151
|
Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW. Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 2007; 328:499-514. [PMID: 17372769 DOI: 10.1007/s00441-007-0379-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 01/10/2007] [Indexed: 01/07/2023]
Abstract
Substrate-adherent cultured cells derived from human bone marrow or umbilical cord blood ("mesenchymal stem cells") are of special interest for regenerative medicine. We report that such cells, which can display considerable heterogeneity with respect to their cytoskeletal protein complement, are often interconnected by special tentacle-like cell processes contacting one or several other cells. These processus adhaerentes, studded with many (usually small) puncta adhaerentia and varying greatly in length (up to more than 400 microm long), either contact each other in the intercellular space ("ET touches") or insert in a tight-fitting manner into deep plasma membrane invaginations (recessus adhaerentes), thus forming a novel kind of long (up to 50 microm) continuous cuff-like junction (manubria adhaerentia). The cell processes contain an actin microfilament core that is stabilized with ezrin, alpha-actinin, and myosin and accompanied by microtubules, and their adhering junctions are characterized by a molecular complement comprising the transmembrane glycoproteins N-cadherin and cadherin-11, in combination with the cytoplasmic plaque proteins alpha- and beta-catenin, together with p120(ctn), plakoglobin, and afadin. The processes are also highly dynamic and rapidly foreshorten as cell colonies approach a denser state of cell packing. These structures are obviously able to establish cell-cell connections, even over long distances, and can form deep-rooted and tight cell-cell adhesions. The possible relationship to similar cell processes in the embryonic primary mesenchyme and their potential in cell sorting and tissue formation processes in the body are discussed.
Collapse
Affiliation(s)
- Patrick Wuchter
- Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Ball SG, Shuttleworth CA, Kielty CM. Platelet-derived growth factor receptor-α is a key determinant of smooth muscle α-actin filaments in bone marrow-derived mesenchymal stem cells. Int J Biochem Cell Biol 2007; 39:379-91. [PMID: 17070723 DOI: 10.1016/j.biocel.2006.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/04/2006] [Accepted: 09/05/2006] [Indexed: 11/22/2022]
Abstract
Smooth muscle alpha-actin filaments are a defining feature of mesenchymal stem cells, and of mesenchyme-derived contractile smooth muscle cells, pericytes and myofibroblasts. Here, we show that adult bone marrow-derived mesenchymal stem cells express abundant cell surface platelet-derived growth factor receptor-alpha, having a high ratio to platelet-derived growth factor receptor-beta. Signaling through platelet-derived growth factor receptor-alpha increases smooth muscle alpha-actin filaments by activating RhoA, which results in Rho-associated kinase (ROCK)-dependent cofilin phosphorylation, enhancing smooth muscle alpha-actin filament polymerization, and also upregulates smooth muscle alpha-actin expression. In contrast, platelet-derived growth factor receptor-beta signaling strongly upregulates RhoE, which inhibits ROCK activity, promoting smooth muscle alpha-actin filament depolymerization. This study thus provides new insights into the distinct roles of platelet-derived growth factor receptor-alpha and -beta signaling in regulating the adult mesenchymal stem cell contractile cytoskeleton.
Collapse
Affiliation(s)
- Stephen G Ball
- UK Centre for Tissue Engineering, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
153
|
Lee WCC, Rubin JP, Marra KG. Regulation of alpha-smooth muscle actin protein expression in adipose-derived stem cells. Cells Tissues Organs 2006; 183:80-6. [PMID: 17053324 DOI: 10.1159/000095512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2006] [Indexed: 01/14/2023] Open
Abstract
The objective of this work was to study the response of adipose-derived stem cells (ASCs) to exogenous biochemical stimulation, and the potential of ASCs to differentiate toward the smooth muscle cell (SMC) lineage. Immunofluorescence staining and Western blot analysis detected protein expression of the early SMC marker alpha-smooth muscle actin (alpha-SMA) in both control and experiment groups. Expression of alpha-SMA in ASCs significantly increased when treated with transforming growth factor-beta1, while alpha-SMA expression only slightly increased in the presence of retinoic acid (RA), beta-mercaptoethanol and ascorbic acid. Treatment with platelet-derived growth factor-BB, RA and dibutyryl-cyclic adenosine monophosphate decreased the expression of alpha-SMA significantly. While beta-mercaptoethanol and ascorbic acid, as well as RA have resulted in increased alpha-SMA expression in marrow-derived mesenchymal stem cells and other progenitor cells, our results demonstrate that these treatments do not significantly increase alpha-SMA expression, indicating that the differentiation potential of ASCs and mesenchymal stem cells may be fundamentally different.
Collapse
Affiliation(s)
- Wen-Chi C Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
154
|
Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Bae YC, Jung JS, Kim JH. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J Cell Sci 2006; 119:4994-5005. [PMID: 17105765 DOI: 10.1242/jcs.03281] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into diverse cell types including adipogenic, osteogenic, chondrogenic and myogenic lineages. In the present study, we demonstrated for the first time that sphingosylphosphorylcholine (SPC) induces differentiation of human adipose-tissue-derived mesenchymal stem cells (hATSCs) to smooth-muscle-like cell types. SPC increased the expression levels of several smooth-muscle-specific genes, such as those for alpha-smooth-muscle actin (alpha-SMA), h1-calponin and SM22alpha, as effectively as transforming growth factor beta (TGF-beta1) and TGF-beta3. SPC elicited delayed phosphorylation of Smad2 after 24 hours exposure, in contrast to rapid phosphorylation of Smad2 induced by TGF-beta treatment for 10 minutes. Pretreatment of the cells with pertussis toxin or U0126, an MEK inhibitor, markedly attenuated the SPC-induced expression of beta-SMA and delayed phosphorylation of Smad2, suggesting that the Gi/o-ERK pathway is involved in the increased expression of alpha-SMA through induction of delayed Smad2 activation. In addition, SPC increased secretion of TGF-beta1 through an ERK-dependent pathway, and the SPC-induced expression of alpha-SMA and delayed phosphorylation of Smad2 were blocked by SB-431542, a TGF-beta type I receptor kinase inhibitor, or anti-TGF-beta1 neutralizing antibody. Silencing of Smad2 expression with small interfering RNA (siRNA) abrogated the SPC-induced expression of alpha-SMA. These results suggest that SPC-stimulated secretion of TGF-beta1 plays a crucial role in SPC-induced smooth muscle cell (SMC) differentiation through a Smad2-dependent pathway. Both SPC and TGF-beta increased the expression levels of serum-response factor (SRF) and myocardin, transcription factors involved in smooth muscle differentiation. siRNA-mediated depletion of SRF or myocardin abolished the alpha-SMA expression induced by SPC or TGF-beta. These results suggest that SPC induces differentiation of hATSCs to smooth-muscle-like cell types through G(i/o)-ERK-dependent autocrine secretion of TGF-beta, which activates a Smad2-SRF/myocardin-dependent pathway.
