor suppressor genes, we identified death-associated protein kinase 3 (DAPK3) as a previously unrecognized driver of anti-tumor immunity through the stimulator of interferon genes (STING) pathway of cytosolic DNA sensing. Loss of DAPK3 expression or kinase activity impaired STING activation and interferon (IFN)-β-stimulated gene induction. DAPK3 deficiency in IFN-β-producing tumors drove rapid growth and reduced infiltration of CD103+CD8α+ dendritic cells and cytotoxic lymphocytes, attenuating the response to cancer chemo-immunotherapy. Mechanistically, DAPK3 coordinated post-translational modification of STING. In unstimulated cells, DAPK3 inhibited STING K48-linked poly-ubiquitination and proteasome-mediated degradation. After cGAMP stimulation, DAPK3 was required for STING K63-linked poly-ubiquitination and STING-TANK-binding kinase 1 interaction. Comprehensive phospho-proteomics uncovered a DAPK3-specific phospho-site on the E3 ligase LMO7, critical for LMO7-STING interaction and STING K63-linked poly-ubiquitination. Thus, DAPK3 is an essential kinase for STING activation that drives tumor-intrinsic innate immunity and tumor immune surveillance.
Collapse
Affiliation(s)
| | - Chan-Wang J Lio
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
| | - Martin Steger
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Evotec München GmbH, Martinsried, Germany
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
| | - Mohit Jain
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
166
|
Edskes HK, Stroobant EE, DeWilde MP, Bezsonov EE, Wickner RB. Proteasome Control of [URE3] Prion Propagation by Degradation of Anti-Prion Proteins Cur1 and Btn2 in Saccharomyces cerevisiae. Genetics 2021; 218:6179111. [PMID: 33742650 DOI: 10.1093/genetics/iyab037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/27/2021] [Indexed: 01/16/2023] Open
Abstract
[URE3] is a prion of the nitrogen catabolism controller, Ure2p, and [PSI+] is a prion of the translation termination factor Sup35p in S. cerevisiae. Btn2p cures [URE3] by sequestration of Ure2p amyloid filaments. Cur1p, paralogous to Btn2p, also cures [URE3], but by a different (unknown) mechanism. We find that an array of mutations impairing proteasome assembly or MG132 inhibition of proteasome activity result in loss of [URE3]. In proportion to their prion-curing effects, each mutation affecting proteasomes elevates the cellular concentration of the anti-prion proteins Btn2 and Cur1. Of >4,600 proteins detected by SILAC, Btn2p was easily the most overexpressed in a pre9Δ (α3 core subunit) strain. Indeed, deletion of BTN2 and CUR1 prevents the prion-curing effects of proteasome impairment. Surprisingly, the 15 most unstable yeast proteins are not increased in pre9Δ cells suggesting altered proteasome specificity rather than simple inactivation. Hsp42, a chaperone that cooperates with Btn2 and Cur1 in curing [URE3], is also necessary for the curing produced by proteasome defects, although Hsp42p levels are not substantially altered by a proteasome defect. We find that pre9Δ and proteasome chaperone mutants that most efficiently lose [URE3], do not destabilize [PSI+] or alter cellular levels of Sup35p. A tof2 mutation or deletion likewise destabilizes [URE3], and elevates Btn2p, suggesting that Tof2p deficiency inactivates proteasomes. We suggest that when proteasomes are saturated with denatured/misfolded proteins, their reduced degradation of Btn2p and Cur1p automatically upregulates these aggregate-handling systems to assist in the clean-up.
Collapse
Affiliation(s)
- Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Emily E Stroobant
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Morgan P DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| |
Collapse
|
167
|
Dual DNA and protein tagging of open chromatin unveils dynamics of epigenomic landscapes in leukemia. Nat Methods 2021; 18:293-302. [PMID: 33649590 PMCID: PMC8272231 DOI: 10.1038/s41592-021-01077-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
The architecture of chromatin regulates eukaryotic cell states by controlling transcription factor access to sites of gene regulation. Here we describe a dual transposase-peroxidase approach, integrative DNA and protein tagging (iDAPT), which detects both DNA (iDAPT-seq) and protein (iDAPT-MS) associated with accessible regions of chromatin. In addition to direct identification of bound transcription factors, iDAPT enables the inference of their gene regulatory networks, protein interactors and regulation of chromatin accessibility. We applied iDAPT to profile the epigenomic consequences of granulocytic differentiation of acute promyelocytic leukemia, yielding previously undescribed mechanistic insights. Our findings demonstrate the power of iDAPT as a platform for studying the dynamic epigenomic landscapes and their transcription factor components associated with biological phenomena and disease.
Collapse
|
168
|
Silbern I, Pan KT, Fiosins M, Bonn S, Rizzoli SO, Fornasiero EF, Urlaub H, Jahn R. Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling. Mol Cell Proteomics 2021; 20:100061. [PMID: 33582301 PMCID: PMC7995663 DOI: 10.1016/j.mcpro.2021.100061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/20/2023] Open
Abstract
Synaptic transmission is mediated by the regulated exocytosis of synaptic vesicles. When the presynaptic membrane is depolarized by an incoming action potential, voltage-gated calcium channels open, resulting in the influx of calcium ions that triggers the fusion of synaptic vesicles (SVs) with the plasma membrane. SVs are recycled by endocytosis. Phosphorylation of synaptic proteins plays a major role in these processes, and several studies have shown that the synaptic phosphoproteome changes rapidly in response to depolarization. However, it is unclear which of these changes are directly linked to SV cycling and which might regulate other presynaptic functions that are also controlled by calcium-dependent kinases and phosphatases. To address this question, we analyzed changes in the phosphoproteome using rat synaptosomes in which exocytosis was blocked with botulinum neurotoxins (BoNTs) while depolarization-induced calcium influx remained unchanged. BoNT-treatment significantly alters the response of the synaptic phoshoproteome to depolarization and results in reduced phosphorylation levels when compared with stimulation of synaptosomes by depolarization with KCl alone. We dissect the primary Ca2+-dependent phosphorylation from SV-cycling-dependent phosphorylation and confirm an effect of such SV-cycling-dependent phosphorylation events on syntaxin-1a-T21/T23, synaptobrevin-S75, and cannabinoid receptor-1-S314/T322 on exo- and endocytosis in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Ivan Silbern
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Maksims Fiosins
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Institute for Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Institute for Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
169
|
Bezsonov EE, Edskes HK, Wickner RB. Innate immunity to yeast prions: Btn2p and Cur1p curing of the [URE3] prion is prevented by 60S ribosomal protein deficiency or ubiquitin/proteasome system overactivity. Genetics 2021; 217:6127178. [PMID: 33857305 DOI: 10.1093/genetics/iyab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
[URE3] is an amyloid-based prion of Ure2p, a negative regulator of poor nitrogen source catabolism in Saccharomyces cerevisiae. Overproduced Btn2p or its paralog Cur1p, in processes requiring Hsp42, cure the [URE3] prion. Btn2p cures by collecting Ure2p amyloid filaments at one place in the cell. We find that rpl4aΔ, rpl21aΔ, rpl21bΔ, rpl11bΔ, and rpl16bΔ (large ribosomal subunit proteins) or ubr2Δ (ubiquitin ligase targeting Rpn4p, an activator of proteasome genes) reduce curing by overproduced Btn2p or Cur1p. Impaired curing in ubr2Δ or rpl21bΔ is restored by an rpn4Δ mutation. No effect of rps14aΔ or rps30bΔ on curing was observed, indicating that 60S subunit deficiency specifically impairs curing. Levels of Hsp42p, Sis1p, or Btn3p are unchanged in rpl4aΔ, rpl21bΔ, or ubr2Δ mutants. Overproduction of Cur1p or Btn2p was enhanced in rpn4Δ and hsp42Δ mutants, lower in ubr2Δ strains, and restored to above wild-type levels in rpn4Δ ubr2Δ strains. As in the wild-type, Ure2N-GFP colocalizes with Btn2-RFP in rpl4aΔ, rpl21bΔ, or ubr2Δ strains, but not in hsp42Δ. Btn2p/Cur1p overproduction cures [URE3] variants with low seed number, but seed number is not increased in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Knockouts of genes required for the protein sorting function of Btn2p did not affect curing of [URE3], nor did inactivation of the Hsp104 prion-curing activity. Overactivity of the ubiquitin/proteasome system, resulting from 60S subunit deficiency or ubr2Δ, may impair Cur1p and Btn2p curing of [URE3] by degrading Cur1p, Btn2p or another component of these curing systems.
