151
|
Huang YC, Huang YY, Huang CC, Liu HC. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process. J Biomed Mater Res B Appl Biomater 2005; 74:659-64. [PMID: 15909301 DOI: 10.1002/jbm.b.30267] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have developed a method for nerve tissue regeneration using longitudinally oriented channels within biodegradable polymers created by a combined lyophilizing and wire-heating process. This type of cell-adhesive scaffold provides increased area to support and guide extending axons subsequent to nerve injury. Utilizing Ni-Cr wires as mandrels to create channels in scaffold increased safety, effectiveness, and reproducibility. The scaffolds tested were made from different biodegradable polymers, chitosan and poly(D,L-lactide-co-glycolide) (PLGA), because of their availability, ease of processing, low inflammatory response, and approval by the FDA. According to our experimental results, the high permeability and the characteristic porous structure of chitosan proved to be a better material for nerve guidance than PLGA. The scanning electron micrographs revealed that the scaffolds were consistent along the longitudinal axis with channels being distributed evenly throughout the scaffolds. There was no evidence to suggest merging or splitting of individual channels. The diameter of the channels was about 100 mum, similar to the 115 micromameter of the Ni-Cr wire. Regulating the size and quantity of the Ni-Cr wires allow us to control the number and the diameter of the channels. Furthermore, the neutralizing processes significantly influenced the porous structure of chitosan scaffolds. Using weak base (NaHCO(3) 1M) to neutralize chitosan scaffolds made the porous structure more uniform. The innovative method of using Ni-Cr wires as mandrels could be easily tailored to other polymer and solvent systems. The high permeability and the characteristic porous structure of chitosan made it a superior material for nerve tissue engineering. These scaffolds could be useful for guiding regeneration of the peripheral nerve or spinal cord after a transection injury.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Republic of China
| | | | | | | |
Collapse
|
152
|
Phillips JB, Bunting SCJ, Hall SM, Brown RA. Neural Tissue Engineering: A Self-Organizing Collagen Guidance Conduit. ACTA ACUST UNITED AC 2005; 11:1611-7. [PMID: 16259614 DOI: 10.1089/ten.2005.11.1611] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report a novel implantable device that will deliver a tethered aligned collagen guidance conduit containing Schwann cells into a peripheral nerve injury site. Cells (Schwann cells and fibroblasts) incorporated into tethered rectangular collagen gels contracted and resulted in uniaxial alignment. This tissue-engineered construct was tested in three-dimensional culture and demonstrated the ability to guide neurite extension from dissociated dorsal root ganglia. A silicone tube was adapted to provide tethering sites for an implantable construct such that uniaxial cell-generated tension resulted in the formation of a bridge of aligned collagen fibrils, with a resident Schwann cell population. The potential of this device for surgical nerve regeneration was assessed in a 5-mm defect in a rat sciatic nerve model. Neural regeneration through this device was significantly greater than in controls, demonstrating that this system has potential both as a simple robust clinical implant and as a three-dimensional engineered tissue model.
Collapse
Affiliation(s)
- James B Phillips
- University College London, Tissue Repair and Engineering Centre, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, Stanmore, Middlesex, UK.
| | | | | | | |
Collapse
|
153
|
Rosner BI, Hang T, Tranquillo RT. Schwann cell behavior in three-dimensional collagen gels: Evidence for differential mechano-transduction and the influence of TGF-beta 1 in morphological polarization and differentiation. Exp Neurol 2005; 195:81-91. [PMID: 15890339 DOI: 10.1016/j.expneurol.2005.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 04/03/2005] [Accepted: 04/05/2005] [Indexed: 11/20/2022]
Abstract
Schwann cells (SCs) cultured on and within magnetically aligned collagen gels were examined for their abilities to spread and exhibit contact guidance, two functions that are relevant to their potential enhancement of neurite migration and regeneration in entubulation repair of transection-type nerve injuries. Cells seeded at or near the surfaces of gels abandoned their initially spherical shapes, adopting spread morphologies rapidly compared to cells within the gels. Those few cells within the gels that did spread exhibited marked contact guidance responses, aligning strongly with the aligned collagen fibrils. Spreading of cells in gels could not be induced by varied cell concentration, collagen density, mitogen presence, inclusion of soluble laminin, or use of fibrin gel in lieu of collagen. However, cells that settled at the interface between collagen gel layers during gellation of the top layer above a preformed bottom layer were highly spread. This suggests that a differential mechanical interaction across the cell at an interface, where at least one surface presents constituents of the basal lamina, permits the Schwann cell to rapidly revert to a spread, differentiated phenotype. Unlike other reagents, TGF-beta1 was able to induce significant SC spreading as early as 4 h post-seeding. Consistent with the differential-mechanical cue mechanism, TGF-beta1 appears to facilitate this response, at least in part, by upregulating beta1 integrin expression, thereby enabling the SC to more acutely detect these local cues in the mechanical environment.
Collapse
Affiliation(s)
- B I Rosner
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
154
|
Willits RK, Skornia SL. Effect of collagen gel stiffness on neurite extension. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2005; 15:1521-31. [PMID: 15696797 DOI: 10.1163/1568562042459698] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although collagen is commonly used as components of tissue-engineered nerve-guidance channels, little is known about the effect of the mechanical properties of commonly used gel concentrations on the extension of neurites. This study focused on neurite extension of dissociated chick dorsal root ganglia in vitro over a range of collagen concentrations (0.4-2.0 mg/ml). Neurite length increased in all gels between day 1 and day 4, except at the highest collagen concentration, where a 9% decrease was noted at day 4. Although maximum neurite extension was seen in lower concentration gels (0.6-0.8 mg/ml), mechanical stiffness of each gel significantly increased with increasing concentration, from 2.2 Pa at 0.4 mg/ml to 17.0 Pa at 2.0 mg/ml. A previous model of mechanical stiffness versus neurite outgrowth did not fit this data well, likely because of interactions between the growth cone and the collagen fibers. Overall, these results provided insight regarding factors that influence neurite elongation and may be utilized to further optimize tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Rebecca Kuntz Willits
- Department of Biomedical Engineering, Saint Louis University, St Louis, MO 63103, USA.