Collapse
Affiliation(s)
- Eun Su Jeon
- Medical Research Center for Ischemic Tissue Regeneration of Pusan National University and the Medical Research Institute, College of Medicine, Pusan National University, Busan 602-739, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Xiang Z, Liao R, Kelly MS, Spector M. Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. ACTA ACUST UNITED AC 2006; 12:2467-78. [PMID: 16995780 DOI: 10.1089/ten.2006.12.2467] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Various cell delivery methods have been investigated for cell transplantation treatment of cardiac infarcts. In this study, we investigated a type I collagen-glycosaminoglycan (GAG) scaffold for the implantation of adult bone marrow-derived mesenchymal stem cells (MSCs) into the infarcted region in the rat heart. The objective was to evaluate the tissue response to collagen-GAG scaffolds prepared using 2 cross-linking methods. The left coronary artery of female Wistar rats was occluded for 60 min, followed by reperfusion. One week later, the infarcted region was implanted with (1) collagen-GAG scaffolds cross-linked by dehydrothermal treatment alone (DHT; n = 10); (2) collagen-GAG scaffolds cross-linked by DHT followed by carbodiimide treatment (EDAC; n = 8); or (3) DHT cross-linked collagen-GAG scaffolds seeded with bromodeoxyuridine (BrdU)-labeled allogeneic MSCs (cell-scaffold; n = 9). Shamoperated rats served as controls (n = 4). Specimens were harvested 3 weeks after the implantation surgery. The tissue response was evaluated histomorphometrically and by immunohistochemistry to track the BrdU-labeled MSCs. Most of the DHT cross-linked collagen-GAG scaffolds degraded, whereas the scaffolds in the EDAC group appeared to be largely intact. There were no signs of acute inflammation in any of the groups. A substantial amount of neovascularization was seen in the infarcted region in the implant groups and in the scaffolds themselves. BrdU-positive cells appeared both in the degraded scaffold and the infarct region. DHT cross-linked collagen-GAG scaffolds warrant continued investigation as delivery vehicles for implantation of cells into infarcted cardiac tissue.
Collapse
Affiliation(s)
- Zhou Xiang
- Department of Orthopaedic Surgery, Huaxi Hospital, Sichuan University, Chengdu, China
| | | | | | | |
Collapse
|
156
|
Hosoya A, Nakamura H, Ninomiya T, Yoshiba K, Yoshiba N, Nakaya H, Wakitani S, Yamada H, Kasahara E, Ozawa H. Immunohistochemical localization of alpha-Smooth muscle actin during rat molar tooth development. J Histochem Cytochem 2006; 54:1371-8. [PMID: 16924123 PMCID: PMC3958122 DOI: 10.1369/jhc.6a6980.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The dental follicle contains mesenchymal cells that differentiate into osteoblasts, cementoblasts, and fibroblasts. However, the characteristics of these mesenchymal cells are still unknown. alpha-Smooth muscle actin (alpha-SMA) is known to localize in stem cells and precursor cells of various tissues. In the present study, to characterize the undifferentiated cells in the dental follicle, immunohistochemical localization of alpha-SMA was examined during rat molar tooth development. Rat mandibles were collected at embryonic days (E) 15-20 and postnatal days (P) 7-28. Immunohistochemical stainings for alpha-SMA, periostin, Runt-related transcription factor-2 (Runx2), tissue nonspecific alkaline phosphatase (TNAP), and bone sialoprotein (BSP) were carried out using paraffin-embedded sections. alpha-SMA localization was hardly detected in the bud and cap stages. At the early bell stage, alpha-SMA-positive cells were visible in the dental follicle around the cervical loop. At the late bell to early root formation stage (P14), these cells were detected throughout the dental follicle, but they were confined to the apical root area at P28. Double immunostaining for alpha-SMA and periostin demonstrated that alpha-SMA-positive cells localized to the outer side of periostin-positive area. Runx2-positive cells were visible in the alpha-SMA-positive region. TNAP-positive cells in the dental follicle localized nearer to alveolar bone than Runx2-positive cells. BSP was detected in osteoblasts as well as in alveolar bone matrix. These results demonstrate that alpha-SMA-positive cells localize on the alveolar bone side of the dental follicle and may play a role in alveolar bone formation.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Department of Oral Histology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Vickers SM, Squitieri LS, Spector M. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilage formation. ACTA ACUST UNITED AC 2006; 12:1345-55. [PMID: 16771647 DOI: 10.1089/ten.2006.12.1345] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Articular cartilage tissue-engineering investigations often implement bioassays for chondrogenesis in vitro using articular chondrocytes or mesenchymal stem cells in cell pellets that contract with time in culture, suggesting an association between the processes of contraction of the cell pellet and cartilage formation. The objective of the present study was to investigate this relationship further using adult canine articular chondrocyte-seeded type II collagen-GAG scaffolds. The collagen-GAG scaffolds were chemically cross-linked to achieve a range of cross-link densities. Chondrocyte-seeded scaffolds of varying cross-link densities were then cultured for 2 weeks to evaluate the effect of crosslink density on scaffold contraction and chondrogenesis. Scaffolds with low cross-link densities experienced cell-mediated contraction, increased cell number densities, a greater degree of chondrogenesis (viz., chondrocytic morphology of cells, synthesis of type II collagen), and an apparent increase in the rate of degradation of the scaffold compared to more highly cross-linked scaffolds that resisted cellular contraction. The results of this study suggest the promise of "dynamic pore reduction" for scaffolds for articular cartilage tissue engineering. In this approach, scaffolds would have an initial pore diameter large enough to facilitate cell seeding and a mechanical stiffness low enough to allow for cell-mediated contraction to yield a reduced pore volume to favor chondrogenesis. This approach may provide a useful alternative to traditional means of increasing cell number density and retention of synthesized molecules that promote cartilage formation in tissue-engineered constructs.
