151
|
Yang S, Grall A, Chapman MA. Origin and diversification of winged bean (Psophocarpus tetragonolobus (L.) DC.), a multipurpose underutilized legume. AMERICAN JOURNAL OF BOTANY 2018; 105:888-897. [PMID: 29874397 DOI: 10.1002/ajb2.1093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY For many crops, research into the origin and partitioning of genetic variation is limited and this can slow or prevent crop improvement programs. Many of these underutilized crops have traits that could be of benefit in a changing climate due to stress tolerance or nutritional properties. Winged bean (Psophocarpus tetragonolobus (L.) DC.) is one such crop. All parts of the plant can be eaten, from the roots to the seeds, and is high in protein as well as other micronutrients. The goal of our study was to identify the wild progenitor and analyze the partitioning of genetic variation in the crop. METHODS We used molecular phylogenetic analyses (cpDNA and nuclear ITS sequencing) to resolve relationships between all species in the genus, and population genetics (utilizing microsatellites) to identify genetic clusters of winged bean accessions and compare this to geography. KEY RESULTS We find that winged bean is genetically distinct from all other members of the genus. We also provide support for four groups of species in the genus, largely, but not completely, corresponding to the results of previous morphological analyses. Within winged bean, population genetic analysis using 10 polymorphic microsatellite markers suggests four genetic groups; however, there is little correspondence between the genetic variation and the geography of the accessions. CONCLUSIONS The true wild progenitor of winged bean remains unknown (or is extinct). There has likely been large-scale cross-breeding, trade, and transport of winged bean and/or multiple origins of the crop.
Collapse
Affiliation(s)
- Shuyi Yang
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Aurélie Grall
- Africa & Madagascar Team, Identification & Naming Department, Royal Botanic Gardens, Kew, TW9 3AE, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
- Centre for Underutilised Crops, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
152
|
Xu L, Lin Q, Xu S, Gu Y, Hou J, Liu Y, Dumont HJ, Han B. Daphnia diversity on the Tibetan Plateau measured by DNA taxonomy. Ecol Evol 2018; 8:5069-5078. [PMID: 29876082 PMCID: PMC5980554 DOI: 10.1002/ece3.4071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 02/04/2023] Open
Abstract
Daphnia on the Tibetan Plateau has been little studied, and information on species diversity and biogeography is lacking. Here, we conducted a 4-year survey using the barcoding fragment of the mitochondrial COI gene to determine the distribution and diversity of Daphnia species found across the Plateau. Our results show that species richness is higher than previously thought, with total described and provisional species number doubling from 5 to 10. Six of the taxonomic units recovered by DNA taxonomy agreed well with morphology, but DNA barcoding distinguished three clades each for the D. longispina (D. galeata, D. dentifera, and D. longispina) and D. pulex (D. pulex, D. cf. tenebrosa, and D. pulicaria) complexes. The sequence divergence between congeneric species varied within a large range, from 9.25% to 30.71%. The endemic D. tibetana was the most common and widespread species, occurring in 12 hyposaline to mesosaline lakes. The lineage of D. longispina is the first confirmed occurrence in west Tibet.
Collapse
Affiliation(s)
- Lei Xu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Institute of HydrobiologyJinan UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Key Laboratory of South China Sea Fishery ResourcesDevelopment and UtilizationMinistry of AgricultureGuangzhouChina
| | - Qiuqi Lin
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| | - Shaolin Xu
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| | - Yangliang Gu
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| | - Juzhi Hou
- Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
| | - Yongqin Liu
- Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
| | | | - Bo‐Ping Han
- Institute of HydrobiologyJinan UniversityGuangzhouChina
| |
Collapse
|
153
|
GATC: a genetic algorithm for gene tree construction under the Duplication-Transfer-Loss model of evolution. BMC Genomics 2018; 19:102. [PMID: 29764363 PMCID: PMC5954287 DOI: 10.1186/s12864-018-4455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
154
|
Phylogeography of the Japanese ratsnake, Elaphe climacophora (Serpentes: Colubridae): impacts of Pleistocene climatic oscillations and sea-level fluctuations on geographical range. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
155
|
Xu L, Wang L, Ning J, Li H, Ji Y, Du F. Diversity of marine planktonic ostracods in South China Sea: a DNA taxonomy approach. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:118-125. [PMID: 29671658 DOI: 10.1080/24701394.2018.1462349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ostracods (Crustacea, Ostracoda) are small bivalved crustaceans, contributing over 200 described species to the marine zooplankton community. They are widely distributed and are relatively abundant components of the mesozooplankton, playing an important role in the transport of organic matter to deep layers. However, identification of ostracods based on micro-morphological characters is extremely difficult and time-consuming. Previous fragmentary taxonomic studies of ostracods in the South China Sea (SCA), were based solely on morphology. Here, by analysing the mitochondrial COI gene, we explore the taxa across the SCA using molecular tools for the first time. Our results show that sequence divergence among species varies within a large range, from 12.93% to 35.82%. Sixteen of the taxonomic units recovered by DNA taxonomy agree well with morphology, but Paraconchoecia oblonga, Conchoecia magna and Halocypris brevirostris split into two clades each, each of which contains cryptic species.
Collapse
Affiliation(s)
- Lei Xu
- a South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Fishery Ecology and Environment , Guangzhou , China.,c Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture , Guangzhou , China
| | - Lianggen Wang
- a South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Fishery Ecology and Environment , Guangzhou , China.,c Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture , Guangzhou , China
| | - Jiajia Ning
- a South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Fishery Ecology and Environment , Guangzhou , China.,c Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture , Guangzhou , China
| | - Hong Li
- a South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Fishery Ecology and Environment , Guangzhou , China.,c Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture , Guangzhou , China
| | - Yingying Ji
- a South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Guangzhou , China.,d College of Marine Sciences , Shanghai Ocean University , Shanghai , China
| | - Feiyan Du
- a South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Fishery Ecology and Environment , Guangzhou , China.,c Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture , Guangzhou , China
| |
Collapse
|
156
|
Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial Communities of Diatoms Display Strong Conservation Across Strains and Time. Front Microbiol 2018; 9:659. [PMID: 29681892 PMCID: PMC5897529 DOI: 10.3389/fmicb.2018.00659] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/21/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between phytoplankton and bacteria play important roles in shaping the microenvironment surrounding these organisms and in turn influence global biogeochemical cycles. This microenvironment, known as the phycosphere, is presumed to shape the bacterial diversity around phytoplankton and thus stimulate a diverse array of interactions between both groups. Although many studies have attempted to characterize bacterial communities that associate and interact with phytoplankton, bias in bacterial cultivation and consistency and persistence of bacterial communities across phytoplankton isolates likely impede the understanding of these microbial associations. Here, we isolate four strains of the diatom Asterionellopsis glacialis and three strains of the diatom Nitzschia longissima and show through metabarcoding of the bacterial 16S rDNA gene that though each species possesses a unique bacterial community, the bacterial composition across strains from the same species are highly conserved at the genus level. Cultivation of all seven strains in the laboratory for longer than 1 year resulted in only small changes to the bacterial composition, suggesting that despite strong pressures from laboratory culturing conditions associations between these diatoms and their bacterial communities are robust. Specific operational taxonomic units (OTUs) belonging to the Roseobacter-clade appear to be conserved across all strains and time, suggesting their importance to diatoms. In addition, we isolate a range of cultivable bacteria from one of these cultures, A. glacialis strain A3, including several strains of Shimia marina and Nautella sp. that appear closely related to OTUs conserved across all strains and times. Coculturing of A3 with some of its cultivable bacteria as well as other diatom-associated bacteria shows a wide range of responses that include enhancing diatom growth. Cumulatively, these findings suggest that phytoplankton possess unique microbiomes that are consistent across strains and temporal scales.
