151
|
Maloveská M, Humeník F, Vikartovská Z, Hudáková N, Almášiová V, Krešáková L, Čížková D. Brain Fluid Channels for Metabolite Removal. Physiol Res 2022; 71:199-208. [DOI: 10.33549/physiolres.934802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The adult human brain represents only 2 % of the body's total weight, however it is one of the most metabolically active organs in the mammalian body. Its high metabolic activity necessitates an efficacious waste clearance system. Besides the blood, there are two fluids closely linked to the brain and spinal cord drainage system: interstitial fluid (ISF) and cerebrospinal fluid (CSF). The aim of this review is to summarize the latest research clarifying the channels of metabolite removal by fluids from brain tissue, subarachnoid space (SAS) and brain dura (BD). Special attention is focused on lymphatic vascular structures in the brain dura, their localizations within the meninges, morphological properties and topographic anatomy. The review ends with an account of the consequences of brain lymphatic drainage failure. Knowledge of the physiological state of the clearance system is crucial in order to understand the changes related to impaired brain drainage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D Čížková
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Slovak Republic.
| |
Collapse
|
152
|
Tsutsumi S, Ono H, Ishii H. Fluid-Filled Dehiscences in the Anterior Cranial Fossa Floor: A Magnetic Resonance Imaging Study. J Comput Assist Tomogr 2022; 46:781-785. [PMID: 35483106 DOI: 10.1097/rct.0000000000001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To date, only limited information regarding the anterior cranial fossa floor (AFF) and the appearance of sites of dehiscence and potential channels has been available. We aimed to evaluate this region with thin section magnetic resonance imaging (MRI). PATIENTS AND METHODS A total of 65 patients underwent thin-sliced coronal T2-weighted MRI. The AFF was divided into 3 parts for analysis: the anterior, middle, and posterior. RESULTS Dehiscences were identified in 84.6% of 65 patients with apparently transmitting channels. In 49.2% of the patients, the dehiscences were located in the anterior part, whereas they were located in the middle and posterior parts in 52.3% and 12.3%, respectively. The morphology and number of these dehiscences were highly variable. In 12.3%, channels in the dehiscences were distributed extradural. Statistically, dehiscences were more frequently identified on the left side in any part of the AFF. CONCLUSIONS With thin-sliced, coronal T2-weighted MRI, dehiscences were frequently identified in the anterior two-thirds of the AFF. Further study is warranted to determine the role of AFF channels and dehiscences, including possibly for cerebrospinal fluid drainage.
Collapse
Affiliation(s)
- Satoshi Tsutsumi
- From the Department of Neurological Surgery, Juntendo University Urayasu Hospital, Urayasu, Chiba
| | - Hideo Ono
- Division of Radiological Technology, Medical Satellite Yaesu Clinic, Tokyo, Japan
| | - Hisato Ishii
- From the Department of Neurological Surgery, Juntendo University Urayasu Hospital, Urayasu, Chiba
| |
Collapse
|
153
|
Abstract
Neonatal bacterial meningitis is a devastating disease, associated with high mortality and neurological disability, in both developed and developing countries. Streptococcus agalactiae, commonly referred to as group B Streptococcus (GBS), remains the most common bacterial cause of meningitis among infants younger than 90 days. Maternal colonization with GBS in the gastrointestinal and/or genitourinary tracts is the primary risk factor for neonatal invasive disease. Despite prophylactic intrapartum antibiotic administration to colonized women and improved neonatal intensive care, the incidence and morbidity associated with GBS meningitis have not declined since the 1970s. Among meningitis survivors, a significant number suffer from complex neurological or neuropsychiatric sequelae, implying that the pathophysiology and pathogenic mechanisms leading to brain injury and devastating outcomes are not yet fully understood. It is imperative to develop new therapeutic and neuroprotective approaches aiming at protecting the developing brain. In this review, we provide updated clinical information regarding the understanding of neonatal GBS meningitis, including epidemiology, diagnosis, management, and human evidence of the disease's underlying mechanisms. Finally, we explore the experimental models used to study GBS meningitis and discuss their clinical and physiologic relevance to the complexities of human disease.