Collapse
Affiliation(s)
- Scott M Vickers
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
158
|
Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A 2006; 103:12167-72. [PMID: 16880387 PMCID: PMC1567713 DOI: 10.1073/pnas.0604850103] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role.
Collapse
Affiliation(s)
- Larissa V. Rodríguez
- *Department of Urology, University of California School of Medicine, 924 Westwood Boulevard, Suite 520, Los Angeles, CA 90024
| | - Zeni Alfonso
- *Department of Urology, University of California School of Medicine, 924 Westwood Boulevard, Suite 520, Los Angeles, CA 90024
| | - Rong Zhang
- *Department of Urology, University of California School of Medicine, 924 Westwood Boulevard, Suite 520, Los Angeles, CA 90024
| | - Joanne Leung
- Department of Bioengineering, University of California, Box 951600, 7523 Boelter Hall, Los Angeles, CA 90095-1600; and
| | - Benjamin Wu
- Department of Bioengineering, University of California, Box 951600, 7523 Boelter Hall, Los Angeles, CA 90095-1600; and
| | - Louis J. Ignarro
- Department of Molecular and Medical Pharmacology, University of California School of Medicine, Box 951735, 23-305A CHS, Los Angeles, CA 90095-1735
| |
Collapse
|
159
|
Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M, Boshoff CH, Dunnill P. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. ACTA ACUST UNITED AC 2006; 12:821-30. [PMID: 16674295 DOI: 10.1089/ten.2006.12.821] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study demonstrates that adult human mesenchymal cells (MSC) can be encapsulated in alginate beads with a substantially retained viability (>80%) and that a Gly-Arg-Gly-Asp-Tyr (GRGDY) derivative encourages attachment and elongation to form a dense network of cells that is required for a tissue substitute. Because the availability of autologous human material is severely limited, we used and examined the beads in this study as a proxy for larger constructs. These bead constructs were assessed using phase contrast microscopy and standard histological preparations. In addition, we used a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay to examine cell proliferation by dissociating the cell/alginate constructs using trisodium citrate and trypsin/EDTA. MSCs did not proliferate within the alginate-GRGDY matrix during the 2 weeks examined. These results were further substantiated by concurrent cell density measurements using a hemocytometer. In addition, the glucose consumption rate was measured and compared to that of MSCs grown in two-dimensional culture vessels, indicating steady consumption albeit at a lower level in the entrapped MSCs.
Collapse
Affiliation(s)
- Julia F Markusen
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Hung SC, Kuo PY, Chang CF, Chen TH, Ho LLT. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells. Cell Tissue Res 2006; 324:457-66. [PMID: 16505995 DOI: 10.1007/s00441-006-0156-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor beta1 (TGF-beta1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-beta1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.
Collapse
Affiliation(s)
- Shih-Chieh Hung
- Department of Orthopaedics and Traumatology, Veterans General Hospital-Taipei, 201 Sec. 2, Shih-Pai Road, 11217 Taipei, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
161
|
Thibault MM, Buschmann MD. Migration of bone marrow stromal cells in 3D: 4 Color methodology reveals spatially and temporally coordinated events. ACTA ACUST UNITED AC 2006; 63:725-40. [PMID: 17009327 DOI: 10.1002/cm.20160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytoskeleton plays a central role in many cell processes including directed cell migration. Since most previous work has investigated cell migration in two dimensions (2D), new methods are required to study movement in three dimensions (3D) while preserving 3D structure of the cytoskeleton. Most previous studies have labeled two cytoskeletal networks simultaneously, impeding an appreciation of their complex and dynamic interconnections. Here we report the development of a 4 color method to simultaneously image vimentin, actin, tubulin and the nucleus for high-resolution confocal microscopy of bone-marrow stromal cells (BMSCs) migrating through a porous membrane. Several methods were tested for structural preservation and labeling intensity resulting in identification of an optimized simultaneous fixation and permeabilization method using glutaraldehyde, paraformaldehyde and Triton X-100 followed by a quadruple fluorescent labeling method. This procedure was then applied at a sequence of time points to migrating cells, allowing temporal progression of migration to be assessed by visualizing all three networks plus the nucleus, providing new insights into 3D directed cell migration including processes such as leading edge structure, cytoskeletal distribution and nucleokinesis. Colocalization of actin and microtubules with distinct spatial arrangements at the cellular leading edge during migration, together with microtubule axial polarization supports recent reports indicating the pivotal role of microtubules in directed cell migration. This study also provides a foundation for 3D migration studies versus 2D studies, providing precise and robust methods to attain new insights into the cellular mechanisms of motility.
Collapse
Affiliation(s)
- Marc M Thibault
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | |
Collapse
|
162
|
Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C. Review: application of stem cells for vascular tissue engineering. ACTA ACUST UNITED AC 2005; 11:1535-52. [PMID: 16259608 DOI: 10.1089/ten.2005.11.1535] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the prevalence of vascular disease has continued to expand, the need for a suitable arterial replacement has prompted researchers to look beyond synthetic and autologous grafts toward the field of tissue engineering. Advances in vascular tissue engineering have utilized both mesenchymal and hematopoietic stem cells as a cell source in an attempt to create a fully engineered small-diameter graft. Stem cells offer enormous potential as a cell source because of their proliferative and growth potential, and the application of stem cell technology has far-reaching implications for future applications. The innovative use of stem cells for vascular tissue engineering has opened new possibilities for a fully engineered blood vessel. The purpose of this review is to summarize the current perspective on the use of stem cells for vascular tissue engineering. It focuses principally on the classes of stem cells used, techniques for differentiation scaffolding technology, and the successes and failures of models.