Collapse
Affiliation(s)
- Gregory Behringer
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Michael A. Ochsenkühn
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cong Fei
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Jhamal Fanning
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Julie A. Koester
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States
| | - Shady A. Amin
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
157
|
Souza CS, Costa-Silva GJ, Roxo FF, Foresti F, Oliveira C. Genetic and Morphological Analyses Demonstrate That Schizolecis guntheri (Siluriformes: Loricariidae) Is Likely to Be a Species Complex. Front Genet 2018; 9:69. [PMID: 29552028 PMCID: PMC5841391 DOI: 10.3389/fgene.2018.00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/15/2018] [Indexed: 01/16/2023] Open
Abstract
Schizolecis is a monotypic genus of Siluriformes widely distributed throughout isolated coastal drainages of southeastern Brazil. Previous studies have shown that fish groups found in isolated river basins tend to differentiate over time in the absence of gene flow, resulting in allopatric speciation. In this study, we used partial sequences of the mitochondrial gene COI with the analysis of the General Mixed Yule Coalescent model (GMYC) and the Automatic Barcode Gap Discovery (ABGD) for single locus species delimitation, and a Principal Component Analysis (PCA) of external morphology to test the hypothesis that Schizolecis guntheri is a complex of species. We analyzed 94 samples of S. guntheri for GMYC and ABGD, and 82 samples for PCA from 22 coastal rivers draining to the Atlantic in southeastern Brazil from the Paraná State to the north of the Rio de Janeiro State. As a result, the GMYC model and the ABGD delimited five operational taxonomy units (OTUs – a nomenclature referred to in the present study of the possible new species delimited for the genetic analysis), a much higher number compared to the traditional alfa taxonomy that only recognizes S. guntheri across the isolated coastal rivers of Brazil. Furthermore, the PCA analysis suggests that S. guntheri is highly variable in aspects of external body proportions, including dorsal-fin spine length, pectoral-fin spine length, pelvic-fin spine length, lower caudal-fin spine length, caudal peduncle depth, anal width and mandibular ramus length. However, no exclusive character was found among the isolated populations that could be used to describe a new species of Schizolecis. Therefore, we can conclude, based on our results of PCA contrasting with the results of GMYC and ABGD, that S. guntheri represents a complex of species.
Collapse
Affiliation(s)
- Camila S Souza
- Departamento de Morfologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências de Botucatu, Botucatu, Brazil
| | - Guilherme J Costa-Silva
- Departamento de Morfologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências de Botucatu, Botucatu, Brazil.,Departamento de Biologia, Universidade Santo Amaro, São Paulo, Brazil
| | - Fábio F Roxo
- Departamento de Morfologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências de Botucatu, Botucatu, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências de Botucatu, Botucatu, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências de Botucatu, Botucatu, Brazil
| |
Collapse
|
158
|
Cardinal S, Buchmann SL, Russell AL. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila). Evolution 2018; 72:590-600. [PMID: 29392714 PMCID: PMC5873439 DOI: 10.1111/evo.13446] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 02/03/2023]
Abstract
Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate ("buzz") flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time-calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100-145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology.
Collapse
Affiliation(s)
- Sophie Cardinal
- Canadian National Collection of Insects, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Stephen L Buchmann
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
| | - Avery L Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
159
|
Luangsa-Ard J, Tasanathai K, Thanakitpipattana D, Khonsanit A, Stadler M. Novel and interesting Ophiocordyceps spp. ( Ophiocordycipitaceae, Hypocreales) with superficial perithecia from Thailand. Stud Mycol 2018; 89:125-142. [PMID: 29910519 PMCID: PMC6002337 DOI: 10.1016/j.simyco.2018.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ophiocordyceps is a heterogeneous, species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) that includes invertebrate-pathogenic taxa. In this study, seven new species in Ophiocordyceps producing superficial perithecia infecting various insect hosts (Lepidoptera, Hemiptera) are described from Thailand - Ophiocordyceps brunneinigra, O. brunneiperitheciata, O. geometridicola, O. multiperitheciata, O. pauciovoperitheciata, O. pseudoacicularis and O. spataforae. Phylogenetic analyses based on multigene loci comprising the large subunit of the ribosomal DNA (LSU), partial sequences of elongation factor 1-alpha (TEF) and the largest and second largest subunit of the RNA polymerase (RPB1, PRB2) strongly support these new species of Ophiocordyceps in the Ophiocordycipitaceae. They differ from species previously described species Ophiocordyceps acicularis, O. atewensis, O. cochlidiicola, and O. crinalis, in the shape and sizes of distinguishing characters such as perithecia, ascospores and conidia. We also report a new record of O. macroacicularis in Thailand.
Collapse
Affiliation(s)
- J Luangsa-Ard
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - K Tasanathai
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - D Thanakitpipattana
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - A Khonsanit
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - M Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
160
|
|
161
|
Whole-sequence analysis indicates that the Y chromosome C2*-Star Cluster traces back to ordinary Mongols, rather than Genghis Khan. Eur J Hum Genet 2018; 26:230-237. [PMID: 29358612 DOI: 10.1038/s41431-017-0012-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 11/08/2022] Open
Abstract
The Y-chromosome haplogroup C3*-Star Cluster (revised to C2*-ST in this study) was proposed to be the Y-profile of Genghis Khan. Here, we re-examined the origin of C2*-ST and its associations with Genghis Khan and Mongol populations. We analyzed 34 Y-chromosome sequences of haplogroup C2*-ST and its most closely related lineage. We redefined this paternal lineage as C2b1a3a1-F3796 and generated a highly revised phylogenetic tree of the haplogroup, including 36 sub-lineages and 265 non-private Y-chromosome variants. We performed a comprehensive analysis and age estimation of this lineage in eastern Eurasia, including 18,210 individuals from 292 populations. We discovered that the origin of populations with high frequencies of C2*-ST can be traced to either an ancient Niru'un Mongol clan or ordinary Mongol tribes. Importantly, the age of the most recent common ancestor of C2*-ST (2576 years, 95% CI = 1975-3178) and its sub-lineages, and their expansion patterns, are consistent with the diffusion of all Mongolic-speaking populations, rather than Genghis Khan himself or his close male relatives. We concluded that haplogroup C2*-ST is one of the founder paternal lineages of all Mongolic-speaking populations, and direct evidence of an association between C2*-ST and Genghis Khan has yet to be discovered.
Collapse
|
162
|
Barton DP, Smales L, Morgan JAT. A Redescription of Serrasentis sagittifer (Rhadinorhynchidae: Serrasentinae) from Rachycentron canadum (Rachycentridae) with Comments on its Biology and its Relationship to Other Species of Serrasentis. J Parasitol 2018; 104:117-132. [PMID: 29231789 DOI: 10.1645/17-94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Adult and cystacanth forms of the acanthocephalan Serrasentis sagittifer from Australian coastal waters are redescribed and verified as the same species using both molecular and morphological data. This study provides the baseline 18S rDNA, 28S rDNA, and cox1 sequence data to serve as genetic barcode for S. sagittifer. The validity of the currently recognized species of Serrasentis is discussed. The most recently described species are junior synonyms of either Serrasentis nadakali or S. sagittifer, and a number of species are species inquirenda. When using morphological characters to distinguish the species of Serrasentis, consideration needs to be given to the maturity of the specimens, since the trunk elongates and the number and distribution of the ventral combs changes as worms mature, although the proboscis armature itself does not change. A simple key to assist in the identification of species of Serrasentis is provided. Adult S. sagittifer appear to be highly host specific to the cobia, Rachycentron canadum, in northern Australian waters, whereas cystacanths have been reported from a wide range of fish species. The relationship between host length and number of cystacanths shows that most paratenic infections are acquired as young fish, most likely via a crustacean intermediate host.