Collapse
Affiliation(s)
- Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| |
Collapse
|
170
|
Luo Y, Li ZM, Li LP, Zou Y, Xu XY, Zhang ZY, Liu FY, Xiong Y, Wan L. ITRAQ-based proteomics analysis of tanshinone IIA on human ectopic endometrial stromal cells of adenomyosis. Arch Gynecol Obstet 2021; 303:1501-1511. [PMID: 33471216 DOI: 10.1007/s00404-020-05936-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Adenomyosis is a diffuse or localized disease. Our previous study has indicated that tanshinone IIA (TSIIA) inhibits the proliferation, migration, and induces apoptosis of ectopic endometrial stromal cells (EESCs) of adenomyosis. However, the complex molecular mechanism of TSIIA in adenomyosis remains unclear. The objective of this study was to explore the complex molecular mechanism of TSIIA on EESCs. METHODS In our present study, we used the proteomics approach iTRAQ (isobaric tags for relative and absolute quantitation) combined with LC-MS/MS (liquid chromatography-mass spectrometry) to investigate changes in the protein profile of EESCs treated with TSIIA. Differential proteins were analyzed by employing bioinformatics tools and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In TSIIA treated EESCs, the protein expression levels of TNFRSF10D, PLEKHM1, FECH, and TPM1A were detected by western blotting. RESULTS Quantitative results revealed 267 significantly differential proteins in TSIIA pretreated EESCs. Gene Ontology (GO) analysis presented an overview of dysregulated proteins in the biological process (BP), cell component (CC), and molecular function (MF) categories. Interestingly, we observed that differential proteins in the extracellular matrix (ECM)-receptor interaction pathway and estrogen signaling pathway were all involved in the focal adhesion pathway, which plays essential roles in the TSIIA-mediated inhibition of EESC proliferation and migration. Furthermore, some significantly differential proteins, which may be potential targets for the treatment of adenomyosis in the future, were validated by western blotting. CONCLUSIONS Our study provides a useful method to detect the detailed mechanism underlying the efficacy of TSIIA on EESCs.
Collapse
Affiliation(s)
- Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Zeng-Ming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Li-Ping Li
- Prenatal Diagnosis Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Xiao-Yun Xu
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yan Xiong
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Lei Wan
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
171
|
Kumar R, Shah RL, Ahmad S, Rathore AS. Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line. Electrophoresis 2021; 42:735-741. [PMID: 33348443 DOI: 10.1002/elps.202000252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 11/05/2022]
Abstract
Host cell proteins (HCPs) are widely regarded as a critical quality attribute for a biotherapeutic product. Bottom up MS is the present gold standard for HCP analysis but suffers from incomplete protein identification due to complex nature of the HCP mixture and limited separation efficiency of the preceding LC-based systems. In this paper, we present for the first time an application involving use of LC-CE-MS/MS platform for analysis of HCPs. It has been demonstrated that the proposed platform has been able to successfully identify 397 HCPs from the supernatants of recombinant Chinese hamster ovary cells, twice and thrice the number of proteins identified by the state-of-the-art LC-MS/MS (189 HCPs) and CE-MS/MS (128 HCPs) analyses, respectively. Of these, 225 HCPs were unique to the LC-CE-MS/MS approach and were not identified by either LC-MS/MS or CE-MS/MS. It is observed that the LC-CE-MS/MS platform combines the benefits of LC-MS/MS and CE-MS/MS techniques and identifies peptides in a wider range of size, pI, and hydrophobicity. Additionally, LC-CE-MS/MS also identified more HCPs associated with cellular components, molecular functions, biological processes, peptidases, and secretory proteins. The proposed approach would thus be a useful addition in HCP analysis and secretome studies of mAb-producing Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rohan L Shah
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
172
|
Silbern I, Fang P, Ji Y, Christof L, Urlaub H, Pan KT. Relative Quantification of Phosphorylated and Glycosylated Peptides from the Same Sample Using Isobaric Chemical Labelling with a Two-Step Enrichment Strategy. Methods Mol Biol 2021; 2228:185-203. [PMID: 33950492 DOI: 10.1007/978-1-0716-1024-4_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) are essential for the regulation of all cellular processes. The interplay of various PTMs on a single protein or different proteins comprises a complexity that we are far from understanding in its entirety. Reliable strategies for the enrichment and accurate quantification of PTMs are needed to study as many PTMs on proteins as possible. In this protocol we present a liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based workflow that enables the enrichment and quantification of phosphorylated and N-glycosylated peptides from the same sample. After extraction and digestion of proteins, we label the peptides with stable isotope-coded tandem mass tags (TMTs) and enrich N-glycopeptides and phosphopeptides by using zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) and titanium dioxide (TiO2) beads, respectively. Labelled and enriched N-glycopeptides and phosphopeptides are further separated by high pH (basic) reversed-phase chromatography and analyzed by LC/MS/MS. The enrichment strategies, together with quantification of two different PTM types from the same sample, allow investigation of the interplay of those two PTMs, which are important for signal transduction inside the cell (phosphorylation), as well as for messaging between cells through decoration of the cellular surface (glycosylation).
Collapse
Affiliation(s)
- Ivan Silbern
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Pan Fang
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Lenz Christof
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
173
|
Ma TT, Cao MD, Yu RL, Shi HY, Yan WJ, Liu JG, Pan C, Sun J, Wei QY, Wang DY, Wei JF, Wang XY, Yin JS. Leukotriene A 4 Hydrolase Is a Candidate Predictive Biomarker for Successful Allergen Immunotherapy. Front Immunol 2020; 11:559746. [PMID: 33329520 PMCID: PMC7732448 DOI: 10.3389/fimmu.2020.559746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Allergic rhinitis is a common disorder that affects 10% to 40% of the population worldwide. Allergen immunotherapy (AIT) represents the only therapy that has the potential to resolve clinical symptoms of allergic rhinitis. However, up to 30% of patients do not respond to AIT. Biomarkers predicting the clinical efficacy of AIT as early as possible would significantly improve the patient selection and reduce unnecessary societal costs. Methods Artemisia pollen allergic patients who received at least 1-year AIT were enrolled. Clinical responses before and after 1-year AIT were evaluated to determine AIT responders. Artemisia specific IgE and IgG4 levels were measured by using ImmunoCAP and enzyme-linked immunosorbent assay (ELISA) separately. Stepwise regression analysis was performed to identify which rhinitis-relevant parameters explained the most variability in AIT results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics was applied to identify the potential candidate biomarkers in the sera of responders and non-responders collected before and after 1-year therapy. The diagnostic performance of the potential biomarkers was then assessed using enzyme-linked immunosorbent assay (ELISA) in 30 responders and 15 non-responders. Results Artemisia specific IgE and IgG4 levels were elevated only in the responders. Regression analysis of allergic rhinitis-relevant parameters provided a robust model that included two most significant variables (sneeze and nasal congestion). Thirteen candidate biomarkers were identified for predicting AIT outcomes. Based on their association with allergy and protein fold change (more than 1.1 or less than 0.9), four proteins were identified to be potential biomarkers for predicting effective AIT. However, further ELISA revealed that only leukotriene A4 hydrolase (LTA4H) was consistent with the proteomics data. The LTA4H level in responders increased significantly (P < 0.001) after 1-year therapy, while that of non-responders remained unchanged. Assessment of LTA4H generated area under curve (AUC) value of 0.844 (95% confidence interval: 0.727 to 0.962; P < 0.05) in distinguishing responders from the non-responders, suggesting that serum LTA4H might be a potential biomarker for predicting the efficiency of AIT. Conclusion Serum LTA4H may be a potential biomarker for early prediction of an effective AIT.