Collapse
Affiliation(s)
- Teresa Tavares
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Pinho
- Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Porto, Portugal
| | - Elva Bonifácio Andrade
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
154
|
Ye Y, Gao W, Xu W, Gong J, Qiu M, Long L, Ding J. Anatomical Study of Arachnoid Granulation in Superior Sagittal Sinus Correlated to Growth Patterns of Meningiomas. Front Oncol 2022; 12:848851. [PMID: 35433489 PMCID: PMC9005955 DOI: 10.3389/fonc.2022.848851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas in the parasagittal region were formed by arachnoidal cells disseminated among arachnoid granulations. The purpose of this study was to characterize the morphology of chordae willisii, and AGs found in the superior sagittal sinus. This study used 20 anatomical specimens. Rigid endoscopes were introduced via torcula herophili into the sinus lumen. The morphological features of arachnoid granulation and chordae willisii were analyzed, and then arachnoid granulations and chordae willisii were assessed by elastic fiber stains, Masson’s stains, and imaging analysis. Three types of arachnoid granulations were present in the examined sinuses. There were 365 counts of arachnoid granulations in examined sinuses by imaging analysis, averaging 1.36 ± 2.58 per sinus. Types I, II, and III made up 20.27, 45.20, and 34.52% of 268 patients, respectively. Microscopy of chordae willisii transverse sections indicated the existence of a single layer and a multiple-layered dura sinus wall. The dural sinus wall was the thickest one in the superior sagittal sinus. The thickness of longitudinal lamellae was significantly greater than trabeculae. This study reveals the anatomical differences between arachnoid granulations in the superior sagittal sinus. The arachnoid granulations classification enables surgeons to predict preoperatively growth patterns, followed by safely achieving the optimal range of parasagittal meningioma resection.
Collapse
Affiliation(s)
- Yuanliang Ye
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou, China
| | - Wen Gao
- Department of Neurology, Liuzhou People's Hospital, Liuzhou, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiangu Gong
- Department of Anatomy, Guangxi Medical University, Nanning, China
| | - Minxing Qiu
- Department of Pathology, Southern Medical University, Guangzhou, China
| | - Lang Long
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
155
|
Theologou M, Natsis K, Kouskouras K, Chatzinikolaou F, Varoutis P, Skoulios N, Tsitouras V, Tsonidis C. Cerebrospinal Fluid Homeostasis and Hydrodynamics: A Review of Facts and Theories. Eur Neurol 2022; 85:313-325. [PMID: 35405679 DOI: 10.1159/000523709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE According to the classical hypothesis, the cerebrospinal fluid (CSF) is actively secreted inside the brain's ventricular system, predominantly by the choroid plexuses, before flowing unidirectionally in a cranio-caudal orientation toward the arachnoid granulations (AGs), where it is reabsorbed into the dural venous sinuses. This concept has been accepted as a doctrine for more than 100 years and was subjected only to minor modifications. Its inability to provide an adequate explanation to questions arising from the everyday clinical practice, in addition to the ever growing pool of experimental data contradicting it, has led to the identification of its limitations. Literature includes an increasing number of studies suggesting a more complex mechanism than that previously described. This review article summarizes the proposed mechanisms of CSF regulation, referring to the key clinical and experimental developments supporting or defying them. METHODS A non-systematical literature search of the major databases was performed for studies on the mechanisms of CSF homeostasis. Gray literature was additionally assessed employing a hand-search technique. No restrictions were imposed regarding the time, language, or type of publication. CONCLUSION CSF secretion and absorption are expected to take place throughout the entire brain's capillaries network under the regulation of hydrostatic and osmotic gradients. The unidirectional flow is defied, highlighting the possibility of its complete absence. The importance of AGs is brought into question, potentiating the significance of the lymphatic system as the primary site of reabsorption. However, the definition of hydrocephalus and its treatment strategies remain strongly associated with the classical hypothesis.