Collapse
Affiliation(s)
- Gordon M Riha
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
163
|
Lu FZ, Fujino M, Kitazawa Y, Uyama T, Hara Y, Funeshima N, Jiang JY, Umezawa A, Li XK. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood. ACTA ACUST UNITED AC 2005; 146:271-8. [PMID: 16242526 DOI: 10.1016/j.lab.2005.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/27/2005] [Accepted: 07/04/2005] [Indexed: 12/26/2022]
Abstract
It has been shown that the stromal-cell population found in bone marrow can be expanded and differentiated into cells with the phenotypes of bone, cartilage, muscle, neural, and fat cells. However, whether mesenchymal stem cells (MSCs) are present in human umbilical-cord blood (UCB) has been the subject of ongoing debate. In this study, we report on a population of fibroblastlike cells derived from the mononuclear fraction of human UCB with osteogenic and adipogenic potential, as well as the presence of a subset of cells that have been maintained in continuous culture for more than 6 months. These cells were found to express CD29, CD44, CD90, CD95, CD105, CD166, and MHC class, but not CD14, CD34, CD40, CD45, CD80, CD86, CD117, CD152, or MHC class II. We also compared gene expression after gene transfer using lenti- and adenoviral vectors carrying the green fluorescence protein to the MSCs derived from UCB because a reliable gene-delivery system is required to transfer target genes into MSCs, which have attracted attention as potential platforms for the systemic delivery of therapeutic genes. The lentiviral vectors can transduce these cells more efficiently than can adenoviral vectors, and we maintained transgene expression for at least 5 weeks. This is the first report showing that UCB-derived MSCs can express exogenous genes by way of a lentivirus vector. These results demonstrate that human UCB is a source of mesenchymal progenitors and may be used in cell transplantation and a wide range of gene-therapy treatments.
Collapse
Affiliation(s)
- Fei-Zhou Lu
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Mukaratirwa S, Koninkx JF, Gruys E, Nederbragt H. Mutual paracrine effects of colorectal tumour cells and stromal cells: modulation of tumour and stromal cell differentiation and extracellular matrix component production in culture. Int J Exp Pathol 2005; 86:219-29. [PMID: 16045544 PMCID: PMC2517436 DOI: 10.1111/j.0959-9673.2005.00425.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Interactions of tumour and stromal cells influence tumour cell proliferation and differentiation, stromal cell phenotypic transdifferentiation and secretion of extracellular matrix (ECM) components. In this study, we established a monolayer and a three-dimensional cell-to-cell interaction model between canine mammary stromal cells and human colonic carcinoma cell lines (Caco-2 and HT-29) to investigate mutual paracrine effects of tumour cells and stromal cells on (i) tumour cell differentiation, (ii) production of ECM components and (iii) phenotypic transdifferentiation of stromal cells. We showed that when Caco-2 or HT-29 cells are cultured in collagen gels, they form a few small solid cell clusters with no lumina, but when cocultured with stromal cells, the tumour cells formed glandular structures with central lumina. This fibroblast-induced organization and differentiation of Caco-2 cells (not HT-29 cells) appeared to be mediated by transforming growth factor-beta (TGF-beta). Culturing of stromal cells, Caco-2 cells or HT-29 cells alone in both monolayers and gels resulted in weak tenascin-C expression in stromal cells and HT-29 cells and no expression in the Caco-2 cells. Coculturing of stromal cells with tumour cells resulted in increased tenascin-C expression in the stromal cells and HT-29 cells and induced expression of tenascin-C in the Caco-2 cells. This induction and increased expression of tenascin-C appeared to be mediated by TGF-beta. Culturing of stromal cells, Caco-2 cells or HT-29 cells alone on monolayers and in gels resulted in a weak expression of chondroitin sulfate (CS), chondroitin-6-sulfate (C-6-S) and versican in stromal cells and no expression in Caco-2 and HT-29 cells. Coculturing of stromal cells with tumour cells on monolayers and in gels resulted in increased CS, C-6-S and versican expression in stromal cells. This tumour cell-induced expression of CS, C-6-S and versican appeared to be mediated by TGF-beta and platelet-derived growth factor (PDGF). Coculturing of Caco-2 and HT-29 and stromal cells promoted the transdifferentiation of stromal cells into myofibroblasts, and this appeared to be mediated by TGF-beta. These results suggest that TGF-beta and PDGF are part of a paracrine system involved in stromal-epithelial cell interaction important in stromal cell differentiation and ECM component production.
Collapse
Affiliation(s)
- Sydney Mukaratirwa
- Department of Pathobiology, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
165
|
Bertani N, Malatesta P, Volpi G, Sonego P, Perris R. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci 2005; 118:3925-36. [PMID: 16091422 DOI: 10.1242/jcs.02511] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility of generating neural cells from human bone-marrow-derived mesenchymal stem cells (hMSCs) by simple in vitro treatments is appealing both conceptually and practically. However, whether phenotypic modulations observed after chemical manipulation of such stem cells truly represent a genuine trans-lineage differentiation remains to be established. We have re-evaluated the effects of a frequently reported biochemical approach, based on treatment with butylated hydroxyanisole and dimethylsulphoxide, to bring about such phenotypic conversion by monitoring the morphological changes induced by the treatment in real time, by analysing the expression of phenotype-specific protein markers and by assessing the modulation of transcriptome. Video time-lapse microscopy showed that conversion of mesenchymal stem cells to a neuron-like morphology could be reproduced in normal primary fibroblasts as well as mimicked by addition of drugs eliciting cytoskeletal collapse and disruption of focal adhesion contacts. Analysis of markers revealed that mesenchymal stem cells constitutively expressed multi-lineage traits, including several pertaining to the neural one. However, the applied ;neural induction' protocol neither significantly modulated the expression of such markers, nor induced de novo translation of other neural-specific proteins. Similarly, global expression profiling of over 21,000 genes demonstrated that gene transcription was poorly affected. Most strikingly, we found that the set of genes whose expression was altered by the inductive treatment did not match those sets of genes differentially expressed when comparing untreated mesenchymal stem cells and immature neural tissues. Conversely, by comparing these gene expression profiles with that obtained from comparisons between the same cells and an unrelated non-neural organ, such as liver, we found that the adopted neural induction protocol was no more effective in redirecting human mesenchymal stem cells toward a neural phenotype than toward an endodermal hepatic pathway.