Collapse
Affiliation(s)
- Ting-Ting Ma
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng-Da Cao
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui-Li Yu
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hai-Yun Shi
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jun Yan
- Department of Allergy, Duolun People's Hospital, Duolun, China
| | - Jian-Guo Liu
- Department of Allergy, Duolun People's Hospital, Duolun, China
| | - Chen Pan
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlyu Sun
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
| | - Qing-Yu Wei
- Department of Allergy, General Hospital of Northern Theater Command, Shenyang, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Yan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jin-Shu Yin
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
174
|
Khan AA, Patel K, Patil S, Babu N, Mangalaparthi KK, Solanki HS, Nanjappa V, Kumari A, Manoharan M, Karunakaran C, Murugan S, Nair B, Kumar RV, Biswas M, Sidransky D, Gupta R, Gupta R, Khanna-Gupta A, Kumar P, Chatterjee A, Gowda H. Multi-Omics Analysis to Characterize Cigarette Smoke Induced Molecular Alterations in Esophageal Cells. Front Oncol 2020; 10:1666. [PMID: 33251127 PMCID: PMC7675040 DOI: 10.3389/fonc.2020.01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Though smoking remains one of the established risk factors of esophageal squamous cell carcinoma, there is limited data on molecular alterations associated with cigarette smoke exposure in esophageal cells. To investigate molecular alterations associated with chronic exposure to cigarette smoke, non-neoplastic human esophageal epithelial cells were treated with cigarette smoke condensate (CSC) for up to 8 months. Chronic treatment with CSC increased cell proliferation and invasive ability of non-neoplastic esophageal cells. Whole exome sequence analysis of CSC treated cells revealed several mutations and copy number variations. This included loss of high mobility group nucleosomal binding domain 2 (HMGN2) and a missense variant in mediator complex subunit 1 (MED1). Both these genes play an important role in DNA repair. Global proteomic and phosphoproteomic profiling of CSC treated cells lead to the identification of 38 differentially expressed and 171 differentially phosphorylated proteins. Bioinformatics analysis of differentially expressed proteins and phosphoproteins revealed that most of these proteins are associated with DNA damage response pathway. Proteomics data revealed decreased expression of HMGN2 and hypophosphorylation of MED1. Exogenous expression of HMGN2 and MED1 lead to decreased proliferative and invasive ability of smoke exposed cells. Immunohistochemical labeling of HMGN2 in primary ESCC tumor tissue sections (from smokers) showed no detectable expression while strong to moderate staining of HMGN2 was observed in normal esophageal tissues. Our data suggests that cigarette smoke perturbs expression of proteins associated with DNA damage response pathways which might play a vital role in development of ESCC.
Collapse
Affiliation(s)
- Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia.,Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, Siena, Italy
| | - Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | | | | | | | | | | | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Manjusha Biswas
- Department of Molecular Pathology, Mitra Biotech, Bangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore, India
| | | | | | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
175
|
Jankovska E, Lipcseyova D, Svrdlikova M, Pavelcova M, Kubala Havrdova E, Holada K, Petrak J. Quantitative proteomic analysis of cerebrospinal fluid of women newly diagnosed with multiple sclerosis. Int J Neurosci 2020; 132:724-734. [PMID: 33059501 DOI: 10.1080/00207454.2020.1837801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The lack of reliable diagnostic and/or prognostic biomarkers for multiple sclerosis (MS) is the major obstacle to timely and accurate patient diagnosis in MS patients. To identify new proteins associated with MS we performed a detailed proteomic analysis of cerebrospinal fluid (CSF) of patients newly diagnosed with relapsing-remitting MS (RRMS) and healthy controls. MATERIAL Reflecting significantly higher prevalence of MS in women we included only women patients and controls in the study. To eliminate a potential effect of therapy on the CSF composition, only the therapy-naïve patients were included. METHODS Pooled CSF samples were processed in a technical duplicate, and labeled with stable-isotope coded TMT tags. To maximize the proteome coverage, peptide fractionation using 2D-LC preceded mass analysis using Orbitrap Fusion Tribrid Mass Spectrometer. Differential concentration of selected identified proteins between patients and controls was verified using specific antibodies. RESULTS Of the identified 900 CSF proteins, we found 69 proteins to be differentially abundant between patients and controls. In addition to several proteins identified as differentially abundant in MS patients previously, we observed several linked to MS for the first time, namely eosinophil-derived neurotoxin and Nogo receptor. CONCLUSIONS Our data confirm differential abundance of several previously proposed protein markers, and provide indirect support for involvement of copper-iron disbalance in MS. Most importantly, we identified two new differentially abundant CSF proteins that seem to be directly connected with myelin loss and axonal damage via TLR2 signaling and Nogo-receptor pathway in women newly diagnosed with RRMS.
Collapse
Affiliation(s)
- Eliska Jankovska
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Denisa Lipcseyova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michaela Svrdlikova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Miluse Pavelcova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
176
|
Liu X, Gygi SP, Paulo JA. Isobaric Tag-Based Protein Profiling across Eight Human Cell Lines Using High-Field Asymmetric Ion Mobility Spectrometry and Real-Time Database Searching. Proteomics 2020; 21:e2000218. [PMID: 33015980 DOI: 10.1002/pmic.202000218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Indexed: 12/11/2022]
Abstract
A vast number of human cell lines are available for cell culture model-based studies, and as such the potential exists for discrepancies in findings due to cell line selection. To investigate this concept, the authors determine the relative protein abundance profiles of a panel of eight diverse, but commonly studied human cell lines. This panel includes HAP1, HEK293T, HeLa, HepG2, Jurkat, Panc1, SH-SY5Y, and SVGp12. A mass spectrometry-based proteomics workflow designed to enhance quantitative accuracy while maintaining analytical depth is used. To this end, this strategy leverages TMTpro16-based sample multiplexing, high-field asymmetric ion mobility spectrometry, and real-time database searching. The data show that the differences in the relative protein abundance profiles reflect cell line diversity. The authors also determine several hundred proteins to be highly enriched for a given cell line, and perform gene ontology and pathway analysis on these cell line-enriched proteins. An R Shiny application is designed to query protein abundance profiles and retrieve proteins with similar patterns. The workflows used herein can be applied to additional cell lines to aid cell line selection for addressing a given scientific inquiry or for improving an experimental design.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
177
|
Varga T, Hixson KK, Ahkami AH, Sher AW, Barnes ME, Chu RK, Battu AK, Nicora CD, Winkler TE, Reno LR, Fakra SC, Antipova O, Parkinson DY, Hall JR, Doty SL. Endophyte-Promoted Phosphorus Solubilization in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:567918. [PMID: 33193494 PMCID: PMC7609660 DOI: 10.3389/fpls.2020.567918] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/25/2020] [Indexed: 05/24/2023]
Abstract
Phosphorus is one of the essential nutrients for plant growth, but it may be relatively unavailable to plants because of its chemistry. In soil, the majority of phosphorus is present in the form of a phosphate, usually as metal complexes making it bound to minerals or organic matter. Therefore, inorganic phosphate solubilization is an important process of plant growth promotion by plant associated bacteria and fungi. Non-nodulating plant species have been shown to thrive in low-nutrient environments, in some instances by relying on plant associated microorganisms called endophytes. These microorganisms live within the plant and help supply nutrients for the plant. Despite their potential enormous environmental importance, there are a limited number of studies looking at the direct molecular impact of phosphate solubilizing endophytic bacteria on the host plant. In this work, we studied the impact of two endophyte strains of wild poplar (Populus trichocarpa) that solubilize phosphate. Using a combination of x-ray imaging, spectroscopy methods, and proteomics, we report direct evidence of endophyte-promoted phosphorus uptake in poplar. We found that the solubilized phosphate may react and become insoluble once inside plant tissue, suggesting that endophytes may aid in the re-release of phosphate. Using synchrotron x-ray fluorescence spectromicroscopy, we visualized the nutrient phosphorus inside poplar roots inoculated by the selected endophytes and found the phosphorus in both forms of organic and inorganic phosphates inside the root. Tomography-based root imaging revealed a markedly different root biomass and root architecture for poplar samples inoculated with the phosphate solubilizing bacteria strains. Proteomics characterization on poplar roots coupled with protein network analysis revealed novel proteins and metabolic pathways with possible involvement in endophyte enriched phosphorus uptake. These findings suggest an important role of endophytes for phosphorus acquisition and provide a deeper understanding of the critical symbiotic associations between poplar and the endophytic bacteria.
