151
|
Wei L, Salahura G, Boncompagni S, Kasischke KA, Protasi F, Sheu SS, Dirksen RT. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. FASEB J 2011; 25:3068-78. [PMID: 21646399 DOI: 10.1096/fj.11-187252] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitochondrial superoxide flashes (mSOFs) are stochastic events of quantal mitochondrial superoxide generation. Here, we used flexor digitorum brevis muscle fibers from transgenic mice with muscle-specific expression of a novel mitochondrial-targeted superoxide biosensor (mt-cpYFP) to characterize mSOF activity in skeletal muscle at rest, following intense activity, and under pathological conditions. Results demonstrate that mSOF activity in muscle depended on electron transport chain and adenine nucleotide translocase functionality, but it was independent of cyclophilin-D-mediated mitochondrial permeability transition pore activity. The diverse spatial dimensions of individual mSOF events were found to reflect a complex underlying morphology of the mitochondrial network, as examined by electron microscopy. Muscle activity regulated mSOF activity in a biphasic manner. Specifically, mSOF frequency was significantly increased following brief tetanic stimulation (18.1 ± 1.6 to 22.3 ± 2.0 flashes/1000 μm²·100 s before and after 5 tetani) and markedly decreased (to 7.7 ± 1.6 flashes/1000 μm²·100 s) following prolonged tetanic stimulation (40 tetani). A significant temperature-dependent increase in mSOF frequency (11.9 ± 0.8 and 19.8 ± 2.6 flashes/1000 μm²·100 s at 23°C and 37°C) was observed in fibers from RYR1(Y522S/WT) mice, a mouse model of malignant hyperthermia and heat-induced hypermetabolism. Together, these results demonstrate that mSOF activity is a highly sensitive biomarker of mitochondrial respiration and the cellular metabolic state of muscle during physiological activity and pathological oxidative stress
Collapse
Affiliation(s)
- Lan Wei
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
152
|
Mayr M, May D, Gordon O, Madhu B, Gilon D, Yin X, Xing Q, Drozdov I, Ainali C, Tsoka S, Xu Q, Griffiths J, Horrevoets A, Keshet E. Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. J Mol Cell Cardiol 2011; 50:982-90. [PMID: 21354174 PMCID: PMC3107937 DOI: 10.1016/j.yjmcc.2011.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/31/2011] [Accepted: 02/14/2011] [Indexed: 11/18/2022]
Abstract
A transgenic mouse model for conditional induction of long-term hibernation via myocardium-specific expression of a VEGF-sequestering soluble receptor allowed the dissection of the hibernation process into an initiation and a maintenance phase. The hypoxic initiation phase was characterized by peak levels of K(ATP) channel and glucose transporter 1 (GLUT1) expression. Glibenclamide, an inhibitor of K(ATP) channels, blocked GLUT1 induction. In the maintenance phase, tissue hypoxia and GLUT1 expression were reduced. Thus, we employed a combined "-omics" approach to resolve this cardioprotective adaptation process. Unguided bioinformatics analysis on the transcriptomic, proteomic and metabolomic datasets confirmed that anaerobic glycolysis was affected and that the observed enzymatic changes in cardiac metabolism were directly linked to hypoxia-inducible factor (HIF)-1 activation. Although metabolite concentrations were kept relatively constant, the combination of the proteomic and transcriptomic dataset improved the statistical confidence of the pathway analysis by 2 orders of magnitude. Importantly, proteomics revealed a reduced phosphorylation state of myosin light chain 2 and cardiac troponin I within the contractile apparatus of hibernating hearts in the absence of changes in protein abundance. Our study demonstrates how combining different "-omics" datasets aids in the identification of key biological pathways: chronic hypoxia resulted in a pronounced adaptive response at the transcript and the protein level to keep metabolite levels steady. This preservation of metabolic homeostasis is likely to contribute to the long-term survival of the hibernating myocardium.
Collapse
Affiliation(s)
- Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Cardiac metabolism is finely tuned, and disruption of myocardial bioenergetics can be clinically devastating. Many cardiomyopathies that present early in life are due to disruption of the maturation of these metabolic pathways. However, this bioenergetic maturation begins well before birth, when the embryonic heart is first beginning to beat, and continues into the mature animal. Thus, the changes in energy production seen after birth are actually part of a continuum that coincides with the structural and functional changes that occur as the cardiac myocyte differentiates and the heart undergoes morphogenesis. Therefore, although bioenergetics and mitochondrial biology have not been studied in great detail in the developing heart, bioenergetic maturation should be considered an important component of normal myocyte differentiation.Although events occurring after birth will be discussed, this review will focus on the changes in bioenergetics and mitochondrial biology that coincide with myocyte differentiation and cardiac morphogenesis. The relationship of these changes to the etiology and presentation of cardiomyopathies will be used as a starting point for this discussion. Then, after reviewing cardiac development and mitochondrial biology, the published data on bioenergetics and mitochondrial structure and function in the developing heart will be presented. Finally, the case will be made that mitochondria may be critical regulators of cardiac myocyte differentiation and cardiac development.
Collapse
|
154
|
Zingman LV, Zhu Z, Sierra A, Stepniak E, Burnett CML, Maksymov G, Anderson ME, Coetzee WA, Hodgson-Zingman DM. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. J Mol Cell Cardiol 2011; 51:72-81. [PMID: 21439969 DOI: 10.1016/j.yjmcc.2011.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/19/2011] [Accepted: 03/14/2011] [Indexed: 12/25/2022]
Abstract
Physical activity is one of the most important determinants of cardiac function. The ability of the heart to increase delivery of oxygen and metabolic fuels relies on an array of adaptive responses necessary to match bodily demand while avoiding exhaustion of cardiac resources. The ATP-sensitive potassium (K(ATP)) channel has the unique ability to adjust cardiac membrane excitability in accordance with ATP and ADP levels, and up-regulation of its expression that occurs in response to exercise could represent a critical element of this adaption. However, the mechanism by which K(ATP) channel expression changes result in a beneficial effect on cardiac excitability and function remains to be established. Here, we demonstrate that an exercise-induced rise in K(ATP) channel expression enhanced the rate and magnitude of action potential shortening in response to heart rate acceleration. This adaptation in membrane excitability promoted significant reduction in cardiac energy consumption under escalating workloads. Genetic disruption of normal K(ATP) channel pore function abolished the exercise-related changes in action potential duration adjustment and caused increased cardiac energy consumption. Thus, an expression-driven enhancement in the K(ATP) channel-dependent membrane response to alterations in cardiac workload represents a previously unrecognized mechanism for adaptation to physical activity and a potential target for cardioprotection.
Collapse
Affiliation(s)
- Leonid V Zingman
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Cao XH, Zhao SS, Liu DY, Wang Z, Niu LL, Hou LH, Wang CL. ROS-Ca2+ is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis. Chem Biol Interact 2011; 190:16-27. [DOI: 10.1016/j.cbi.2011.01.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/06/2010] [Accepted: 01/10/2011] [Indexed: 11/26/2022]
|
156
|
Hoyer K, Song Y, Wang D, Phan D, Balschi J, Ingwall JS, Belardinelli L, Shryock JC. Reducing the late sodium current improves cardiac function during sodium pump inhibition by ouabain. J Pharmacol Exp Ther 2011; 337:513-23. [PMID: 21325441 DOI: 10.1124/jpet.110.176776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inhibition by cardiac glycosides of Na(+), K(+)-ATPase reduces sodium efflux from myocytes and may lead to Na(+) and Ca(2+) overload and detrimental effects on mechanical function, energy metabolism, and electrical activity. We hypothesized that inhibition of sodium persistent inward current (late I(Na)) would reduce ouabain's effect to cause cellular Na(+) loading and its detrimental metabolic (decrease of ATP) and functional (arrhythmias, contracture) effects. Therefore, we determined effects of ouabain on concentrations of intracellular sodium (Na(+)(i)) and high-energy phosphates using (23)Na and (31)P NMR, the amplitude of late I(Na) using the whole-cell patch-clamp technique, and contractility and electrical activity of guinea pig isolated hearts, papillary muscles, and ventricular myocytes in the absence and presence of inhibitors of late I(Na). Ouabain (1-1.3 μM) increased Na(+)(i) and late I(Na) of guinea pig isolated hearts and myocytes by 3.7- and 4.2-fold, respectively. The late I(Na) inhibitors ranolazine and tetrodotoxin significantly reduced ouabain-stimulated increases in Na(+)(i) and late I(Na). Reductions of ATP and phosphocreatine contents and increased diastolic tension in ouabain-treated hearts were also markedly attenuated by ranolazine. Furthermore, the ouabain-induced increase of late I(Na) was also attenuated by the Ca(2+)-calmodulin-dependent kinase I inhibitors KN-93 [N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide] and autocamide-2 related inhibitory peptide, but not by KN-92 [2-[N-(4'-methoxybenzenesulfonyl)]amino-N-(4'-chlorophenyl)-2-propenyl-N-methylbenzylamine phosphate]. We conclude that ouabain-induced Na(+) and Ca(2+) overload is ameliorated by the inhibition of late I(Na).