Collapse
Affiliation(s)
- Nicoletta Bertani
- Department of Evolutionary and Functional Biology, University of Parma, Viale delle Scienze 11/a, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
166
|
Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. ACTA ACUST UNITED AC 2005; 11:41-9. [PMID: 15738660 DOI: 10.1089/ten.2005.11.41] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone marrow stromal cells (BMSCs) play a central role in the repair and regeneration of mesenchymal tissues. For tissue engineering of ligaments and tendons, both stimulation of cell proliferation and differentiation with increased expression of essential extracellular matrix proteins and cytoskeletal elements are desirable. This study analyzes the effect of low-dose (3 ng/mL) fibroblast growth factor 2 (FGF-2) and high-dose FGF-2 (30 ng/mL) on proliferation (bromodeoxyuridine content, spectrophotometry), differentiation (transcription of collagen I, collagen III, fibronectin, elastin, alpha-smooth muscle actin, and vimentin, reverse transcription-polymerase chain reaction, and cell density and apoptosis (annexin V, fluorescence-activated cell sorting) of human BMSCs, and compares the results with those of a control group without FGF-2. Low-dose FGF-2 triggered a biphasic BMSC response: on day 7, cell proliferation reached its maximum and was significantly higher compared with the other groups. On days 14 or 28, collagen I, collagen III, fibronectin, and alpha- smooth muscle actin mRNA expression was significantly enhanced in the presence of low-dose FGF-2. In contrast, high-dose FGF-2 did not stimulate differentiation or proliferation. Vimentin mRNA was expressed only in cultures with low-dose and high-dose FGF-2 after 14 and 28 days. Cell density was significantly higher in cultures with low-dose FGF-2 compared with the group with high-dose FGF-2 on days 7, 14, and 28. The apoptosis rate remained stable, at a rather high level, in all groups. Microscopic investigation of the cell cultures with low-dose FGF-2 showed more homogeneous, dense, fibroblast-like, spindle-shaped cells with long cell processes compared with cultures with high-dose, or no FGF-2. Low-dose FGF-2 may be useful for tissue engineering of ligaments and tendons by increasing BMSC proliferation and stimulating mRNA expression of specific extracellular matrix proteins and cytoskeletal elements.
Collapse
Affiliation(s)
- Stefan Hankemeier
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Hayashida K, Fujita J, Miyake Y, Kawada H, Ando K, Ogawa S, Fukuda K. Bone marrow-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Chest 2005; 127:1793-8. [PMID: 15888860 DOI: 10.1378/chest.127.5.1793] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE In these days, it was reported that bone marrow (BM) cells might take part in the remodeling of some systemic vascular diseases; however, it remains unknown whether the BM cells were involved in the vascular remodeling of pulmonary arteries and the progression of pulmonary hypertension (PH). The purpose of this study was to investigate whether BM-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced PH. MATERIALS AND METHODS To investigate the role of BM-derived cells, we transplanted the whole BM of enhanced green fluorescent protein (GFP)-transgenic mice to the lethally irradiated syngeneic mice (n = 30). After 8 weeks, chimera mice were exposed to consistent hypoxia using a hypoxic chamber (10% O(2)) for up to 4 or 8 weeks (10 mice per group). After hemodynamics and the ratio of right ventricular (RV) weight to left ventricle (LV) weight, RV/(LV + septum [S]), were measured, histologic and immunofluorescent staining were performed. RESULTS BM-transplanted mice showed a high chimerism (mean [+/- SEM], 91 +/- 2.3%). RV systolic pressure and the RV/(LV + S) ratio increased significantly with time in PH mice, indicating RV hypertrophy. Marked vascular remodeling including medial hypertrophy and adventitial proliferation was observed in the pulmonary arteries of PH mice. Strikingly, a number of GFP(+) cells were observed at the pulmonary arterial wall, including the adventitia, in hypoxia-induced PH mice, while very few cells were observed in the control mice. Metaspectrometer measurements using confocal laser scanning microscopy confirmed that this green fluorescence was produced by GFP, suggesting that these GFP(+) cells were mobilized from the BM. Most of them expressed alpha-smooth muscle actin, a smooth muscle cell, or myofibroblast phenotype, and contributed to the pulmonary vascular remodeling. A semiquantitative polymerase chain reaction of the GFP gene revealed that the BM-derived GFP-positive cells in the PH group were observed more than eightfold as often compared with the control mice. CONCLUSION The BM-derived cells mobilize to the hypertensive pulmonary arteries and contribute to the pulmonary vascular remodeling in hypoxia-induced PH mice.