| | | |
Collapse
|
155
|
Chiang HY, Chien HF, Shen HH, Yang JD, Chen YH, Chen JH, Hsieh ST. Reinnervation of Muscular Targets by Nerve Regeneration through Guidance Conduits. J Neuropathol Exp Neurol 2005; 64:576-87. [PMID: 16042309 DOI: 10.1097/01.jnen.0000171654.24836.bd] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We established histopathologic and neurophysiologic approaches to examine whether different designs of polycaprolactone-engineered nerve conduits (hollow vs. laminated) could promote nerve regeneration as autologous grafts after transection of sciatic nerves. The assessments included morphometric analysis at the level of sciatic nerve, neuromuscular junction (NMJ) and gastrocnemius muscle, and nerve conduction studies on sciatic nerves. Six months after nerve grafting, the nerve fiber density in the hollow-conduit group was similar to that in the autologous-graft group; the laminated-conduit group only achieved approximately 20% of these values. The consequences of these differences were reflected in nerve growth into muscular targets; this was demonstrated by combined cholinesterase histochemistry for NMJ and immunohistochemistry for nerve fibers innervating NMJ with an axonal marker, protein gene product 9.5. Hollow conduits had similar index of NMJ innervation as autologous grafts; the values were higher than those of laminated conduits. Among the 3 groups there were same patterns of differences in the cross-sectional area of muscle fibers and amplitudes of compound muscle action potential. These results indicate that hollow conduits were as efficient as autologous grafts to facilitate nerve regeneration, and provide a multidisciplinary approach to quantitatively evaluate muscular reinnervation after nerve injury.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
156
|
Stang F, Fansa H, Wolf G, Reppin M, Keilhoff G. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration. Biomaterials 2005; 26:3083-91. [PMID: 15603803 DOI: 10.1016/j.biomaterials.2004.07.060] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/30/2004] [Indexed: 11/19/2022]
Abstract
Large nerve defects require nerve grafts to allow regeneration. To avoid donor nerve problems the concept of tissue engineering was introduced into nerve surgery. However, non-neuronal grafts support axonal regeneration only to a certain extent. They lack viable Schwann cells which provide neurotrophic and neurotopic factors and guide the sprouting nerve. This experimental study used the rat sciatic nerve to bridge 2 cm nerve gaps with collagen (type I/III) tubes. The tubes were different in their physical structure (hollow versus inner collagen skeleton, different inner diameters). To improve regeneration Schwann cells were implanted. After 8 weeks the regeneration process was monitored clinically, histologically and morphometrically. Autologous nerve grafts and collagen tubes without Schwann cells served as control. In all parameters autologous nerve grafts showed best regeneration. Nerve regeneration in a noteworthy quality was also seen with hollow collagen tubes and tubes with reduced lumen, both filled with Schwann cells. The inner skeleton, however, impaired nerve regeneration independent of whether Schwann cells were added or not. This indicates that not only viable Schwann cells are an imperative prerequisite but also structural parameters determine peripheral nerve regeneration.
Collapse
Affiliation(s)
- Felix Stang
- Institute of Medical Neurobiology, University of Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
157
|
Vernon RB, Gooden MD, Lara SL, Wight TN. Microgrooved fibrillar collagen membranes as scaffolds for cell support and alignment. Biomaterials 2005; 26:3131-40. [PMID: 15603808 DOI: 10.1016/j.biomaterials.2004.08.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 08/17/2004] [Indexed: 11/24/2022]
Abstract
For several years, microgrooved substrates have been evaluated as a means to orient cells in engineered tissues. Recently, we fabricated thin (0.1-5.3 microm) planar and tubular collagen membranes (CMs) from air-dried hydrogels of native, fibrillar type I collagen (Vernon et al., Biomaterials 2004;26:1109-17). The CMs were strong, stable, and permeable and, hence, of potential use as scaffolds for tissue engineering. In the present study, planar CMs supported a robust attachment, spreading, and proliferation of human dermal fibroblasts (HDFs) and human umbilical artery smooth muscle cells (HUASMCs). Collagen hydrogels were air-dried onto microgrooved templates and subsequently removed in the form of grooved CMs with the potential to align cells. The grooved CMs were highly effective at inducing HDFs and HUASMCs to elongate and align, as revealed by scanning electron microscopy and by assays of f-actin and nuclear orientation. Alignment of cells was maintained at high cell densities. CMs with grooves of substantially different widths and depths were similarly effective in causing cell alignment; however, cells aligned poorly on CMs that had grooves less than 1 microm in depth. Grooved CMs with the capability to align cells might be of considerable use in the fabrication of tissue substitutes.
Collapse
Affiliation(s)
- Robert B Vernon
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101-2795, USA.
| | | | | | | |
Collapse
|
158
|
Ahmed MR, Vairamuthu S, Shafiuzama M, Basha SH, Jayakumar R. Microwave irradiated collagen tubes as a better matrix for peripheral nerve regeneration. Brain Res 2005; 1046:55-67. [PMID: 15927550 DOI: 10.1016/j.brainres.2005.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 03/02/2005] [Accepted: 03/15/2005] [Indexed: 01/02/2023]
Abstract
Collagen is one of the best materials used for nerve guide preparation due to its biocompatibility and desirable tensile strength. In this work, we have compared regeneration and functional reinnervation after sciatic nerve resection with bioresorbable crosslinked collagen guides in 10 mm gap. The crosslinking was carried out either with glutaraldehyde (GTA) or microwave irradiation (MWI). The multilayered collagen membrane used for nerve guides are prepared by lamellar evaporation technique. Functional evaluations of the regenerated nerves were performed by measuring the sciatic functional index (SFI), nerve conduction velocity (NCV), and electromyography (EMG). Transmission electron microscopic studies showed growth of axonal cable with fewer myelinated axons, Schwann cells and more unmyelinated axons present in the case of group treated with uncrosslinked collagen tubes after 1 month of implantation. However, we have observed more myelinated axons in the case of autograft, GTA, and MWI crosslinked collagen tube implants across the gap of 1 cm after the same period of implantation. Smaller myelinated fiber diameter was observed in the case of GTA crosslinked collagen tube group when compared with the autograft and MWI collagen tube groups. There were more myelinated axons during the 3rd and 6th months postoperatively using these conduits as substantiated by light microscopic studies of the regenerated nerve. The conduction velocity and recovery index improved significantly after 5 months reaching the normal values in the autograft and MWI crosslinked collagen groups compared to GTA and uncrosslinked collagen tubes.