Collapse
Affiliation(s)
- Diane P Barton
- Fisheries Research, Department of Primary Industries and Fisheries, Berrimah Farm, Darwin, Northern Territory 0801, Australia; Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0801, Australia; and Museum and Art Gallery of the Northern Territory, Conacher Street, Fannie Bay, Darwin, Northern Territory 0801, Australia
| | | | | |
Collapse
|
163
|
Kaehler BD, Yap VB, Huttley GA. Standard Codon Substitution Models Overestimate Purifying Selection for Nonstationary Data. Genome Biol Evol 2018; 9:134-149. [PMID: 28175284 PMCID: PMC5381540 DOI: 10.1093/gbe/evw308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 01/28/2023] Open
Abstract
Estimation of natural selection on protein-coding sequences is a key comparative genomics approach for de novo prediction of lineage-specific adaptations. Selective pressure is measured on a per-gene basis by comparing the rate of nonsynonymous substitutions to the rate of synonymous substitutions. All published codon substitution models have been time-reversible and thus assume that sequence composition does not change over time. We previously demonstrated that if time-reversible DNA substitution models are applied in the presence of changing sequence composition, the number of substitutions is systematically biased towards overestimation. We extend these findings to the case of codon substitution models and further demonstrate that the ratio of nonsynonymous to synonymous rates of substitution tends to be underestimated over three data sets of mammals, vertebrates, and insects. Our basis for comparison is a nonstationary codon substitution model that allows sequence composition to change. Goodness-of-fit results demonstrate that our new model tends to fit the data better. Direct measurement of nonstationarity shows that bias in estimates of natural selection and genetic distance increases with the degree of violation of the stationarity assumption. Additionally, inferences drawn under time-reversible models are systematically affected by compositional divergence. As genomic sequences accumulate at an accelerating rate, the importance of accurate de novo estimation of natural selection increases. Our results establish that our new model provides a more robust perspective on this fundamental quantity.
Collapse
Affiliation(s)
- Benjamin D Kaehler
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT, Australia
| | - Von Bing Yap
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Gavin A Huttley
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
164
|
Thompson CE, Freitas LB, Salzano FM. Molecular evolution and functional divergence of alcohol dehydrogenases in animals, fungi and plants. Genet Mol Biol 2018; 41:341-354. [PMID: 29668010 PMCID: PMC5913725 DOI: 10.1590/1678-4685-gmb-2017-0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Alcohol dehydrogenases belong to the large superfamily of medium-chain
dehydrogenases/reductases, which occur throughout the biological world and are
involved with many important metabolic routes. We considered the phylogeny of
190 ADH sequences of animals, fungi, and plants. Non-class III
Caenorhabditis elegans ADHs were seen closely related to
tetrameric fungal ADHs. ADH3 forms a sister group to amphibian, reptilian, avian
and mammalian non-class III ADHs. In fishes, two main forms are identified: ADH1
and ADH3, whereas in amphibians there is a new ADH form (ADH8). ADH2 is found in
Mammalia and Aves, and they formed a monophyletic group. Additionally, mammalian
ADH4 seems to result from an ADH1 duplication, while in Fungi, ADH formed
clusters based on types and genera. The plant ADH isoforms constitute a basal
clade in relation to ADHs from animals. We identified amino acid residues
responsible for functional divergence between ADH types in fungi, mammals, and
fishes. In mammals, these differences occur mainly between ADH1/ADH4 and
ADH3/ADH5, whereas functional divergence occurred in fungi between ADH1/ADH5,
ADH5/ADH4, and ADH5/ADH3. In fishes, the forms also seem to be functionally
divergent. The ADH family expansion exemplifies a neofunctionalization process
where reiterative duplication events are related to new activities.
Collapse
Affiliation(s)
- Claudia E Thompson
- Departamento de Farmacociências, Unidade de Genômica e Bioinformática Clínica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.,Unidade de Biologia Teórica e Computacional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
165
|
Esteves EL, de Paula TS, Lerner C, Lôbo-Hajdu G, Hajdu E. Morphological and molecular systematics of the ‘Monanchora arbuscula complex’ (Poecilosclerida : Crambeidae), with the description of five new species and a biogeographic discussion of the genus in the Tropical Western Atlantic. INVERTEBR SYST 2018. [DOI: 10.1071/is16088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monanchora Carter, 1883 is a genus of shallow-water marine sponges comprising 16 species distributed worldwide, two of them in the Tropical Western Atlantic (TWA): M. arbuscula (Duchassaing & Michelotti, 1864) and M. brasiliensis Esteves, Lerner, Lôbo-Hajdu & Hajdu, 2012. The former species stands out as one of the most variable demosponges, and is very similar in spicule complement and in secondary metabolite chemistry to the Mediterranean/eastern Atlantic Crambe crambe (Schmidt, 1862), type species of Crambe Vosmaer, 1880. The aim of the present study was to revise the genus Monanchora in the TWA. In addition, we critically analyse the monophyly of Crambe and Monanchora. Maximum Likelihood and Bayesian Inference analyses of 28S and 16S rRNA sequences of the latter genera, and a redescription of the ‘M. arbuscula complex’, revealed three species: M. arbuscula s.s., M. coccinea, sp. nov. and a new species of Acarnidae – Iophon parvachela, sp. nov. Three other new species from the TWA previously assigned to Monanchora were revealed by morphological analyses, and are also described: M. bahamensis, sp. nov., M. megasigmifera, sp. nov. and a new species of Chondropsidae – Batzella catarinensis, sp. nov. A key for species identification is provided. Our results suggest that the Eastern Brazil and Southeastern Brazil Ecoregions may represent centres of diversity for Monanchora in the TWA.
Collapse
|
166
|
Nelson CW, Sibley SD, Kolokotronis SO, Hamer GL, Newman CM, Anderson TK, Walker ED, Kitron UD, Brawn JD, Ruiz MO, Goldberg TL. Selective constraint and adaptive potential of West Nile virus within and among naturally infected avian hosts and mosquito vectors. Virus Evol 2018; 4:vey013. [PMID: 29942654 PMCID: PMC6007309 DOI: 10.1093/ve/vey013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Arthropod-borne viruses are among the most genetically constrained RNA viruses, yet they have a remarkable propensity to adapt and emerge. We studied wild birds and mosquitoes naturally infected with West Nile virus (WNV) in a 'hot spot' of virus transmission in Chicago, IL, USA. We generated full coding WNV genome sequences from spatiotemporally matched bird and mosquito samples using high-throughput sequencing, allowing a molecular evolutionary assessment with deep coverage. Mean FST among samples was 0.66 (±0.02 SE) and was bimodal, with mean nucleotide diversity being higher between samples (interhost πN = 0.001; πS = 0.024) than within them (intrahost πN < 0.0001; πS < 0.001). Eight genomic sites with FST > 1.01 (in the PrM, NS2a, NS3, NS4b, and 5'-noncoding genomic regions) showed bird versus mosquito variant frequency differences of >30 per cent and/or polymorphisms fixed in ≥5 host or vector individuals, suggesting host tropism for these variants. However, phylogenetic analyses demonstrated a lack of grouping by bird or mosquito, most inter-sample differences were synonymous (mean interhost πN/πS = 0.04), and there was no significant difference between hosts and vectors in either their nucleotide diversities or levels of purifying selection (mean intrahost πN/πS = 0.28 in birds and πN/πS = 0.21 in mosquitoes). This finding contrasts with the 'trade-off' and 'selective sieve' hypotheses that have been proposed and tested in the laboratory, which predict strong host versus vector effects on WNV genetic variation, with heightened selective constraint in birds alternating with heightened viral diversity in mosquitoes. Overall, our data show WNV to be highly selectively constrained within and between both hosts and vectors but still able to vary at a limited number of sites across the genome. Such site-specific plasticity in the face of overall selective constraint may offer a mechanism whereby highly constrained viruses such as WNV and its relatives can still adapt and emerge.
