151
|
Bell E, Muñoz-Sanjuán I, Altmann CR, Vonica A, Brivanlou AH. Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development 2003; 130:1381-9. [PMID: 12588853 DOI: 10.1242/dev.00344] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patterning of the pre-gastrula embryo and subsequent neural induction post-gastrulation are very complex and intricate processes of which little, until recently, has been understood. The earliest decision in neural development, the choice between epidermal or neural fates, is regulated by bone morphogenetic protein (BMP) signaling within the ectoderm. Inhibition of BMP signaling is sufficient for neural induction. Many secreted BMP inhibitors are expressed exclusively within the organizer of the Xenopus gastrula embryo and therefore are predicted to act as bona fide endogenous neural inducers. Other cell-autonomous inhibitors of the BMP pathway are more widely expressed, such as the inhibitory Smads, Smad6 and Smad7. In this report we describe the biological and biochemical characterization of 51-B6, a novel member of Cerberus/Dan family of secreted BMP inhibitors, which we identified in a screen for Smad7-induced genes. This gene is expressed maternally in an animal to vegetal gradient, and its expression levels decline rapidly following gastrulation. In contrast to known BMP inhibitors, 51-B6 is broadly expressed in the ectoderm until the end of gastrulation. The timing, pattern of expression, and activities of this gene makes it unique when compared to other BMP/TGFbeta/Wnt secreted inhibitors which are expressed only zygotically and maintained post-gastrulation. We propose that a function of 51-B6 is to block BMP and TGFbeta signals in the ectoderm in order to regulate cell fate specification and competence prior to the onset of neural induction. In addition, we demonstrate that 51-B6 can act as a neural inducer and induce ectopic head-like structures in neurula staged embryos. Because of this embryological activity, we have renamed this clone Coco, after the Spanish word meaning head.
Collapse
Affiliation(s)
- Esther Bell
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
152
|
Affiliation(s)
- J M W Slack
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
153
|
Harty M, Neff AW, King MW, Mescher AL. Regeneration or scarring: an immunologic perspective. Dev Dyn 2003; 226:268-79. [PMID: 12557205 DOI: 10.1002/dvdy.10239] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Complete regeneration of complex tissues and organs is usually precluded by fibrotic reactions that lead to scarring. Fish, salamanders, and larval anurans are among the few vertebrates capable of regenerating lost appendages, and this process seems to recapitulate ontogenic development of the structure in most respects. Recent work has revealed a capacity for excellent regeneration in certain mammalian tissues: embryonic or fetal skin and the ear of the MRL mouse. Analyses of these two systems suggest that processes of regenerative growth and patterning for the formation of new structures such as hair follicles may involve modulation of the inflammatory response to the injury in a way that reduces fibrosis and formation of scar tissue. We review evidence that this modulation includes changes in cytokine signaling and may involve properties of the extracellular matrix mediated by factors that include hyaluronic acid and "anti-adhesive substrates" such as tenascin-C. New studies and classic work on the capacity for limb regeneration in amphibians are then reviewed, focusing on the loss of this ability in prometamorphic anuran hindlimbs and the view that changing properties of the immune system may also underlie the declining regenerative potential in this system. Finally, we review recent work in comparative and developmental immunology, which raises the possibility that phylogenetic changes in regenerative capacity may be the result of evolutionary changes in cellular activities of the immune system.
Collapse
Affiliation(s)
- Mark Harty
- Center for Regenerative Biology and Medicine, Indiana University School of Medicine, Medical Sciences, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
154
|
Abstract
Urodele amphibians have been widely used for studies of limb regeneration. In this article, we review studies on blastema cell proliferation and propose a model of blastemal self-organization and patterning. The model is based on local cell interactions that intercalate positional identities within circumferential and proximodistal boundaries that outline the regenerate. The positional identities created by the intercalation process appear to be reflected in the molecular composition of the cell surface. Transcription factors and signaling molecules involved in patterning are discussed within the context of the boundary/intercalation model.
Collapse
Affiliation(s)
- Holly L D Nye
- University of Illinois Department of Cell and Structural Biology and College of Medicine, B107 Chemical and Life Sciences Laboratory, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
155
|
Ishino T, Shirai M, Kunieda T, Sekimizu K, Natori S, Kubo T. Identification of genes induced in regenerating Xenopus tadpole tails by using the differential display method. Dev Dyn 2003; 226:317-25. [PMID: 12557209 DOI: 10.1002/dvdy.10229] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To identify candidate gene(s) involved in the tail regeneration of Xenopus laevis tadpoles, we used the differential display method to isolate four genes (clones 1, 2, 13a, and 13b) whose expression is induced in regenerating tadpole tails. Among them, clones 13a and 13b were found to encode the Xenopus homologues of the alpha1 chain of type XVIII collagen and neuronal pentraxin I, respectively. Expression of clone 2 and neuronal pentraxin I genes increased dramatically in the blastema 3 days after amputation, whereas that for the clone 1 and type XVIII collagen genes was induced gradually after amputation. In situ hybridization revealed that the neuronal pentraxin I gene is expressed specifically in the regenerating tail epidermis but not in the normal tail epidermis or the most distal margin of the tail blastema, suggesting that it has a tissue-inductive role in tail regeneration. Expression of the four genes was induced in the limb and in the tail blastema, suggesting that they are involved in the regeneration of both organs. Finally, expression of clone 2 and neuronal pentraxin I genes was scarce during embryonic stages in comparison to the tail blastema, suggesting that their main functions are in organ regeneration. Our results demonstrate unique features of spatial and temporal gene expression patterns during Xenopus tadpole tail regeneration.
Collapse
Affiliation(s)
- Tomoko Ishino
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
156
|
Abstract
The "community effect" is necessary for tissue differentiation. In the Xenopus muscle paradigm, e-FGF has been identified as a candidate community factor. Standley et al.1 now show that the community effect, mediated through FGF signalling, continues to be important at later stages of development in the posterior part of the embryo. In this region, the paraxial mesoderm is still undergoing segmentation into somites, which are the site of early skeletal muscle formation. Indeed, somitogenesis, together with the read-out of the Hox code, which confers anteroposterior positional identity, is regulated by FGF signalling. This raises the question of the co-ordination between these events and the community effect which orchestrates myogenesis.
Collapse
Affiliation(s)
- Margaret Buckingham
- CNRS URA1947, Department of Development Biology, Pasteur Institute, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
157
|
Bird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1beta. Cytokine Growth Factor Rev 2002; 13:483-502. [PMID: 12401481 DOI: 10.1016/s1359-6101(02)00028-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
All jawed vertebrates possess a complex immune system, which is capable of anticipatory and innate immune responses. Jawless vertebrates possess an equally complex immune system but with no evidence of an anticipatory immune response. From these findings it has been speculated that the initiation and regulation of the immune system within vertebrates will be equally complex, although very little has been done to look at the evolution of cytokine genes, despite well-known biological activities within vertebrates. In recent years, cytokines, which have been well characterised within mammals, have begun to be cloned and sequenced within non-mammalian vertebrates, with the number of cytokine sequences available from primitive vertebrates growing rapidly. The identification of cytokines, which are mammalian homologues, will give a better insight into where immune system communicators arose and may also reveal molecules, which are unique to certain organisms. Work has focussed on interleukin-1 (IL-1), a major mediator of inflammation which initiates and/or increases a wide variety of non-structural, function associated genes that are characteristically expressed during inflammation. Other than mammalian IL-1beta sequences there are now full cDNA sequences and genomic organisations available from bird, amphibian, bony fish and cartilaginous fish, with many of these genes having been obtained using an homology cloning approach. This review considers how the IL-1beta gene has changed through vertebrate evolution and whether its role and regulation are conserved within selected non-mammalian vertebrates.
Collapse
Affiliation(s)
- Steve Bird
- Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | | | | | | | | | | |
Collapse
|
158
|
Irving C, Malhas A, Guthrie S, Mason I. Establishing the trochlear motor axon trajectory: role of the isthmic organiser and Fgf8. Development 2002; 129:5389-98. [PMID: 12403710 DOI: 10.1242/dev.00117] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formation of the trochlear nerve within the anterior hindbrain provides a model system to study a simple axonal projection within the vertebrate central nervous system. We show that trochlear motor neurons are born within the isthmic organiser and also immediately posterior to it in anterior rhombomere 1. Axons of the most anterior cells follow a dorsal projection, which circumnavigates the isthmus, while those of more posterior trochlear neurons project anterodorsally to enter the isthmus. Once within the isthmus, axons form large fascicles that extend to a dorsal exit point. We investigated the possibility that the projection of trochlear axons towards the isthmus and their subsequent growth within that tissue might depend upon chemoattraction. We demonstrate that both isthmic tissue and Fgf8 protein are attractants for trochlear axons in vitro, while ectopic Fgf8 causes turning of these axons away from their normal routes in vivo. Both inhibition of FGF receptor activation and inhibition of Fgf8 function in vitro affect formation of the trochlear projection within explants in a manner consistent with a guidance function of Fgf8 during trochlear axon navigation.