Collapse
Affiliation(s)
- Mohamed Rafiuddin Ahmed
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | | | |
Collapse
|
159
|
Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 2005; 128:1897-910. [PMID: 15872018 DOI: 10.1093/brain/awh517] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a dual-component artificial nerve graft comprising an outer microporous conduit of chitosan and internal oriented filaments of polyglycolic acid (PGA). The novel graft was used for bridging sciatic nerve across a 30-mm defect in six Beagle dogs, which were used as a chitosan/PGA graft group. The other Beagle dogs were divided into an autograft group (n = 6) as the positive control and a non-grafted group (n = 5) as the negative control. All animals of three groups were monitored for changes in their appearance and locomotion activities after surgery. Their posture and gait were recorded regularly with the aid of photographs and videotapes for each dog. Six months post-operatively, a combination of electrophysiological examination, FluoroGold retrograde tracing, histological assessment including light microscopy and transmission electron microscopy, immunohistochemistry as well as morphometric analyses to both regenerated nerves and target muscles was utilized to investigate the nerve repair effects of our artificial nerve graft. The results demonstrated that, in the chitosan/PGA graft group, the dog sciatic nerve trunk had been reconstructed with restoration of nerve continuity and functional recovery, and its target skeletal muscle had been re-innervated, improving locomotion activities of the operated limb. This study proves the feasibility of the chitosan/PGA artificial nerve graft for peripheral nerve regeneration by bridging a longer defect in a large animal model.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Neuroregeneration, Nantong University, Nantong City, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
160
|
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26:2603-10. [PMID: 15585263 DOI: 10.1016/j.biomaterials.2004.06.051] [Citation(s) in RCA: 1079] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/17/2004] [Indexed: 01/19/2023]
Abstract
Efficacy of aligned poly(l-lactic acid) (PLLA) nano/micro fibrous scaffolds for neural tissue engineering is described and their performance with random PLLA scaffolds is compared as well in this study. Perfectly aligned PLLA fibrous scaffolds were fabricated by an electrospinning technique under optimum condition and the diameter of the electrospun fibers can easily be tailored by adjusting the concentration of polymer solution. As the structure of PLLA scaffold was intended for neural tissue engineering, its suitability was evaluated in vitro using neural stem cells (NSCs) as a model cell line. Cell morphology, differentiation and neurite outgrowth were studied by various microscopic techniques. The results show that the direction of NSC elongation and its neurite outgrowth is parallel to the direction of PLLA fibers for aligned scaffolds. No significant changes were observed on the cell orientation with respect to the fiber diameters. However, the rate of NSC differentiation was higher for PLLA nanofibers than that of micro fibers and it was independent of the fiber alignment. Based on the experimental results, the aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering.
Collapse
Affiliation(s)
- F Yang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
| | | | | | | |
Collapse
|
161
|
Vernon RB, Gooden MD, Lara SL, Wight TN. Native fibrillar collagen membranes of micron-scale and submicron thicknesses for cell support and perfusion. Biomaterials 2005; 26:1109-17. [PMID: 15451630 DOI: 10.1016/j.biomaterials.2004.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 04/17/2004] [Indexed: 11/25/2022]
Abstract
Fibrillar type I collagen is nontoxic, biocompatible, and possesses considerable strength and stability. In a study of scaffolds for use in laminated tissue substitutes, we examined the properties of membranes made from air-dried hydrogels of collagen fibrils that were polymerized from native, monomeric collagen. Planar collagen membranes (CMs) of 0.1-5.3 microm dry thickness were made by variation of the collagen concentration and/or the volume of the hydrogel. The planar CMs, which were comprised of a dense feltwork of long collagen fibrils 70-100 nm in diameter, showed considerable resistance to rupture and retained their membranous character after 6 weeks in tissue culture medium at 37 degrees C. CMs that were relatively thick when dry exhibited a greater proportional increase in rehydrated thickness and a greater diffusivity (when rehydrated) to 4.3 kDa dextran than did CMs that were relatively thin when dry. Hollow, tubular CMs of several configurations were prepared by embedment of solid, removable forms into collagen hydrogels prior to drying. By use of special fixtures, a planar CM that incorporated multiple, parallel tubes was fabricated. In summary, hydrogels of fibrillar collagen can be transformed into membranous structures suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Robert B Vernon
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, Washington 98101, USA.
| | | | | | | |
Collapse
|
162
|
Bunting S, Di Silvio L, Deb S, Hall S. Bioresorbable glass fibres facilitate peripheral nerve regeneration. ACTA ACUST UNITED AC 2005; 30:242-7. [PMID: 15862363 DOI: 10.1016/j.jhsb.2004.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/05/2004] [Indexed: 11/27/2022]
Abstract
This is a proof of principle report showing that fibres of Bioglass 45S5 can form a biocompatible scaffold to guide regrowing peripheral axons in vivo. We demonstrate that cultured rat Schwann cells and fibroblasts grow on Bioglass fibres in vitro using SEM and immunohistochemistry, and provide qualitative and quantitative evidence of axonal regeneration through a Silastic conduit filled with Bioglass fibres in vivo (across a 0.5 cm interstump gap in the sciatic nerves of adult rats). Axonal regrowth at 4 weeks is indistinguishable from that which occurs across an autograft. Bioglass fibres are not only biocompatible and bioresorbable, which are absolute requirements of successful devices, but are also amenable to bioengineering, and therefore have the potential for use in the most challenging clinical cases, where there are long inter-stump gaps to be bridged.
Collapse
Affiliation(s)
- S Bunting
- Wolfson Centre for Age-Related Diseases, King's College London, UK.
| | | | | | | |
Collapse
|
163
|
Stokols S, Tuszynski MH. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 2004; 25:5839-46. [PMID: 15172496 DOI: 10.1016/j.biomaterials.2004.01.041] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 01/20/2004] [Indexed: 11/28/2022]
Abstract
Strategies to promote axonal extension through a site of injury, including the provision of nervous system growth factors and supportive substrates, produce growth of axons, that is highly random and does not extend past the lesion site and into the host tissue (Brain Res. Bull 57(6) (2002) 833). Physically guiding the linear growth of axons across a site of injury, in addition to providing neurotrophic and/or cellular support, would help to retain the native organization of regenerating axons across the lesion site and into distal host tissue, and would potentially increase the probability of achieving functional recovery. In the present study, a novel procedure was developed for using freeze-dry processing to create nerve guidance scaffolds made from agarose, with uniaxial linear pores. The hydrated scaffolds were soft and flexible, contained linear guidance pores extending through their full length, were stable under physiological conditions without chemical crosslinking, and could be readily loaded with diffusible growth stimulating proteins.
Collapse
Affiliation(s)
- Shula Stokols
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
164
|
Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004; 25:1891-900. [PMID: 14738853 DOI: 10.1016/j.biomaterials.2003.08.062] [Citation(s) in RCA: 359] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nerve tissue engineering (NTE) is one of the most promising methods to restore central nerve systems in human health care. Three-dimensional distribution and growth of cells within the porous scaffold are of clinical significance for NTE. In this study, an attempt was made to develop porous polymeric nano-fibrous scaffold using a biodegradable poly(L-lactic acid) (PLLA) for in vitro culture of nerve stem cells (NSCs). The processing of PLLA scaffold has been carried out by liquid-liquid phase separation method. The physico-chemical properties of the scaffold were fully characterized by using differential scanning calorimetry and scanning electron microscopy. These results confirmed that the prepared scaffold is highly porous and fibrous with diameters down to nanometer scale. As our nano-structured PLLA scaffold mimics natural extracellular matrix, we have intended this biodegradable scaffold as cell carrier in NTE. The in vitro performance of NSCs seeded on nano-fibrous scaffold is addressed in this study. The cell cultural tests showed that the NSCs could differentiate on the nano-structured scaffold and the scaffold acted as a positive cue to support neurite outgrowth. These results suggested that the nano-structured porous PLLA scaffold is a potential cell carrier in NTE.
Collapse
Affiliation(s)
- F Yang
- Biomaterials Laboratory, Division of Bioengineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117-576, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
165
|
Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng 2004; 1:151-7. [PMID: 15876634 DOI: 10.1088/1741-2560/1/3/004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.