Collapse
Affiliation(s)
- Tamas Varga
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Andrew W. Sher
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Morgan E. Barnes
- Environmental Systems Graduate Group, University of California, Merced, Merced, CA, United States
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Anil K. Battu
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carrie D. Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tanya E. Winkler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Loren R. Reno
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sirine C. Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Dilworth Y. Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jackson R. Hall
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| |
Collapse
|
178
|
Zhang T, Gygi SP, Paulo JA. Temporal Proteomic Profiling of SH-SY5Y Differentiation with Retinoic Acid Using FAIMS and Real-Time Searching. J Proteome Res 2020; 20:704-714. [PMID: 33054241 DOI: 10.1021/acs.jproteome.0c00614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The SH-SY5Y cell line is often used as a surrogate for neurons in cell-based studies. This cell line is frequently differentiated with all-trans retinoic acid (ATRA) over a 7-day period, which confers neuron-like properties to the cells. However, no analysis of proteome remodeling has followed the progress of this transition. Here, we quantitatively profiled over 9400 proteins across a 7-day treatment with retinoic acid using state-of-the-art mass spectrometry-based proteomics technologies, including FAIMS, real-time database searching, and TMTpro16 sample multiplexing. Gene ontology analysis revealed that categories with the highest increases in protein abundance were related to the plasma membrane/extracellular space. To showcase our data set, we surveyed the protein abundance profiles linked to neurofilament bundle assembly, neuron projections, and neuronal cell body formation. These proteins exhibited increases in abundance level, yet we observed multiple patterns among the queried proteins. The data presented represent a rich resource for investigating temporal protein abundance changes in SH-SY5Y cells differentiated with retinoic acid. Moreover, the sample preparation and data acquisition strategies used here can be readily applied to any analogous cell line differentiation analysis.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
179
|
Wang Z, Yu D, Cupp-Sutton KA, Liu X, Smith K, Wu S. Development of an Online 2D Ultrahigh-Pressure Nano-LC System for High-pH and Low-pH Reversed Phase Separation in Top-Down Proteomics. Anal Chem 2020; 92:12774-12777. [PMID: 32857493 PMCID: PMC7544661 DOI: 10.1021/acs.analchem.0c03395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of novel high-resolution separation techniques is crucial for advancing the complex sample analysis necessary for high-throughput top-down proteomics. Recently, our group developed an offline 2D high-pH RPLC/low-pH RPLC separation method and demonstrated good orthogonality between these two RPLC formats. Specifically, ultrahigh-pressure long capillary column RPLC separation has been applied as the second dimensional low-pH RPLC separation for the improvement of separation resolution. To further improve the throughput and sensitivity of the offline approach, we developed an online 2D ultrahigh-pressure nano-LC system for high-pH and low-pH RPLC separations in top-down proteomics. An online microtrap column with a dilution setup was used to collect eluted proteins from the first dimension high-pH separation and inject the fractions for ultrahigh-pressure long capillary column low-pH RPLC separation in the second dimension. This automatic platform enables the characterization of 1000+ intact proteoforms from 5 μg of intact E. coli cell lysate in 10 online-collected fractions. Here, we have demonstrated that our online 2D pH RP/RPLC system coupled with top-down proteomics holds the potential for deep proteome characterization of mass-limited samples because it allows the identification of hundreds of intact proteoforms from complex biological samples at low microgram sample amounts.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Xiaowen Liu
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Kenneth Smith
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, Oklahoma 73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
180
|
Wierzbicki IH, Campeau A, Dehaini D, Holay M, Wei X, Greene T, Ying M, Sands JS, Lamsa A, Zuniga E, Pogliano K, Fang RH, LaRock CN, Zhang L, Gonzalez DJ. Group A Streptococcal S Protein Utilizes Red Blood Cells as Immune Camouflage and Is a Critical Determinant for Immune Evasion. Cell Rep 2020; 29:2979-2989.e15. [PMID: 31801066 PMCID: PMC6951797 DOI: 10.1016/j.celrep.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 09/09/2019] [Accepted: 10/30/2019] [Indexed: 01/17/2023] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen that evades the host immune response through the elaboration of multiple virulence factors. Although many of these factors have been studied, numerous proteins encoded by the GAS genome are of unknown function. Herein, we characterize a biomimetic red blood cell (RBC)-captured protein of unknown function—annotated subsequently as S protein—in GAS pathophysiology. S protein maintains the hydrophobic properties of GAS, and its absence reduces survival in human blood. S protein facilitates GAS coating with lysed RBCs to promote molecular mimicry, which increases virulence in vitro and in vivo. Proteomic profiling reveals that the removal of S protein from GAS alters cellular and extracellular protein landscapes and is accompanied by a decrease in the abundance of several key GAS virulence determinants. In vivo, the absence of S protein results in a striking attenuation of virulence and promotes a robust immune response and immunological memory. Wierzbicki et al. show that S protein is a major group A Streptococcus (GAS) virulence factor that facilitates bacterial coating with lysed red blood cells to promote molecular mimicry, which increases virulence in vitro and in vivo. Removal of S protein reduces the abundance of multiple virulence factors and attenuates virulence.