Collapse
Affiliation(s)
- Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sergios-Orestis Kolokotronis
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY 11203-2098, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Christina M Newman
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tavis K Anderson
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI 48824-4320, USA
| | - Uriel D Kitron
- Department of Environmental Studies, Emory University, Atlanta, GA 30322, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, Urbana, IL 61802, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
167
|
Barker FK. Molecular Phylogenetics of the Wrens and Allies (Passeriformes: Certhioidea), with Comments on the Relationships ofFerminia. AMERICAN MUSEUM NOVITATES 2017. [DOI: 10.1206/3887.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- F. Keith Barker
- Department of Ecology, Evolution and Behavior and Bell Museum of Natural History, University of Minnesota
| |
Collapse
|
168
|
Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, Wörheide G, Pisani D. Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals. Curr Biol 2017; 27:3864-3870.e4. [DOI: 10.1016/j.cub.2017.11.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/19/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
169
|
Pérez-González A, Ceccarelli FS, Monte BGO, Proud DN, DaSilva MB, Bichuette ME. Light from dark: A relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America. PLoS One 2017; 12:e0187919. [PMID: 29190302 PMCID: PMC5708626 DOI: 10.1371/journal.pone.0187919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/27/2017] [Indexed: 01/16/2023] Open
Abstract
A new troglobitic harvestman, Relictopiolus galadriel gen. nov et sp. nov., is described from Olhos d'Água cave, Itacarambi, Minas Gerais State, Brazil. Morphological characters, including male genitalia and exomorphology, suggest that this species belongs to the family Kimulidae, and it appears to share the greatest similarities with Tegipiolus pachypus. Bayesian inference analyses of a molecular dataset strongly support the inclusion of this species in Kimulidae and confirm the hypothesized sister-group relationship between R. galadriel and T. pachypus. A time calibrated phylogeny indicates that these sister-taxa diverged from a common ancestor approximately 40 Mya, during the Paleogene. The current range of Kimulidae illustrates a remarkable disjunct distribution, and leads us to hypothesize that the ancestral distribution of Kimulidae was once much more widespread across eastern Brazil. This may be attributed to the Eocene radiation associated with the warming (and humidifying) events in the Cenozoic when the best conditions for evergreen tropical vegetation in South America were established and followed by the extinction of kimulid epigean populations together with the retraction of rain forests during the Oligocene to Miocene cooling. The discovery of this relictual troglobite indicates that the Olhos d'Água cave was a stable refugium for this ancient lineage of kimulids and acted as a "museum" of biodiversity. Our findings, considered collectively with the diverse troglofauna of the Olhos d'Água cave, highlight it as one of the most important hotspots of troglobite diversity and endemism in the Neotropics. Given the ecological stresses on this habitat, the cavernicolous fauna are at risk of extinction and we emphasize the urgent need for appropriate conservation actions. Finally, we propose the transfer of Acanthominua, Euminua, Euminuoides and Pseudominua from Kimulidae to Zalmoxidae, resulting in two new synonymies and 13 new combinations.
Collapse
Affiliation(s)
- Abel Pérez-González
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"—CONICET, Buenos Aires, Argentina
| | - F. Sara Ceccarelli
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"—CONICET, Buenos Aires, Argentina
| | - Bruno G. O. Monte
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luis, São Carlos, Brasil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Rodovia Washington Luis, São Carlos, Brasil
| | - Daniel N. Proud
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"—CONICET, Buenos Aires, Argentina
| | | | - Maria E. Bichuette
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Rodovia Washington Luis, São Carlos, Brasil
| |
Collapse
|
170
|
Ruiz-García M, Pinedo-Castro M, Shostell JM. Small spotted bodies with multiple specific mitochondrial DNAs: existence of diverse and differentiated tigrina lineages or species (Leopardus spp: Felidae, Mammalia) throughout Latin America. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:993-1014. [PMID: 29157065 DOI: 10.1080/24701394.2017.1404041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We analysed two sets of mitochondrial (mt) DNA data from tigrinas (traditionally, Leopardus tigrinus) we sampled in Costa Rica, Venezuela, Colombia, Ecuador, Peru, Bolivia, northwestern and northeastern Argentina and southern Brazil. Additionally, the analysis included some GenBank sequences from southern, central and northeastern Brazil. The first mt set (mt ATP8+mt 16S rRNA with 41 tigrina) revealed the existence of seven different tigrina-like haplogroups. They could represent, at least, 4-6 different tigrina species following the Phylogenetic Species Concept (PSC). In the second mt set (mitogenomics with 18 tigrinas), we detected six different tigrina-like haplogroups. They could represent 4-5 different tigrina species - including a possible full new species, which has gone previously unnoticed to the world of science both morphologic and molecularly. Coat patterns of several of these different tigrinas support the molecular differences. We also detected intense hybridization in many Andean tigrina with margays (Leopardus wiedii) and ocelots (Leopardus pardalis) as well as hybridization of one Bolivian tigrina with Leopardus geoffroyi. Similar hybridization was found for many of the southern Brazilian tigrina (Leopardus guttulus). All of the temporal split estimates for these tigrina haplogroups, together with those of the Leopardus species recognized to date, began in the late Pliocene but mostly occurred during the Pleistocene. In agreement with the existence of multiple species within the traditional L. tigrinus species, we detected strong and significant spatial structure in the two mt data sets. There were clear circular clines. A major part of the analyses detected more genetic resemblance between the Central American + trans Andean Colombian and Ecuadorian tigrina (L. oncilla) with the most geographically distant tigrina from central and southern Brazil (L. guttulus; pure individuals not hybridized with L. geoffroyi). In comparison, the Andean tigrina taxa had intermediate geographical origins but were highly genetically differentiated both from the Central American + trans Andean Colombian-Ecuadorian tigrina and from the central and southern Brazilian tigrina.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- a Departamento de Biología, Facultad de Ciencias , Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Pontificia Universidad Javeriana , Bogotá , Colombia
| | - Myreya Pinedo-Castro
- a Departamento de Biología, Facultad de Ciencias , Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Pontificia Universidad Javeriana , Bogotá , Colombia
| | - Joseph Mark Shostell
- b Math, Science and Technology Department , University of Minnesota Crookston , Crookston , MN , USA
| |
Collapse
|
171
|
Capitulocladosporium clinodiplosidis gen. et sp. nov., a hyphomyceteous ustilaginomycete from midge. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1352-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
172
|
Gatto L, Catanzaro D, Milinkovitch MC. Assessing the Applicability of the GTR Nucleotide Substitution Model through Simulations. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The General Time Reversible (GTR) model of nucleotide substitution is at the core of many distance-based and character-based phylogeny inference methods. The procedure described by Waddell and Steel (1997), for estimating distances and instantaneous substitution rate matrices, R, under the GTR model, is known to be inapplicable under some conditions, ie, it leads to the inapplicability of the GTR model. Here, we simulate the evolution of DNA sequences along 12 trees characterized by different combinations of tree length, (non-)homogeneity of the substitution rate matrix R, and sequence length. We then evaluate both the frequency of the GTR model inapplicability for estimating distances and the accuracy of inferred alignments. Our results indicate that, inapplicability of the Waddel and Steel's procedure can be considered a real practical issue, and illustrate that the probability of this inapplicability is a function of substitution rates and sequence length. We also discuss the implications of our results on the current implementations of maximum likelihood and Bayesian methods.
Collapse
Affiliation(s)
- Laurent Gatto
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, CP300, rue Jeener et Brächet 12, 6041 Gosselies, Belgium
| | - Daniele Catanzaro
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, CP300, rue Jeener et Brächet 12, 6041 Gosselies, Belgium
| | - Michel C. Milinkovitch
- Laboratory of Evolutionary Genetics, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, CP300, rue Jeener et Brächet 12, 6041 Gosselies, Belgium
| |
Collapse
|
173
|
Jayaswal V, Jermiin LS, Robinson J. Estimation of Phylogeny Using a General Markov Model. Evol Bioinform Online 2017. [DOI: 10.1177/117693430500100005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The non-homogeneous model of nucleotide substitution proposed by Barry and Hartigan ( Stat Sci, 2: 191–210) is the most general model of DNA evolution assuming an independent and identical process at each site. We present a computational solution for this model, and use it to analyse two data sets, each violating one or more of the assumptions of stationarity, homogeneity, and reversibility. The log likelihood values returned by programs based on the F84 model ( J Mol Evol, 29: 170–179), the general time reversible model ( J Mol Evol, 20: 86–93), and Barry and Hartigan's model are compared to determine the validity of the assumptions made by the first two models. In addition, we present a method for assessing whether sequences have evolved under reversible conditions and discover that this is not so for the two data sets. Finally, we determine the most likely tree under the three models of DNA evolution and compare these with the one favoured by the tests for symmetry.