Collapse
Affiliation(s)
- Gregory E Rutkowski
- Chemical Engineering Department, University of Minnesota, 215 Engineering Building, Duluth, MN 55812-3025, USA
| | | | | | | |
Collapse
|
166
|
Manwaring ME, Walsh JF, Tresco PA. Contact guidance induced organization of extracellular matrix. Biomaterials 2004; 25:3631-8. [PMID: 15020137 DOI: 10.1016/j.biomaterials.2003.10.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 10/11/2003] [Indexed: 11/16/2022]
Abstract
The scarring response following injury to the central nervous system disrupts the anatomical organization of nervous tissue posing a barrier to the regeneration of axons. In the present study, using materials with nanometer level surface features we examined whether matrix organization could be controlled by engineering meningeal cell asymmetry. Following 5 days in culture, the organization of meningeal cells along with their cytoskeletal elements and extracellular matrix proteins was evaluated. Meningeal cell morphology was markedly affected by nanometer level substrate topography. Cell alignment increased with increasing surface roughness. In addition, linear arrays of extracellular matrix were expressed that appeared related to cellular orientation. When cultured on substrates with topographical features of less than 10 nm neither cells nor their extracellular matrix showed organizational asymmetry. However, as oriented surface roughness increased, cellular and matrix asymmetrical organization became more pronounced reaching a threshold at 345 nm. These results suggest that biomaterial surface topography or other methods of altering the orientation of cells may be used to engineer orientation into the secreted extracellular matrix and as such may be a potential strategy for developing organized cell-derived matrix as a bridging material for nerve repair or other regenerative applications.
Collapse
Affiliation(s)
- Michael E Manwaring
- The Keck Center for Tissue Engineering, Department of Bioengineering, University of Utah, 20 South 2030 East, Building 570, Room 108D, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
167
|
Abstract
Within native tissues cells are held within the extracellular matrix (ECM), which has a role in maintaining homeostasis, guiding development and directing regeneration. Efforts in tissue engineering have aimed to mimick the ECM to help guide morphogenesis and tissue repair. Studies have not only looked at ways to mimick the structure and characteristics of the ECM, but have also considered ways to reproduce its molecular properties including its bioadhesive character, proteolytic susceptibility and ability to bind growth factors.
Collapse
Affiliation(s)
- Jeffrey A Hubbell
- Institute for Biological and Chemical Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Ecublens, Switzerland.
| |
Collapse
|
168
|
Belkas JS, Shoichet MS, Midha R. Axonal guidance channels in peripheral nerve regeneration. ACTA ACUST UNITED AC 2004. [DOI: 10.1053/j.oto.2004.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
169
|
Yoshii S, Oka M, Shima M, Taniguchi A, Akagi M. Bridging a 30-mm nerve defect using collagen filaments. J Biomed Mater Res A 2004; 67:467-74. [PMID: 14566787 DOI: 10.1002/jbm.a.10103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This article describes a 30-mm regeneration of severed peripheral nerve axons along collagen filaments. Two thousand or 4000 31-mm-long collagen filaments were grafted to bridge a 30-mm defect of the rat sciatic nerve. A collagen tube was grafted as a control. The mean number and mean fiber diameter of regenerated myelinated axons were 330 +/- 227 and 2.7 +/- 0.9 microm in the distal end of the 2000 collagen-filaments nerve guide, and 564 +/- 275 and 2.5 +/- 1.1 microm in the distal end of the 4000 collagen-filaments nerve guide at 12 weeks postoperatively, whereas in the distal end of the collagen tube, no regenerated axon was found. These results suggest that the collagen filaments guide axons of the rat's sciatic nerve to regenerate for 30 mm and act as a scaffold for axonal regeneration. Thirty-millimeter nerve regeneration of a 1-mm-diameter rat sciatic nerve by an artificial nerve guarantees a clinical application of the implant which should be very important for patients and surgeons.
Collapse
Affiliation(s)
- Satoru Yoshii
- Institute of Biomedical Engineering, Kansai Denryoku Hospital, Imaichi 2-7-14, Asahi-ku, Osaka, 535-0011 Japan.
| | | | | | | | | |
Collapse
|
170
|
Ahmed MR, Venkateshwarlu U, Jayakumar R. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials 2004; 25:2585-94. [PMID: 14751744 DOI: 10.1016/j.biomaterials.2003.09.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Successful nerve regeneration process was achieved with improved mechanical strength by crosslinking tubular nerve guides made up of collagen. The multilayered collagen sheets were prepared from laminar evaporation of collagen solution. Scanning electron micrograph of the collagen tubes crosslinked with glutaraldehyde (GTA), microwave irradiation showed porous, fibrillar structures of collagen filaments in these matrices. The mechanical property of the crosslinked collagen tubes was carried out by tensile strength measurements. Fourier transform infrared spectra of the collagen films show that the native triple helicity was unaltered during multilayered preparation. It was observed that the structural integrity is unaltered during the multilayer preparation. Microscopic analysis indicates that the tubule surface acts as a surface of adherence and proliferation for the sprouting axons from the cut proximal nerve stumps. Solute diffusion studies on these tubes indicate that they are highly porous to wide range of molecular sizes during regeneration. Among the two types of crosslinking, the microwave irradiated collagen conduits results in ample myelinated axons compared with GTA group, where we observed more unmyelinated axons.
Collapse
Affiliation(s)
- M Rafiuddin Ahmed
- Bio-organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
171
|
Abstract
Biological nerve grafts have been extensively utilized in the past to repair peripheral nerve injuries. More recently, the use of synthetic guidance tubes in repairing these injuries has gained in popularity. This review focuses on artificial conduits, nerve regeneration through them, and an account of various synthetic materials that comprise these tubes in experimental animal and clinical trials. It also lists and describes several biomaterial considerations one should regard when designing, developing, and manufacturing potential guidance channel candidates. In the future, it it likely that the most successful synthetic nerve conduit will be one that has been fabricated with some of these strategies in mind.
Collapse
Affiliation(s)
- Jason S Belkas
- Division of Neurosurgery, Neuroscience Research Program, Sunnybrook & Women's College Health Sciences Centre, University of Toronto, ON, Canada
| | | | | |
Collapse
|
172
|
Timmer M, Robben S, Müller-Ostermeyer F, Nikkhah G, Grothe C. Axonal regeneration across long gaps in silicone chambers filled with Schwann cells overexpressing high molecular weight FGF-2. Cell Transplant 2004; 12:265-77. [PMID: 12797381 DOI: 10.3727/000000003108746821] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Basic fibroblast growth factor (FGF-2) has been shown to enhance the survival and neurite extension of various types of neurons including spinal ganglion neurons. In addition, endogenous FGF-2 and FGF receptors are upregulated following peripheral nerve lesion in ganglia and at the lesion site. FGF-2 protein is expressed in different isoforms (18 kDa, 21 kDa, 23 kDa) and differentially regulated after nerve injury. In the rat we analyzed the regenerative capacity of the high molecular weight (HMW) FGF-2 isoforms (21/23 kDa) to support the regeneration of the axotomized adult sciatic nerve across long gaps. The nerve stumps were inserted into the opposite ends of a silicone chamber resulting in an interstump gap of 15 mm. Silicone tubes were filled with Matrigel or a mixture of Schwann cells (SC) and Matrigel. SC were prepared from newborn rats and transfected to overexpress HMW FGF-2. Four weeks after the operation procedure, channels were analyzed with regard to tissue cables bridging both nerve stumps and myelinated axons distal to the original proximal nerve stump. Peripheral nerves interposed with HMW Schwann cells displayed significantly enhanced nerve regeneration, with the greatest number of tissue cables containing myelinated axons and the highest number of myelinated axons. These results suggest that a cellular substrate together with a source of a trophic factor could be a promising tool to promote nerve regeneration and, therefore, become useful also for a clinical approach to repair long gaps.