Collapse
Affiliation(s)
- Igor H Wierzbicki
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Diana Dehaini
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Trever Greene
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Man Ying
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenna S Sands
- Department of Microbiology and Immunology, Division of Infectious Diseases, and Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Anne Lamsa
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elina Zuniga
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kit Pogliano
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Division of Infectious Diseases, and Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
181
|
Ramirez-Sanchez I, Navarrete-Yañez V, Garate-Carrillo A, Loredo M, Lira-Romero E, Estrada-Mena J, Campeau A, Gonzalez D, Carrillo-Terrazas M, Moreno-Ulloa A, Ceballos G, Villarreal F. Development of muscle atrophy and loss of function in a Gulf-War illness model: underlying mechanisms. Sci Rep 2020; 10:14526. [PMID: 32884027 PMCID: PMC7471336 DOI: 10.1038/s41598-020-71486-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Gulf War illness (GWI) afflicts military personnel who served during the Persian Gulf War and is notable for cognitive deficits, depression, muscle pain, weakness, intolerance to exercise, and fatigue. Suspect causal agents include the chemicals pyridostigmine (PB), permetrim (PM) and N,N-diethyl-m-toluamide (DEET) used as protectants against insects and nerve gases. No pre-clinical studies have explored the effects on skeletal muscle (SkM). Young male rats were provided PB, PM and DEET at equivalent human doses and physical restraint (to induce stress) for 3 weeks followed a 3-week recovery. GWI gastrocnemius weight was ~ 35% lower versus controls, which correlated with decreases in myofiber area, limb strength, and treadmill time/distance. In GWI rats, SkM fiber type relative abundance changed towards slow type I. Muscle wasting pathway proteins were upregulated while those that promote growth decreased as did mitochondrial endpoints and muscle ATP levels. Proteomic analysis of SkM also documented unique alterations in mitochondrial and metabolic pathways. Thus, exposure to GWI chemicals/stress adversely impacts key metabolic pathways leading to muscle atrophy and loss of function. These changes may account for GWI Veterans symptoms.
Collapse
Affiliation(s)
- Israel Ramirez-Sanchez
- School of Medicine, UCSD, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613, USA
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Alejandra Garate-Carrillo
- School of Medicine, UCSD, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613, USA
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Maria Loredo
- Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico
| | | | | | - Anaamika Campeau
- School of Medicine, UCSD, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613, USA
| | - David Gonzalez
- School of Medicine, UCSD, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613, USA
| | | | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Francisco Villarreal
- School of Medicine, UCSD, 9500 Gilman Dr. BSB4028, La Jolla, CA, 92093-0613, USA.
- VA San Diego Health Care, San Diego, CA, USA.
| |
Collapse
|
182
|
Wozniak JM, Mills RH, Olson J, Caldera JR, Sepich-Poore GD, Carrillo-Terrazas M, Tsai CM, Vargas F, Knight R, Dorrestein PC, Liu GY, Nizet V, Sakoulas G, Rose W, Gonzalez DJ. Mortality Risk Profiling of Staphylococcus aureus Bacteremia by Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic Signatures. Cell 2020; 182:1311-1327.e14. [PMID: 32888495 PMCID: PMC7494005 DOI: 10.1016/j.cell.2020.07.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - J R Caldera
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory D Sepich-Poore
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marvic Carrillo-Terrazas
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ming Tsai
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rob Knight
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Y Liu
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Sakoulas
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Warren Rose
- School of Pharmacy, School of Medicine and Public Health University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, School of Medicine and Public Health University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
183
|
The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L. Acta Pharmacol Sin 2020; 41:1246-1254. [PMID: 32210356 PMCID: PMC7608331 DOI: 10.1038/s41401-020-0367-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Mitophagy is a degradative pathway that mediates the degradation of the entire mitochondria, and defects in this process are implicated in many diseases including cancer. In mammals, mitophagy is mediated by BNIP3L (also known as NIX) that is a dual regulator of mitochondrial turnover and programmed cell death pathways. Acute myeloid leukemia (AML) cells with deficiency of BNIP3L are more sensitive to mitochondria-targeting drugs. But small molecular inhibitors for BNIP3L are currently not available. Some immunomodulatory drugs (IMiDs) have been proved by FDA for hematologic malignancies, however, the underlining molecular mechanisms are still elusive, which hindered the applications of BNIP3L inhibition for AML treatment. In this study we carried out MS-based quantitative proteomics analysis to identify the potential neosubstrates of a novel thalidomide derivative CC-885 in A549 cells. In total, we quantified 5029 proteins with 36 downregulated in CRBN+/+ cell after CC-885 administration. Bioinformatic analysis showed that macromitophagy pathway was enriched in the negative pathway after CC-885 treatment. We further found that CC-885 caused both dose- and time-dependent degradation of BNIP3L in CRBN+/+, but not CRBN−/− cell. Thus, our data uncover a novel role of CC-885 in the regulation of mitophagy by targeting BNIP3L for CRL4CRBN E3 ligase-dependent ubiquitination and degradation, suggesting that CC-885 could be used as a selective BNIP3L degradator for the further investigation. Furthermore, we demonstrated that CC-885 could enhance AML cell sensitivity to the mitochondria-targeting drug rotenone, suggesting that combining CC-885 and mitochondria-targeting drugs may be a therapeutic strategy for AML patients.
Collapse
|
184
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Ferreira ME. The Proteomics of Resistance to Halo Blight in Common Bean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1161-1175. [PMID: 32633604 DOI: 10.1094/mpmi-05-20-0112-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Halo blight disease of beans is caused by a gram-negative bacterium, Pseudomonas syringae pv. phaseolicola. The disease is prevalent in South America and Africa and causes crop loss for indigent people who rely on beans as a primary source of daily nutrition. In susceptible beans, P. syringae pv. phaseolicola causes water-soaking at the site of infection and produces phaseolotoxin, an inhibitor of bean arginine biosynthesis. In resistant beans, P. syringae pv. phaseolicola triggers a hypersensitive response that limits the spread of infection. Here, we used high-throughput mass spectrometry to interrogate the responses to two different P. syringae pv. phaseolicola isolates on a single line of common bean, Phaseolus vulgaris PI G19833, with a reference genome sequence. We obtained quantitative information for 4,135 bean proteins. A subset of 160 proteins with similar accumulation changes during both susceptible and resistant reactions included salicylic acid responders EDS1 and NDR1, ethylene and jasmonic acid biosynthesis enzymes, and proteins enabling vesicle secretion. These proteins revealed the activation of a basal defense involving hormonal responses and the mobilization of extracellular proteins. A subset of 29 proteins specific to hypersensitive immunity included SOBIR1, a G-type lectin receptor-like kinase, and enzymes needed for glucoside and phytoalexin production. Virus-induced gene silencing revealed that the G-type lectin receptor-like kinase suppresses bacterial infection. Together, the results define the proteomics of disease resistance to P. syringae pv. phaseolicola in beans and support a model whereby the induction of hypersensitive immunity reinstates defenses targeted by P. syringae pv. phaseolicola.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Marcio E Ferreira
- Embrapa Genetic Resources and Biotechnology, Embrapa, Brasilia, DF, Brazil
- Embrapa Labex U.S.A., USDA-ARS, Beltsville, MD, U.S.A
| |
Collapse
|
185
|
Ghosh S, Guimaraes JC, Lanzafame M, Schmidt A, Syed AP, Dimitriades B, Börsch A, Ghosh S, Mittal N, Montavon T, Correia AL, Danner J, Meister G, Terracciano LM, Pfeffer S, Piscuoglio S, Zavolan M. Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO J 2020; 39:e103922. [PMID: 32812257 PMCID: PMC7507497 DOI: 10.15252/embj.2019103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023] Open
Abstract
Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein‐level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double‐stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA‐induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Afzal Pasha Syed
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Shreemoyee Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Montavon
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ana Luisa Correia
- Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Johannes Danner
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
186
|
Wang Z, Kavdia K, Dey KK, Pagala VR, Kodali K, Liu D, Lee DG, Sun H, Chepyala SR, Cho JH, Niu M, High AA, Peng J. High-throughput and Deep-proteome Profiling by 16-plex Tandem Mass Tag Labeling Coupled with Two-dimensional Chromatography and Mass Spectrometry. J Vis Exp 2020:10.3791/61684. [PMID: 32894271 PMCID: PMC7752892 DOI: 10.3791/61684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Isobaric tandem mass tag (TMT) labeling is widely used in proteomics because of its high multiplexing capacity and deep proteome coverage. Recently, an expanded 16-plex TMT method has been introduced, which further increases the throughput of proteomic studies. In this manuscript, we present an optimized protocol for 16-plex TMT-based deep-proteome profiling, including protein sample preparation, enzymatic digestion, TMT labeling reaction, two-dimensional reverse-phase liquid chromatography (LC/LC) fractionation, tandem mass spectrometry (MS/MS), and computational data processing. The crucial quality control steps and improvements in the process specific for the 16-plex TMT analysis are highlighted. This multiplexed process offers a powerful tool for profiling a variety of complex samples such as cells, tissues, and clinical specimens. More than 10,000 proteins and posttranslational modifications such as phosphorylation, methylation, acetylation, and ubiquitination in highly complex biological samples from up to 16 different samples can be quantified in a single experiment, providing a potent tool for basic and clinical research.