Collapse
Affiliation(s)
- Kirsten Hoyer
- Department of Biology, Gilead Sciences, Inc., Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
System analysis of the effect of various drugs on cardiac contraction energetics. Biochem Soc Trans 2011; 38:1319-21. [PMID: 20863306 DOI: 10.1042/bst0381319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We used MoCA (Modular Control and Regulation Analysis) to demonstrate in intact beating rat heart that physiological activation of contraction by adrenaline involves the almost perfect parallel activation of both mitochondria and myofibrils by intracellular Ca(2+). This explains the perfect homoeostasis of the energetic intermediate PCr (phosphocreatine) in heart. When using drugs specifically stimulating either supply or demand activities, MoCA helped reveal the very specific mode of regulation of heart contraction energetics. Only activation of myofibrils activity (demand), either by increasing intracellular Ca(2+) concentration or myofibrils sensitivity to Ca(2+), triggers activation of contractile activity. In contrast, the activation of mitochondrial activity (supply) has strictly no effect on contraction, either directly or through PCr changes (intermediate).
Collapse
|
158
|
Nakipova OV, Averin AS, Zakharova NM, Uchitel ML, Grishina EV, Bogdanova LA, Maevsky EI. The role of energy substrates in the regulation of force-frequency relationship in the rat myocardium: the influence of ambiocor. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910060229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
159
|
Gunter TE, Gerstner B, Lester T, Wojtovich AP, Malecki J, Swarts SG, Brookes PS, Gavin CE, Gunter KK. An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol 2010; 249:65-75. [PMID: 20800605 DOI: 10.1016/j.taap.2010.08.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
Abstract
Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays--a measure of ATP production--under rapid phosphorylation conditions to explore sites of Mn(2+) inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which do not affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of the components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn(2+) inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn(2+) inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F₁F₀ ATP synthase. In mitochondria fueled by either succinate or glutamate+malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn(2+) inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase.
Collapse
Affiliation(s)
- Thomas E Gunter
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. J Mol Cell Cardiol 2010; 49:875-85. [PMID: 20688078 DOI: 10.1016/j.yjmcc.2010.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/23/2010] [Indexed: 12/22/2022]
Abstract
Transient exposure of cardiac myocytes to hydrogen peroxide (H(2)O(2)) results in further production of superoxide by the mitochondria as a result of increased influx of calcium through the L-type Ca(2+) channel and increased calcium uptake by the mitochondria. The response persists as a result of positive feedback on the channel and induces alterations in protein synthesis and cell size consistent with the development of myocyte hypertrophy. The aim of this study was to investigate the site of increased superoxide production within the mitochondria. Exposure of myocytes to 30 μM H(2)O(2) (5 min) then 10 U/mL catalase (5 min) increased dihydroethidium (DHE) signal by 58.7 ± 12.0% (n=4) compared to myocytes exposed to 0 μM H(2)O(2) for 5 min followed by 10 U/mL catalase (n=9). Complex I inhibitors DPI (n=5) and rotenone (n=7) attenuated the increase in DHE signal due to H(2)O(2). Complex III inhibitors myxothiazol (n=16) and stigmatellin (n=5) also attenuated the increase in DHE signal due to H(2)O(2). However, antimycin A (inhibitor of Q(i) site of complex III) had no effect. We "isolated" complex III in the intact cell by applying succinate in the patch pipette and exposing the cell to rotenone and antimycin A. Myxothiazol and TCA cycle inhibitors α-keto-β-methyl-n-valeric acid (KMV) and 4-hydroxynonenal (4-HNE) completely attenuated the increase in DHE signal. Direct activation of the L-type Ca(2+) channel by voltage-step mimicked the increase in DHE signal after transient exposure to H(2)O(2) (47.6 ± 17.8%, n=6) while intracellular application of catalase attenuated the increase in DHE signal due to H(2)O(2) (n=6). We propose that elevated superoxide production after transient exposure to H(2)O(2) occurs at the Q(o) superoxide generation site of complex III in cardiac myocytes and that an increase in TCA cycle activity plays a significant role in mediating the response.
Collapse
|
161
|
Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P. S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res 2010; 3:525-37. [PMID: 20645037 PMCID: PMC2933808 DOI: 10.1007/s12265-010-9211-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/02/2010] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca(2+) binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interact with both the sarcoplasmic reticulum ATPase (SERCA2a) and the ryanodine receptor 2 (RyR2), resulting in substantially improved Ca(2+) handling and contractile performance. Additionally, S100A1 has been described to target the cardiac sarcomere and mitochondria, leading to reduced pre-contractile passive tension as well as enhanced oxidative energy generation. In endothelial cells, molecular analyses revealed a stimulatory effect of S100A1 on endothelial NO production by increasing endothelial nitric oxide synthase activity. Emphasizing the pathophysiological relevance of S100A1, myocardial infarction in S100A1 knockout mice resulted in accelerated transition towards heart failure and excessive mortality in comparison with wild-type controls. Mice lacking S100A1 furthermore displayed significantly elevated blood pressure values with abrogated responsiveness to bradykinin. On the other hand, numerous studies in small and large animal heart failure models showed that S100A1 overexpression results in reversed maladaptive myocardial remodeling, long-term rescue of contractile performance, and superior survival in response to myocardial infarction, indicating the potential of S100A1-based therapeutic interventions. In summary, elaborate basic and translational research established S100A1 as a multifaceted therapeutic target in cardiovascular disease, providing a promising novel therapeutic strategy to future cardiologists.
Collapse
Affiliation(s)
- David Rohde
- Laboratory for Molecular and Translational Cardiology, Division of Cardiology, Department of Internal Medicine III, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
162
|
Abstract
Diabetes mellitus increases the risk of developing cardiovascular diseases such as coronary artery disease and heart failure. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that derangements in cardiac energy metabolism play an important role. In particular, abnormalities in cardiomyocyte mitochondrial energetics appear to contribute substantially to the development of cardiac dysfunction in diabetes. This review will summarize these abnormalities in mitochondrial function and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Heiko Bugger
- Department of Cardiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
163
|
Seenarain V, Viola HM, Ravenscroft G, Casey TM, Lipscombe RJ, Ingley E, Laing NG, Bringans SD, Hool LC. Evidence of altered guinea pig ventricular cardiomyocyte protein expression and growth in response to a 5 min in vitro exposure to H(2)O(2). J Proteome Res 2010; 9:1985-94. [PMID: 20131912 DOI: 10.1021/pr9011393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress and alterations in cellular calcium homeostasis are associated with the development of cardiac hypertrophy. However, the early cellular mechanisms for the development of hypertrophy are not well understood. Guinea pig ventricular myocytes were exposed to 30 microM H(2)O(2) for 5 min followed by 10 units/mL catalase to degrade the H(2)O(2), and effects on protein expression were examined 48 h later. Transient exposure to H(2)O(2) increased the level of protein synthesis more than 2-fold, assessed as incorporation of [(3)H]leucine (n = 12; p < 0.05). Cell size was increased slightly, but there was no evidence of major cytoskeletal disorganization assessed using fluorescence microscopy. Changes in the expression of individual proteins were assessed using iTRAQ protein labeling followed by mass spectrometry analysis (LC-MALDI-MSMS); 669 proteins were identified, and transient exposure of myocytes to H(2)O(2) altered expression of 35 proteins that were predominantly mitochondrial in origin, including TCA cycle enzymes and oxidative phosphorylation proteins. Consistent with changes in the expression of mitochondrial proteins, transient exposure of myocytes to H(2)O(2) increased the magnitude of the mitochondrial NADH signal 10.5 +/- 2.3% compared to cells exposed to 0 microM H(2)O(2) for 5 min followed by 10 units/mL catalase (n = 8; p < 0.05). In addition, metabolic activity was significantly increased in the myocytes 48 h after transient exposure to H(2)O(2), assessed as formation of formazan from tetrazolium salt. We conclude that a 5 min exposure of ventricular myocytes to 30 microM H(2)O(2) is sufficient to significantly alter protein expression, consistent with the development of hypertrophy in the myocytes. Changes in mitochondrial protein expression and function appear to be early sequelae in the development of hypertrophy.