Collapse
Affiliation(s)
- M Timmer
- Department of Neuroanatomy, Center of Anatomy, OE 4140, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
173
|
Rafiuddin Ahmed M, Jayakumar R. Peripheral nerve regeneration in RGD peptide incorporated collagen tubes. Brain Res 2004; 993:208-16. [PMID: 14642848 DOI: 10.1016/j.brainres.2003.08.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This paper describes the regeneration of lesioned sciatic nerve with collagen tubes incorporated with RGD cell-adhesive peptide. Collagen implants of 14 mm were grafted to bridge a gap length of 10 mm nerve defect in a rat model. The regenerated tissues were analyzed histomorphologically. The number of myelinated axons in the regenerated mid-graft of the RGD peptide incorporated groups was statistically significant (p<0.05) than control collagen tube and autograft control after 30 days postoperatively. After 90 days of implantation, the mean counts were still statistically significant in the case of RGD peptide group than control collagen and autograft groups. Immunofluorescence studies demonstrated the staining of S100 proteins in the peripherally located cells indicating the proliferation of Schwann cells in the early days of regeneration. The staining pattern of integrin-alphaV was observed mostly in the perineurial regions in close proximity to the RGD peptide incorporated collagen tubes. Other studies like sciatic functional index, conduction velocity at 90 days postoperatively suggest complete regeneration of lesioned nerves with RGD incorporated collagen implants.
Collapse
Affiliation(s)
- M Rafiuddin Ahmed
- Bio-organic and Neurochemistry Laboratory, Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai, TN 600 020, India
| | | |
Collapse
|
174
|
Eguchi Y, Ogiue-Ikeda M, Ueno S. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci Lett 2004; 351:130-2. [PMID: 14583398 DOI: 10.1016/s0304-3940(03)00719-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Schwann cells aid in neuronal regeneration in the peripheral nervous system via guiding the regrowth of axons. In this study, we investigated the magnetic orientation of Schwann cells, and of a mixture of Schwann cells and collagen, after an 8-tesla magnetic field exposure. We obtained cultured Schwann cells from dissected sciatic nerves of neonatal rats. After 60 h of magnetic field exposure, Schwann cells oriented parallel to the magnetic fields. In contrast, the mixture of Schwann cells and collagen, Schwann cells oriented in the direction perpendicular to the magnetic field after 2 h of magnetic field exposure. In this case, Schwann cells aligned along the collagen fiber oriented by magnetic fields. The magnetic control of Schwann cell alignment is useful in medical engineering applications such as nerve regeneration.
Collapse
Affiliation(s)
- Yawara Eguchi
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
175
|
Varejão ASP, Cabrita AM, Geuna S, Patrício JA, Azevedo HR, Ferreira AJ, Meek MF. Functional assessment of sciatic nerve recovery: biodegradable poly (DLLA-epsilon-CL) nerve guide filled with fresh skeletal muscle. Microsurgery 2004; 23:346-53. [PMID: 12942525 DOI: 10.1002/micr.10148] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to compare functional peripheral nerve recovery in the rat sciatic nerve model after reconstruction of a 10-mm gap with a biodegradable poly (DLLA-epsilon-CL) nerve guide, as filled with either fresh skeletal muscle or phosphate-buffered saline (PBS). During 24 weeks of recovery, motor and sensory functional evaluation was tested by extensor postural thrust (EPT) and withdrawal reflex latency (WRL), respectively. At the end of the experiment, anesthetized animals were prepared for motor nerve conduction velocity (MNCV) studies, followed by gastrocnemius and soleus muscle weight measurement. Motor functional recovery was greater in the muscle-grafted group, and reached a significant difference from weeks 8-12 (P < 0.05). The results of this investigation suggest that filling a nerve guide with fresh skeletal muscle induces faster maturation of regenerated nerve fibers in comparison with traditional tubular repair.
Collapse
Affiliation(s)
- Artur S P Varejão
- Department of Pathology and Veterinary Clinics, CETAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Nerve regeneration is a complex biological phenomenon. In the peripheral nervous system, nerves can regenerate on their own if injuries are small. Larger injuries must be surgically treated, typically with nerve grafts harvested from elsewhere in the body. Spinal cord injury is more complicated, as there are factors in the body that inhibit repair. Unfortunately, a solution to completely repair spinal cord injury has not been found. Thus, bioengineering strategies for the peripheral nervous system are focused on alternatives to the nerve graft, whereas efforts for spinal cord injury are focused on creating a permissive environment for regeneration. Fortunately, recent advances in neuroscience, cell culture, genetic techniques, and biomaterials provide optimism for new treatments for nerve injuries. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair.
Collapse
Affiliation(s)
- Christine E Schmidt
- Department of Biomedical Engineering The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
177
|
Yoshii S, Oka M, Shima M, Taniguchi A, Taki Y, Akagi M. Restoration of function after spinal cord transection using a collagen bridge. ACTA ACUST UNITED AC 2004; 70:569-75. [PMID: 15307161 DOI: 10.1002/jbm.a.30120] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The restoration of function of transected adult mammalian spinal cord without living tissue has not been reported previously. We report the first success of functional restoration of transected spinal cord without living tissue. We grafted collagen filaments parallel or transverse to the axis of the spinal cord to bridge 5-mm defects of 47 adult rat spinal cords. Twenty-five rats were used as a control. Of the 72 rats, 42 rats survived the experimental period. At 4 weeks postoperatively, regenerated axons crossed the proximal and distal spinal cord-implant interfaces in all 5 rats of the parallel-grafted group. At 12 weeks postoperatively, the rats in the parallel-grafted group (8 rats) could walk, run, and climb with hind-forelimb coordination. The somatosensory-evoked potentials were seen. Results suggest that the collagen filaments support the axonal regeneration of the transected spinal cord and the restoration of function when grafted parallel to the axis of the spinal cord. The functional restoration appeared to be permanent, raising the possibility of therapeutic application in humans.