Collapse
Affiliation(s)
- Kentaro Hayashida
- Cardiopulmonary Division, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
168
|
Veilleux N, Spector M. Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Osteoarthritis Cartilage 2005; 13:278-86. [PMID: 15780641 DOI: 10.1016/j.joca.2004.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 12/20/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocyte-seeded tissue engineering scaffolds hold the promise of enhancing certain cartilage repair procedures. The objective of this study was to evaluate the effects of selected growth factors [fibroblast growth factor (FGF)-2 and insulin-like growth factor (IGF)-1] individually and in combination on adult canine articular chondrocyte-seeded type II collagen-glycosaminoglycan (GAG) scaffolds grown in serum-free (SF) medium. DESIGN Approximately 500,000 second passage chondrocytes were seeded into discs of the scaffold, 4mm diameterx2 mm thick. The constructs were grown in the following media: serum-containing medium; a basal SF medium; SF with 5 ng/ml FGF-2; SF with 25 ng/ml FGF-2; SF with 100 ng/ml IGF-1; and SF with 5 ng/ml FGF-2 plus 100 ng/ml IGF-1. The DNA and GAG contents of the scaffolds were determined after 1 day and 2 weeks and the protein and GAG synthesis rates determined at 2 weeks using radiolabels. Histology and type II collagen immunohistochemistry were also performed. RESULTS FGF-2 at 5 ng/ml was found to substantially increase the biosynthetic activity of the cells and the accumulation of GAG. The histology demonstrated chondrocytes uniformly distributed through a matrix that stained intensely for GAG and type II collagen after only 2 weeks. Of interest were the rapid degradation of the collagen scaffold, despite the fact that the scaffold was carbodiimide cross-linked, and the contraction of the constructs. There were less pronounced effects using the higher dose of FGF-2 and the combination with IGF-1. CONCLUSIONS Chondrocyte-seeded type II collagen scaffolds cultured in SF medium supplemented with 5 ng/ml FGF-2 undergo contraction, demonstrate an increase in construct incorporation of radiolabeled sulfate, and display qualitative signs of chondrogenesis.
Collapse
Affiliation(s)
- N Veilleux
- VA Boston Healthcare System, Boston Campus, 150 S. Huntington Avenue, Boston, MA 02130, USA
| | | |
Collapse
|
169
|
Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M. Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol 2005; 32:1238-45. [PMID: 15588948 DOI: 10.1016/j.exphem.2004.08.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 08/11/2004] [Accepted: 08/16/2004] [Indexed: 11/27/2022]
Abstract
OBJECTIVE It is poorly understood what kind of factors are involved in lineage commitment and maturation of mesenchymal stem cells. The present study investigates whether mechanical stress promotes expression of smooth muscle cell (SMC)-specific cytoskeletal protein in marrow stromal cells. METHODS Fibroblast-like stromal cells expressing STRO-1 antigen were isolated from rat bone marrow by density gradient separation. After preincubation for 7, 14, or 21 days in static condition, cells were exposed to one of three types of fluid flow-induced mechanical forces (flow dominant, pressure dominant, or combined) for 36 hours. The expression of SMC-specific cytoskeletal protein [alpha smooth muscle actin (alphaSMA) and smooth muscle myosin heavy chain (SMMHC)] was evaluated by immunofluorescence staining and Western blotting. RESULTS The proportion of SMMHC-positive cells was increased with longer preincubation periods (p < 0.01 vs 7-day incubation) and by any types of mechanical stimulation (p < 0.01 vs static control condition). The SMMHC-positive fraction after exposure to pressure-dominant forces (0.9% +/- 0.2%, 2.9% +/- 0.9%, and 12.6% +/- 0.8% for 7, 14, and 21 days of preincubation) or to combined forces (1.2% +/- 0.2%, 3.1% +/- 1.6%, and 15.5% +/- 2.8%) was higher than after flow-dominant stimulation (0, 1.2% +/- 0.1%, and 7.2% +/- 2.0%) (p < 0.01). In Western blotting, pressure-dominant or combined stimulation upregulated alphaSMA and SMMHC expression compared to static control condition. CONCLUSION The long-term cell incubation and subsequent mechanical stimulation, especially compressive strain, promote expression of SMC-specific cytoskeletal protein in marrow stromal cells.
Collapse
Affiliation(s)
- Nobuhiko Kobayashi
- Department of Comprehensive Medicine 1, Jichi Medical School Omiya Medical Center, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Park JS, Chu JSF, Cheng C, Chen F, Chen D, Li S. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 2004; 88:359-68. [PMID: 15486942 DOI: 10.1002/bit.20250] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) can differentiate into a variety of cell types, including vascular smooth muscle cells (SMCs), and have tremendous potential as a cell source for cardiovascular regeneration. We postulate that specific vascular environmental factors will promote MSC differentiation into SMCs. However, the effects of the vascular mechanical environment on MSCs have not been characterized. Here we show that mechanical strain regulated the expression of SMC markers in MSCs. Cyclic equiaxial strain downregulated SM alpha-actin and SM-22alpha in MSCs on collagen- or elastin-coated membranes after 1 day, and decreased alpha-actin in stress fibers. In contrast, cyclic uniaxial strain transiently increased the expression of SM alpha-actin and SM-22alpha after 1 day, which subsequently returned to basal levels after the cells aligned in the direction perpendicular to the strain direction. In addition, uniaxial but not equiaxial strain induced a transient increase of collagen I expression. DNA microarray experiments showed that uniaxial strain increased SMC markers and regulated the expression of matrix molecules without significantly changing the expression of the differentiation markers (e.g., alkaline phosphatase and collagen II) of other cell types. Our results suggest that uniaxial strain, which better mimics the type of mechanical strain experienced by SMCs, may promote MSC differentiation into SMCs if cell orientation can be controlled. This study demonstrates the differential effects of equiaxial and uniaxial strain, advances our understanding of the mechanical regulation of stem cells, and provides a rational basis for engineering MSCs for vascular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jennifer S Park
- Department of Bioengineering and The Center for Tissue Bioengineering, 471 Evans Hall #1762, University of California-Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
171
|
Bos C, Delmas Y, Desmoulière A, Solanilla A, Hauger O, Grosset C, Dubus I, Ivanovic Z, Rosenbaum J, Charbord P, Combe C, Bulte JWM, Moonen CTW, Ripoche J, Grenier N. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004; 233:781-9. [PMID: 15486216 DOI: 10.1148/radiol.2333031714] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate in vivo magnetic resonance (MR) imaging with a conventional 1.5-T system for depiction and tracking of intravascularly injected superparamagnetic iron oxide (SPIO)-labeled mesenchymal stem cells (MSCs). MATERIALS AND METHODS This study was conducted in accordance with French law governing animal research and met guidelines for animal care and use. Rat MSCs were labeled with SPIO and transfection agent. Relaxation rates at 1.5 T, cell viability, proliferation, differentiation capacity, and labeling stability were assessed in vitro as a function of SPIO concentration. MSCs were injected into renal arteries of healthy rats (labeled cells in four, unlabeled cells in two) and portal veins of rats treated with carbon tetrachloride to induce centrolobular liver necrosis (labeled cells and unlabeled cells in two each). Follow-up serial T2*-weighted gradient-echo MR imaging and R2* mapping were performed. MR imaging findings were compared histologically. RESULTS SPIO labeling caused a strong R2* effect that increased linearly with iron dose; R2* increase for cells labeled for 48 hours with 50 microg of iron per milliliter was 50 sec(-1) per million cells per milliliter. R2* was proportional to iron load of cells. SPIO labeling did not affect cell viability (P > .27). Labeled cells were able to differentiate into adipocytes and osteocytes. Proliferation was substantially limited for MSCs labeled with 100 microg Fe/mL or greater. Label half-life was longer than 11 days. In normal kidneys, labeled MSCs caused signal intensity loss in renal cortex. After labeled MSC injection, diseased liver had diffuse granular appearance. Cells were detected for up to 7 days in kidney and 12 days in liver. Signal intensity loss and fading over time were confirmed with serial R2* mapping. At histologic analysis, signal intensity loss correlated with iron-loaded cells, primarily in renal glomeruli and hepatic sinusoids; immunohistochemical analysis results confirmed these cells were MSCs. CONCLUSION MR imaging can aid in monitoring of intravascularly administered SPIO-labeled MSCs in vivo in kidney and liver.