Collapse
Affiliation(s)
- Carol Irving
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, 4 Floor New Hunt's House, UK.
| | | | | | | |
Collapse
|
159
|
Kumano G, Smith WC. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 2002; 225:409-21. [PMID: 12454919 DOI: 10.1002/dvdy.10177] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A revised fate map of the gastrula Xenopus embryo predicts the existence of patterning mechanisms that operate within the animal/vegetal axis of the mesoderm-forming marginal zone. We review here molecular and embryologic data that demonstrate that such mechanisms are present and that they operate independently of the Spemann organizer. Evidence suggests that polarized fibroblast growth factor activity in the animal/vegetal axis patterns this axis. We present a model of mesoderm induction and patterning that integrates the new data on Spemann organizer-independent animal/vegetal patterning with data on other inductive pathways known to act on the gastrula marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
160
|
Yokoyama H, Tamura K, Ide H. Anteroposterior axis formation in Xenopus limb bud recombinants: a model of pattern formation during limb regeneration. Dev Dyn 2002; 225:277-88. [PMID: 12412010 DOI: 10.1002/dvdy.10155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously showed that recombinant limb buds with dissociated and reaggregated mesenchyme develop more than 30 digits in Xenopus laevis, which exhibits different capacities for limb regeneration at different developmental stages (Yokoyama et al. [1998] Dev Biol 196:1-10). Cell-cell contact among anterior- and posterior-derived mesenchymal cells is required for anteroposterior (AP) axis formation of recombinant limbs in an intercalary manner. However, whether one-way induction from posterior cells to anterior cells as proposed by the polarizing zone model or interactions between anterior and posterior cells evoke the AP axis formation in recombinant limbs remains unclear. In this study, we found, by a combination of X-ray irradiation and a recombinant limb technique, that not one-way induction but interactions between anterior and posterior cells accompanied by cell contribution are indispensable for AP axis formation in recombinant limbs. Shh was expressed in posterior-derived not anterior-derived cells. We propose that the recombinant limb is an excellent model for examining the axis formation mechanism in regenerating limbs because, as in recombinant limbs, cell-cell contact among cells derived from different positions of an amputation plane occurs in the blastema of regenerating limbs.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Japan.
| | | | | |
Collapse
|
161
|
Gardiner DM, Endo T, Bryant SV. The molecular basis of amphibian limb regeneration: integrating the old with the new. Semin Cell Dev Biol 2002; 13:345-52. [PMID: 12324216 DOI: 10.1016/s1084952102000903] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Is regeneration close to revealing its secrets? Rapid advances in technology and genomic information, coupled with several useful models to dissect regeneration, suggest that we soon may be in a position to encourage regeneration and enhanced repair processes in humans.
Collapse
Affiliation(s)
- David M Gardiner
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
162
|
Kumano G, Smith WC. The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. Mech Dev 2002; 118:45-56. [PMID: 12351169 DOI: 10.1016/s0925-4773(02)00186-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interplay of fibroblast growth factor (FGF) and nodal signaling in the Xenopus gastrula marginal zone specifies distinct populations of presumptive mesodermal cells. Cells in the vegetal marginal zone, making up the presumptive leading edge mesoderm, are exposed to nodal signaling, as evidenced by SMAD2 activation, but do not appear to be exposed to FGF signaling, as evidenced by the lack of MAP kinase (MAPK) activation. However, in the animal marginal zone, activation of both SMAD2 and MAPK occurs. The differential activation of these two signaling pathways in the marginal zone results in the vegetal and animal marginal zones expressing different genes at gastrulation, and subsequently having different fates, with the vegetal marginal zone contributing to ventral mesoderm (e.g. ventral blood island) and the animal marginal zone giving rise to dorsal fates (e.g. notochord and somite). We report here the cloning of a cDNA encoding a novel nuclear protein, Xmenf, that is expressed in the vegetal marginal zone. The expression of Xmenf is induced by nodal signaling and negatively regulated by FGF signaling. Results from animal cap studies indicate that Xmenf plays a role in the pathway of ventral mesoderm induction in the vegetal marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
163
|
Pera EM, Kim JI, Martinez SL, Brechner M, Li SY, Wessely O, De Robertis EM. Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer. Mech Dev 2002; 116:169-72. [PMID: 12128218 DOI: 10.1016/s0925-4773(02)00123-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.
Collapse
Affiliation(s)
- Edgar M Pera
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles 90095-1662, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Viebahn C, Stortz C, Mitchell SA, Blum M. Low proliferative and high migratory activity in the area of Brachyury expressing mesoderm progenitor cells in the gastrulating rabbit embryo. Development 2002; 129:2355-65. [PMID: 11973268 DOI: 10.1242/dev.129.10.2355] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
General mechanisms initiating the gastrulation process in early animal development are still elusive, not least because embryonic morphology differs widely among species. The rabbit embryo is revived here as a model to study vertebrate gastrulation, because its relatively simple morphology at the appropriate stages makes interspecific differences and similarities particularly obvious between mammals and birds. Three approaches that centre on mesoderm specification as a key event at the start of gastrulation were chosen.
(1) A cDNA fragment encoding 212 amino acids of the rabbit Brachyury gene was cloned by RT-PCR and used as a molecular marker for mesoderm progenitors. Whole-mount in situ hybridisation revealed single Brachyury-expressing cells in the epiblast at 6.2 days post conception, i.e. several hours before the first ingressing mesoderm cells can be detected histologically. With the anterior marginal crescent as a landmark, these mesoderm progenitors are shown to lie in a posterior quadrant of the embryonic disc, which we call the posterior gastrula extension (PGE), for reasons established during the following functional analysis.
(2) Vital dye (DiI) labelling in vitro suggests that epiblast cells arrive in the PGE from anterior parts of the embryonic disc and then move within this area in a complex pattern of posterior, centripetal and anterior directions to form the primitive streak.
(3) BrdU labelling shows that proliferation is reduced in the PGE, while the remaining anterior part of the embryonic disc contains several areas of increased proliferation. These results reveal similarities with the chick with respect to Brachyury expression and cellular migration. They differ, however, in that local differences in proliferation are not seen in the pre-streak avian embryo. Rather, rabbit epiblast cells start mesoderm differentiation in a way similar to Drosophila, where a transient downregulation of proliferation initiates mesoderm differentiation and, hence, gastrulation.
Collapse
Affiliation(s)
- Christoph Viebahn
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Germany.
| | | | | | | |
Collapse
|
165
|
Frazzetto G, Klingbeil P, Bouwmeester T. Xenopus marginal coil (Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements. Mech Dev 2002; 113:3-14. [PMID: 11900970 DOI: 10.1016/s0925-4773(01)00664-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gastrulation in vertebrates is a highly dynamic process driven by convergent extension movements of internal mesodermal cells, under the regulatory activity of the Spemann-Mangold or gastrula organizer. In a large-scale screen for genes expressed in the organizer, we have isolated a novel gene, termed Xmc, an acronym for Xenopus marginal coil. Xmc encodes a protein containing two widely spaced evolutionarily non-conserved coiled coils. Xmc protein is found in vesicular aggregates in the cytoplasm and associated with the inner plasma membrane. We show that Xmc is expressed in a dynamic fashion around the blastoporal circumference, in mesodermal cells undergoing morphogenetic movements, in a pattern similar to FGF target genes. Likewise, Xmc expression can be induced by ectopic XeFGF signaling and the early mesodermal expression is dependent on FGF receptor-mediated signaling. Morpholino-mediated translational 'knock-down' of Xmc results in embryos that display a reduced elongation of the antero-posterior axis and in a pronounced inhibition of morphogenetic movements in embryos and dorsal marginal zone explants. Xmc loss-of-function does not interfere with mesoderm induction or maintenance per se. Our results suggest that Xmc is a novel FGF target gene that is required for morphogenetic movements during gastrulation in Xenopus.