Collapse
Affiliation(s)
- Vivek Jayaswal
- School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia; Sydney University Biological Informatics and Technology Centre, University of Sydney, NSW 2006, Australia
| | - Lars S. Jermiin
- School of Biological Sciences, University of Sydney, NSW 2006, Australia; Sydney University Biological Informatics and Technology Centre, University of Sydney, NSW 2006, Australia. Unité de Biologie Moléculaire de Gène chez les Extrêmophiles, Institut Pasteur, 75724 Paris Cedex 15, France
| | - John Robinson
- School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
| |
Collapse
|
174
|
Dapp MJ, Kober KM, Chen L, Westfall DH, Wong K, Zhao H, Hall BM, Deng W, Sibley T, Ghorai S, Kim K, Chen N, McHugh S, Au L, Cohen M, Anastos K, Mullins JI. Patterns and rates of viral evolution in HIV-1 subtype B infected females and males. PLoS One 2017; 12:e0182443. [PMID: 29045410 PMCID: PMC5646779 DOI: 10.1371/journal.pone.0182443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Biological sex differences affect the course of HIV infection, with untreated women having lower viral loads compared to their male counterparts but, for a given viral load, women have a higher rate of progression to AIDS. However, the vast majority of data on viral evolution, a process that is clearly impacted by host immunity and could be impacted by sex differences, has been derived from men. We conducted an intensive analysis of HIV-1 gag and env-gp120 evolution taken over the first 6–11 years of infection from 8 Women’s Interagency HIV Study (WIHS) participants who had not received combination antiretroviral therapy (ART). This was compared to similar data previously collected from men, with both groups infected with HIV-1 subtype B. Early virus populations in men and women were generally homogenous with no differences in diversity between sexes. No differences in ensuing nucleotide substitution rates were found between the female and male cohorts studied herein. As previously reported for men, time to peak diversity in env-gp120 in women was positively associated with time to CD4+ cell count below 200 (P = 0.017), and the number of predicted N-linked glycosylation sites generally increased over time, followed by a plateau or decline, with the majority of changes localized to the V1-V2 region. These findings strongly suggest that the sex differences in HIV-1 disease progression attributed to immune system composition and sensitivities are not revealed by, nor do they impact, global patterns of viral evolution, the latter of which proceeds similarly in women and men.
Collapse
Affiliation(s)
- Michael J. Dapp
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kord M. Kober
- Department of Physiological Nursing, University of California at San Francisco, California, United States of America
| | - Lennie Chen
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Dylan H. Westfall
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kim Wong
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hong Zhao
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Breana M. Hall
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Wenjie Deng
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Thomas Sibley
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Suvankar Ghorai
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Katie Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Natalie Chen
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Sarah McHugh
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lily Au
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Mardge Cohen
- The Core Center, Bureau of Health Services of Cook County, Chicago, Illinois, United States of America
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
175
|
Jayasena AS, Fisher MF, Panero JL, Secco D, Bernath-Levin K, Berkowitz O, Taylor NL, Schilling EE, Whelan J, Mylne JS. Stepwise Evolution of a Buried Inhibitor Peptide over 45 My. Mol Biol Evol 2017; 34:1505-1516. [PMID: 28333296 DOI: 10.1093/molbev/msx104] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host.
Collapse
Affiliation(s)
- Achala S Jayasena
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Mark F Fisher
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Jose L Panero
- Department of Integrative Biology, University of Texas, Austin, TX
| | - David Secco
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Kalia Bernath-Levin
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Edward E Schilling
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Joshua S Mylne
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
176
|
Weissenbach J, Ilhan J, Bogumil D, Hülter N, Stucken K, Dagan T. Evolution of Chaperonin Gene Duplication in Stigonematalean Cyanobacteria (Subsection V). Genome Biol Evol 2017; 9:241-252. [PMID: 28082600 PMCID: PMC5381637 DOI: 10.1093/gbe/evw287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
Chaperonins promote protein folding and are known to play a role in the maintenance of cellular stability under stress conditions. The group I bacterial chaperonin complex comprises GroEL, that forms a barrel-like oligomer, and GroES that forms the lid. In most eubacteria the GroES/GroEL chaperonin is encoded by a single-copy bicistronic operon, whereas in cyanobacteria up to three groES/groEL paralogs have been documented. Here we study the evolution and functional diversification of chaperonin paralogs in the heterocystous, multi-seriate filament forming cyanobacterium Chlorogloeopsis fritschii PCC 6912. The genome of C. fritschii encodes two groES/groEL operons (groESL1, groESL1.2) and a monocistronic groEL gene (groEL2). A phylogenetic reconstruction reveals that the groEL2 duplication is as ancient as cyanobacteria, whereas the groESL1.2 duplication occurred at the ancestor of heterocystous cyanobacteria. A comparison of the groEL paralogs transcription levels under different growth conditions shows that they have adapted distinct transcriptional regulation. Our results reveal that groEL1 and groEL1.2 are upregulated during diazotrophic conditions and the localization of their promoter activity points towards a role in heterocyst differentiation. Furthermore, protein–protein interaction assays suggest that paralogs encoded in the two operons assemble into hybrid complexes. The monocistronic encoded GroEL2 is not forming oligomers nor does it interact with the co-chaperonins. Interaction between GroES1.2 and GroEL1.2 could not be documented, suggesting that the groESL1.2 operon does not encode a functional chaperonin complex. Functional complementation experiments in Escherichia coli show that only GroES1/GroEL1 and GroES1/GroEL1.2 can substitute the native operon. In summary, the evolutionary consequences of chaperonin duplication in cyanobacteria include the retention of groESL1 as a housekeeping gene, subfunctionalization of groESL1.2 and neofunctionalization of the monocistronic groEL2 paralog.
Collapse
Affiliation(s)
- Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Judith Ilhan
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - David Bogumil
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Nils Hülter
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Karina Stucken
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| |
Collapse
|
177
|
du Toit Z, du Plessis M, Dalton DL, Jansen R, Paul Grobler J, Kotzé A. Mitochondrial genomes of African pangolins and insights into evolutionary patterns and phylogeny of the family Manidae. BMC Genomics 2017; 18:746. [PMID: 28934931 PMCID: PMC5609056 DOI: 10.1186/s12864-017-4140-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/14/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study used next generation sequencing to generate the mitogenomes of four African pangolin species; Temminck's ground pangolin (Smutsia temminckii), giant ground pangolin (S. gigantea), white-bellied pangolin (Phataginus tricuspis) and black-bellied pangolin (P. tetradactyla). RESULTS The results indicate that the mitogenomes of the African pangolins are 16,558 bp for S. temminckii, 16,540 bp for S. gigantea, 16,649 bp for P. tetradactyla and 16,565 bp for P. tricuspis. Phylogenetic comparisons of the African pangolins indicated two lineages with high posterior probabilities providing evidence to support the classification of two genera; Smutsia and Phataginus. The total GC content between African pangolins was observed to be similar between species (36.5% - 37.3%). The most frequent codon was found to be A or C at the 3rd codon position. Significant variations in GC-content and codon usage were observed for several regions between African and Asian pangolin species which may be attributed to mutation pressure and/or natural selection. Lastly, a total of two insertions of 80 bp and 28 bp in size respectively was observed in the control region of the black-bellied pangolin which were absent in the other African pangolin species. CONCLUSIONS The current study presents reference mitogenomes of all four African pangolin species and thus expands on the current set of reference genomes available for six of the eight extant pangolin species globally and represents the first phylogenetic analysis with six pangolin species using full mitochondrial genomes. Knowledge of full mitochondrial DNA genomes will assist in providing a better understanding on the evolution of pangolins which will be essential for conservation genetic studies.
Collapse
Affiliation(s)
- Zelda du Toit
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
- Centre for Conservation Science, National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
| | - Morné du Plessis
- Centre for Conservation Science, National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
| | - Desiré L Dalton
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
- Centre for Conservation Science, National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa.