Collapse
Affiliation(s)
- Clemens Bos
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle, Equipes de Recherche Technologique, Centre National de la Recherche Scientifique, Université Victor Segalen Bordeaux-2, 146 rue Leo Saignat, Case 117, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Wang D, Park JS, Chu JSF, Krakowski A, Luo K, Chen DJ, Li S. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 2004; 279:43725-34. [PMID: 15302865 DOI: 10.1074/jbc.m407368200] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor beta1 (TGF-beta) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-beta induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-beta on MSCs, we employed a proteomic strategy to analyze the effect of TGF-beta on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and we identified approximately 30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-beta. The proteins regulated by TGF-beta included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-beta increased the expression of smooth muscle alpha-actin and decreased the expression of gelsolin. Overexpression of gelsolin inhibited TGF-beta-induced assembly of smooth muscle alpha-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of alpha-actin and actin filaments without significantly affecting alpha-actin expression. These results suggest that TGF-beta coordinates the increase of alpha-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Daojing Wang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
173
|
Jahoda CAB, Whitehouse J, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 2004; 12:849-59. [PMID: 14714566 DOI: 10.1111/j.0906-6705.2003.00161.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The adult hair follicle dermal papilla (DP) and dermal sheath (DS) cells are developmentally active cell populations with a proven role in adult hair follicle-cycling activity and unique inductive powers. In stem cell biology, the hair follicle epithelium has recently been the subject of a great deal of investigation, but up to now, the follicle dermis has been largely overlooked as a source of stem cells. Following the sporadic appearance of muscle, lipid and bone-type cells in discretely isolated follicle DP and DS cell primary cultures, we demonstrated that cultured papilla and sheath cell lines were capable of being directed to lipid and bone differentiation. Subsequently, for the first time, we produced clonal DP and DS lines that had extended proliferative capabilities. Dye exclusion has been reported to be an identifying feature of stem cells; therefore, clonal papilla and sheath lines with differing capacity to exclude rhodamine 123 were cultured in medium known to induce adipocyte and osteocyte differentiation. Both DS- and DP-derived clones showed the capacity to make lipid and to produce calcified material; however, different clones had varied behaviour and there was no obvious correlation between their stem cell capabilities and dye exclusion or selected gene expression markers. As a highly accessible source, capable of being discretely isolated, the follicle has important potentially as a stem cell source for tissue engineering and cell therapy purposes. It will also be interesting to compare follicle dermal stem cell properties with the broader stem cell capabilities discovered in skin dermis and investigate whether, as we believe, the follicle is a key dermal stem cell niche. Finally, the discovery of stem cells in the dermis may have implications for certain pathologies in which abnormal differentiation occurs in the skin.
Collapse
Affiliation(s)
- Colin A B Jahoda
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK.
| | | | | | | |
Collapse
|
174
|
Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol 2004; 36:714-27. [PMID: 15010334 DOI: 10.1016/j.biocel.2003.10.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 10/20/2003] [Accepted: 10/24/2003] [Indexed: 11/29/2022]
Abstract
Adult bone marrow-derived mesenchymal stem cells (MSC) can differentiate into various cell types of mesenchymal origin, but mechanisms regulating such cellular changes are unclear. We have conducted co-culture experiments to examine whether mesenchymal stem cell differentiation is influenced by indirect or direct contact with differentiated cells. Cultured adult mesenchymal stem cells showed some characteristics of synthetic state vascular smooth muscle cells (SMC). When co-cultured with vascular endothelial cells (EC) without cell contact, they exhibited abundant well-organised smooth muscle alpha-actin (alpha-actin) filaments. Direct co-culture with endothelial cells resulted in increased smooth muscle alpha-actin mRNA and protein, yet also comprehensive disruption of smooth muscle alpha-actin filament organisation. In order to assess whether these cell contact effects on mesenchymal stem cells were cell type specific, we also analysed direct co-cultures of mesenchymal stem cells with dermal fibroblasts. However, these experiments were characterised by the appearance of abundant spindle-shaped myofibroblast-like cells containing organised smooth muscle alpha-actin filaments. Thus, direct contact with distinct differentiated cells may be a critical determinant of mesenchymal stem cell fate in blood vessels and other connective tissues.