Collapse
Affiliation(s)
- Giovanni Frazzetto
- Developmental Biology Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117, Heidelberg, Germany.
| | | | | |
Collapse
|
166
|
Glavic A, Gómez-Skarmeta JL, Mayor R. The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 2002; 129:1609-21. [PMID: 11923198 DOI: 10.1242/dev.129.7.1609] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isthmic organizer, which patterns the anterior hindbrain and midbrain, is one of the most studied secondary organizers. In recent years, new insights have been reported on the molecular nature of its morphogenetic activity. Studies in chick, mouse and zebrafish have converged to show that mutually repressive interactions between the homeoproteins encoded by Otx and Gbx genes position this organizer in the neural primordia.
We present evidence that equivalent, in addition to novel, interactions between these and other genes operate in Xenopus embryos to position the isthmic organizer. We made use of fusion proteins in which we combined Otx2 or Gbx2 homeodomains with the E1A activation domain or the EnR repressor element which were then injected into embryos. Our results show that Otx2 and Gbx2 are likely to be transcriptional repressors, and that these two proteins repress each other transcription. Our experiments show that the interaction between these two proteins is required for the positioning of the isthmic organizer genes Fgf8, Pax2 and En2. In this study we also developed a novel in vitro assay for the study of the formation of this organizer. We show that conjugating animal caps previously injected with Otx2 and Gbx2 mRNAs recreate the interactions required for the induction of the isthmic organizer. We have used this assay to determine which cells produce and which cells receive the Fgf signal.
Finally, we have added a novel genetic element to this process, Xiro1, which encode another homeoprotein. We show that the Xiro1 expression domain overlaps with territories expressing Otx2, Gbx2 and Fgf8. By expressing wild-type or dominant negative forms of Xiro1, we show that this gene activates the expression of Gbx2 in the hindbrain. In addition, Xiro1 is required in the Otx2 territory to allow cells within this region to respond to the signals produced by adjacent Gbx2 cells. Moreover, Xiro1 is absolutely required for Fgf8 expression at the isthmic organizer. We discuss a model where Xiro1 plays different roles in regulating the genetic cascade of interactions between Otx2 and Gbx2 that are necessary for the specification of the isthmic organizer.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Faculty of Science, University of Chile, Casilla 653, Santiago, Chile
| | | | | |
Collapse
|
167
|
Fisher ME, Isaacs HV, Pownall ME. eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis. Development 2002; 129:1307-15. [PMID: 11880340 DOI: 10.1242/dev.129.6.1307] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper addresses the molecular mechanisms that regulate the transcriptional activation of the myogenic regulatory factor XmyoD in the skeletal muscle lineage of Xenopus laevis. Using antisense morpholino oligonucleotide-mediated inhibition, we show that the signalling molecule embryonic fibroblast growth factor (eFGF), which is the amphibian homologue of FGF4, is necessary for the initial activation of XmyoD transcription in myogenic cells. We demonstrate that eFGF can activate the expression of XmyoD in the absence of protein synthesis, indicating that this regulation is direct. Our data suggest that regulation of XmyoD expression may involve a labile transcriptional repressor. In addition, we show that eFGF is itself an immediate early response to activin, a molecule that mimics the endogenous mesoderm-inducing signal. We propose a model for the regulation of XmyoD within the early mesoderm, and discuss the relevance that these findings have for the understanding of myogenic specification in higher vertebrates.
Collapse
|
168
|
Chalmers AD, Welchman D, Papalopulu N. Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Dev Cell 2002; 2:171-82. [PMID: 11832243 DOI: 10.1016/s1534-5807(02)00113-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Xenopus, primary neurons differentiate early, in the deep layer of the neuroectoderm. In contrast, the neural precursors of the superficial layer continue to proliferate. We report that superficial layer precursors differ from deep layer precursors in that they are refractory to the neuronal-promoting activity of bHLH genes, dominant-negative X-Delta-1, FGF-8, or signals from the organizer. In this system, neuronal differentiation is guided by an early established, intrinsic, cell-autonomous difference in the competence of the precursor cells to differentiate. This difference may be controlled in part by ESR6e, a bHLH gene of the Enhancer-of-split family, which is expressed in the superficial layer of the late blastula and when expressed ectopically suppresses primary neurogenesis in the deep layer.
Collapse
Affiliation(s)
- Andrew D Chalmers
- Wellcome/CRC Institute, Tennis Court Road, CB2 1QR, Cambridge, United Kingdom
| | | | | |
Collapse
|
169
|
Tour E, Pillemer G, Gruenbaum Y, Fainsod A. Otx2 can activate the isthmic organizer genetic network in the Xenopus embryo. Mech Dev 2002; 110:3-13. [PMID: 11744364 DOI: 10.1016/s0925-4773(01)00591-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development and differentiation of the vertebrate caudal midbrain and anterior hindbrain are dependent on the isthmic organizer signals at the midbrain/hindbrain boundary (MHB). The future MHB forms at the boundary between the Otx2 and Gbx2 expression domains. Recent studies in mice and chick suggested that the apposition of Otx2- and Gbx2-expressing cells is instrumental for the positioning and early induction of the MHB genetic cascade. We show that Otx2 and Gbx2 perform different roles in this process. We find that ectopically expressed Otx2 on its own can induce a substantial part of the MHB genetic network, namely En2, Wnt1, Pax-2, Fgf8 and Gbx2, in a concentration-dependent manner. This induction does not require protein synthesis and ends during neurulation. In contrast, Gbx2 is a negative regulator of Otx2 and the MHB genes. Based on the temporal patterns of expression of the genes involved, we propose that Otx2 might be the early inducer of the isthmic organizer genetic network while Gbx2 restricts Otx2 expression along the anterior-posterior axis and establishes an Otx2 gradient.
Collapse
Affiliation(s)
- Ella Tour
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
170
|
Hanken J, Carl TF, Richardson MK, Olsson L, Schlosser G, Osabutey CK, Klymkowsky MW. Limb development in a "nonmodel" vertebrate, the direct-developing frog Eleutherodactylus coqui. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 291:375-88. [PMID: 11754016 DOI: 10.1002/jez.1136] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanisms that mediate limb development are regarded as highly conserved among vertebrates, especially tetrapods. Yet, this assumption is based on the study of relatively few species, and virtually none of those that display any of a large number of specialized life-history or reproductive modes, which might be expected to affect developmental pattern or process. Direct development is an alternative life history found in many anuran amphibians. Many adult features that form after hatching in metamorphic frogs, such as limbs, appear during embryogenesis in direct-developing species. Limb development in the direct-developing frog Eleutherodactylus coqui presents a mosaic of apparently conserved and novel features. The former include the basic sequence and pattern of limb chondrogenesis, which are typical of anurans generally and appear largely unaffected by the gross shift in developmental timing; expression of Distal-less protein (Dlx) in the distal ectoderm; expression of the gene Sonic hedgehog (Shh) in the zone of polarizing activity (ZPA); and the ability of the ZPA to induce supernumerary digits when transplanted to the anterior region of an early host limb bud. Novel features include the absence of a morphologically distinct apical ectodermal ridge, the ability of the limb to continue distal outgrowth and differentiation following removal of the distal ectoderm, and earlier cessation of the inductive ability of the ZPA. Attempts to represent tetrapod limb development as a developmental "module" must allow for this kind of evolutionary variation among species.
Collapse
Affiliation(s)
- J Hanken
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
171
|
Shinga J, Itoh M, Shiokawa K, Taira S, Taira M. Early patterning of the prospective midbrain-hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos. Mech Dev 2001; 109:225-39. [PMID: 11731236 DOI: 10.1016/s0925-4773(01)00528-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular mechanisms that govern early patterning of anterior neuroectoderm (ANE) for the prospective brain region in vertebrates are largely unknown. Screening a cDNA library of Xenopus ANE led to the isolation of a Hairy and Enhancer of split- (HES)-related transcriptional repressor gene, Xenopus HES-related 1 (XHR1). XHR1 is specifically expressed in the midbrain-hindbrain boundary (MHB) region at the tailbud stage. The localized expression of XHR1 was detected as early as the early gastrula stage in the presumptive MHB region, an area just anterior to the involuting dorsal mesoderm that is demarcated by the expression of the gene Xbra. Expression of XHR1 was detected much earlier than that of other known MHB genes, XPax-2 and En-2, and also before the formation of the expression boundary between Xotx2 and Xgbx-2, suggesting that the early patterning of the presumptive MHB is independent of Xotx2 and Xgbx-2. Instead, the location of XHR1 expression appears to be determined in relation to the Xbra expression domain, since reduced or ectopic expression of Xbra altered the XHR1 expression domain according to the location of Xbra expression. In functional assays using mRNA injection, overexpression of dominant-negative forms of XHR1 in the MHB region led to marked reduction of XPax-2 and En-2 expression, and this phenotype was rescued by coexpression of wild-type XHR1. Furthermore, ectopically expressed wild-type XHR1 near the MHB region enhanced En-2 expression only in the MHB region but not in the region outside the MHB. These data suggest that XHR1 is required, but not sufficient by itself, to initiate MHB marker gene expression. Based on these data, we propose that XHR1 demarcates the prospective MHB region in the neuroectoderm in Xenopus early gastrulae.