Collapse
Affiliation(s)
- Vidya Seenarain
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Western Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Deschodt-Arsac V, Calmettes G, Raffard G, Massot P, Franconi JM, Pollesello P, Diolez P. Absence of mitochondrial activation during levosimendan inotropic action in perfused paced guinea pig hearts as demonstrated by modular control analysis. Am J Physiol Regul Integr Comp Physiol 2010; 299:R786-92. [PMID: 20592177 DOI: 10.1152/ajpregu.00184.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levosimendan is a calcium sensitizer developed for the treatment of heart failure. It increases contractile force by enhancing the sensitivity of myofilaments to calcium. Besides this sensitizing effect, the drug has also been reported to show some inhibitory action on phosphodiesterase 3 (PDE3). The inotropic effects of levosimendan have been studied on guinea pig paced perfused hearts by using modular control analysis (MoCA) (Diolez P, Deschodt-Arsac V, Raffard G, Simon C, Santos PD, Thiaudiere E, Arsac L, Franconi JM. Am J Physiol Regul Integr Comp Physiol 293: R13-R19, 2007.), an integrative approach of heart energetics using noninvasive (31)P NMR. The aim was to evaluate quantitatively the respective effects of this drug on energy supply and demand modules. Under our experimental conditions, 0.7 muM levosimendan induced a 45% increase in paced heart output associated with a 7% decrease in phosphocreatine and a negligible increase in oxygen consumption. Because MoCA allows in situ study of the internal regulations in intact beating heart energetics, it was applied to describe quantitatively by which routes levosimendan exerts its inotropic action. MoCA demonstrated the absence of any significant effect of the drug on the supply module, which is responsible for the lower increase in oxygen consumption, compared with epinephrine, which increases the ratio between myocardial oxygen consumption and cardiac contraction. This result evidences that, under our conditions, a possible effect of levosimendan on PDE3 activity and/or intracellular calcium remains very low on mitochondrial activity and insignificant on integrated cardiac energetics. Thus, levosimendan inotropic effect on guinea pig heart depends almost entirely on the calcium-sensitizing properties leading to myofilament activation and the concomitant activation of energy supply by the decrease in PCr, therefore improving energetic efficiency of contraction.
Collapse
Affiliation(s)
- Véronique Deschodt-Arsac
- Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
165
|
Dobrin JS, Lebeche D. Diabetic cardiomyopathy: signaling defects and therapeutic approaches. Expert Rev Cardiovasc Ther 2010; 8:373-91. [PMID: 20222816 DOI: 10.1586/erc.10.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is the world's fastest growing disease with high morbidity and mortality rates, predominantly as a result of heart failure. A significant number of diabetic patients exhibit diabetic cardiomyopathy; that is, left ventricular dysfunction independent of coronary artery disease or hypertension. The pathogenesis of diabetic cardiomyopathy is complex, and is characterized by dysregulated lipid metabolism, insulin resistance, mitochondrial dysfunction and disturbances in adipokine secretion and signaling. These abnormalities lead to impaired calcium homeostasis, ultimately resulting in lusitropic and inotropic defects. This article discusses the impact of these hallmark factors in diabetic cardiomyopathy, and concludes with a survey of available and emerging therapeutic modalities.
Collapse
Affiliation(s)
- Joseph S Dobrin
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
166
|
Abstract
In the myocardial cell, a series of enzyme-catalyzed reactions results in the efficient transfer of chemical energy into mechanical energy. The goals of this article are to emphasize the ability of noninvasive imaging techniques using isotopic tracers to detect the metabolic footprints of heart disease and to propose that cardiac metabolic imaging is more than a useful adjunct to current myocardial perfusion imaging studies. A strength of metabolic imaging is in the assessment of regional myocardial differences in metabolic activity, probing for 1 substrate at a time. We hope that new and developing methods of cardiac imaging will lead to the earlier detection of heart disease and improve the management and quality of life for patients afflicted with ischemic and nonischemic heart muscle disorders.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| |
Collapse
|
167
|
Guzun R, Saks V. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo. Int J Mol Sci 2010; 11:982-1019. [PMID: 20479996 PMCID: PMC2869234 DOI: 10.3390/ijms11030982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 01/21/2023] Open
Abstract
The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.
Collapse
Affiliation(s)
- Rita Guzun
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E221, Joseph Fourier University, 2280 Rue de la Piscine BP53X 38041, Grenoble Cedex 9, France; E-Mail:
| | - Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E221, Joseph Fourier University, 2280 Rue de la Piscine BP53X 38041, Grenoble Cedex 9, France; E-Mail:
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +33-476-635-627; Fax: +33-476-514-218
| |
Collapse
|
168
|
Yaniv Y, Juhaszova M, Nuss HB, Wang S, Zorov DB, Lakatta EG, Sollott SJ. Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives. Ann N Y Acad Sci 2010; 1188:133-42. [PMID: 20201896 PMCID: PMC2943203 DOI: 10.1111/j.1749-6632.2009.05093.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the heart rapidly adapts cardiac output to match the body's circulatory demands, the regulatory mechanisms ensuring that sufficient ATP is available to perform the required cardiac work are not completely understood. Two mechanisms have been suggested to serve as key regulators: (1) ADP and Pi concentrations--ATP utilization/hydrolysis in the cytosol increases ADP and Pi fluxes to mitochondria and hence the amount of available substrates for ATP production increases; and (2) Ca2+ concentration--ATP utilization/hydrolysis is coupled to changes in free cytosolic calcium and mitochondrial calcium, the latter controlling Ca2+-dependent activation of mitochondrial enzymes taking part in ATP production. Here we discuss the evolving perspectives of each of the putative regulatory mechanisms and the precise molecular targets (dehydrogenase enzymes, ATP synthase) based on existing experimental and theoretical evidence. The data synthesis can generate novel hypotheses and experimental designs to solve the ongoing enigma of energy supply-demand matching in the heart.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:678-97. [PMID: 20096261 DOI: 10.1016/j.bbabio.2010.01.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 12/13/2022]
Abstract
The aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells. In cardiomyocytes mitochondria are arranged very regularly, and show rapid configuration changes of inner membrane but no fusion or fission, diffusion of ADP and ATP is restricted mostly at the level of mitochondrial outer membrane due to an interaction of heterodimeric tubulin with voltage dependent anion channel, VDAC. VDAC with associated tubulin forms a supercomplex, Mitochondrial Interactosome, with mitochondrial creatine kinase, MtCK, which is structurally and functionally coupled to ATP synthasome. Due to selectively limited permeability of VDAC for adenine nucleotides, mitochondrial respiration rate depends almost linearly upon the changes of cytoplasmic ADP concentration in their physiological range. Functional coupling of MtCK with ATP synthasome amplifies this signal by recycling adenine nucleotides in mitochondria coupled to effective phosphocreatine synthesis. In cancerous HL-1 cells this complex is significantly modified: tubulin is replaced by hexokinase and MtCK is lacking, resulting in direct utilization of mitochondrial ATP for glycolytic lactate production and in this way contributing in the mechanism of the Warburg effect. Systemic analysis of changes in the integrated system of energy metabolism is also helpful for better understanding of pathogenesis of many other diseases.
Collapse
|
170
|
Gunter TE, Sheu SS. Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1291-308. [PMID: 19161975 PMCID: PMC2730425 DOI: 10.1016/j.bbabio.2008.12.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 02/07/2023]
Abstract
Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca(2+)](m) also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca(2+)](m) can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca(2+) is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca(2+) pulses or transients. Mitochondria can also sequester Ca(2+) from these transients so as to modify the shape of Ca(2+) signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca(2+) transport mechanisms and the PTP. The characteristics of these mechanisms of Ca(2+) transport and a discussion of how they might function are described in this paper.
Collapse
Affiliation(s)
- Thomas E Gunter
- Department of Biochemistry and Biophysics and Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | |
Collapse
|
171
|
Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1402-15. [PMID: 19168026 DOI: 10.1016/j.bbabio.2008.12.017] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 01/17/2023]
Abstract
Like Dr. Jeckyll and Mr. Hyde, mitochondria possess two distinct persona. Under normal physiological conditions they synthesise ATP to meet the energy needs of the beating heart. Here calcium acts as a signal to balance the rate of ATP production with ATP demand. However, when the heart is overloaded with calcium, especially when this is accompanied by oxidative stress, mitochondria embrace their darker side, and induce necrotic cell death of the myocytes. This happens acutely in reperfusion injury and chronically in congestive heart failure. Here calcium overload, adenine nucleotide depletion and oxidative stress combine forces to induce the opening of a non-specific pore in the mitochondrial membrane, known as the mitochondrial permeability transition pore (mPTP). The molecular nature of the mPTP remains controversial but current evidence implicates a matrix protein, cyclophilin-D (CyP-D) and two inner membrane proteins, the adenine nucleotide translocase (ANT) and the phosphate carrier (PiC). Inhibition of mPTP opening can be achieved with inhibitors of each component, but targeting CyP-D with cyclosporin A (CsA) and its non-immunosuppressive analogues is the best described. In animal models, inhibition of mPTP opening by either CsA or genetic ablation of CyP-D provides strong protection from both reperfusion injury and congestive heart failure. This confirms the mPTP as a promising drug target in human cardiovascular disease. Indeed, the first clinical trials have shown CsA treatment improves recovery after treatment of a coronary thrombosis with angioplasty.