Collapse
Affiliation(s)
- Satoru Yoshii
- Institute of Biomedical Engineering, Kansai Denryoku Hospital, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
178
|
Abstract
STUDY DESIGN A rat model of spinal cord defect was designed to evaluate the effect of collagen filament implant on nerve regeneration in the spinal cord defect. OBJECTIVES To bridge a spinal cord defect and restore the function in adult mammals. SUMMARY OF BACKGROUND DATA Resection of the spinal cord in mammals is always followed by motor paralysis and loss of voluntary function below the lesion. Partial success in bridging the ends of the spinal cord after complete resection was reported. However, restoration of function has not been reported in adult mammalian. MATERIALS AND METHODS Four thousand collagen filaments 5-mm-long were grafted to bridge a 5-mm defect of rat spinal cord. Controls had their spinal cord defect left ungrafted after resection. At 1-week intervals, animals were evaluated functionally. After 4 and 12 weeks, animals were evaluated histologically. After 12 weeks, animals were evaluated electrophysiologically. RESULTS The severed spinal cord axons regenerated along the collagen filament implant crossing the proximal and distal spinal cord implant interfaces at 4 weeks after surgery. The rats with collagen filament grafts could walk, run, and climb with hind forelimb coordination at 12 weeks after surgery. Sensory-evoked potential waveform was found in the rats with collagen filament at 12 weeks after surgery. CONCLUSIONS The collagen filaments support the axonal regeneration of the transected spinal cord and the restoration of function.
Collapse
Affiliation(s)
- Satoru Yoshii
- Institute of Biomedical Engineering, Kansai Denryoku Hospital, Osaka, Japan.
| | | | | | | | | |
Collapse
|
179
|
Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, Dee KC. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 2003; 24:3805-13. [PMID: 12818553 DOI: 10.1016/s0142-9612(03)00206-0] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engineered tissues must utilize scaffolding biomaterials that support desired cellular functions and possess or can develop appropriate mechanical characteristics. This study assessed properties of collagen as a scaffolding biomaterial for ligament replacements. Mechanical properties of extruded bovine achilles tendon collagen fibers were significantly affected by fiber diameter, with smaller fibers displaying higher tangent moduli and peak stresses. Mechanical properties of 125 micrometer-diameter extruded fibers (tangent modulus of 359.6+/-28.4MPa; peak stress of 36.0+/-5.4MPa) were similar to properties reported for human ligaments. Scaffolds of extruded fibers did not exhibit viscoelastic creep properties similar to natural ligaments. Collagen fibers from rat tail tendon (a well-studied comparison material) displayed characteristic strain-softening behavior, and scaffolds of rat tail fibers demonstrated a non-intuitive relationship between tangent modulus and specimen length. Composite scaffolds (extruded collagen fibers cast within a gel of Type I rat tail tendon collagen) were maintained with and without fibroblasts under standard culture conditions for 25 days; cell-incorporated scaffolds displayed significantly higher tangent moduli and peak stresses than those without cells. Because tissue-engineered products must possess appropriate mechanical as well as biological/chemical properties, data from this study should help enable the development of improved tissue analogues.
Collapse
Affiliation(s)
- Eileen Gentleman
- Department of Biomedical Engineering, Lindy Boggs Center, Tulane University, LA 70118, New Orleans, USA
| | | | | | | | | | | |
Collapse
|
180
|
Keilhoff G, Stang F, Wolf G, Fansa H. Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials 2003; 24:2779-87. [PMID: 12711525 DOI: 10.1016/s0142-9612(03)00084-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nerve gaps are usually bridged by autografts. With improving technical methods biocompatible conduits may become an alternative graft to reconstruct nerves. Non-neural conduits fail to support regeneration over larger gaps due to lacking viable Schwann cells. Thus, tissue engineering of nerves is focusing on implantation of viable Schwann cells into suitable scaffolds. In this study, we tested collagen type I/III tubes as a potential nerve guiding matrix. Revascularization, foreign body reaction, biodegradation and Schwann cell settlement were evaluated by immunocytochemistry, light, fluorescence and scanning electron microscopy, after different implantation times. The conduits were completely revascularized between day 5 and 7 post-operatively and well integrated into the host tissue. Host response was characterized by a moderate invasion of ED1/ED2-positive macrophages. Biodegradation of the tubes was slowly enough to maintain a stable support structure for extended regeneration processes. Implanted Schwann cells adhered, survived and proliferated on the inner surface of the conduits and were able to form nerve guiding columns of Büngner. From this results, we conclude that collagen-type I/III can serve as template to design "living" nerve conduits, which may be able to ensure nerve regeneration through extended nerve gaps.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Medical Neurobiology, Otto-von-Guericke-University of Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
181
|
Yu X, Bellamkonda RV. Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps. TISSUE ENGINEERING 2003; 9:421-30. [PMID: 12857410 DOI: 10.1089/107632703322066606] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of autografts for "bridging" peripheral nerve gaps is limited by lack of suitable donor nerve grafts. Using a tissue-engineering approach, we have designed a three-dimensional scaffold that presents laminin 1 (LN-1) and nerve growth factor (NGF) in vivo. Semipermeable polysulfone tubes were used as carriers to introduce the tissue-engineered scaffolds to a 10-mm sciatic nerve gap in adult rats. Two months after implantation, the gross morphology of the regenerated nerve, the success rate of regeneration, and the total number and density of myelinated axons in the tissue-engineered scaffolds matched that observed in autografts. LN-1- and NGF-containing scaffolds performed comparably to autografts when functional measures that include the relative gastrocnemius muscle weight and the sciatic functional index were quantified. Our results demonstrate that tissue-engineered scaffolds match the performance of autografts in an in vivo model of peripheral nerve regeneration, raising the possibility of the scaffolds being used clinically instead of scarce autografts.
Collapse
Affiliation(s)
- Xiaojun Yu
- Biomaterials, Cell and Tissue Engineering Laboratory, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
182
|
Navarro X, Rodríguez FJ, Ceballos D, Verdú E. Engineering an artificial nerve graft for the repair of severe nerve injuries. Med Biol Eng Comput 2003; 41:220-6. [PMID: 12691445 DOI: 10.1007/bf02344893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nerve repair with tubes has a limit to regeneration depending upon the length of the gap. The characteristics of the guide, in terms of permeability, durability and adhesiveness, also influence regeneration. Considering the importance of the cellular component in regeneration, the development of artificial grafts, composed of a biocompatible nerve guide filled with a neurotropic matrix and seeded with Schwann cells (SCs), is an interesting option to enhance nerve regeneration and provide an alternative to the classical autologous nerve graft. We evaluated the ability of SCs transplanted into a nerve guide to improve regeneration after sciatic nerve resection, leaving a 6-mm gap, in the mouse. Syngeneic, isogeneic and autologous SCs were suspended in Matrigel and seeded in resorbable guides, and compared to acellular guides and to nerve autografts. The immunogenicity of the transplanted SCs clearly influenced the outcome. Transplants of autologous SCs resulted in only slightly lower levels of reinnervation than autografts, but higher recovery and number of regenerated axons than transplants of isologous and syngeneic SCs, and than acellular guides. Thus, by combined developments on nerve guides, extracellular matrix components and cell transplantation, an artificial graft has been designed that allows axonal regeneration across long gaps to levels comparable with an autograft.