Collapse
Affiliation(s)
- Stephen G Ball
- UK Centre for Tissue Engineering, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
175
|
Mason C, Markusen JF, Town MA, Dunnill P, Wang RK. The potential of optical coherence tomography in the engineering of living tissue. Phys Med Biol 2004; 49:1097-115. [PMID: 15128192 DOI: 10.1088/0031-9155/49/7/002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The better repair of human tissue is an urgent medical goal and in order to achieve a safe outcome there is a parallel need for sensitive, non-invasive methods of assessing the quality of the engineered tissues and organs prior to surgical implantation. Optical coherence tomography (OCT) can potentially fulfil this role. The current status of OCT as an advanced imaging tool in clinical medicine, developmental biology and material science is reviewed and the parallels to the engineering of living tissue and organs are discussed. Preliminary data are also presented for a tissue engineering bioreactor with in situ OCT imaging. The data suggest that OCT can be utilized as a real time, non-destructive, non-invasive tool to critically monitor the morphology of tissue-engineered constructs during their fabrication and growth.
Collapse
Affiliation(s)
- C Mason
- Department of Biochemical Engineering, University College London, London WC1E 7JE, UK.
| | | | | | | | | |
Collapse
|
176
|
Zaleskas JM, Kinner B, Freyman TM, Yannas IV, Gibson LJ, Spector M. Contractile forces generated by articular chondrocytes in collagen-glycosaminoglycan matrices. Biomaterials 2004; 25:1299-308. [PMID: 14643604 DOI: 10.1016/j.biomaterials.2003.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of the study was to directly measure the force of contraction of adult articular chondrocytes and to examine their contractile behavior in collagen-glycosaminoglycan analogs of extracellular matrix by live cell imaging in vitro. The contractile forces generated by passages 2 and 3 adult canine articular chondrocytes were measured using a cell force monitor. The contractile behavior of the cells was also directly imaged as they were cultured in collagen-glycosaminoglycan scaffolds. Passage 2 cells seeded in a collagen-glycosaminoglycan scaffold were capable of generating a force of 0.3 nN/cell. Chondrocytes subcultured through a third passage generated a force twice that level, paralleling the increase in the alpha-smooth muscle actin (SMA) content of the cells as demonstrated by Western blot analysis. Treatment of passage 3 cells with staurosporine reduced the force of contraction by approximately one-half, reflecting the effects of this agent in reducing the SMA content of the cells and disrupting the microfilaments. These values compare with 1 nN previously reported for lapine dermal fibroblasts of passage 5-7, using the same apparatus. Direct live cell imaging documented the contractile behavior of the articular chondrocytes in the collagen-glycosaminoglycan matrix in the time frame in which the force was directly measured in the cell force monitor. This imaging demonstrated how the cells acted individually and in unison to buckle the collagen struts making up the matrix. Adult articular chondrocytes are capable of generating a SMA-enabled force of contraction sufficient to model extracellular matrix molecules.
Collapse
Affiliation(s)
- Janice M Zaleskas
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
177
|
Lee CI, Kohn DB, Ekert JE, Tarantal AF. Morphological Analysis and Lentiviral Transduction of Fetal Monkey Bone Marrow-Derived Mesenchymal Stem Cells. Mol Ther 2004; 9:112-23. [PMID: 14741784 DOI: 10.1016/j.ymthe.2003.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We explored the transduction kinetics of HIV-1-derived lentiviral vectors containing the CMV, EF1alpha, or PGK promoter expressing EGFP in fetal rhesus monkey bone marrow-derived mesenchymal stem cells (rhMSC). Studies included the effects of transduction (MOI 0-100) on growth, cell cycle, and differentiation toward an osteogenic lineage. Flow cytometric analysis indicated an approximate 8- to 10-fold greater quantity of EGFP-expressing rhMSC when cells were transduced with the CMV or EF1alpha promoter compared to PGK, although quantitative PCR revealed no differences at the DNA level. The CMV promoter initially expressed 10- to 100-fold higher levels of EGFP compared to EF1alpha or PGK, respectively, at increasing MOI, although a significant decline in transgene expression was observed posttransduction and with advancing passage (P < 0.01), whereas a significant increase in the level of expression was observed over time with the EF1alpha promoter. At an MOI of 100, a transient arrest at the S phase of the cell cycle was observed for both vector constructs. Transduced rhMSC differentiated toward an osteogenic lineage comparable to untransduced rhMSC and showed equivalent levels of alkaline phosphatase activity. These findings suggest that the SIN HIV-1-derived lentiviral vectors used in these studies can efficiently transduce rhMSC in vitro (CMV > EF1alpha > PGK) without inhibiting differentiation potential, although the cell cycle was transiently altered at high MOI
Collapse
Affiliation(s)
- Chang I Lee
- California National Primate Research Center, University of California, Davis, California 95616-8542, USA
| | | | | | | |
Collapse
|
178
|
Bittmann I, Hentrich M, Bise K, Kolb HJ, Löhrs U. Endothelial cells but not epithelial cells or cardiomyocytes are partially replaced by donor cells after allogeneic bone marrow and stem cell transplantation. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2003; 12:359-66. [PMID: 12965073 DOI: 10.1089/152581603322285999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies have convincingly demonstrated that adult bone marrow contains cells capable of differentiating into a variety of cell types. To investigate whether such bone marrow-derived cells participate on self-renewal and proliferation of nonhematopoietic tissues, we studied tissue obtained by autopsy from female recipients after sex-mismatched allogeneic bone marrow and stem cell transplantation for the presence of donor-derived cells. Epithelial, endothelial, and smooth muscle cells and hematopoietic cells were characterized by double-staining immunohistochemistry with a panel of antibodies and nonisotopic in situ hybridization with a Y-chromosome-specific probe. The present study showed that the capillary endothelium was the only nonhematopoietic cell type that was replaced in a significant amount by donor cells after allogeneic stem cell and bone marrow transplantation. We could not demonstrate any participation of graft-derived cells on repopulation of cardiomyocytes or epithelial cells of the skin and gastrointestinal mucosa and of hepatocytes.
Collapse
Affiliation(s)
- Iris Bittmann
- Institute of Pathology, Ludwig-Maximilians University, 80337 Munich, Germany.
| | | | | | | | | |
Collapse
|