Collapse
Affiliation(s)
- J Shinga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
172
|
Domingos PM, Itasaki N, Jones CM, Mercurio S, Sargent MG, Smith JC, Krumlauf R. The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev Biol 2001; 239:148-60. [PMID: 11784025 DOI: 10.1006/dbio.2001.0431] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to identify factors involved in posteriorization of the central nervous system, we undertook a functional screen in Xenopus animal cap explants which involved coinjecting noggin RNA together with pools of RNA from a chick somite cDNA library. In the course of this screen, we isolated a clone encoding a truncated form of beta-catenin, which induced posterior neural and dorsal mesodermal markers when coinjected with noggin in animal caps. Similar results were obtained with Xwnt-8 and Xwnt-3a, suggesting that these effects are a consequence of activating the canonical Wnt signalling pathway. To investigate whether the activation of posterior neural markers requires mesoderm induction, we performed experiments using a chimeric inducible form of beta-catenin. Activation of this protein during blastula stages resulted in the induction of both posterior neural and mesodermal markers, while activation during gastrula stages induced only posterior neural markers. We show that this posteriorizing activity occurs by an indirect and noncell-autonomous mechanism requiring FGF signalling.
Collapse
Affiliation(s)
- P M Domingos
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
173
|
Hunter E, Begbie J, Mason I, Graham A. Early development of the mesencephalic trigeminal nucleus. Dev Dyn 2001; 222:484-93. [PMID: 11747082 DOI: 10.1002/dvdy.1197] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cells of the mesencephalic trigeminal nucleus (MTN) are the proprioceptive sensory neurons that innervate the jaw muscles. Interestingly, their evolution is generally thought to have been concomitant with that of the jaws. They are also the first born neurons of the mesencephalon, and their axons pioneer some of the major tracts within the brain. The cells of the MTN are also paradoxical in being the only group of intramedullary primary sensory neurons in amniotes. However, we know little about the early development of these important neurons, and we have analysed this here. To study the earliest stages of MTN development, we have used a battery of neural crest markers to try and pinpoint the progenitors of the MTN. We find that, contrary to current perceptions, the progenitors of the MTN are not highlighted by these markers, suggesting that they are not neural crest derived. However, the cells of the MTN are marked by means of their expression of Brn-3a. This gene labels cells that arise either side of the dorsal midline, extending rostrally from the isthmus across the roof of the mesencephalon. We have further demonstrated that the MTN develops under the influence of the Fgf-8 secreted by the isthmus. Ectopic Fgf-8 application promotes MTN development, whereas inhibiting Fgf-8 function in vivo drastically affects MTN development.
Collapse
Affiliation(s)
- E Hunter
- MRC Centre for Developmental Neurobiology, Guys Campus, Kings College London, London, United Kingdom
| | | | | | | |
Collapse
|
174
|
Beck CW, Whitman M, Slack JM. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev Biol 2001; 238:303-14. [PMID: 11784012 DOI: 10.1006/dbio.2001.0407] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tail bud formation in Xenopus depends on interaction between a dorsal domain (dorsal roof) expressing lunatic fringe and Notch, and a ventral domain (posterior wall) expressing the Notch ligand Delta. Ectopic expression of an activated form of Notch, Notch ICD, by means of an animal cap graft into the posterior neural plate, results in the formation of an ectopic tail-like structure containing a neural tube and fin. However, somites are never formed in these tails. Here, we show that BMP signaling is activated in the posterior wall of the tail bud and is involved in the formation of tail somites from this region. Grafts into the posterior neural plate, in which BMP signaling is activated, will form tail-like outgrowths. Unlike the Notch ICD tails, the BMP tails contain well-organized somites as well as neural tube and fin, with the graft contributing to both somites and neural tube. Through a variety of epistasis-type experiments, we show that the most likely model involves a requirement for BMP signaling upstream of Notch activation, resulting in formation of the secondary neural tube, as well as a Notch-independent pathway leading to the formation of tail somites from the posterior wall.
Collapse
Affiliation(s)
- C W Beck
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | | | | |
Collapse
|
175
|
Loeffler IK, Stocum DL, Fallon JF, Meteyer CU. Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs. THE ANATOMICAL RECORD 2001; 265:228-45. [PMID: 11745107 DOI: 10.1002/ar.10009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent progress in the investigation of limb malformations in free-living frogs has underlined the wide range in the types of limb malformations and the apparent spatiotemporal clustering of their occurrence. Here, we review the current understanding of normal and abnormal vertebrate limb development and regeneration and discuss some of the molecular events that may bring about limb malformation. Consideration of the differences between limb development and regeneration in amphibians has led us to the hypothesis that some of the observed limb malformations come about through misdirected regeneration. We report the results of a pilot study that supports this hypothesis. In this study, the distal aspect of the right hindlimb buds of X. laevis tadpoles was amputated at the pre-foot paddle stage. The tadpoles were raised in water from a pond in Minnesota at which 7% of surveyed newly metamorphosed feral frogs had malformations. Six percent (6 of 100) of the right limbs of the tadpoles raised in pond water developed abnormally. One truncated right limb was the only malformation in the control group, which was raised in dechlorinated municipal water. All unamputated limbs developed normally in both groups. Three major factors under consideration for effecting the limb malformations are discussed. These factors include environmental chemicals (primarily agrichemicals), encysted larvae (metacercariae) of trematode parasites, and increased levels of ultraviolet light. Emphasis is placed on the necessary intersection of environmental stressors and developmental events to bring about the specific malformations that are observed in free-living frog populations.
Collapse
|
176
|
Christensen RN, Weinstein M, Tassava RA. Fibroblast growth factors in regenerating limbs of Ambystoma: cloning and semi-quantitative RT-PCR expression studies. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:529-40. [PMID: 11555861 DOI: 10.1002/jez.1097] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Urodele amphibians (newts and salamanders) have the ability to regenerate amputated limbs throughout their life span. Because fibroblast growth factors (Fgfs) play important roles in developing limbs, we initiated studies to investigate these growth factors in regenerating limbs. Partial cDNAs of Fgf4, 8, and 10 were cloned from both the Mexican axolotl, Ambystoma mexicanum, and locally collected spotted salamander, Ambystoma maculatum, two salamanders well recognized for their regenerative capabilities. cDNAs from the two Ambystoma species were virtually identical, ranging from 97-100% nucleotide identity. Axolotl Fgf4, 8, and 10 showed nucleotide sequence identity with chick Fgf4, 8, and 10 of 79%, 83%, and 72%, respectively. RT-PCR showed that these growth factors are expressed in regenerating axolotl limbs as well as in developing salamander larvae at the three-digit forelimb stage. Fgf8 and 10 are upregulated during regeneration and thus may be involved in distal signaling similar to that of the developing chick limb. Fgf4, however, was undetectable by RT-PCR in the distal tips of regenerates, suggesting that it does not play the same role in limb regeneration that it does in limb development. We also investigated the role these Fgfs may have in the nerve-dependence of regeneration. They were expressed similarly in aneurogenic and innervated limbs, suggesting that they are not the neurotrophic factors responsible for nerve-dependence. Denervation prevented Fgf8 and 10 upregulation, suggesting Fgf pathways are downstream of nerve-dependence. These data highlight important similarities and differences in Fgf expression between limb development and limb regeneration. J. Exp. Zool. 290:529-540, 2001.
Collapse
Affiliation(s)
- R N Christensen
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
177
|
Kumano G, Ezal C, Smith WC. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm. Dev Biol 2001; 236:465-77. [PMID: 11476585 DOI: 10.1006/dbio.2001.0341] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm.