Collapse
Affiliation(s)
- Andrew P Halestrap
- Department of Biochemistry and Bristol Heart Institute, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
172
|
Boja ES, Phillips D, French SA, Harris RA, Balaban RS. Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 2009; 8:4665-75. [PMID: 19694452 PMCID: PMC2768122 DOI: 10.1021/pr900387b] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With the use of iTRAQ labeling and mass spectrometry on an LTQ-Orbitrap with HCD capability, we assessed relative changes in protein phosphorylation in the mitochondria upon physiological perturbation. As a reference reaction, we monitored the well-characterized regulation of pyruvate dehydrogenase (PDH) activity via phosphorylation/dephosphorylation by pyruvate dehydrogenase kinase/pyruvate dehydrogenase phosphatase in response to dichloroacetate, de-energization and Ca2+. Relative quantification of phosphopeptides of PDH-E1alpha subunit from porcine heart revealed dephosphorylation at three serine sites (Ser231, Ser292 and Ser299). Dephosphorylation at Ser292 (i.e., the inhibitory site) with DCA correlated with an activation of PDH activity as previously reported, consistent with our de-energization data. Calcium also dephosphorylated (i.e., activated) PDH, thus, confirming calcium activation of PDP. With this approach, we successfully monitored other phosphorylation sites of mitochondrial proteins including adenine nucleotide translocase, malate dehydrogenase and mitochondrial creatine kinase. Among them, four proteins exhibited phosphorylation changes with these physiological stimuli: (1) BCKDH-E1alpha subunit increased phosphorylation at Ser337 with DCA and de-energization; (2) apoptosis-inducing factor phosphorylation was elevated at Ser345 with calcium; (3) ATP synthase F1 complex alpha subunit and (4) mitofilin dephosphorylated at Ser65 and Ser264 upon de-energization. This screening validated the iTRAQ/HCD technology as a method for functional quantitation of mitochondrial protein phosphorylation as well as providing insight into the regulation of mitochondria via phosphorylation.
Collapse
Affiliation(s)
- Emily S. Boja
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Darci Phillips
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Stephanie A. French
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202-2111
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892
| |
Collapse
|
173
|
O'Donnell JM, Pound K, Xu X, Lewandowski ED. SERCA1 expression enhances the metabolic efficiency of improved contractility in post-ischemic heart. J Mol Cell Cardiol 2009; 47:614-21. [PMID: 19744494 DOI: 10.1016/j.yjmcc.2009.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 08/12/2009] [Accepted: 08/27/2009] [Indexed: 11/27/2022]
Abstract
Myocardial stunning is characterized by a metabolic uncoupling from function as mitochondrial tricarboxylic acid (TCA) cycle and oxygen consumption remain normal despite reduced contractility. Overexpression of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1) in hearts has recently been reported to reduce dysfunction at reperfusion. In this study we determine whether the metabolic coupling to function improves with SERCA treatment. PBS (control) or adenovirus carrying the cDNA for SERCA1 was delivered via coronary perfusion in vivo to Sprague-Dawley rat hearts. Three days following gene transfer, isolated hearts were perfused with 0.4 mM [2,4,6,8,10,12,14,16-13C8] palmitate and 5 mM glucose, and subjected to 15-min ischemia followed by 40-min reperfusion. Consistent with myocardial stunning, rate pressure product (RPP) and left ventricular developed pressure (LVDP) were depressed 30-40% (p<0.05) in the PBS group. With SERCA1 overexpression, dP/dt was 20% greater than controls (p<0.05), and LVDP and RPP recovered to pre-ischemic values. From dynamic 13C NMR, TCA cycle flux at reperfusion was similar to pre-ischemic values for both groups. Therefore, the efficiency of coupling between cardiac work and TCA cycle flux was restored with SERCA1 treatment. Oxidative efficiency was also enhanced with SERCA1 as cytosolic NADH transport into the mitochondria was significantly greater compared to the PBS group. In addition, the phosphocreatine to ATP ratio (PCr/ATP) was not compromised with SERCA1 expression, despite enhanced function, and depressed fatty acid oxidation at 40-min reperfusion in the PBS group was not reversed with SERCA1. These data demonstrate that metabolic coupling and NADH transport are significantly improved with SERCA1 treatment.
Collapse
Affiliation(s)
- J Michael O'Donnell
- Program in Integrative Cardiac Metabolism, Cardiovascular Research Center, Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue (M/C 901), Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
174
|
Jeneson JAL, Schmitz JPJ, van den Broek NMA, van Riel NAW, Hilbers PAJ, Nicolay K, Prompers JJ. Magnitude and control of mitochondrial sensitivity to ADP. Am J Physiol Endocrinol Metab 2009; 297:E774-84. [PMID: 19622784 PMCID: PMC3833997 DOI: 10.1152/ajpendo.00370.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transduction function for ADP stimulation of mitochondrial ATP synthesis in skeletal muscle was reconstructed in vivo and in silico to investigate the magnitude and origin of mitochondrial sensitivity to cytoplasmic ADP concentration changes. Dynamic in vivo measurements of human leg muscle phosphocreatine (PCr) content during metabolic recovery from contractions were performed by (31)P-NMR spectroscopy. The cytoplasmic ADP concentration ([ADP]) and rate of oxidative ATP synthesis (Jp) at each time point were calculated from creatine kinase equilibrium and the derivative of a monoexponential fit to the PCr recovery data, respectively. Reconstructed [ADP]-Jp relations for individual muscles containing more than 100 data points were kinetically characterized by nonlinear curve fitting yielding an apparent kinetic order and ADP affinity of 1.9 +/- 0.2 and 0.022 +/- 0.003 mM, respectively (means +/- SD; n = 6). Next, in silico [ADP]-Jp relations for skeletal muscle were generated using a computational model of muscle oxidative ATP metabolism whereby model parameters corresponding to mitochondrial enzymes were randomly changed by 50-150% to determine control of mitochondrial ADP sensitivity. The multiparametric sensitivity analysis showed that mitochondrial ADP ultrasensitivity is an emergent property of the integrated mitochondrial enzyme network controlled primarily by kinetic properties of the adenine nucleotide translocator.
Collapse
Affiliation(s)
- Jeroen A L Jeneson
- Biomedical NMR, Dept. of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
175
|
Scott GR, Richards JG, Milsom WK. Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1066-74. [PMID: 19657102 DOI: 10.1152/ajpregu.00241.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bar-headed geese fly at altitudes of up to 9,000 m on their biannual migration over the Himalayas. To determine whether the flight muscle of this species has evolved to facilitate exercise at high altitude, we compared the respiratory properties of permeabilized muscle fibers from bar-headed geese and several low-altitude waterfowl species. Respiratory capacities were assessed for maximal ADP stimulation (with single or multiple inputs to the electron transport system) and cytochrome oxidase excess capacity (with an exogenous electron donor) and were generally 20-40% higher in bar-headed geese when creatine was present. When respiration rates were extrapolated to the entire pectoral muscle mass, bar-headed geese had a higher mass-specific aerobic capacity. This may represent a surplus capacity that counteracts the depressive effects of hypoxia on mitochondrial respiration. However, there were no differences in activity for mitochondrial or glycolytic enzymes measured in homogenized muscle. The [ADP] leading to half-maximal stimulation (K(m)) was approximately twofold higher in bar-headed geese (10 vs. 4-6 microM), and, while creatine reduced K(m) by 30% in this species, it had no effect on K(m) in low-altitude birds. Mitochondrial creatine kinase may therefore contribute to the regulation of oxidative phosphorylation in flight muscle of bar-headed geese, which could promote efficient coupling of ATP supply and demand. However, this was not based on differences in creatine kinase activity in isolated mitochondria or homogenized muscle. The unique differences in bar-headed geese existed without prior exercise or hypoxia exposure and were not a result of phylogenetic history, and may, therefore, be important evolutionary specializations for high-altitude flight.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
176
|
Abstract
1. Calcium is necessary for myocardial function, including contraction and maintenance of cardiac output. Calcium is also necessary for myocardial energetics and production of ATP by mitochondria, but the mechanisms for calcium regulation by mitochondria are still not fully resolved. 2. The cytoskeleton plays an important role in maintaining a cell's integrity. It is now recognized that cytoskeletal proteins can also assist in the transmission of signals from the plasma membrane to intracellular organelles. Cytoskeletal proteins can regulate the function of the L-type Ca(2+) channel and alter intracellular calcium homeostasis. 3. Recent evidence suggests that calcium influx through the L-type Ca(2+) channel is sufficient to alter a number of mitochondrial functional parameters, including superoxide production, NADH production and metabolic activity, assessed as the formation of formazan from tetrazolium salt. This occurs in a calcium-dependent manner. 4. Activation of the L-type Ca(2+) channel also alters mitochondrial membrane potential in a calcium-independent manner and this is assisted by movement of the auxiliary beta(2)-subunit through F-actin filaments. 5. Because the L-type Ca(2+) channel is the initiator of contraction, a functional coupling between the channels and mitochondria may assist in meeting myocardial energy demand on a beat-to-beat basis.