Collapse
Affiliation(s)
- Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | | | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Danting Liu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Dong Geun Lee
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Huan Sun
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Surendhar Reddy Chepyala
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital;
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital;
| |
Collapse
|
187
|
Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature 2020; 584:252-256. [PMID: 32760004 PMCID: PMC7116741 DOI: 10.1038/s41586-020-2563-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
One of the most fundamental challenges in developing treatments for autism-spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of autism cases1–3. Subsets of risk genes can be grouped into functionally-related pathways, most prominently synaptic proteins, translational regulation, and chromatin modifications. To possibly circumvent this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4–6 which regulate aspects of social behavior in mammals7. However, whether genetic risk factors might predispose to autism due to modification of oxytocinergic signaling remains largely unknown. Here, we report that an autism-associated mutation in the synaptic adhesion molecule neuroligin-3 (Nlgn3) results in impaired oxytocin signaling in dopaminergic neurons and in altered social novelty responses in mice. Surprisingly, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3KO mice with a novel, highly specific, brain-penetrant inhibitor of MAP-kinase interacting kinases resets mRNA translation and restores oxytocin and social novelty responses. Thus, this work identifies an unexpected convergence between the genetic autism risk factor Nlgn3, translational regulation, and oxytocinergic signaling. Focus on such common core plasticity elements might provide a pragmatic approach to reduce the heterogeneity of autism. Ultimately, this would allow for mechanism-based stratification of patient populations to increase the success of therapeutic interventions.
Collapse
|
188
|
Poulos RC, Hains PG, Shah R, Lucas N, Xavier D, Manda SS, Anees A, Koh JMS, Mahboob S, Wittman M, Williams SG, Sykes EK, Hecker M, Dausmann M, Wouters MA, Ashman K, Yang J, Wild PJ, deFazio A, Balleine RL, Tully B, Aebersold R, Speed TP, Liu Y, Reddel RR, Robinson PJ, Zhong Q. Strategies to enable large-scale proteomics for reproducible research. Nat Commun 2020; 11:3793. [PMID: 32732981 PMCID: PMC7393074 DOI: 10.1038/s41467-020-17641-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 01/12/2023] Open
Abstract
Reproducible research is the bedrock of experimental science. To enable the deployment of large-scale proteomics, we assess the reproducibility of mass spectrometry (MS) over time and across instruments and develop computational methods for improving quantitative accuracy. We perform 1560 data independent acquisition (DIA)-MS runs of eight samples containing known proportions of ovarian and prostate cancer tissue and yeast, or control HEK293T cells. Replicates are run on six mass spectrometers operating continuously with varying maintenance schedules over four months, interspersed with ~5000 other runs. We utilise negative controls and replicates to remove unwanted variation and enhance biological signal, outperforming existing methods. We also design a method for reducing missing values. Integrating these computational modules into a pipeline (ProNorM), we mitigate variation among instruments over time and accurately predict tissue proportions. We demonstrate how to improve the quantitative analysis of large-scale DIA-MS data, providing a pathway toward clinical proteomics. Clinical proteomics critically depends on the ability to acquire highly reproducible data over an extended period of time. Here, the authors assess reproducibility over four months across different mass spectrometers and develop a computational approach to mitigate variation among instruments over time.
Collapse
Affiliation(s)
- Rebecca C Poulos
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Peter G Hains
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Rohan Shah
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Natasha Lucas
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Dylan Xavier
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Srikanth S Manda
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Asim Anees
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jennifer M S Koh
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Sadia Mahboob
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Max Wittman
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Steven G Williams
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Erin K Sykes
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Michael Hecker
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Michael Dausmann
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Merridee A Wouters
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | | | - Jean Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Anna deFazio
- Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW, Australia
| | - Rosemary L Balleine
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Brett Tully
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.,Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Qing Zhong
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
189
|
Gu L, Liu X, Wang YQ, Zhou YT, Zhu HW, Huang J, Lan LF, Zheng J, Yang CG, Zhou H. Revelation of AbfR in regulation of mismatch repair and energy metabolism in S. epidermidis by integrated proteomic and metabolomic analysis. J Proteomics 2020; 226:103900. [PMID: 32711166 DOI: 10.1016/j.jprot.2020.103900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus epidermidis is a common causative of nosocomial infections associated with indwelling medical devices. To date, the mechanisms of the pathogenicity and drug resistance of S. epidermidis have not been clearly elucidated. AbfR has been previously identified as an oxidation-sensing regulator that regulates bacterial aggregation and biofilm formation by responding to oxidative stress in S. epidermidis; however, the regulatory pathways of AbfR are underexplored. In this study, we investigated the oxidation-sensing regulatory mechanism of AbfR using TMT10-plex labelling quantitative proteomic and untargeted metabolomic approaches. Integrated analysis of two omics datasets indicated that abfR depletion influenced nucleic acid metabolism and activated the DNA mismatch repair pathway. In addition, several energy-related metabolic pathways, including tricarboxylic acid (TCA) cycle, glycolysis, and arginine metabolism, were remarkably impacted by the deletion of abfR. This study revealed the regulatory networks of the transcription factor AbfR from a multi-omics view and demonstrated that AbfR played a broad role in not only mismatch repair but also energy metabolism, enabling S. epidermidis to constantly sense and adapt to environmental stress. SIGNIFICANCE: Staphylococcus epidermidis has emerged as a major nosocomial infection causing pathogen. AbfR, a transcription factor of S. epidermidis, plays an important role in oxidative stress, cell aggregation, and biofilm formation; however, the regulatory mechanism of AbfR is unknown. Using proteomic and metabolomic approaches, this study unveils the global regulatory networks of AbfR, and demonstrates that AbfR not only regulates the DNA mismatch repair pathway by an oxidation sensing mechanism but also affects energy metabolism. This study expands the body of knowledge related to regulatory transcription factors in staphylococci and lays a foundation for future research on clinical infections caused by S. epidermidis.
Collapse
Affiliation(s)
- Lei Gu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Qiu Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan-Ting Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong-Wen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Le-Fu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China..
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China..
| |
Collapse
|
190
|
Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. Molecules 2020; 25:molecules25133028. [PMID: 32630776 PMCID: PMC7411631 DOI: 10.3390/molecules25133028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.