Collapse
Affiliation(s)
- G Kumano
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
178
|
Hopkins PM. Limb Regeneration in the Fiddler Crab,Uca pugilator: Hormonal and Growth Factor Control. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.3.389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
179
|
|
180
|
Nutt SL, Dingwell KS, Holt CE, Amaya E. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev 2001; 15:1152-66. [PMID: 11331610 PMCID: PMC312687 DOI: 10.1101/gad.191301] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 02/19/2001] [Indexed: 11/24/2022]
Abstract
Signal transduction through the FGF receptor is essential for the specification of the vertebrate body plan. Blocking the FGF pathway in early Xenopus embryos inhibits mesoderm induction and results in truncation of the anterior-posterior axis. The Drosophila gene sprouty encodes an antagonist of FGF signaling, which is transcriptionally induced by the pathway, but whose molecular functions are poorly characterized. We have cloned Xenopus sprouty2 and show that it is expressed in a similar pattern to known FGFs and is dependent on the FGF/Ras/MAPK pathway for its expression. Overexpression of Xsprouty2 in both embryos and explant assays results in the inhibition of the cell movements of convergent extension. Although blocking FGF/Ras/MAPK signaling leads to an inhibition of mesodermal gene expression, these markers are unaffected by Xsprouty2, indicating that mesoderm induction and patterning occurs normally in these embryos. Finally, using Xenopus oocytes we show that Xsprouty2 is an intracellular antagonist of FGF-dependent calcium signaling. These results provide evidence for at least two distinct FGF-dependent signal transduction pathways: a Sprouty-insensitive Ras/MAPK pathway required for the transcription of most mesodermal genes, and a Sprouty-sensitive pathway required for coordination of cellular morphogenesis.
Collapse
Affiliation(s)
- S L Nutt
- Wellcome/CRC Institute, Cambridge CB2 1QR, UK and Department of Zoology, University of Cambridge CB2 3EJ, UK
| | | | | | | |
Collapse
|
181
|
Abstract
By reciprocal transplantation experiments with regenerative and nonregenerative Xenopus limbs, we recently demonstrated that the regenerative capacity of a Xenopus limb depends on mesenchymal tissue and we suggested that fgf-10 is likely to be involved in this capacity (Yokoyama et al., 2000, Dev. Biol. 219, 18-29). However, the data obtained in that study are not conclusive evidence that FGF-10 is responsible for the regenerative capacity. We therefore investigated the role of FGF-10 in regenerative capacity by directly introducing FGF-10 protein into nonregenerative Xenopus limb stumps. Exogenously applied FGF-10 successfully stimulated the regenerative capacity, resulting in the reinduction of all gene expressions (including shh, msx-1, and fgf-10) that we examined and the regeneration of well-patterned limb structures. We report here for the first time that a certain molecule activates the regenerative capacity of Xenopus limb, and this finding suggests that FGF-10 could be a key molecule in possible regeneration of nonregenerative limbs in higher vertebrates.
Collapse
Affiliation(s)
- H Yokoyama
- Biological Institute, Graduate School of Science, Tohoku University, Aoba-yama, Aoba-ku, Sendai, 980-8578, Japan
| | | | | |
Collapse
|
182
|
Standley HJ, Zorn AM, Gurdon JB. eFGF and its mode of action in the community effect during Xenopus myogenesis. Development 2001; 128:1347-57. [PMID: 11262235 DOI: 10.1242/dev.128.8.1347] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The community effect is an interaction among a group of many nearby precursor cells, necessary for them to maintain tissue-specific gene expression and differentiate co-ordinately. During Xenopus myogenesis, the muscle precursor cells must be in group contact throughout gastrulation in order to develop into terminally differentiated muscle. The molecular basis of this community interaction has not to date been elucidated. We have developed an assay for testing potential community factors, in which isolated muscle precursor cells are treated with a candidate protein and cultured in dispersion. We have tested a number of candidate factors and we find that only eFGF protein is able to mediate a community effect, stimulating stable muscle-specific gene expression in demonstrably single muscle precursor cells. In contrast, Xwnt8, bFGF, BMP4 and TGF(β)2 do not show this capacity. We show that eFGF is expressed in the muscle precursor cells at the right time to mediate the community effect. Moreover, the time when the muscle precursor cells are sensitive to eFGF corresponds to the period of the endogenous community effect. Finally, we demonstrate that FGF signalling is essential for endogenous community interactions. We conclude that eFGF is likely to mediate the community effect in Xenopus myogenesis.
Collapse
Affiliation(s)
- H J Standley
- Wellcome/CRC Institute, Tennis Court Road, Cambridge, CB2 1QR and Department of Zoology, University of Cambridge, UK
| | | | | |
Collapse
|
183
|
Cannata SM, Bagni C, Bernardini S, Christen B, Filoni S. Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf-2 mRNA expression in limb tissues. Dev Biol 2001; 231:436-46. [PMID: 11237471 DOI: 10.1006/dbio.2001.0161] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In both larval and adult urodele amphibians, limb blastema formation requires the presence of an adequate nerve supply. In previous research, we demonstrated that the hindlimb of early Xenopus laevis larvae formed a regeneration blastema even when denervated, while the denervated limb of late larvae did not. We hypothesized that the nerve-independence was due to the autonomous synthesis of a mitogenic neurotrophic-like factor by undifferentiated limb bud cells. In this paper, we demonstrate that fgf-2 mRNA is present in larval limb tissues and that its level is correlated to the extent of mesenchymal cells populating the limb: in early limbs, fgf-2 mRNA is present at high levels all over the limb, while, in late limbs, the fgf-2 expression is low and detectable only in the distal autopodium. After denervation, fgf-2 mRNA synthesis increases in amputated early limbs but not in amputated late limbs. The implantation of anti-FGF-2 beads into amputated early limbs hardly lowers the mitotic activity of blastema cells. However, FGF-2 beads implanted into the blastema of late limbs prevent the denervation-induced inhibition of mitosis and oppose blastema regression. Our data indicate that FGF-2 is a good candidate for the endogenous mitogenic factor responsible for blastema formation and growth in amputated and denervated early limbs. However, in amputated late limbs, the very limited fgf-2 expression is not sufficient to promote blastema formation in the absence of nerves.
Collapse
Affiliation(s)
- S M Cannata
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, Rome, 00133, Italy
| | | | | | | | | |
Collapse
|
184
|
Matsuda H, Yokoyama H, Endo T, Tamura K, Ide H. An epidermal signal regulates Lmx-1 expression and dorsal-ventral pattern during Xenopus limb regeneration. Dev Biol 2001; 229:351-62. [PMID: 11150239 DOI: 10.1006/dbio.2000.9973] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The results of recent studies have supported the idea that the ability to organize the formation of axes such as the anteroposterior and proximodistal axes corresponds to limb regeneration ability in Xenopus. In this study, we investigated the mechanism by which the dorsoventral (D-V) axis of regenerating Xenopus limbs is established and the relationships between D-V patterning and regenerative ability. Transplantation experiments were performed to study which epidermis or mesenchyme is responsible for the D-V patterning in regenerating limbs. Naked mesenchyme of a donor limb was rotated and implanted on a host opposite-side limb stump to make a reversed recombination about the D-V axis. The resultant regenerates had a normal-looking D-V pattern, including Lmx-1 expression, muscle pattern, and joints, in stage 52 recombinants and a reversed D-V pattern in stage 55 recombinants. Further experiments in recombination at stage 52 and stage 55 showed that the epidermal signal is responsible for producing the D-V pattern in the regenerating blastema. These results, together with the finding that Lmx-1 expression is absent in the froglet forelimb blastema, suggest that D-V axis formation is a key step in understanding the loss of regenerative ability.