Collapse
Affiliation(s)
- Helena M Viola
- Cardiovascular Electrophysiology Laboratory, School of Biomedical Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Australia
| | | |
Collapse
|
177
|
Kathiresan T, Harvey M, Orchard S, Sakai Y, Sokolowski B. A protein interaction network for the large conductance Ca(2+)-activated K(+) channel in the mouse cochlea. Mol Cell Proteomics 2009; 8:1972-87. [PMID: 19423573 PMCID: PMC2722780 DOI: 10.1074/mcp.m800495-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 05/06/2009] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca(2+)-activated K(+) or BK channel has a role in sensory/neuronal excitation, intracellular signaling, and metabolism. In the non-mammalian cochlea, the onset of BK during development correlates with increased hearing sensitivity and underlies frequency tuning in non-mammals, whereas its role is less clear in mammalian hearing. To gain insights into BK function in mammals, coimmunoprecipitation and two-dimensional PAGE, combined with mass spectrometry, were used to reveal 174 putative BKAPs from cytoplasmic and membrane/cytoskeletal fractions of mouse cochlea. Eleven BKAPs were verified using reciprocal coimmunoprecipitation, including annexin, apolipoprotein, calmodulin, hippocalcin, and myelin P0, among others. These proteins were immunocolocalized with BK in sensory and neuronal cells. A bioinformatics approach was used to mine databases to reveal binary partners and the resultant protein network, as well as to determine previous ion channel affiliations, subcellular localization, and cellular processes. The search for binary partners using the IntAct molecular interaction database produced a putative global network of 160 nodes connected with 188 edges that contained 12 major hubs. Additional mining of databases revealed that more than 50% of primary BKAPs had prior affiliations with K(+) and Ca(2+) channels. Although a majority of BKAPs are found in either the cytoplasm or membrane and contribute to cellular processes that primarily involve metabolism (30.5%) and trafficking/scaffolding (23.6%), at least 20% are mitochondrial-related. Among the BKAPs are chaperonins such as calreticulin, GRP78, and HSP60 that, when reduced with siRNAs, alter BKalpha expression in CHO cells. Studies of BKalpha in mitochondria revealed compartmentalization in sensory cells, whereas heterologous expression of a BK-DEC splice variant cloned from cochlea revealed a BK mitochondrial candidate. The studies described herein provide insights into BK-related functions that include not only cell excitation, but also cell signaling and apoptosis, and involve proteins concerned with Ca(2+) regulation, structure, and hearing loss.
Collapse
Affiliation(s)
- Thandavarayan Kathiresan
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| | - Margaret Harvey
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| | - Sandra Orchard
- §European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, CB10 1SD, United Kingdom
| | - Yoshihisa Sakai
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| | - Bernd Sokolowski
- From the ‡Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida 33612 and
| |
Collapse
|
178
|
Dirksen RT. Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle. Appl Physiol Nutr Metab 2009; 34:389-95. [PMID: 19448704 DOI: 10.1139/h09-044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The skeletal muscle contractile machine is fueled by both calcium and ATP. Calcium ions activate the contractile machinery by binding to troponin C and relieving troponin-tropomyosin inhibition of actinomyosin interaction. ATP binding to myosin during the contractile cycle results in myosin detachment from actin, and energy liberated from subsequent ATP hydrolysis is then used to drive the next contractile cycle. ATP is also used to lower myoplasmic calcium levels during muscle relaxation. Thus, muscle contractility is intimately linked to the proper control of sarcomeric Ca2+ delivery and (or) removal and ATP generation and (or) utilization. In skeletal muscle, the sarcoplasmic reticulum (SR) is the primary regulator of calcium storage, release, and reuptake, while glycolysis and the mitochondria are responsible for cellular ATP production. However, the SR and mitochondrial function in muscle are not independent, as calcium uptake into the mitochondria increases ATP production by stimulating oxidative phosphorylation and mitochondrial ATP production, and production and (or) detoxification of reactive oxygen and nitrogen species (ROS/RNS), in turn, modulates SR calcium release and reuptake. Close spatial Ca2+/ATP/ROS/RNS communication between the SR and mitochondria is facilitated by the structural attachment of mitochondria to the calcium release unit (CRU) by 10 nm of electron-dense tethers. The resultant anchoring of mitochondria to the CRU provides a structural basis for maintaining bidirectional SR-mitochondrial through-space communication during vigorous contraction. This review will consider the degree to which this structural link enables privileged or microdomain communication between the SR and mitochondria in skeletal muscle.
Collapse
Affiliation(s)
- Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
179
|
Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P. S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 2009; 47:445-55. [PMID: 19538970 DOI: 10.1016/j.yjmcc.2009.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 11/26/2022]
Abstract
Calcium (Ca(2+)) signaling plays a major role in a wide range of physiological functions including control and regulation of cardiac and skeletal muscle performance and vascular tone. As all Ca(2+) signals require proteins to relay intracellular Ca(2+) oscillations downstream to different signaling networks, a specific toolkit of Ca(2+)-sensor proteins involving members of the EF-hand S100 Ca(2+) binding protein superfamily maintains the integrity of the Ca(2+) signaling in a variety of cardiac and vascular cells, transmitting the message with great precision and in a temporally and spatially coordinated manner. Indeed, the possibility that S100 proteins might contribute to heart and vascular diseases was first suggested by the discovery of distinctive patterns of S100 expression in healthy and diseased hearts and vasculature from humans and animal heart failure (HF) models. Based on more elaborate genetic studies in mice and strategies to manipulate S100 protein expression in human cardiac, skeletal muscle and vascular cells, it is now apparent that the integrity of distinct S100 protein isoforms in striated muscle and vascular cells such as S100A1, S100A4, S100A6, S100A8/A9 or S100B is a basic requirement for normal cardiovascular and muscular development and function; loss of integrity would naturally lead to profound deregulation of the implicated Ca(2+) signaling systems with detrimental consequences to cardiac, skeletal muscle, and vascular function. The brief debate and discussion here are confined by design to the biological actions and pathophysiological relevance of the EF-hand Ca(2+)-sensor protein S100A1 in the heart, vasculature and skeletal muscle with a particular focus on current translational therapeutic strategies. By virtue of its ability to modulate the activity of numerous key effector proteins that are essentially involved in the control of Ca(2+) and NO homeostasis in cardiac, skeletal muscle and vascular cells, S100A1 has been proven to play a critical role both in cardiac performance, blood pressure regulation and skeletal muscle function. Given that deregulated S100A1 expression in cardiomyocytes and endothelial cells has recently been linked to heart failure and hypertension, it is arguably a molecular target of considerable clinical interest as S100A1 targeted therapies have already been successfully investigated in preclinical translational studies.
Collapse
Affiliation(s)
- Carolin Kraus
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell and Gene Therapy Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Balaban RS. Domestication of the cardiac mitochondrion for energy conversion. J Mol Cell Cardiol 2009; 46:832-41. [PMID: 19265699 PMCID: PMC3177846 DOI: 10.1016/j.yjmcc.2009.02.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
The control of mitochondria energy conversion by cytosolic processes is reviewed. The nature of the cytosolic and mitochondrial potential energy homeostasis over wide ranges of energy utilization is reviewed and the consequences of this homeostasis in the control network are discussed. An analysis of the major candidate cytosolic signaling molecules ADP, Pi and Ca(2+) are reviewed based on the magnitude and source of the cytosolic concentration changes as well as the potential targets of action within the mitochondrial energy conversion system. Based on this analysis, Ca(2+) is the best candidate as a cytosolic signaling molecule for this process based on its ability to act as both a feedforward and feedback indicator of ATP hydrolysis and numerous targets within the matrix to provide a balanced activation of ATP production. These targets include numerous dehydrogenases and the F1-F0-ATPase. Pi is also a good candidate since it is an early signal of a mismatch between cytosolic ATP production and ATP synthesis in the presence of creatine kinase and has multiple targets within oxidative phosphorylation including NADH generation, electron flux in the cytochrome chain and a substrate for the F1-F0-ATPase. The mechanism of the coordinated activation of oxidative phosphorylation by these signaling molecules is discussed in light of the recent discoveries of extensive protein phosphorylation sites and other post-translational modifications. From this review it is clear that the control network associated with the maintenance of the cytosolic potential energy homeostasis is extremely complex with multiple pathways orchestrated to balance the sinks and sources in this system. New tools are needed to image and monitor metabolites within sub-cellular compartments to resolve many of these issues as well as the functional characterization of the numerous matrix post-translational events being discovered along with the enzymatic processes generating and removing these protein modifications.