- Department of Zoology, University of Venda, Thohoyandou, South Africa.
| | - Raymond Jansen
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
- Centre for Conservation Science, National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
178
|
Hudson W. Whole-loop mitochondrial DNA D-loop sequence variability in Egyptian Arabian equine matrilines. PLoS One 2017; 12:e0184309. [PMID: 28859174 PMCID: PMC5578668 DOI: 10.1371/journal.pone.0184309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/13/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Egyptian Arabian horses have been maintained in a state of genetic isolation for over a hundred years. There is only limited genetic proof that the studbook records of female lines of Egyptian Arabian pedigrees are reliable. This study characterized the mitochondrial DNA (mtDNA) signatures of 126 horses representing 14 matrilines in the Egyptian Agricultural Organization (EAO) horse-breeding program. FINDINGS Analysis of the whole D-loop sequence yielded additional information compared to hypervariable region-1 (HVR1) analysis alone, with 42 polymorphic sites representing ten haplotypes compared to 16 polymorphic sites representing nine haplotypes, respectively. Most EAO haplotypes belonged to ancient haplogroups, suggesting origin from a wide geographical area over many thousands of years, although one haplotype was novel. CONCLUSIONS Historical families share haplotypes and some individuals from different strains belonged to the same haplogroup: the classical EAO strain designation is not equivalent to modern monophyletic matrilineal groups. Phylogenetic inference showed that the foundation mares of the historical haplotypes were highly likely to have the same haplotypes as the animals studied (p > 0.998 in all cases), confirming the reliability of EAO studbook records and providing the opportunity for breeders to confirm the ancestry of their horses.
Collapse
Affiliation(s)
- William Hudson
- William Hudson MD, Hudson Cardiology P.C., Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
179
|
Avin FA, Subha B, Tan Y, Braukmann TWA, Vikineswary S, Hebert PDN. Escaping introns in COI through cDNA barcoding of mushrooms: Pleurotus as a test case. Ecol Evol 2017; 7:6972-6980. [PMID: 28904776 PMCID: PMC5587487 DOI: 10.1002/ece3.3049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 01/28/2023] Open
Abstract
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5' region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.
Collapse
Affiliation(s)
- Farhat A. Avin
- Mushroom Research Centre (MRC)University of MalayaKuala LumpurMalaysia
- Department of BiotechnologyFaculty of ScienceLincoln University College47301 Petaling JayaMalaysia
| | - Bhassu Subha
- Centre for Biotechnology in Agriculture Research (CEBAR)Division of Genetics and Molecular BiologyUniversity of MalayaKuala LumpurMalaysia
- Institute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Yee‐Shin Tan
- Mushroom Research Centre (MRC)University of MalayaKuala LumpurMalaysia
- Institute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | | | - Sabaratnam Vikineswary
- Mushroom Research Centre (MRC)University of MalayaKuala LumpurMalaysia
- Institute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | | |
Collapse
|
180
|
Sun LY, Li HY, Sun X, Guo LD. Dematipyriforma aquilariagen. et sp. nov., a New Hyphomycetous Taxon from Aquilaria crassna. CRYPTOGAMIE MYCOL 2017. [DOI: 10.7872/crym/v38.iss3.2017.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li-Yan Sun
- College of Pharmacy, Taishan Medical University, Taian 271016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Yan Li
- Department of Pharmacy, Foshan University, Foshan 528000, China
- Guangdong Guofang Medical Technology Co. Ltd., Dongguan 523000, China
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
181
|
Cubilla MP, Santos LC, de Moraes W, Cubas ZS, Leutenegger CM, Estrada M, Lindsay LL, Trindade ES, Franco CRC, Vieira RF, Biondo AW, Sykes JE. Microscopic and molecular identification of hemotropic mycoplasmas in South American coatis (Nasua nasua). Comp Immunol Microbiol Infect Dis 2017; 53:19-25. [DOI: 10.1016/j.cimid.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 11/24/2022]
|
182
|
Gao S, Anderson TK, Walia RR, Dorman KS, Janas-Martindale A, Vincent AL. The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. J Gen Virol 2017; 98:2001-2010. [PMID: 28758634 DOI: 10.1099/jgv.0.000885] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transmission of influenza A virus (IAV) from humans to swine occurs with relative frequency and is a critical contributor to swine IAV diversity. Subsequent to the introduction of these human seasonal lineages, there is often reassortment with endemic viruses and antigenic drift. To address whether particular genome constellations contributed to viral persistence following the introduction of the 2009 H1N1 human pandemic virus to swine in the USA, we collated and analysed 616 whole genomes of swine H1 isolates. For each gene, sequences were aligned, the best-known maximum likelihood phylogeny was inferred, and each virus was assigned a clade based upon its evolutionary history. A time-scaled Bayesian approach was implemented for the haemagglutinin (HA) gene to determine the patterns of genetic diversity over time. From these analyses, we observed an increase in genome diversity across all H1 lineages and clades, with the H1-γ and H1-δ1 genetic clades containing the greatest number of unique genome patterns. We documented 74 genome patterns from 2009 to 2016, of which 3 genome patterns were consistently detected at a significantly higher level than others across the entire time period. Eight genome patterns increased significantly, while five genome patterns were shown to decline in detection over time. Viruses with genome patterns identified as persisting in the US swine population may possess a greater capacity to infect and transmit in swine. This study highlights the emerging genetic diversity of US swine IAV from 2009 to 2016, with implications for swine and public health and vaccine control efforts.
Collapse
Affiliation(s)
- Shibo Gao
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Rasna R Walia
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Karin S Dorman
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Statistics, Iowa State University, Ames, IA, USA
| | | | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
183
|
Adaptive diversification between the classic rabbit hemorrhagic disease virus (RHDV) and the RHDVa isolates: A genome-wide perspective. Microb Pathog 2017; 110:527-532. [PMID: 28743597 DOI: 10.1016/j.micpath.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/23/2023]
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a highly infectious pathogen that causes high mortality in wild and domestic rabbits. RHDV could be divided into two subtypes, classic RHDV and RHDVa, which present clear genetic, antigenic, and epidemiological differences. To further understand the nature of the diversity, we performed a genome-wide evolutionary study on the classic RHDV and RHDVa isolates. The results show that RHDV had experienced adaptive diversification with the dividing process of these subtypes. Furthermore, amino acid changes relevant to the adaptive diversification mainly cluster in viral capsid protein VP60. These results might be beneficial for a further understanding the function of VP60 and provide helpful hints for the genetic basis of RHDV emergence and re-emergence.
Collapse
|
184
|
Morris J, Shiller J, Mann R, Smith G, Yen A, Rodoni B. Novel 'Candidatus Liberibacter' species identified in the Australian eggplant psyllid, Acizzia solanicola. Microb Biotechnol 2017; 10:833-844. [PMID: 28387006 PMCID: PMC5481521 DOI: 10.1111/1751-7915.12707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/27/2017] [Indexed: 12/04/2022] Open
Abstract
A novel candidate species of the liberibacter genus, 'Candidatus Liberibacter brunswickensis' (CLbr), was identified in the Australian eggplant psyllid, Acizzia solanicola. This is the first discovery of a species belonging to the liberibacter genus in Australia and the first report of a liberibacter species in the psyllid genus Acizzia. This new candidate liberibacter species has not been associated with plant disease, unlike other psyllid-vectored species in the genus including 'Candidatus Liberibacter asiaticus' (CLas), 'Candidatus Liberibacter africanus' (CLaf) and 'Ca. Liberibacter solanacearum' (CLso). This study describes novel generic liberibacter genus primers, used to screen Australian psyllids for the presence of microflora that may confound diagnosis of exotic pathogens. CLbr forms a unique clade in the liberibacter genus based on phylogenetic analysis of the 16S ribosomal ribonucleic acid (rRNA) region and multilocus sequence analysis (MLSA) of seven highly conserved genes, dnaG, gyrB, mutS, nusG, rplA, rpoB and tufB. The MLSA mapping approach described in this article was able to discriminate between two 'Ca. Liberibacter' species within a metagenomic data set and represents a novel approach to detecting and differentiating unculturable species of liberibacter. Further, CLbr can confound the Li et al. (2006) quantitative PCR (qPCR) diagnostic tests for CLas and CLaf.