Collapse
|
191
|
Proteomics Profiling of KAIMRC1 in Comparison to MDA-MB231 and MCF-7. Int J Mol Sci 2020; 21:ijms21124328. [PMID: 32570693 PMCID: PMC7352455 DOI: 10.3390/ijms21124328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Proteomics characterization of KAIMRC1 cell line, a naturally immortalized breast cancer cells, is described in comparison to MCF-7 and MDA-MB-231 breast cancer cells. Quantitative proteomics analysis using the tandem mass tag (TMT)-labeled technique in conjunction with the phosphopeptide enrichment method was used to perform comparative profiling of proteins and phosphoproteins in the three cell lines. In total, 673 proteins and 33 Phosphoproteins were differentially expressed among these cell lines. These proteins are involved in several key cellular pathways that include DNA replication and repair, splicing machinery, amino acid metabolism, cellular energy, and estrogen signaling pathway. Many of the differentially expressed proteins are associated with different types of tumors including breast cancer. For validation, 4 highly significant expressed proteins including S-methyl-5'-thioadenosine phosphorylase (MTAP), BTB/POZ domain-containing protein (KCTD12), Poly (ADP-ribose) polymerase 1 (PARP 1), and Prelamin-A/C were subjected to western blotting, and the results were consistent with proteomics analysis. Unlike MCF-7 and MDA-MB-231, KAIMRC1 showed different phospho- and non-phosphoproteomic phenotypes which make it a potential model to study breast cancer.
Collapse
|
192
|
Law HCH, Kong RPW, Li M, Szeto SSW, Chu IK. Implementation of a multiple-fraction concatenation strategy in an online two-dimensional high-/low-pH reversed-phase/reversed-phase liquid chromatography platform for qualitative and quantitative shotgun proteomic analyses. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4591. [PMID: 32633895 DOI: 10.1002/jms.4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Multidimensional liquid chromatography is the mainstay separation technique used for shotgun proteomic analyses. The application of a multiple-fraction concatenation (MFC) strategy can result in a more disperse and consistent peptide elution profile across different fractions, when compared with a conventional strategy. Herein, we present the first automated online RP-RP platform implementing an MFC strategy to facilitate robust, unattended, routine proteomic analyses. The improved duty cycle utilization of the MFC strategy led to an increase of 9% in the separation space occupancy and increases of approximately 10% in the identification of both proteins and peptides. The peptides uniquely identified by the MFC strategy were significantly biased toward those of acidic nature, with increased precursor signals leading to improved MS/MS spectral quality and enhanced acidic peptide identification. These improvements in qualitative analysis using the MFC strategy were also extended to quantitative analysis. When the acquired proteome was quantified with a normalized spectral abundance factor, the additionally acquired acidic peptides were a critical factor leading to enhanced reproducibility of quantitation using the MFC strategy. With merits of superior qualitative and quantitative characteristics over the conventional strategy, the MFC strategy appears to be a highly amenable technique for enhancing the separation capacity for routine proteomic analyses.
Collapse
Affiliation(s)
- Henry C H Law
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ricky P W Kong
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Mengzhu Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
193
|
Li X, Pritykin Y, Concepcion CP, Lu Y, La Rocca G, Zhang M, King B, Cook PJ, Au YW, Popow O, Paulo JA, Otis HG, Mastroleo C, Ogrodowski P, Schreiner R, Haigis KM, Betel D, Leslie CS, Ventura A. High-Resolution In Vivo Identification of miRNA Targets by Halo-Enhanced Ago2 Pull-Down. Mol Cell 2020; 79:167-179.e11. [PMID: 32497496 DOI: 10.1016/j.molcel.2020.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoyi Li
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carla P Concepcion
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuheng Lu
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bryan King
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter J Cook
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yu Wah Au
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Zuid-Holland, 2333 ZA, the Netherlands
| | - Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah G Otis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ryan Schreiner
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
194
|
Lin Z, Ren Y, Shi Z, Zhang K, Yang H, Liu S, Hao P. Evaluation and minimization of nonspecific tryptic cleavages in proteomic sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8733. [PMID: 32031715 DOI: 10.1002/rcm.8733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
UNLABELLED High specificity of trypsin is a prerequisite for accurate identification and quantification of proteins in shotgun proteomics. It is important to minimize nonspecific enzymatic cleavages during proteomic sample preparation. METHODS In this study, protein extraction and trypsin digestion conditions were extensively evaluated using the less-complex Escherichia coli lysates to improve the sensitivity of detecting low-abundance nonspecific peptides by liquid chromatography/tandem mass spectrometry. RESULTS Trypsin digestion buffers and digestion times were proved to have a significant effect on nonspecific cleavages. The triethylammonium bicarbonate buffer induces significantly lower nonspecific cleavages than the other two buffers, but a freshly prepared urea solution does not induce more than sodium dodecyl sulfate. Because prolonged trypsin digestion resulted in a considerable number of nonspecific cleavages, an optimized 2-h protocol was developed with 45.2% less semispecific tryptic peptides but 18.5% more unmodified peptides identified than the commonly used 16-h protocol. CONCLUSIONS The significant decrease in nonspecific cleavages and artificial modifications improves the accuracy of protein quantification and the identification of low-abundance proteins, and it is especially useful for studying protein posttranslational modifications. For trypsin digestion, the proposed 2-h protocol can potentially be a replacement for the traditional 16-h protocol.
Collapse
Affiliation(s)
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhaomei Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
195
|
High-throughput transcriptomic and proteomic profiling of mesenchymal-amoeboid transition in 3D collagen. Sci Data 2020; 7:160. [PMID: 32461585 PMCID: PMC7253430 DOI: 10.1038/s41597-020-0499-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/21/2020] [Indexed: 11/24/2022] Open
Abstract
The plasticity of cancer cell invasion represents substantial hindrance for effective anti-metastatic therapy. To better understand the cancer cells’ plasticity, we performed complex transcriptomic and proteomic profiling of HT1080 fibrosarcoma cells undergoing mesenchymal-amoeboid transition (MAT). As amoeboid migratory phenotype can fully manifest only in 3D conditions, all experiments were performed with 3D collagen-based cultures. Two previously described approaches to induce MAT were used: doxycycline-inducible constitutively active RhoA expression and dasatinib treatment. RNA sequencing was performed with ribo-depleted total RNA. Protein samples were analysed with tandem mass tag (TMT)-based mass spectrometry. The data provide unprecedented insight into transcriptome and proteome changes accompanying MAT in true 3D conditions. Measurement(s) | gene-expression profile endpoint • protein expression profiling • Proteome • transcriptome | Technology Type(s) | RNA sequencing • MSn spectrum • mass spectrometry | Factor Type(s) | doxycycline-inducible expression of EGFP-RhoA G14V gene • dasatinib treatment | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12084927
Collapse
|
196
|
Exposure of Mycobacterium abscessus to Environmental Stress and Clinically Used Antibiotics Reveals Common Proteome Response among Pathogenic Mycobacteria. Microorganisms 2020; 8:microorganisms8050698. [PMID: 32397563 PMCID: PMC7285101 DOI: 10.3390/microorganisms8050698] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium abscessus subsp. abscessus (MAB) is a clinically important nontuberculous mycobacterium (NTM) causing pulmonary infection in patients such as cystic fibrosis and bronchiectasis. MAB is naturally resistant to the majority of available antibiotics. In attempts to identify the fundamental response of MAB to aerobic, anaerobic, and biofilm conditions (as it is encountered in patients) and during exposure to antibiotics, we studied bacterial proteome using tandem mass tag mass spectrometry sequencing. Numerous de novo synthesized proteins belonging to diverse metabolic pathways were found in anaerobic and biofilm conditions, including glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, nitrogen metabolism, and glyoxylate and dicarboxylate metabolism. Upon exposure to amikacin and linezolid under stress environments, MAB displayed metabolic enrichment for glycerophospholipid metabolism and oxidative phosphorylation. By comparing proteomes of two significant NTMs, MAB and M. avium subsp. hominissuis, we found highly synthesized shared enzymes of oxidative phosphorylation, TCA cycle, glycolysis/gluconeogenesis, glyoxylate/dicarboxylate, nitrogen metabolism, peptidoglycan biosynthesis, and glycerophospholipid/glycerolipid metabolism. The activation of peptidoglycan and fatty acid biosynthesis pathways indicates the attempt of bacteria to modify the cell wall, influencing the susceptibility to antibiotics. This study establishes global changes in the synthesis of enzymes promoting the metabolic shift and enhancing the pathogen resistance to antibiotics within different environments.