Collapse
Affiliation(s)
- Robert S Balaban
- Laboratory of Cardiac Energetic, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
181
|
Mitochondrial calcium transport in the heart: Physiological and pathological roles. J Mol Cell Cardiol 2009; 46:789-803. [DOI: 10.1016/j.yjmcc.2009.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
|
182
|
Stowe DF, Camara AKS. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009; 11:1373-414. [PMID: 19187004 PMCID: PMC2842133 DOI: 10.1089/ars.2008.2331] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O(2)(*-)) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H(2)O(2) inside and outside the mitochondrial matrix by superoxide dismutases. H(2)O(2) is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O(2)(*-). Cell ischemia, hypoxia, or toxins can result in excess O(2)(*-) production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H(2)O(2) can combine with Fe(2+) complexes to form reactive ferryl species (e.g., Fe(IV) = O(*)). In the presence of nitric oxide (NO(*)), O(2)(*-) forms the reactant peroxynitrite (ONOO(-)), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca(2+) entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O(2)(*-) emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O(2)(*-) by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O(2)(*-) generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in modulation of cell function and cell death has grown exponentially over the past few years, but we are still limited in how to apply this knowledge to develop its full therapeutic potential.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratories, Department of Anesthesiology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
183
|
Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1089-105. [PMID: 19362066 DOI: 10.1016/j.bbabio.2009.03.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/19/2009] [Accepted: 03/31/2009] [Indexed: 11/23/2022]
Abstract
The main focus of this investigation is steady state kinetics of regulation of mitochondrial respiration in permeabilized cardiomyocytes in situ. Complete kinetic analysis of the regulation of respiration by mitochondrial creatine kinase was performed in the presence of pyruvate kinase and phosphoenolpyruvate to simulate interaction of mitochondria with glycolytic enzymes. Such a system analysis revealed striking differences in kinetic behaviour of the MtCK-activated mitochondrial respiration in situ and in vitro. Apparent dissociation constants of MgATP from its binary and ternary complexes with MtCK, Kia and Ka (1.94+/-0.86 mM and 2.04+/-0.14 mM, correspondingly) were increased by several orders of magnitude in situ in comparison with same constants in vitro (0.44+/-0.08 mM and 0.016+/-0.01 mM, respectively). Apparent dissociation constants of creatine, Kib and Kb (2.12+/-0.21 mM 2.17+/-0.40 Mm, correspondingly) were significantly decreased in situ in comparison with in vitro mitochondria (28+/-7 mM and 5+/-1.2 mM, respectively). Dissociation constant for phosphocreatine was not changed. These data may indicate selective restriction of metabolites' diffusion at the level of mitochondrial outer membrane. It is concluded that mechanisms of the regulation of respiration and energy fluxes in vivo are system level properties which depend on intracellular interactions of mitochondria with cytoskeleton, intracellular MgATPases and cytoplasmic glycolytic system.
Collapse
|
184
|
Liu T, O’Rourke B. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. J Bioenerg Biomembr 2009; 41:127-32. [PMID: 19390955 PMCID: PMC2946065 DOI: 10.1007/s10863-009-9216-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ca(2+) has been well accepted as a signal that coordinates changes in cytosolic workload with mitochondrial energy metabolism in cardiomyocytes. During increased work, Ca(2+) is accumulated in mitochondria and stimulates ATP production to match energy supply and demand. The kinetics of mitochondrial Ca(2+) ([Ca(2+)](m)) uptake remains unclear, and we review the debate on this subject in this article. [Ca(2+)](m) has multiple targets in oxidative phosphorylation including the F1/FO ATPase, the adenine nucleotide translocase, and Ca(2+)-sensitive dehydrogenases (CaDH) of the tricarboxylic acid (TCA) cycle. The well established effect of [Ca(2+)](m) is to activate CaDHs of the TCA cycle to increase NADH production. Maintaining NADH level is not only critical to keep a high oxidative phosphorylation rate during increased cardiac work, but is also necessary for the reducing system of the cell to maintain its reactive oxygen species (ROS) -scavenging capacity. Further, we review recent data demonstrating the deleterious effects of elevated Na(+) in cardiac pathology by blunting [Ca(2+)](m) accumulation.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Molecular Cardiobiology, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Brian O’Rourke
- Institute of Molecular Cardiobiology, The Johns Hopkins University, 720 Rutland Ave., 1060 Ross Bldg., Baltimore, MD 21205-2195, USA,
| |
Collapse
|
185
|
Cortassa S, O'Rourke B, Winslow RL, Aon MA. Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 2009; 96:2466-78. [PMID: 19289071 PMCID: PMC2989151 DOI: 10.1016/j.bpj.2008.12.3893] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/01/2008] [Indexed: 01/14/2023] Open
Abstract
Understanding the regulation and control of complex networks of reactions requires analytical tools that take into account the interactions between individual network components controlling global network function. Here, we apply a generalized matrix method of control analysis to calculate flux and concentration control coefficients, as well as response coefficients, in an integrated model of excitation-contraction (EC) coupling and mitochondrial energetics (ECME model) in the cardiac ventricular myocyte. Control and regulation of oxygen consumption (V(O2)) was first assessed in a mitochondrion model, and then in the integrated cardiac myocyte model under resting and working conditions. The results demonstrate that in the ECME model, control of respiration is distributed among cytoplasmic ATPases and mitochondrial processes. The magnitude of control by cytoplasmic ATPases increases under working conditions. The model prediction that the respiratory chain exerts strong positive control on V(O2) (control coefficient 0.89) was corroborated experimentally in cardiac trabeculae utilizing the inhibitor titration method. In the model, mitochondrial respiration displayed the highest response coefficients with respect to the concentration of cytoplasmic ATP. This was due to the high elasticity of ANT flux toward ATP in the cytoplasm. The analysis reveals the complex interdependence of sarcolemmal, cytoplasmic, and mitochondrial processes that contribute to the control of energy supply and demand in the heart. Moreover, by visualizing the structure of control of the metabolic network of the myocyte, we provide support for the emerging concept of control by diffuse loops, in which action on the network (e.g., by a pharmacological agent) may bring about changes in processes without obvious direct mechanistic links between them.
Collapse
Affiliation(s)
- Sonia Cortassa
- Division of Cardiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
186
|
Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle. Exerc Sport Sci Rev 2009; 37:29-35. [PMID: 19098522 DOI: 10.1097/jes.0b013e3181911fa4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammalian skeletal muscle, an intimate association between the sarcoplasmic reticulum (SR) and mitochondria results in a symbiotic and privileged bidirectional communication between these organelles. Orthograde signaling reflects SR calcium (Ca) release stimulating mitochondrial adenosine triphosphate production via excitation-metabolism coupling. Retrograde signaling involves mitochondrial inhibition of local SR Ca release by controlling the redox environment of the Ca release unit.
Collapse
|
187
|
Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1324-33. [PMID: 19366607 DOI: 10.1016/j.bbabio.2009.01.019] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 12/30/2022]
Abstract
Mitochondrial Ca(2+) transport was initially considered important only in buffering of cytosolic Ca(2+) by acting as a "sink" under conditions of Ca(2+) overload. The main regulator of ATP production was considered to be the relative concentrations of high energy phosphates. However, work by Denton and McCormack in the 1970s and 1980s showed that free intramitochondrial Ca(2+) ([Ca(2+)](m)) activated dehydrogenase enzymes in mitochondria, leading to increased NADH and hence ATP production. This leads them to propose a scheme, subsequently termed a "parallel activation model" whereby increases in energy demand, such as hormonal stimulation or increased workload in muscle, produced an increase in cytosolic [Ca(2+)] that was relayed by the mitochondrial Ca(2+) transporters into the matrix to give an increase in [Ca(2+)](m). This then stimulated energy production to meet the increased energy demand. With the development of methods for measuring [Ca(2+)](m) in living cells that proved [Ca(2+)](m) changed over a dynamic physiological range rather than simply soaking up excess cytosolic [Ca(2+)], this model has now gained widespread acceptance. However, work by ourselves and others using targeted probes to measure changes in both [Ca(2+)] and [ATP] in different cell compartments has revealed variations in the interrelationships between these two in different tissues, suggesting that metabolic regulation by Ca(2+) is finely tuned to the demands and function of the individual organ.