Collapse
Affiliation(s)
- H Matsuda
- Biological Institute, Graduate School of Science, Tohoku University, Aoba-yama Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
185
|
Abstract
Fgf-8 is one of the key signaling molecules implicated in the initiation, outgrowth, and patterning of vertebrate limbs. However, it is not clear whether FGF-8 plays similar role in development and regeneration of urodele limbs. We isolated a Fgf-8 cDNA from the Mexican axolotl (Ambystoma mexicanum) through the screening of an embryo cDNA library. The cloned 1.26-kb cDNA contained an open reading frame encoding 212 amino acid residues with 84%, 86%, and 80% amino acid identities to those of Xenopus, chick, and mouse, respectively. By using the above clone as a probe, we examined the temporal and spatial expression patterns of Fgf-8 in developing embryos and in regenerating larval limbs. In developing embryos, Fgf-8 was expressed in the neural fold, midbrain-hindbrain junction, tail and limb buds, pharyngeal clefts, and primordia of maxilla and mandible. In the developing axolotl limb, Fgf-8 began to be expressed in the prospective forelimb region at pre-limb-bud and limb bud stages. Interestingly, strong expression was detected in the mesenchymal tissue of the limb bud before digit forming stages. In the regenerating limb, Fgf-8 expression was noted in the basal layer of the apical epithelial cap (AEC) and the underlying thin layer of mesenchymal tissue during blastema formation stages. These data suggest that Fgf-8 is involved in the organogenesis of various craniofacial structures, the initiation and outgrowth of limb development, and the blastema formation and outgrowth of regenerating limbs. In the developing limb of axolotl, unlike in Xenopus or in amniotes such as chick and mouse, the Fgf-8 expression domain was localized mainly in the mesenchyme rather than epidermis. The unique expression pattern of Fgf-8 in axolotl suggests that the regulatory mechanism of Fgf-8 expression is different between urodeles and other higher species. The expression of Fgf-8 in the deep layer of the AEC and the thin layer of underlying mesenchymal tissue in the regenerating limbs support the previous notion that the amphibian AEC is a functional equivalent of the AER in amniotes.
Collapse
Affiliation(s)
- M J Han
- Department of Life Science, Sogang University, Seoul, Korea
| | | | | |
Collapse
|
186
|
Abstract
According to the three-signal model of mesoderm patterning in Xenopus, all mesoderm, with the exception of the Spemann organizer, is originally specified as ventral type, such as lateral plate and primary blood islands. It is proposed that the blood islands become restricted to the ventralmost mesoderm because they are not exposed to the BMP-inhibiting activity of the Spemann organizer. We present evidence here that, contrary to predictions of this model, the blood islands remain ventrally restricted even in the absence of Spemann organizer signaling. We further observed that inhibition of FGF signaling with a dominant negative receptor resulted in the expansion of the blood island-forming territory with a concomitant loss of somite. The requirement for FGF signaling in specifying somite versus blood island territories was observed as early as midgastrulation. The nonoverlapping expression domains of Xnr-2 and Xbra in the gastrula marginal zone appear to mark presumptive blood island and somite, respectively. Inhibition of FGF signaling with dominant negative receptor leads to an expansion of Xnr-2 expression and to a corresponding reduction in Xbra expression. On the other hand, we found no evidence that manipulation of BMP signaling, either positively or negatively, altered the expression domains of Xnr-2 and Xbra. These results suggest that FGF signaling, rather than BMP-inhibiting activity, is essential for restriction of the ventral blood islands to ventral mesoderm.
Collapse
Affiliation(s)
- G Kumano
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | |
Collapse
|
187
|
Hardcastle Z, Chalmers AD, Papalopulu N. FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr Biol 2000; 10:1511-4. [PMID: 11114518 DOI: 10.1016/s0960-9822(00)00825-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of fibroblast growth factors (FGFs) in neural induction is controversial [1,2]. Although FGF signalling has been implicated in early neural induction [3-5], a late role for FGFs in neural development is not well established. Indeed, it is thought that FGFs induce a precursor cell fate but are not able to induce neuronal differentiation or late neural markers [6-8]. It is also not known whether the same or distinct FGFs and FGF receptors (FGFRs) mediate the effects on mesoderm and neural development. We report that Xenopus embryos expressing ectopic FGF-8 develop an abundance of ectopic neurons that extend to the ventral, non-neural, ectoderm, but show no ectopic or enhanced notochord or somitic markers. FGF-8 inhibited the expression of an early mesoderm marker, Xbra, in contrast to eFGF, which induced ectopic Xbra robustly and neuronal differentiation weakly. The effect of FGF-8 on neurogenesis was blocked by dominant-negative FGFR-4a (DeltaXFGFR-4a). Endogenous neurogenesis was also blocked by DeltaXFGFR-4a and less efficiently by dominant-negative FGFR-1 (XFD), suggesting that it depends preferentially on signalling through FGFR-4a. The results suggest that FGF-8 and FGFR-4a signalling promotes neurogenesis and, unlike other FGFs, FGF-8 interferes with mesoderm induction. Thus, different FGFs show specificity for mesoderm induction versus neurogenesis and this may be mediated, at least in part, by the use of distinct receptors.
Collapse
Affiliation(s)
- Z Hardcastle
- Wellcome/CRC Institute, CB2 1QR,., Cambridge, UK
| | | | | |
Collapse
|
188
|
Ribisi S, Mariani FV, Aamar E, Lamb TM, Frank D, Harland RM. Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Dev Biol 2000; 227:183-96. [PMID: 11076686 DOI: 10.1006/dbio.2000.9889] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor (FGF) has been proposed to be involved in the specification and patterning of the developing vertebrate nervous system. There is conflicting evidence, however, concerning the requirement for FGF signaling in these processes. To provide insight into the signaling mechanisms that are important for neural induction and anterior-posterior neural patterning, we have employed the dominant negative Ras mutant, N17Ras, in addition to a truncated FGF receptor (XFD). Both N17Ras and XFD, when expressed in Xenopus laevis animal cap ectoderm, inhibit the ability of FGF to generate neural pattern. They also block induction of posterior neural tissue by XBF2 and XMeis3. However, neither XFD nor N17Ras inhibits noggin, neurogenin, or XBF2 induction of anterior neural markers. MAP kinase activation has been proposed to be necessary for neural induction, yet N17Ras inhibits the phosphorylation of MAP kinase that usually follows explantation of explants. In whole embryos, Ras-mediated FGF signaling is critical for the formation of posterior neural tissues but is dispensable for neural induction.
Collapse
Affiliation(s)
- S Ribisi
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, 94720, USA
| | | | | | | | | | | |
Collapse
|
189
|
Meteyer CU, Loeffler IK, Fallon JF, Converse KA, Green E, Helgen JC, Kersten S, Levey R, Eaton-Poole L, Burkhart JG. Hind limb malformations in free-living northern leopard frogs (Rana pipiens) from Maine, Minnesota, and Vermont suggest multiple etiologies. TERATOLOGY 2000; 62:151-71. [PMID: 10935979 DOI: 10.1002/1096-9926(200009)62:3<151::aid-tera3>3.0.co;2-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reports of malformed frogs have increased throughout the North American continent in recent years. Most of the observed malformations have involved the hind limbs. The goal of this study was to accurately characterize the hind limb malformations in wild frogs as an important step toward understanding the possible etiologies. METHODS During 1997 and 1998, 182 recently metamorphosed northern leopard frogs (Rana pipiens) were collected from Minnesota, Vermont, and Maine. Malformed hind limbs were present in 157 (86%) of these frogs, which underwent necropsy and radiographic evaluation at the National Wildlife Health Center. These malformations are described in detail and classified into four major categories: (1) no limb (amelia); (2) multiple limbs or limb elements (polymelia, polydactyly, polyphalangy); (3) reduced limb segments or elements (phocomelia, ectromelia, ectrodactyly, and brachydactyly; and (4) distally complete but malformed limb (bone rotations, bridging, skin webbing, and micromelia). RESULTS Amelia and reduced segments and/or elements were the most common finding. Frogs with bilateral hind limb malformations were not common, and in only eight of these 22 frogs were the malformations symmetrical. Malformations of a given type tended to occur in frogs collected from the same site, but the types of malformations varied widely among all three states, and between study sites within Minnesota. CONCLUSIONS Clustering of malformation type suggests that developmental events may produce a variety of phenotypes depending on the timing, sequence, and severity of the environmental insult. Hind limb malformations in free-living frogs transcend current mechanistic explanations of tetrapod limb development.