Collapse
|
197
|
Gomez-Auli A, Hillebrand LE, Christen D, Günther SC, Biniossek ML, Peters C, Schilling O, Reinheckel T. The secreted inhibitor of invasive cell growth CREG1 is negatively regulated by cathepsin proteases. Cell Mol Life Sci 2020; 78:733-755. [PMID: 32385587 PMCID: PMC7873128 DOI: 10.1007/s00018-020-03528-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 01/15/2023]
Abstract
Previous clinical and experimental evidence strongly supports a breast cancer-promoting function of the lysosomal protease cathepsin B. However, the cathepsin B-dependent molecular pathways are not completely understood. Here, we studied the cathepsin-mediated secretome changes in the context of the MMTV-PyMT breast cancer mouse model. Employing the cell-conditioned media from tumor-macrophage co-cultures, as well as tumor interstitial fluid obtained by a novel strategy from PyMT mice with differential cathepsin B expression, we identified an important proteolytic and lysosomal signature, highlighting the importance of this organelle and these enzymes in the tumor micro-environment. The Cellular Repressor of E1A Stimulated Genes 1 (CREG1), a secreted endolysosomal glycoprotein, displayed reduced abundance upon over-expression of cathepsin B as well as increased abundance upon cathepsin B deletion or inhibition. Moreover, it was cleaved by cathepsin B in vitro. CREG1 reportedly could act as tumor suppressor. We show that treatment of PyMT tumor cells with recombinant CREG1 reduced proliferation, migration, and invasion; whereas, the opposite was observed with reduced CREG1 expression. This was further validated in vivo by orthotopic transplantation. Our study highlights CREG1 as a key player in tumor–stroma interaction and suggests that cathepsin B sustains malignant cell behavior by reducing the levels of the growth suppressor CREG1 in the tumor microenvironment.
Collapse
Affiliation(s)
- Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Larissa Elisabeth Hillebrand
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sira Carolin Günther
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Lothar Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Christoph Peters
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
198
|
Pascale CL, Martinez AN, Carr C, Sawyer DM, Ribeiro-Alves M, Chen M, O'Donnell DB, Guidry JJ, Amenta PS, Dumont AS. Treatment with dimethyl fumarate reduces the formation and rupture of intracranial aneurysms: Role of Nrf2 activation. J Cereb Blood Flow Metab 2020; 40:1077-1089. [PMID: 31220996 PMCID: PMC7181091 DOI: 10.1177/0271678x19858888] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress and chronic inflammation in arterial walls have been implicated in intracranial aneurysm (IA) formation and rupture. Dimethyl fumarate (DMF) exhibits immunomodulatory properties, partly via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway which reduces oxidative stress by inducing the antioxidant response element (ARE). This study evaluated the effects of DMF both in vitro, using tumor necrosis factor (TNF)-α-treated vascular smooth muscle cells (VSMC), and in vivo, using a murine elastase model to induce aneurysm formation. The mice were treated with either DMF at 100 mg/kg/day P.O. or vehicle for two weeks. DMF treatment protected VSMCs from TNF-α-induced inflammation as demonstrated by its downregulation of cytokines and upregulation of Nrf2 and smooth muscle cell markers. At higher doses, DMF also inhibited the pro-proliferative action of TNF-α by increasing apoptosis which protected the cells from aponecrosis. In mice, DMF treatment significantly decreased the incidence of aneurysm formation and rupture, at the same time increasing Nrf2 levels. DMF demonstrated a neuroprotective effect in mice with a resultant inhibition of oxidative stress, inflammation, and fibrosis in the cerebrovasculature. This suggests a potential role for DMF as a rescue therapy for patients at risk for formation and rupture of IAs.
Collapse
Affiliation(s)
- Crissey L Pascale
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alejandra N Martinez
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher Carr
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - David M Sawyer
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas (INI)-Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Mimi Chen
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Devon B O'Donnell
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, LA, USA
| | - Peter S Amenta
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
199
|
Owusu M, Bannauer P, Ferreira da Silva J, Mourikis TP, Jones A, Májek P, Caldera M, Wiedner M, Lardeau CH, Mueller AC, Menche J, Kubicek S, Ciccarelli FD, Loizou JI. Mapping the Human Kinome in Response to DNA Damage. Cell Rep 2020; 26:555-563.e6. [PMID: 30650350 DOI: 10.1016/j.celrep.2018.12.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023] Open
Abstract
We provide a catalog for the effects of the human kinome on cell survival in response to DNA-damaging agents, covering all major DNA repair pathways. By treating 313 kinase-deficient cell lines with ten diverse DNA-damaging agents, including seven commonly used chemotherapeutics, we identified examples of vulnerability and resistance that are kinase specific. To investigate synthetic lethal interactions, we tested the response to carmustine for 25 cell lines by establishing a phenotypic fluorescence-activated cell sorting (FACS) assay designed to validate gene-drug interactions. We show apoptosis, cell cycle changes, and DNA damage and proliferation after alkylation- or crosslink-induced damage. In addition, we reconstitute the cellular sensitivity of DYRK4, EPHB6, MARK3, and PNCK as a proof of principle for our study. Furthermore, using global phosphoproteomics on cells lacking MARK3, we provide evidence for its role in the DNA damage response. Our data suggest that cancers with inactivating mutations in kinases, including MARK3, are particularly vulnerable to alkylating chemotherapeutic agents.
Collapse
Affiliation(s)
- Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Peter Bannauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Thanos P Mourikis
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Alistair Jones
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - André C Mueller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
200
|
Choi Y, Jeong K, Shin S, Lee JW, Lee YS, Kim S, Kim SA, Jung J, Kim KP, Kim VN, Kim JS. MS1-Level Proteome Quantification Platform Allowing Maximally Increased Multiplexity for SILAC and In Vitro Chemical Labeling. Anal Chem 2020; 92:4980-4989. [PMID: 32167278 DOI: 10.1021/acs.analchem.9b05148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quantitative proteomic platforms based on precursor intensity in mass spectrometry (MS1-level) uniquely support in vivo metabolic labeling with superior quantification accuracy but suffer from limited multiplexity (≤3-plex) and frequent missing quantities. Here we present a new MS1-level quantification platform that allows maximal multiplexing with high quantification accuracy and precision for the given labeling scheme. The platform currently comprises 6-plex in vivo SILAC or in vitro diethylation labeling with a dedicated algorithm and is also expandable to higher multiplexity (e.g., nine-plex for SILAC). For complex samples with broad dynamic ranges such as total cell lysates, our platform performs highly accurately and free of missing quantities. Furthermore, we successfully applied our method to measure protein synthesis rate under heat shock response in human cells by 6-plex pulsed SILAC experiments, demonstrating the unique biological merits of our in vivo platform to disclose translational regulations for cellular response to stress.
Collapse
Affiliation(s)
- Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyowon Jeong
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Joon Won Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangtae Kim
- Illumina, Inc., San Diego, California 92122, United States
| | - Sun Ah Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaehun Jung
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|