Collapse
Affiliation(s)
- Elinor J Griffiths
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
188
|
Viola HM, Arthur PG, Hool LC. Evidence for regulation of mitochondrial function by the L-type Ca2+ channel in ventricular myocytes. J Mol Cell Cardiol 2009; 46:1016-26. [PMID: 19166857 DOI: 10.1016/j.yjmcc.2008.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
The L-type Ca(2+) channel is responsible for initiating contraction in the heart. Mitochondria are responsible for meeting the cellular energy demands and calcium is required for the activity of metabolic intermediates. We examined whether activation of the L-type Ca(2+) channel alone is sufficient to alter mitochondrial function. The channel was activated directly with the dihydropyridine agonist BayK(-) or voltage-clamp of the plasma membrane and indirectly by depolarization of the membrane with high KCl. Activation of the channel increased superoxide production (assessed as changes in dihydroethidium fluorescence), NADH production and metabolic activity (assessed as formation of formazan from tetrazolium) in a calcium-dependent manner. Activation of the channel also increased mitochondrial membrane potential assessed as changes in JC-1 fluorescence. The response was reversible upon inactivation of the channel during voltage-clamp of the plasma membrane and did not appear to require calcium. We examined whether the response may be mediated through movement of cytoskeletal proteins. Depolymerization of actin or exposing cells to a peptide directed against the alpha-interacting domain of the alpha(1C)-subunit of the channel (thereby preventing movement of the beta-subunit) attenuated the increase in mitochondrial membrane potential. We conclude that activation of the L-type Ca(2+) channel can regulate mitochondrial function and the response appears to be modulated by movement through the cytoskeleton.
Collapse
Affiliation(s)
- Helena M Viola
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
189
|
Vornanen M, Stecyk JA, Nilsson GE. Chapter 9 The Anoxia-Tolerant Crucian Carp (Carassius Carassius L.). FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(08)00009-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
190
|
In vivo modular control analysis of energy metabolism in contracting skeletal muscle. Biochem J 2008; 414:391-7. [PMID: 18498244 DOI: 10.1042/bj20080280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We used (31)P MRS (magnetic resonance spectroscopy) measurements of energetic intermediates [ATP, P(i) and PCr (phosphocreatine)] in combination with the analytical tools of metabolic control analysis to study in vivo energy metabolism in the contracting skeletal muscle of anaesthetized rats over a broad range of workload. According to our recent MoCA (modular control analysis) used to describe regulatory mechanisms in beating heart, we defined the energetic system of muscle contraction as two modules (PCr-Producer and PCr-Consumer) connected by the energetic intermediates. Hypoxia and electrical stimulation were used in this in vivo study as reasonably selective modulations of Producer and Consumer respectively. As quantified by elasticity coefficients, the sensitivities of each module to PCr determine the control of steady-state contractile activity and metabolite concentrations. The magnitude of the elasticity of the producer was high (4.3+/-0.6) at low workloads and decreased 5-fold (to 0.9+/-0.2) at high workloads. By contrast, the elasticity of the consumer remained low (0.5-1.2) over the range of metabolic rates studied. The control exerted by each module over contraction was calculated from these elasticities. The control of contraction was found on the consumer at low workloads and then swung to the producer, due to the workload-dependent decrease in the elasticity of producer. The workload-dependent elasticity and control pattern of energy production in muscle is a major difference from heart. Since module rate and elasticity depend on the concentrations of substrates and products, the absence of homoeostasis of the energetic intermediates in muscle, by contrast with heart, is probably the origin of the workload-dependent elasticity of the producer module.
Collapse
|
191
|
Calmettes G, Deschodt-Arsac V, Thiaudière E, Muller B, Diolez P. Modular control analysis of effects of chronic hypoxia on mouse heart. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1891-7. [PMID: 18832083 DOI: 10.1152/ajpregu.90548.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modular control analysis (MoCA; Diolez P, Deschodt-Arsac V, Raffard G, Simon C, Santos PD, Thiaudiere E, Arsac L, Franconi JM. Am J Physiol Regul Integr Comp Physiol 293: R13-R19, 2007) was applied here on perfused hearts to describe the modifications of the regulation of heart energetics induced in mice exposed to 3-wk chronic hypoxia. MoCA combines 31P-NMR spectroscopy and modular (top down) control analysis to describe the integrative regulation of energy metabolism in the intact beating heart, on the basis of two modules [ATP/phosphocreatine (PCr) production and ATP/PCr consumption] connected by the energetic intermediates. In contrast with previous results in rat heart, in which all control of contraction was on ATP demand, mouse heart energetics presented a shared control of contraction between ATP/PCr-producing and -consuming modules. In chronic hypoxic mice, the decrease in heart contractile activity and PCr-to-ATP ratio was surprisingly associated with an important and significant higher response of ATP/PCr production (elasticity) to PCr changes compared with control hearts (-10.4 vs. -2.46). By contrast, no changes were observed in ATP/PCr consumption since comparable elasticities were observed. Since elasticities determine the regulation of energetics of heart contraction, the present results show that this new parameter may be used to uncover the origin of the observed dysfunctions under chronic hypoxia conditions. Considering the decrease in mitochondrial content reported after exposure to chronic hypoxia, it appears that the improvement of ATP/PCr production response to ATP demand may be viewed as a positive adaptative mechanism. It now appears crucial to understand the very processes responsible for ATP/PCr producer elasticity toward the energetic intermediates, as well as their regulation.
Collapse
Affiliation(s)
- Guillaume Calmettes
- Résonance Magnétique des Systèmes Biologiques, UMR5536 Centre National de la Recherche Scientifique, Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
192
|
Yaniv Y, Stanley WC, Saidel GM, Cabrera ME, Landesberg A. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling. Ann N Y Acad Sci 2008; 1123:69-78. [PMID: 18375579 DOI: 10.1196/annals.1420.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The heart adapts the rate of mitochondrial ATP production to energy demand without noticeable changes in the concentration of ATP, ADP and Pi, even for large transitions between different workloads. We suggest that the changes in demand modulate the cytosolic Ca2+ concentration that changes mitochondrial Ca2+ to regulate ATP production. Thus, the rate of ATP production by the mitochondria is coupled to the rate of ATP consumption by the sarcomere cross-bridges (XBs). An integrated model was developed to couple cardiac metabolism and mitochondrial ATP production with the regulation of Ca2+ transient and ATP consumption by the sarcomere. The model includes two interrelated systems that run simultaneously utilizing two different integration steps: (1) The faster system describes the control of excitation contraction coupling with fast cytosolic Ca2+ transients, twitch mechanical contractions, and associated fluctuations in the mitochondrial Ca2+. (2) A slower system simulates the metabolic system, which consists of three different compartments: blood, cytosol, and mitochondria. The basic elements of the model are dynamic mass balances in the different compartments. Cytosolic Ca2+ handling is determined by four organelles: sarcolemmal Ca2+ influx and efflux; sarcoplasmic reticulum (SR) Ca2+ release and sequestration (SR); binding and dissociation from sarcomeric regulatory troponin complexes; and mitochondrial Ca2+ flows. Mitochondrial Ca2+ flows are determined by the Ca2+ uniporter and the mitochondrial Na+Ca2+ exchanger. The cytosolic Ca2+ determines the rate of ATP consumption by the sarcomere. Ca2+ binding to troponin regulates the rate of XBs recruitment and force development. The mitochondrial Ca2+ concentration determines the pyruvate dehydrogenase activity and the rate of ATP production by the F(1)-F(0) ATPase. The workload modulates the cytosolic Ca2+ concentration through feedback loops. The preload and afterload affect the number of strong XBs. The number of strong XBs determines the affinity of troponin for Ca2+, which alters the cytosolic Ca2+ transient. Model simulations quantify the role of Ca2+ in simultaneously controlling the power of contraction and the rate of ATP production. It explains the established empirical observation that significant changes in the metabolic fluxes can occur without significant changes in the key nucleotide (ATP and ADP) concentrations. Quantitative investigations of the mechanisms underlying the cardiac control of biochemical to mechanical energy conversion may lead to novel therapeutic modalities for the ischemic and failing myocardium.
Collapse
Affiliation(s)
- Yael Yaniv
- Faculty of Biomedical Engineering, Technion, Isreal Institute of Technology, Haifa 32000 Israel
| | | | | | | | | |
Collapse
|
193
|
Physiological heart activation by adrenaline involves parallel activation of ATP usage and supply. Biochem J 2008; 413:343-7. [PMID: 18377364 DOI: 10.1042/bj20080162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During low-to-high work transition in adult mammalian heart in vivo the concentrations of free ADP, ATP, PCr (phosphocreatine), P(i) and NADH are essentially constant, in striking contrast with skeletal muscle. The direct activation by calcium ions of ATP usage and feedback activation of ATP production by ADP (and P(i)) alone cannot explain this perfect homoeostasis. A comparison of the response to adrenaline (increase in rate-pressure product and [PCr]) of the intact beating perfused rat heart with the elasticities of the PCr producer and consumer to PCr concentration demonstrated that both the ATP/PCr-producing block and ATP/PCr-consuming block are directly activated to a similar extent during physiological heart activation. Our finding constitutes a direct evidence for the parallel-activation mechanism of the regulation of oxidative phosphorylation in heart postulated previously in a theoretical way.