Collapse
Affiliation(s)
- C U Meteyer
- United States Geological Survey, Biological Resource Division, National Wildlife Health Center, Madison, Wisconsin 53711, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Wolfe AD, Nye HL, Cameron JA. Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs. Dev Dyn 2000; 218:681-97. [PMID: 10906786 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1018>3.0.co;2-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Xenopus laevis larvae gradually lose the ability to regenerate lost hindlimb structures as they progress through metamorphosis. Previous studies have suggested that this loss of regenerative capacity occurs in a proximal-to-distal fashion. We assessed the quality of overall regeneration and early bud blastema formation in order to evaluate previous explanations for this loss of regenerative ability in Xenopus. We further examined the extent to which epidermis, basement membrane, dermis, cartilage, bone, periosteum, and accumulated mesenchyme within the blastema are involved in the decline of regenerative abilities during mid-metamorphic stages of development. Each tissue was scored based on its contributions to the regeneration blastema, in accordance with previously reported blastemal descriptions. Tadpoles amputated at the ankle and tarsal-metatarsal joints scored objectively higher within the overall regeneration and blastema quality rating systems. Both joint sites met more criteria associated with regeneration-capable blastemas than tadpoles amputated through the middle of the tarsus, especially at later stages of metamorphosis. The three amputation sites studied began to vary in their ability to regenerate skeletal elements and to generate productive blastemas during the same stages at which we initially observed ossification of the tarsus. These results suggest that the decline of Xenopus hindlimb regeneration does not occur in a strictly proximal-to-distal fashion but rather is dependent at later stages on the state of ossification of the structure through which amputation occurs. Our morphological and cellular observations reveal specific times and places during Xenopus hindlimb development at which further investigations into tissue-specific molecular events during early regeneration should be focused.
Collapse
Affiliation(s)
- A D Wolfe
- Department of Cell and Structural Biology and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
191
|
Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT. Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 2000; 222:347-58. [PMID: 10837124 DOI: 10.1006/dbio.2000.9722] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Following amputation of a urodele limb or teleost fin, the formation of a blastema is a crucial step in facilitating subsequent regeneration. Using the zebrafish caudal fin regeneration model, we have examined the hypothesis that fibroblast growth factors (Fgfs) initiate blastema formation from fin mesenchyme. We find that fibroblast growth factor receptor 1 (fgfr1) is expressed in mesenchymal cells underlying the wound epidermis during blastema formation and in distal blastemal tissue during regenerative outgrowth. fgfr1 transcripts colocalize with those of msxb and msxc, putative markers for undifferentiated, proliferating cells. A zebrafish Fgf member, designated wfgf, is expressed in the regeneration epidermis during outgrowth. Furthermore, we show that a specific inhibitor of Fgfr1 applied immediately following fin amputation blocks blastema formation, without obvious effects on wound healing. This inhibitor blocks the proliferation of blastemal cells and the onset of msx gene transcription. Inhibition of Fgf signaling during ongoing fin regeneration prevents further outgrowth while downregulating the established expression of blastemal msx genes and epidermal sonic hedgehog. Our findings indicate that zebrafish fin blastema formation and regenerative outgrowth require Fgf signaling.
Collapse
Affiliation(s)
- K D Poss
- Howard Hughes Medical Institute, Eccles Institute of Human Genetics, University of Utah Health Sciences Center, 15N 2030E, Salt Lake City, Utah, 84112, USA
| | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
Xenopus laevis can regenerate an amputated limb completely at early limb bud stages, but the metamorphosed froglet gradually loses this capacity and can regenerate only a spike-like structure. We show that the spike formation in a Xenopus froglet is nerve dependent as is limb regeneration in urodeles, since denervation concomitant with amputation is sufficient to inhibit the initiation of blastema formation and fgf8 expression in the epidermis. Furthermore, in order to determine the cause of the reduction in regenerative capacity, we examined the expression patterns of several key genes for limb patterning during the spike-like structure formation, and we compared them with those in developing and regenerating limb buds that produce a complete limb structure. We cloned Xenopus HoxA13, a marker of the prospective autopodium region, and the expression pattern suggested that the spike-like structure in froglets is accompanied by elongation and patterning along the proximodistal (PD) axis. On the other hand, shh expression was not detected in the froglet blastema, which expresses fgf8 and msx1. Thus, although the wound epidermis probably induces outgrowth of the froglet blastema, the polarizing activity that organizes the anteroposterior (AP) axis formation is likely to be absent there. Our results demonstrate that the lost region in froglet limbs is regenerated along the PD axis and that the failure of organization of the AP pattern gives rise to a spike-like incomplete structure in the froglet, suggesting a relationship between regenerative capacity and AP patterning. These findings lead us to conclude that the spike formation in postometamorphic Xenopus limbs is epimorphic regeneration.
Collapse
Affiliation(s)
- T Endo
- Biological Institute, Graduate School of Science, Tohoku University, Aoba-yama aoba-ku, Sendai, 980-8578, Japan
| | | | | |
Collapse
|
193
|
Yokoyama H, Yonei-Tamura S, Endo T, Izpisúa Belmonte JC, Tamura K, Ide H. Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev Biol 2000; 219:18-29. [PMID: 10677252 DOI: 10.1006/dbio.1999.9587] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A young tadpole of an anuran amphibian can completely regenerate an amputated limb, and it exhibits an ontogenetic decline in the ability to regenerate its limbs. However, whether mesenchymal or epidermal tissue is responsible for this decrease of the capacity remains unclear. Moreover, little is known about the molecular interactions between these two tissues during regeneration. The results of this study showed that fgf-10 expression in the limb mesenchymal cells clearly corresponds to the regenerative capacity and that fgf-10 and fgf-8 are synergistically reexpressed in regenerating blastemas. However, neither fgf-10 nor fgf-8 is reexpressed after amputation of a nonregenerative limb. Nevertheless, nonregenerative epidermal tissue can reexpress fgf-8 under the influence of regenerative mesenchyme, as was demonstrated by experiments using a recombinant limb composed of regenerative limb mesenchyme and nonregenerative limb epidermis. Taken together, our data demonstrate that the regenerative capacity depends on mesenchymal tissue and suggest that fgf-10 is likely to be involved in this capacity.
Collapse
Affiliation(s)
- H Yokoyama
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
194
|
Abstract
Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate limbs. The regenerated structure is often indistinguishable from the developmentally produced original. Thus, the two processes by which the limb is produced - development and regeneration - are likely to use many conserved biochemical and developmental pathways. Some of these limb features are also likely to be conserved across vertebrate families. The apical ectodermal ridge (AER) of the developing amniote limb and the larger apical epithelial cap (AEC) of the regenerating urodele limb are both found at the limb's distalmost tip and have been suggested to be functionally similar even though their morphology is quite different. Both structures are necessary for limb outgrowth. However, the AEC is uniformly smooth and thickly covers the entire limb-tip, unlike the AER, which is a protruding ridge covering only the dorsoventral boundary. Previous data from our laboratory suggest the multilayered AEC may be subdivided into separate functional compartments. We used hematoxylin and eosin (H+E) staining as well as in situ hybridization to examine the basal layer of the AEC, the layer that lies immediately over the distal limb mesenchyme. In late-stage regenerates, this basal layer expresses fibronectin (FN) message very strongly in a stripe of cells along the dorso-ventral boundary. H+E staining also reveals the unique shape of basal cells in this area. The stripe of cells in the basal AEC also contains the notch/groove structure previously seen in avian and reptilian AERs. In addition, AEC expression of FN message in the cells around the groove correlates with previous amniote AER localization of FN protein inside the groove. The structural and biochemical analyses presented here suggest that there is a specialized ridge-like compartment in the basal AEC in late-stage regenerates. The data also suggest that this compartment may be homologous to the AER of the developing amniote limb. Thus, the external differences between amniote limb development and urodele limb regeneration may be outweighed by internal similarities, which enable both processes to produce morphologically complete limbs. In addition, we propose that this basal layer of the AEC is uniquely responsible for AEC functions in regeneration, such as secreting molecules to promote mesenchymal cell cycling and dictating the direction of limb outgrowth. Finally, we include here a clarification of existing nomenclature to facilitate further discussion of the AEC and its basal layer.
Collapse
Affiliation(s)
- R N Christensen
- Department of Molecular Genetics, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
195
|
Irving C, Mason I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 2000; 127:177-86. [PMID: 10654611 DOI: 10.1242/dev.127.1.177] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current evidence suggests that the anterior segment of the vertebrate hindbrain, rhombomere 1, gives rise to the entire cerebellum. It is situated where two distinct developmental patterning mechanisms converge: graded signalling from an organising centre (the isthmus) located at the midbrain/hindbrain boundary confronts segmentation of the hindbrain. The unique developmental fate of rhombomere 1 is reflected by it being the only hindbrain segment in which no Hox genes are expressed. In this study we show that ectopic FGF8 protein, a candidate for the isthmic organising activity, is able to induce and repress gene expression within the hindbrain in a manner appropriate to rhombomere 1. Using a heterotopic, heterospecific grafting strategy we demonstrate that rhombomere 1 is able to express Hox genes but that both isthmic tissue and FGF8 inhibit their expression. Inhibition of FGF8 function in vivo shows that it is responsible for defining the anterior limit of Hox gene expression within the developing brain and thereby specifies the extent of the rl territory. Previous studies have suggested that a retinoid morphogen gradient determines the axial limit of expression of individual Hox genes within the hindbrain. We propose a model whereby activation by retinoids is antagonised by inhibition by FGF8 in the anterior hindbrain to set aside the territory from which the cerebellum will develop.