Collapse
Affiliation(s)
- Jacqueline Morris
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- La Trobe University, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Jason Shiller
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- INRA/Université d'Angers - IRHS Batiment C, 42 rue Georges Morel, Beaucouzé, 49071, France
| | - Rachel Mann
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Grant Smith
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- Plant & Food Research Lincol, Gerald St, Lincoln, 7608, New Zealand
- Better Border Biosecurity, Lincoln, 7608, New Zealand
| | - Alan Yen
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- La Trobe University, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Brendan Rodoni
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory, 2617, Australia
- La Trobe University, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
185
|
Genetic evidence supporting the taxonomic separation of the Arabian and Northwest African subspecies of the desert hedgehog ( Paraechinus aethiopicus ). Gene 2017; 620:54-65. [DOI: 10.1016/j.gene.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 11/21/2022]
|
186
|
Chernick A, van der Meer F. Evolution of Bovine viral diarrhea virus in Canada from 1997 to 2013. Virology 2017; 509:232-238. [PMID: 28668732 DOI: 10.1016/j.virol.2017.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a rapidly evolving, single-stranded RNA virus and a production limiting pathogen of cattle worldwide. 79 viral isolates collected between 1997 and 2013 in Canada were subjected to next-generation sequencing. Bayesian phylogenetics was used to assess the evolution of this virus. A mean substitution rate of 1.4×10-3 substitutions/site/year was found across both BVDV1 and BVDV2. Evolutionary rates in the E2 gene were slightly faster than other regions. We also identified population structures below the sub-genotype level that likely have phenotypic implications. Two distinct clusters within BVDV2a are present and can be differentiated, in part, by a tyrosine to isoleucine mutation at position 963 in the E2 protein, a position implicated in the antigenicity of BVDV1 isolates. Distinct clustering within all sub-genotypes, particularly BVDV2a, is apparent and could lead to new levels of genotypic classification. Continuous monitoring of emerging variants is therefore necessary.
Collapse
Affiliation(s)
- Adam Chernick
- Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Frank van der Meer
- Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
187
|
Genetic diversity of human papillomavirus types 35, 45 and 58 in cervical cancer in Brazil. Arch Virol 2017; 162:2855-2860. [PMID: 28597068 DOI: 10.1007/s00705-017-3439-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022]
Abstract
In Brazil, most studies of intra-type variants of human papillomavirus (HPV) have focused on HPV16 and HPV18, but other high-risk HPV types have not been studied. Here, we report the prevalence of lineages and variants of HPV35, HPV45 and HPV58 in cervical cancers from the Amazonian and Southeast Brazilian regions. The most frequent sublineages were A1 for HPV35, B2 for HPV45, and A2 for HPV58. The Southeast region had a higher frequency of the B2 sublineage of HPV45, and for HPV35, the genetic and nucleotide sequence diversity were higher in the Southeast region, suggesting that regional factors are influencing the diversity and lineage prevalence.
Collapse
|
188
|
Selvatti AP, Galvão A, Pereira AG, Pedreira Gonzaga L, Russo CADM. An African Origin of the Eurylaimides (Passeriformes) and the Successful Diversification of the Ground-Foraging Pittas (Pittidae). Mol Biol Evol 2017; 34:483-499. [PMID: 28069777 DOI: 10.1093/molbev/msw250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Eurylaimides is one of the few passerine groups with a pantropical distribution. In this study, we generated a multi-calibrated tree with 83% of eurylaimid species diversity based on 30 molecular loci. Particular attention was given to the monotypic Sapayoidae to reconstruct the biogeography of this radiation. We conducted several topological tests including nonoverlapping subsampling of the concatenated alignment and coalescent species tree reconstruction. These tests firmly placed the South American Sapayoidae as the sister group to all other Eurylaimides families (split at ∼28 Ma), with increasing branch support as highly variable sites were removed. This topology is consistent with the breakup of the insular connection between Africa and South America (Atlantogea) that took place between the middle Eocene and the early Oligocene. We recovered Africa as the cradle of the core Eurylaimides, and this result is supported by all African lineages corresponding to the oldest splits within each family in this group. Our timescale suggests that desertification and the uplift of the Tibetan Plateau caused a parallel divergence between African and Asian lineages in all major clades in the core Eurylaimides at 22-9 Ma. We also propose that the ground-foraging behavior in the Pittidae ancestor allowed the pitta lineage to thrive and coexist with the older arboreal lineages of the core Eurylaimides. In contrast, the diversification of pittas in Australia was likely hindered by direct competition with the endemic ground-foraging oscines that had been well established in that continent since the Eocene.
Collapse
Affiliation(s)
- Alexandre Pedro Selvatti
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, RJ, Brazil
| | - Ana Galvão
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anieli Guirro Pereira
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, RJ, Brazil
| | - Luiz Pedreira Gonzaga
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
189
|
Taylor A, Qiu YL. Evolutionary History of Subtilases in Land Plants and Their Involvement in Symbiotic Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:489-501. [PMID: 28353400 DOI: 10.1094/mpmi-10-16-0218-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Subtilases, a family of proteases involved in a variety of developmental processes in land plants, are also involved in both mutualistic symbiosis and host-pathogen interactions in different angiosperm lineages. We examined the evolutionary history of subtilase genes across land plants through a phylogenetic analysis integrating amino acid sequence data from full genomes, transcriptomes, and characterized subtilases of 341 species of diverse green algae and land plants along with subtilases from 12 species of other eukaryotes, archaea, and bacteria. Our analysis reconstructs the subtilase gene phylogeny and identifies 11 new gene lineages, six of which have no previously characterized members. Two large, previously unnamed, subtilase gene lineages that diverged before the origin of angiosperms accounted for the majority of subtilases shown to be associated with symbiotic interactions. These lineages expanded through both whole-genome and tandem duplication, with differential neofunctionalization and subfunctionalization creating paralogs associated with different symbioses, including nodulation with nitrogen-fixing bacteria, arbuscular mycorrhizae, and pathogenesis in different plant clades. This study demonstrates for the first time that a key gene family involved in plant-microbe interactions proliferated in size and functional diversity before the explosive radiation of angiosperms.
Collapse
Affiliation(s)
- Alexander Taylor
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| | - Yin-Long Qiu
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| |
Collapse
|
190
|
Cunningham CW, Zhu H, Hillis DM. BEST‐FIT MAXIMUM‐LIKELIHOOD MODELS FOR PHYLOGENETIC INFERENCE: EMPIRICAL TESTS WITH KNOWN PHYLOGENIES. Evolution 2017; 52:978-987. [DOI: 10.1111/j.1558-5646.1998.tb01827.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1997] [Accepted: 04/16/1998] [Indexed: 12/01/2022]
Affiliation(s)
| | - H. Zhu
- Zoology Department Duke University Durham North Carolina 27708
| | - D. M. Hillis
- Department of Zoology and Institute of Cellular and Molecular Biology University of Texas Austin Texas 78712
| |
Collapse
|
191
|
Palumbi SR, Kessing BD. POPULATION BIOLOGY OF THE TRANS‐ARCTIC EXCHANGE: MtDNA SEQUENCE SIMILARITY BETWEEN PACIFIC AND ATLANTIC SEA URCHINS. Evolution 2017; 45:1790-1805. [PMID: 28563965 DOI: 10.1111/j.1558-5646.1991.tb02688.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1990] [Accepted: 04/26/1991] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen R. Palumbi
- Department of Zoology and Kewalo Marine Lab University of Hawaii Honolulu HI 96822 USA
| | - Bailey D. Kessing
- Department of Zoology and Kewalo Marine Lab University of Hawaii Honolulu HI 96822 USA
| |
Collapse
|
192
|
Polgar G, Zaccara S, Babbucci M, Fonzi F, Antognazza CM, Ishak N, Sulaiman Z, Crosa G. Habitat segregation and cryptic adaptation of species of Periophthalmus (Gobioidei: Gobiidae). JOURNAL OF FISH BIOLOGY 2017; 90:1926-1943. [PMID: 28239874 DOI: 10.1111/jfb.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/08/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.