Collapse
|
194
|
Kalinina MA, Raitman OA, Turygin DS, Selektor SL, Golubev NV, Arslanov VV. Langmuir-Blodgett composite films for the selective determination of calcium in aqueous solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2008. [DOI: 10.1134/s0036024408080165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
195
|
Cheung KH, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK. Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58:871-83. [PMID: 18579078 DOI: 10.1016/j.neuron.2008.04.015] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 02/05/2008] [Accepted: 04/16/2008] [Indexed: 01/24/2023]
Abstract
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- King-Ho Cheung
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Wu F, Zhang EY, Zhang J, Bache RJ, Beard DA. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts. J Physiol 2008; 586:4193-208. [PMID: 18617566 DOI: 10.1113/jphysiol.2008.154732] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To understand how cardiac ATP and CrP remain stable with changes in work rate - a phenomenon that has eluded mechanistic explanation for decades - data from (31)phosphate-magnetic resonance spectroscopy ((31)P-MRS) are analysed to estimate cytoplasmic and mitochondrial phosphate metabolite concentrations in the normal state, during high cardiac workstates, during acute ischaemia and reactive hyperaemic recovery. Analysis is based on simulating distributed heterogeneous oxygen transport in the myocardium integrated with a detailed model of cardiac energy metabolism. The model predicts that baseline myocardial free inorganic phosphate (P(i)) concentration in the canine myocyte cytoplasm - a variable not accessible to direct non-invasive measurement - is approximately 0.29 mm and increases to 2.3 mm near maximal cardiac oxygen consumption. During acute ischaemia (from ligation of the left anterior descending artery) P(i) increases to approximately 3.1 mm and ATP consumption in the ischaemic tissue is reduced quickly to less than half its baseline value before the creatine phosphate (CrP) pool is 18% depleted. It is determined from these experiments that the maximal rate of oxygen consumption of the heart is an emergent property and is limited not simply by the maximal rate of ATP synthesis, but by the maximal rate at which ATP can be synthesized at a potential at which it can be utilized. The critical free energy of ATP hydrolysis for cardiac contraction that is consistent with these findings is approximately -63.5 kJ mol(-1). Based on theoretical findings, we hypothesize that inorganic phosphate is both the primary feedback signal for stimulating oxidative phosphorylation in vivo and also the most significant product of ATP hydrolysis in limiting the capacity of the heart to hydrolyse ATP in vivo. Due to the lack of precise quantification of P(i) in vivo, these hypotheses and associated model predictions remain to be carefully tested experimentally.
Collapse
Affiliation(s)
- Fan Wu
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wiscosin, Milwaukee, WI 53213, USA
| | | | | | | | | |
Collapse
|
197
|
Belmonte S, Morad M. Shear Fluid-induced Ca2+ Release and the Role of Mitochondria in Rat Cardiac Myocytes. Ann N Y Acad Sci 2008; 1123:58-63. [DOI: 10.1196/annals.1420.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
198
|
Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond) 2008; 114:195-210. [PMID: 18184113 DOI: 10.1042/cs20070166] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The metabolic syndrome represents a cluster of abnormalities, including obesity, insulin resistance, dyslipidaemia and Type 2 diabetes, that increases the risk of developing cardiovascular diseases, such as coronary artery disease and heart failure. The heart failure risk is increased even after adjusting for coronary artery disease and hypertension, and evidence is emerging that changes in cardiac energy metabolism might contribute to the development of contractile dysfunction. Recent findings suggest that myocardial mitochondrial dysfunction may play an important role in the pathogenesis of cardiac contractile dysfunction in obesity, insulin resistance and Type 2 diabetes. This review will discuss potential molecular mechanisms for these mitochondrial abnormalities.
Collapse
|
199
|
Kim B, Matsuoka S. Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+-Ca2+ exchange. J Physiol 2008; 586:1683-97. [PMID: 18218682 DOI: 10.1113/jphysiol.2007.148726] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To clarify the role of mitochondrial Na(+)-Ca(2+) exchange (NCX(mito)) in regulating mitochondrial Ca(2+) (Ca(2+)(mito)) concentration at intact and depolarized mitochondrial membrane potential (DeltaPsi(mito)), we measured Ca(2+)(mito) and DeltaPsi(mito) using fluorescence probes Rhod-2 and TMRE, respectively, in the permeabilized rat ventricular cells. Applying 300 nm cytoplasmic Ca(2+) (Ca(2+)(c)) increased Ca(2+)(mito) and this increase was attenuated by cytoplasmic Na(+) (Na(+)(c)) with an IC(50) of 2.4 mm. To the contrary, when DeltaPsi(mito) was depolarized by FCCP, a mitochondrial uncoupler, Na(+)(c) enhanced the Ca(2+)(c)-induced increase in Ca(2+)(mito) with an EC(50) of about 4 mm. This increase was not significantly affected by ruthenium red or cyclosporin A. The inhibition of NCX(mito) by CGP-37157 further increased Ca(2+)(mito) when DeltaPsi(mito) was intact, while it suppressed the Ca(2+)(mito) increase when DeltaPsi(mito) was depolarized, suggesting that DeltaPsi(mito) depolarization changed the exchange mode from forward to reverse. Furthermore, DeltaPsi(mito) depolarization significantly reduced the Ca(2+)(mito) decrease via forward mode, and augmented the Ca(2+)(mito) increase via reverse mode. When the respiratory chain was attenuated, the induction of the reverse mode of NCX(mito) hyperpolarized DeltaPsi(mito), while DeltaPsi(mito) depolarized upon inducing the forward mode of NCX(mito). Both changes in DeltaPsi(mito) were remarkably inhibited by CGP-37157. The above experimental data indicated that NCX(mito) is voltage dependent and electrogenic. This notion was supported theoretically by computer simulation studies with an NCX(mito) model constructed based on present and previous studies, presuming a consecutive and electrogenic Na(+)-Ca(2+) exchange and a depolarization-induced increase in Na(+) flux. It is concluded that Ca(2+)(mito) concentration is dynamically modulated by Na(+)(c) and DeltaPsi(mito) via electrogenic NCX(mito).
Collapse
Affiliation(s)
- Bongju Kim
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
200
|
Lai N, Saidel GM, Grassi B, Gladden LB, Cabrera ME. Model of oxygen transport and metabolism predicts effect of hyperoxia on canine muscle oxygen uptake dynamics. J Appl Physiol (1985) 2007; 103:1366-78. [PMID: 17600157 DOI: 10.1152/japplphysiol.00489.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that increased oxygen delivery, via increased convection or arterial oxygen content, does not speed the dynamics of oxygen uptake, V̇o2m, in dog muscle electrically stimulated at a submaximal metabolic rate. However, the dynamics of transport and metabolic processes that occur within working muscle in situ is typically unavailable in this experimental setting. To investigate factors affecting V̇o2m dynamics at contraction onset, we combined dynamic experimental data across working muscle with a mechanistic model of oxygen transport and metabolism in muscle. The model is based on dynamic mass balances for O2, ATP, and PCr. Model equations account for changes in cellular ATPase, oxidative phosphorylation, and creatine kinase fluxes in skeletal muscle during exercise, and cellular respiration depends on [ADP] and [O2]. Model simulations were conducted at different levels of arterial oxygen content and blood flow to quantify the effects of convection and diffusion of oxygen on the regulation of cellular respiration during step transitions from rest to isometric contraction in dog gastrocnemius muscle. Simulations of arteriovenous O2 differences and V̇o2m dynamics were successfully compared with experimental data (Grassi B, Gladden LB, Samaja M, Stary CM, Hogan MC. J Appl Physiol 85: 1394–1403, 1998; and Grassi B, Gladden LB, Stary CM, Wagner PD, Hogan MC. J Appl Physiol 85: 1404–1412, 1998), thus demonstrating the validity of the model, as well as its predictive capability. The main findings of this study are: 1) the estimated dynamic response of oxygen utilization at contraction onset in muscle is faster than that of oxygen uptake; and 2) hyperoxia does not accelerate the dynamics of diffusion and consequently muscle oxygen uptake at contraction onset due to the hyperoxia-induced increase in oxygen stores. These in silico derived results cannot be obtained from experimental observations alone.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|