Collapse
Affiliation(s)
- C Irving
- MRC Brain Development Programme, Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, UK
| | | |
Collapse
|
196
|
Chambers D, Medhurst AD, Walsh FS, Price J, Mason I. Differential display of genes expressed at the midbrain - hindbrain junction identifies sprouty2: an FGF8-inducible member of a family of intracellular FGF antagonists. Mol Cell Neurosci 2000; 15:22-35. [PMID: 10662503 DOI: 10.1006/mcne.1999.0801] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specification and polarization of the midbrain and anterior hindbrain involve planar signals originating from the isthmus. Current evidence suggests that FGF8, expressed at the isthmus, provides this patterning influence. In this study, we have sought to identify novel genes which are involved in the process by which regional identity is imparted to midbrain and anterior hindbrain (rhombomere 1). An enhanced differential display reverse transcription method was used to clone cDNAs derived from transcripts expressed specifically in either rhombomere 1 or midbrain during the period of isthmic patterning activity. This gene expression screen identified 28 differentially expressed cDNAs. A clone upregulated in cDNA derived from rhombomere 1 tissue showed a 91% identity at the nucleotide level to the putative human receptor tyrosine kinase antagonist: sprouty2. In situ hybridization on whole chick embryos showed chick sprouty2 to be expressed initially within the isthmus and rhombomere 1, spatially and temporally coincident with Fgf8 expression. However, at later stages this domain was more extensive than that of Fgf8. Introduction of ligand-coated beads into either midbrain or hindbrain region revealed that sprouty2 could be rapidly induced by FGF8. These data suggest that sprouty2 participates in a negative feedback regulatory loop to modulate the patterning activity of FGF8 at the isthmus.
Collapse
Affiliation(s)
- D Chambers
- MRC Brain Development Programme, Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 9RT, United Kingdom
| | | | | | | | | |
Collapse
|
197
|
Shimizu-Nishikawa K, Tazawa I, Uchiyama K, Yoshizato K. Expression of helix-loop-helix type negative regulators of differentiation during limb regeneration in urodeles and anurans. Dev Growth Differ 1999; 41:731-43. [PMID: 10646803 DOI: 10.1046/j.1440-169x.1999.00477.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The urodele is capable of regenerating its limb by forming a blastema even in the adult. By contrast, the anuran, which is phylogenetically close to the urodele, loses this ability during metamorphosis and forms blastema-like tissues that develop only into a spike-like structure in the adult. In order to compare the molecular mechanism of the formation and maintenance of the blastema between the urodele and anuran, the genes encoding helix-loop-helix (HLH) type negative regulators of differentiation were characterized for both the Japanese newt, Cynops pyrrhogaster, and African clawed frog, Xenopus laevis. Cynops homologs of Id2, Id3, and HES1 and Xenopus Id2 were identified. To learn the roles of these genes in regeneration, their expression was examined. The expression of Id2 and Id3 was low in unamputated limbs, but was up-regulated in blastemas of both adult newt and Xenopus. Interestingly, transcripts of the two Id genes showed specific localizations in the blastema and the expression patterns were very similar in both species through the early to medium bud stage. Id2 was expressed predominantly in the blastemal epidermis, and Id3 was expressed equally in the blastemal epidermis and mesenchyme including cells in precartilage condensations. HES1 expression was up-regulated in the newt blastemal epidermis. It was thought that the up-regulation of these genes in the epidermis was related to the proliferation of the cells and that increased expression of these genes in the mesenchyme was related to the undifferentiated state of the blastemal cells. These results and considerations strongly suggested that the state of differentiation is similar in the early to medium bud blastema of both urodeles and anurans. The expression of Id3 remained high through to the digits stage in newts. In contrast, its expression in Xenopus decreased in spike-like regenerates, which correspond to palette-digits stage of newt regenerates. From these results, it was suggested that the blastema redifferentiates earlier in the frog than in the newt, and therefore the timing of redifferentiation of the cartilage is crucial for complete regeneration.
Collapse
Affiliation(s)
- K Shimizu-Nishikawa
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashihiroshima, Japan
| | | | | | | |
Collapse
|
198
|
Irving C, Mason I. Regeneration of isthmic tissue is the result of a specific and direct interaction between rhombomere 1 and midbrain. Development 1999; 126:3981-9. [PMID: 10457008 DOI: 10.1242/dev.126.18.3981] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The midbrain-hindbrain boundary, or isthmus, is the source of signals that are responsible for regional specification of both the midbrain and anterior hindbrain. Fibroblast growth factor 8 (Fgf8) is expressed specifically at the isthmus and there is now good evidence that it forms at least part of the patterning signal. In this study, we use Fgf8 as a marker for isthmic cells to examine how interactions between midbrain and hindbrain can regenerate isthmic tissue and, thereby, gain insight into the normal formation and/or maintenance of the isthmus. We show that Fgf8-expressing tissue with properties of the isthmic organiser is generated when midbrain and rhombomere 1 tissue are juxtaposed but not when midbrain contacts any other rhombomere. The use of chick/quail chimeras shows that the isthmic tissue is largely derived from rhombomere 1. In a few cases a small proportion of the Fgf8-positive cells were of midbrain origin but this appears to be the result of a local respecification to a hindbrain phenotype, a process mimicked by ectopic FGF8. Studies in vitro show that the induction of Fgf8 is the result of a direct planar interaction between the two tissues and involves a diffusible signal.
Collapse
Affiliation(s)
- C Irving
- MRC Brain Development Programme, Department of Developmental Neurobiology, Guy's, King's and St. Thomas' Hospital Medical School, Hodgkin Building, Guy's Campus, London SE1 9RT, UK
| | | |
Collapse
|
199
|
Koga C, Adati N, Nakata K, Mikoshiba K, Furuhata Y, Sato S, Tei H, Sakaki Y, Kurokawa T, Shiokawa K, Yokoyama KK. Characterization of a novel member of the FGF family, XFGF-20, in Xenopus laevis. Biochem Biophys Res Commun 1999; 261:756-65. [PMID: 10441498 DOI: 10.1006/bbrc.1999.1039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA for a novel member of the FGF family (XFGF-20) was isolated from a Xenopus cDNA library prepared at the tailbud stage using as a probe the product of degenerate PCR performed with primers based on mammalian FGF-9s. This cDNA was 1860 bp long, and contained a single open reading frame that encoded 208 amino acid residues. The deduced amino acid sequence contained a motif characteristic of the FGF family and it was similar (73.1% overall homology) to XFGF-9 but differed from XFGF-9 in its amino-terminal region (33.3% homology). XFGF-20 mRNA was expressed only zygotically in embryos at and after the blastula stage, but it was also specifically expressed in the stomach and testis of adults. By contrast, XFGF-9 mRNA was expressed maternally in eggs and in many adult tissues. When XFGF-20 mRNA was overexpressed in early embryos, gastrulation was abnormal and development of anterior structures was suppressed. In such embryos, the expression of the Xbra transcript was suppressed during gastrulation while the expression of the transcripts of cerberus, Siamois, dkk-1, chordin, and Xotx-2 genes was normal. These results suggest that correct expression of XFGF-20 during gastrulation is required for the formation of normal head structures in Xenopus laevis during embryogenesis and that expression of the Xbra gene mediates this phenomenon.
Collapse
Affiliation(s)
- C Koga
- Bio Resource Center, Molecular Neurobiology Laboratory, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Muller TL, Ngo-Muller V, Reginelli A, Taylor G, Anderson R, Muneoka K. Regeneration in higher vertebrates: limb buds and digit tips. Semin Cell Dev Biol 1999; 10:405-13. [PMID: 10497097 DOI: 10.1006/scdb.1999.0327] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T L Muller
- Department of Cell and Molecular Biology, Tulane University, New Orleas, LA, 70118, USA
| | | | | | | | | | | |
Collapse
|