Collapse
Affiliation(s)
- Marios Theologou
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kouskouras
- Department of Radiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotios Chatzinikolaou
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Varoutis
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Nikolaos Skoulios
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Vassilios Tsitouras
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Christos Tsonidis
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| |
Collapse
|
156
|
Hsu M, Laaker C, Madrid A, Herbath M, Choi YH, Sandor M, Fabry Z. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat Immunol 2022; 23:581-593. [PMID: 35347285 PMCID: PMC8989656 DOI: 10.1038/s41590-022-01158-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
Meningeal lymphatics near the cribriform plate undergo lymphangiogenesis during neuroinflammation to drain excess fluid. Here, we hypothesized that lymphangiogenic vessels may acquire an altered phenotype to regulate immunity. Using single-cell RNA sequencing of meningeal lymphatics near the cribriform plate from healthy and experimental autoimmune encephalomyelitis in the C57BL/6 model, we report that neuroinflammation induces the upregulation of genes involved in antigen presentation such as major histocompatibility complex class II, adhesion molecules including vascular cell adhesion protein 1 and immunoregulatory molecules such as programmed cell death 1 ligand 1, where many of these changes are mediated by interferon-γ. The inflamed lymphatics retain CD11c+ cells and CD4 T cells where they capture and present antigen, creating an immunoregulatory niche that represents an underappreciated interface in the regulation of neuroinflammation. We also found discontinuity of the arachnoid membrane near the cribriform plate, which provides unrestricted access to the cerebrospinal fluid. These findings highlight a previously unknown function of local meningeal lymphatics in regulating immunity that has only previously been characterized in draining lymph nodes.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Andy Madrid
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun Hwa Choi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
157
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
158
|
Canine Intracranial Venous System: A Review. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The intracranial venous system (ICVS) represents in mammals a complex three-dimensional structure, which provides not only for adequate brain perfusion, but has also a significant impact on: cerebrospinal fluid (CSF) resorption, maintaining of the intracranial pressure (ICP), and brain thermoregulation. An intimate understanding of the anatomy and physiology of ICVS is fundamental for neurological diagnostics, selection of therapeutic options, and success of neurosurgical procedures in human and veterinary medicine. Since the intracranial interventions in dogs are recently performed more frequently than twenty or thirty years ago, the authors decided to review and report on the basic knowledge regarding the complex topic of morphology and function of the canine ICVS. The research strategy involved an NCBI/NLM, PubMed/MED-LINE, and Clarivate Analytics Web of Science search from January 1, 1960, to December 31, 2021, using the terms “canine dural venous sinuses” and “intracranial venous system in dogs” in the English language literature; also references from selected papers were scanned and relevant articles included.