Collapse
Affiliation(s)
- X Navarro
- Group of Neuroplasticity & Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
183
|
Pêgo AP, Poot AA, Grijpma DW, Feijen J. Biodegradable elastomeric scaffolds for soft tissue engineering. J Control Release 2003; 87:69-79. [PMID: 12618024 DOI: 10.1016/s0168-3659(02)00351-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and epsilon-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more rapidly in phosphate-buffered saline (PBS) of pH 7.4 at 37 degrees C than (semi-crystalline) TMC-CL copolymers. TMC-DLLA with 20 or 50 mol% TMC loose their tensile strength in less than 5 months and are totally resorbed in 11 months. In PBS, TMC-CL copolymers retain suitable mechanical properties for more than a year. Cell seeding studies show that rat cardiomyocytes and human Schwann cells attach and proliferate well on the TMC-based copolymers. TMC-DLLA copolymers with either 20 or 50 mol% of TMC are totally amorphous and very flexible, making them excellent polymers for the preparation of porous scaffolds for heart tissue engineering. Porous structures of TMC-DLLA copolymers were prepared by compression molding and particulate leaching techniques. TMC-CL (co)polymers were processed into porous two-ply tubes by means of salt leaching (inner layer) and fiber winding (outer layer) techniques. These grafts, seeded with Schwann cells, will be used as nerve guides for the bridging of large peripheral nerve defects.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- Institute for Biomedical Technology and Department of Polymer Chemistry and Biomaterials, Faculty of Chemical Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
184
|
Hirose H, Nakahara T, Miyakoshi J. Orientation of human glioblastoma cells embedded in type I collagen, caused by exposure to a 10 T static magnetic field. Neurosci Lett 2003; 338:88-90. [PMID: 12565147 DOI: 10.1016/s0304-3940(02)01363-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the preferred orientation of human glioblastoma cells (A172) following exposure to static magnetic fields (SMF) at 10 Tesla in the presence or absence of collagen. A172 cells embedded in collagen gel were oriented perpendicular to the direction of the SMF. A172 cells cultured in the absence of collagen did not exhibit any specific orientation pattern after 7 days of exposure to the SMF. Thus we succeeded in evoking the magnetic orientation of human glioblastoma cells by exposure to the SMF. Our results suggest that the orientation of glioblastoma cell processes may be due to the arrangement of microtubules under the influence of magnetically oriented collagen fiber.
Collapse
Affiliation(s)
- Hideki Hirose
- Laboratory of Radiation Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
185
|
Yoshii S, Oka M, Shima M, Taniguchi A, Akagi M. 30 mm regeneration of rat sciatic nerve along collagen filaments. Brain Res 2002; 949:202-8. [PMID: 12213317 DOI: 10.1016/s0006-8993(02)03149-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes 30 mm regeneration of peripheral nerve axons along collagen filaments; 31-mm-long collagen filaments or collagen tube were grafted to bridge a 30-mm defect of rat sciatic nerve. The mean number and the diameter of regenerated myelinated axons were 330+/-227 and 2.7+/-0.9 microm at the distal end of the collagen-filaments 12 weeks postoperatively; while at the distal end of the tube no axon was found.
Collapse
Affiliation(s)
- Satoru Yoshii
- Institute of Biomedical Engineering, Kansai Denryoku Hospital, Imaichi 2-7-14, Asahi-ku, 535-0011 Osaka, Japan.
| | | | | | | | | |
Collapse
|
186
|
Abstract
It is a relatively new approach to generate tissues with mammalian cells and scaffolds (temporary synthetic extracellular matrices). Many tissues, such as nerve, muscle, tendon, ligament, blood vessel, bone, and teeth, have tubular or fibrous bundle architectures and anisotropic properties. In this work, we have designed and fabricated highly porous scaffolds from biodegradable polymers with a novel phase-separation technique to generate controllable parallel array of microtubular architecture. Porosity as high as 97% has been achieved. The porosity, diameter of the microtubules, the tubular morphology, and their orientation are controlled by the polymer concentration, solvent system, and temperature gradient. The mechanical properties of these scaffolds are anisotropic. Osteoprogenitor cells are seeded in these three-dimensional scaffolds and cultured in vitro. The cell distribution and the neo-tissue organization are guided by the microtubular architecture. The fabrication technique can be applied to a variety of polymers, therefore the degradation rate and cell--matrix interactions can be controlled by the chemical composition of the polymers and the incorporation of bioactive moieties. These microtubular scaffolds may be used to engineer a variety of tissues with anisotropic architecture and properties.
Collapse
Affiliation(s)
- P X Ma
- Department of Biologic and Materials Sciences, University of Michigan, 1011 North University Avenue, Room 2211, Ann Arbor, Michigan 48109-1078, USA.
| | | |
Collapse
|
187
|
Méthot S, Moulin V, Rancourt D, Bourdages M, Goulet D, Plante M, Auger FA, Germain L. Morphological changes of human skin cells exposed to a DC electric fieldin vitrousing a new exposure system. CAN J CHEM ENG 2001. [DOI: 10.1002/cjce.5450790428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
188
|
Kassar-Duchossoy L, Duchossoy Y, Rhrich-Haddout F, Horvat JC. Reinnervation of a denervated skeletal muscle by spinal axons regenerating through a collagen channel directly implanted into the rat spinal cord. Brain Res 2001; 908:25-34. [PMID: 11457428 DOI: 10.1016/s0006-8993(01)02554-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, the continuity between the central nervous system (CNS) and the peripheral nervous system (PNS) was restored by mean of a collagen channel in order to reinnervate a skeletal muscle. Three groups of animals were considered. In the first group, one end of the collagen channel was implanted in the cervical spinal cord of adult rats. The other end was connected to a 30-mm autologous peripheral nerve graft (PNG) implanted into the denervated biceps brachii muscle. The gap between the spinal cord and the proximal nerve stump varied from 3 to 7 mm. In the second group of animals, the distal end of the PNG graft was ligatured in order to compare the survival of the growing axons in the presence and in the absence of a muscular target. In the third group of animals, the extraspinal stump of the collagen channel was ligatured. Our study demonstrates that spinal neurons and dorsal root ganglion (DRG) neurons can grow long axons through the collagen channel over a 7-mm gap and reinnervate a denervated skeletal muscle. The results also indicate that the presence of a PNG at the extraspinal stump of the collagen channel is essential for axonal regrowth and that the muscle target contributes to the long-term maintenance of the regenerating axons. These data might be interesting for clinical application when the continuity between the CNS and PNS is interrupted such as in root avulsion.