Collapse
Affiliation(s)
- G Polgar
- Environmental and Life Sciences Programme, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
- Institute of Biological Sciences, Institute of Ocean and Earth Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S Zaccara
- Department of Theoretical and Applied Sciences, University of Insubria, 21100, Varese, Italy
| | - M Babbucci
- Department of Comparative Biomedicine and Food Safety, University of Padova, 35020, Legnaro (PD), Italy
| | - F Fonzi
- Department of Theoretical and Applied Sciences, University of Insubria, 21100, Varese, Italy
| | - C M Antognazza
- Department of Theoretical and Applied Sciences, University of Insubria, 21100, Varese, Italy
| | - N Ishak
- Environmental and Life Sciences Programme, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| | - Z Sulaiman
- Environmental and Life Sciences Programme, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
- Universiti Teknologi Brunei, Jalan Tungku, BE1410 Bandar Seri Begawan, Brunei Darussalam
| | - G Crosa
- Department of Theoretical and Applied Sciences, University of Insubria, 21100, Varese, Italy
| |
Collapse
|
193
|
Li J, Masuya H, Okane I, Yamaoka Y. Ophiostoma sugadairense , a new species in the Ophiostoma piceae complex associated with bark beetles infesting Japanese larch in Japan. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2016.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
194
|
Błażej P, Wnętrzak M, Grabińska M, Mackiewicz P. Representations of Search Spaces in the Problem of Mutational Pressure Optimization According to Protein-Coding Sequences. J Comput Biol 2017; 24:1089-1098. [PMID: 28414521 DOI: 10.1089/cmb.2017.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The proper representation of the search space is the fundamental step in every optimization task, because it has a decisive impact on the quality of potential solutions. In particular, this problem appears when the search spaces are nonstandard and complex, with the large number of candidate solutions that differ from classical forms usually investigated. One of such spaces is the set of continuous-time, homogenous, and stationary Markov processes. They are commonly used to describe biological phenomena, for example, mutations in DNA sequences and their evolution. Because of the complexity of these processes, the representation of their search space is not an easy task but it is important for effective solving of the biological problems. One of them is optimality of mutational pressure acting on protein-coding sequences. Therefore, we described three representations of the search spaces and proposed several specific evolutionary operators that are used in evolutionary-based optimization algorithms to solve the biological problem of mutational pressure optimality. In addition, we gave a general formula for the fitness function, which can be used to measure the quality of potential solutions. The structures of these solutions are based on two models of DNA evolution described by substitution-rate matrices, which are commonly used in phylogenetic analyzes. The proposed representations have been successfully utilized in various issues, and the obtained results are very interesting from a biological point of view. For example, they show that mutational pressures are, to some extent, optimized to minimize cost of amino acid substitutions in proteins.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław , Wrocław, Poland
| | - Małgorzata Wnętrzak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław , Wrocław, Poland
| | - Małgorzata Grabińska
- Department of Genomics, Faculty of Biotechnology, University of Wrocław , Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław , Wrocław, Poland
| |
Collapse
|
195
|
Li Y, Yang Z. Adaptive Diversification Between Yellow Fever Virus West African and South American Lineages: A Genome-Wide Study. Am J Trop Med Hyg 2017; 96:727-734. [PMID: 28044043 DOI: 10.4269/ajtmh.16-0698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Yellow fever virus (YFV) has emerged as the causative agent of a vector-borne disease with devastating mortality in the tropics of Africa and the Americas. YFV phylogenies indicate that the isolates collected from West Africa, East and Central Africa, and South America cluster into different lineages and the virus spread into the Americas from Africa. To determine the nature of genetic variation accompanying the intercontinental epidemic, we performed a genome-wide evolutionary study on the West African and South American lineages of YFV. Our results reveal that adaptive genetic diversification has occurred on viral nonstructural protein 5 (NS5), which is crucially required for viral genome replication, in the early epidemic phase of these currently circulating lineages. Furthermore, major amino acid changes relevant to the adaptive diversification generally cluster in different structural regions of NS5 in a lineage-specific manner. These results suggest that YFV has experienced adaptive diversification in the epidemic spread between the continents and shed insights into the genetic determinants of such diversification, which might be beneficial for understanding the emergence and re-emergence of yellow fever as an important global public health issue.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| |
Collapse
|
196
|
An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida). Front Zool 2017; 14:18. [PMID: 28331531 PMCID: PMC5359874 DOI: 10.1186/s12983-017-0191-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
Background Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. Phylogenetic analyses suggest that Aulocalycoida is diphyletic and provide further support for the paraphyly of order Hexactinosida; hence these orders are abolished from the Linnean classification. We further assembled morphological character matrices to integrate so far unsequenced genera into phylogenetic analyses in maximum parsimony (MP), maximum likelihood (ML), Bayesian, and morphology-based binning frameworks. We find that of these four approaches, total-evidence analysis using MP gave the most plausible results concerning congruence with existing phylogenetic and taxonomic hypotheses, whereas the other methods, especially ML and binning, performed more poorly. We use our total-evidence phylogeny of all extant glass sponge genera for ancestral state reconstruction of morphological characters in MP and ML frameworks, gaining new insights into the evolution of major hexactinellid body plans and other characters such as different spicule types. Conclusions Our study demonstrates how a comprehensive, albeit in some parts provisional, phylogeny of a larger taxon can be achieved with an integrative approach utilizing molecular and morphological data, and how this can be used as a basis for understanding phenotypic evolution. The datasets and associated trees presented here are intended as a resource and starting point for future work on glass sponge evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0191-3) contains supplementary material, which is available to authorized users.
Collapse
|
197
|
Beresic-Perrins RK, Govedich FR, Banister K, Bonnie A Bain, Rose D, Shuster SM. Helobdella blinni sp. n. (Hirudinida, Glossiphoniidae) a new species inhabiting Montezuma Well, Arizona, USA. Zookeys 2017:137-155. [PMID: 28769606 PMCID: PMC5539370 DOI: 10.3897/zookeys.661.9728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/01/2017] [Indexed: 11/30/2022] Open
Abstract
A new leech species Helobdellablinnisp. n., is described from Montezuma Well, an isolated travertine spring mound located in central Arizona, USA. In its native habitat, Helobdellablinni had been previously identified as Helobdellastagnalis (Linnaeus, 1758), which was later reclassified to Helobdellamodesta (Verrill, 1872). Similar to the European Helobdellastagnalis and North American Helobdellamodesta, Helobdellablinni has six pairs of testisacs, five pairs of smooth crop caecae, one lobed pair of posteriorly-directed crop caecae, one pair of eyes, a nuchal scute, and diffuse salivary glands. However, the pigmentation of this new species ranges from light to dark brown, unlike Helobdellamodesta which tends to be light grey in color. Also, Helobdellamodesta produces a clutch of 12-–35 pink eggs, whereas Helobdellablinni produces smaller clutches of white eggs (7–14, 0.5 ± 0.15 mm, N = 7) and consequently broods fewer young (1–14, 7 ± 3.3 mm, N = 97). Helobdellablinni are also able to breed year-round due to the constant warm water conditions in Montezuma Well. Their breeding season is not restricted by seasonal temperatures. These species are morphologically similar, however, comparing the COI mtDNA sequences of Helobdellablinni with sequences from nearby populations of Helobdellamodesta and other Helobdella species from GenBank indicate that Helobdellablinni is genetically distinct from these other Helobdella populations.
Collapse
Affiliation(s)
- Rebecca K Beresic-Perrins
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., PO Box 5640 Flagstaff, AZ, 86011-5640
| | - Fredric R Govedich
- Department of Biological Sciences, Southern Utah University, 351 W. University Blvd. Cedar City, UT, 84720
| | - Kelsey Banister
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., PO Box 5640 Flagstaff, AZ, 86011-5640
| | - Bonnie A Bain
- Department of Biological Sciences, Southern Utah University, 351 W. University Blvd. Cedar City, UT, 84720
| | - Devin Rose
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., PO Box 5640 Flagstaff, AZ, 86011-5640
| | - Stephen M Shuster
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., PO Box 5640 Flagstaff, AZ, 86011-5640
| |
Collapse
|
198
|
Helicocollum, a new clavicipitalean genus pathogenic to scale insects (Hemiptera) in Thailand. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1283-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
199
|
Amoussa AER, Wilkinson E, Giovanetti M, de Almeida Rego FF, Araujo THA, de Souza Gonçalves M, de Oliveira T, Alcantara LCJ. HTLV-1aA introduction into Brazil and its association with the trans-Atlantic slave trade. INFECTION GENETICS AND EVOLUTION 2017; 48:95-101. [DOI: 10.1016/j.meegid.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
200
|
|