Collapse
Affiliation(s)
- L Kassar-Duchossoy
- Laboratoire de Neurobiologie, Université René Descartes, 45 rue des Saints-Pères, Paris, France.
| | | | | | | |
Collapse
|
189
|
Alaerts JA, De Cupere VM, Moser S, Van den Bosh de Aguilar P, Rouxhet PG. Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells. Biomaterials 2001; 22:1635-42. [PMID: 11374465 DOI: 10.1016/s0142-9612(00)00321-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
High-resolution patterns of grooves have been made in poly(methyl methacrylate) films, PMMA, by an electron-beam microlithographic process. The surface of films processed over a large width was characterized in terms of chemical composition (X-ray photoelectron spectroscopy (XPS). time of flight secondary ion mass spectroscopy), wettability (sessile drop) and topography (atomic force microscopy). Collagen adsorption was also studied (radiocounting, XPS) as such or in competition with Pluronic F68. The chemical alteration of the surface induced by the electron-beam irradiation disappeared after the dissolution involved in the development process. W138 human fibroblasts cultivated on microgrooved substrata (grooves 1 microm deep and 0.5-10 microm wide) showed a strong orientation parallel to the grooves. The contact guidance is induced by the topography of the surface and not by the alternation of zones with different physico-chemical properties. It may be explained in terms of probability of successful substratum contact by cell protrusions.
Collapse
Affiliation(s)
- J A Alaerts
- Unité de chimie des interfaces, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
190
|
Dubey N, Letourneau PC, Tranquillo RT. Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties. Biomaterials 2001; 22:1065-75. [PMID: 11352087 DOI: 10.1016/s0142-9612(00)00341-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurite outgrowth from chick dorsal root ganglia entrapped in isotropic and magnetically aligned fibrin gels was studied, and the dependence on the diameter of the fibrin fibrils was characterized. The fibrin fibril diameter was varied, as inferred from turbidity measurements, by using different Ca2+ concentrations in the fibrin-forming solution, but this variation was accomplished without affecting the degree of magnetic-induced alignment, as directly visualized in fluorescently spiked gels. Magnetically aligned fibrin gels possessing different fibril diameters but similar alignment resulted in drastic changes in the contact guidance response of neurites, with no response in gels formed in 1.2 mM Ca2+ (having smaller fibril diameter, ca. 150 nm), but a strong response in gels formed in 12 and 30 mM Ca2+ (having larger fibril diameter, ca. 510 nm) with an attendant two-fold increase in neurite length. These changes are attributed to variation of the mechano-structural properties of the network of aligned fibrils as the fibril diameter is varied.
Collapse
Affiliation(s)
- N Dubey
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
191
|
Hall S. Nerve repair: a neurobiologist's view. JOURNAL OF HAND SURGERY (EDINBURGH, SCOTLAND) 2001; 26:129-36. [PMID: 11281664 DOI: 10.1054/jhsb.2000.0497] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- S Hall
- Centre for Neuroscience Research, King's College London, UK
| |
Collapse
|
192
|
Tresco PA. Tissue engineering strategies for nervous system repair. PROGRESS IN BRAIN RESEARCH 2001; 128:349-63. [PMID: 11105693 DOI: 10.1016/s0079-6123(00)28031-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- P A Tresco
- W.M. Keck Center for Tissue Engineering, Department of Bioengineering, University of Utah, Salt Lake City 84112, USA.
| |
Collapse
|
193
|
Heijke GC, Klopper PJ, Baljet B, Van Doorn IB, Dutrieux RP. Method for morphometric analysis of axons in experimental peripheral nerve reconstruction. Microsurgery 2001; 20:225-32. [PMID: 11015719 DOI: 10.1002/1098-2752(2000)20:5<225::aid-micr3>3.0.co;2-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new method for morphometric analysis of axons in experimental peripheral nerve reconstruction is presented. Twelve adult female rabbits were used. In nine animals the saphenous nerve was transected and stitched epineurially. Three animals functioned as control. After 3, 6, and 12 months, the nerves were harvested, fixed in Kryofix and embedded in Histowax. Transverse sections of 6 microm were cut, immunohistochemically stained for NF 90, and counterstained by Sirius Red. Quantification of nerve fibers in cross sections was performed by using a confocal laser scanning microscope (CLSM), and the images were stored digitally. Data analyzing was performed by the Optimas program (5.2). Calculations were done with Microsoft Excel. The total number of axons, the mean axon diameter and the percentage axon area/fascicle area were evaluated statistically. This method for morphologic analysis provides automatically complete registration of axons and so different methods of experimental nerve reconstruction can be compared in a fast and reliable way.
Collapse
Affiliation(s)
- G C Heijke
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
194
|
Fansa H, Keilhoff G, Wolf G, Schneider W, Gold BG. Tissue Engineering of Peripheral Nerves: A Comparison of Venous and Acellular Muscle Grafts with Cultured Schwann Cells. Plast Reconstr Surg 2001; 107:495-496. [PMID: 11242364 DOI: 10.1097/00006534-200102000-00027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
195
|
Gold BG. Neuroimmunophilin ligands: evaluation of their therapeutic potential for the treatment of neurological disorders. Expert Opin Investig Drugs 2000; 9:2331-42. [PMID: 11060810 DOI: 10.1517/13543784.9.10.2331] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuroimmunophilin ligands are a class of compounds that hold great promise for the treatment of nerve injuries and neurological disease. In contrast to neurotrophins (e.g., nerve growth factor), these compounds readily cross the blood-brain barrier, being orally effective in a variety of animal models of ischaemia, traumatic nerve injury and human neurodegenerative disorders. A further distinction is that neuroimmunophilin ligands act via unique receptors that are unrelated to the classical neurotrophic receptors (e.g., trk), making it unlikely that clinical trials will encounter the same difficulties found with the neurotrophins. Another advantage is that two neuroimmunophilin ligands (cyclosporin A and FK-506) have already been used in humans (as immunosuppressant drugs). Whereas both cyclosporin A and FK-506 demonstrate neuroprotective actions, only FK-506 and its derivatives have been clearly shown to exhibit significant neuroregenerative activity. Accordingly, the neuroprotective and neuroregenerative properties seem to arise via different mechanisms. Furthermore, the neuroregenerative property does not involve calcineurin inhibition (essential for immunosuppression). This is important since most of the limiting side effects produced by these drugs arise via calcineurin inhibition. A major breakthrough for the development of this class of compounds for the treatment of human neurological disorders was the ability to separate the neuroregenerative property of FK-506 from its immunosuppressant action via the development of non-immunosuppressant (non-calcineurin inhibiting) derivatives. Further studies revealed that different receptor subtypes, or FK-506-binding proteins (FKBPs), mediate immunosuppression and nerve regeneration (FKBP-12 and FKBP-52, respectively, the latter being a component of steroid receptor complexes). Thus, steroid receptor chaperone proteins represent novel targets for future drug development of novel classes of compounds for the treatment of a variety of human neurological disorders, including traumatic injury (e.g., peripheral nerve and spinal cord), chemical exposure (e.g., vinca alkaloids, Taxol) and neurodegenerative disease (e.g. , diabetic neuropathy and Parkinson's disease).
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology (CROET) and the Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon, 97201-3098, USA.
| |
Collapse
|