Collapse
|
159
|
MacAulay N, Keep RF, Zeuthen T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 2022; 19:26. [PMID: 35317823 PMCID: PMC8941821 DOI: 10.1186/s12987-022-00323-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) envelops the brain and fills the central ventricles. This fluid is continuously replenished by net fluid extraction from the vasculature by the secretory action of the choroid plexus epithelium residing in each of the four ventricles. We have known about these processes for more than a century, and yet the molecular mechanisms supporting this fluid secretion remain unresolved. The choroid plexus epithelium secretes its fluid in the absence of a trans-epithelial osmotic gradient, and, in addition, has an inherent ability to secrete CSF against an osmotic gradient. This paradoxical feature is shared with other 'leaky' epithelia. The assumptions underlying the classical standing gradient hypothesis await experimental support and appear to not suffice as an explanation of CSF secretion. Here, we suggest that the elusive local hyperosmotic compartment resides within the membrane transport proteins themselves. In this manner, the battery of plasma membrane transporters expressed in choroid plexus are proposed to sustain the choroidal CSF secretion independently of the prevailing bulk osmotic gradient.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Zeuthen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
160
|
Hett K, McKnight CD, Eisma JJ, Elenberger J, Lindsey JS, Considine CM, Claassen DO, Donahue MJ. Parasagittal dural space and cerebrospinal fluid (CSF) flow across the lifespan in healthy adults. Fluids Barriers CNS 2022; 19:24. [PMID: 35313906 PMCID: PMC8935696 DOI: 10.1186/s12987-022-00320-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Recent studies have suggested alternative cerebrospinal fluid (CSF) clearance pathways for brain parenchymal metabolic waste products. One fundamental but relatively under-explored component of these pathways is the anatomic region surrounding the superior sagittal sinus, which has been shown to have relevance to trans-arachnoid molecular passage. This so-called parasagittal dural (PSD) space may play a physiologically significant role as a distal intracranial component of the human glymphatic circuit, yet fundamental gaps persist in our knowledge of how this space changes with normal aging and intracranial bulk fluid transport. METHODS We re-parameterized MRI methods to assess CSF circulation in humans using high resolution imaging of the PSD space and phase contrast measures of flow through the cerebral aqueduct to test the hypotheses that volumetric measures of PSD space (1) are directly related to CSF flow (mL/s) through the cerebral aqueduct, and (2) increase with age. Multi-modal 3-Tesla MRI was applied in healthy participants (n = 62; age range = 20-83 years) across the adult lifespan whereby phase contrast assessments of CSF flow through the aqueduct were paired with non-contrasted T1-weighted and T2-weighted MRI for PSD volumetry. PSD volume was extracted using a recently validated neural networks algorithm. Non-parametric regression models were applied to evaluate how PSD volume related to tissue volume and age cross-sectionally, and separately how PSD volume related to CSF flow (significance criteria: two-sided p < 0.05). RESULTS A significant PSD volume enlargement in relation to normal aging (p < 0.001, Spearman's-[Formula: see text] = 0.6), CSF volume (p < 0.001, Spearman's-[Formula: see text] = 0.6) and maximum CSF flow through the aqueduct of Sylvius (anterograde and retrograde, p < 0.001) were observed. The elevation in PSD volume was not significantly related to gray or white matter tissue volumes. Findings are consistent with PSD volume increasing with age and bulk CSF flow. CONCLUSIONS Findings highlight the feasibility of quantifying PSD volume non-invasively in vivo in humans using machine learning and non-contrast MRI. Additionally, findings demonstrate that PSD volume increases with age and relates to CSF volume and bi-directional flow. Values reported should provide useful normative ranges for how PSD volume adjusts with age, which will serve as a necessary pre-requisite for comparisons to persons with neurodegenerative disorders.
Collapse
Affiliation(s)
- Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod J Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer S Lindsey
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciaran M Considine
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA. .,Division of Behavioral and Cognitive Neurology, Village at Vanderbilt, 1500 21st Avenue South, Nashville, TN, 37212, USA.
| |
Collapse
|
161
|
Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Front Immunol 2022; 13:805657. [PMID: 35273596 PMCID: PMC8902072 DOI: 10.3389/fimmu.2022.805657] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) is considered the most frequent inflammatory demyelinating disease of the central nervous system (CNS). It occurs with a variable prevalence across the world. A rich armamentarium of disease modifying therapies selectively targeting specific actions of the immune system is available for the treatment of MS. Understanding how and where immune cells are primed, how they access the CNS in MS and how immunomodulatory treatments affect neuroinflammation requires a proper knowledge on the mechanisms regulating immune cell trafficking and the special anatomy of the CNS. The brain barriers divide the CNS into different compartments that differ with respect to their accessibility to cells of the innate and adaptive immune system. In steady state, the blood-brain barrier (BBB) limits immune cell trafficking to activated T cells, which can reach the cerebrospinal fluid (CSF) filled compartments to ensure CNS immune surveillance. In MS immune cells breach a second barrier, the glia limitans to reach the CNS parenchyma. Here we will summarize the role of the endothelial, epithelial and glial brain barriers in regulating immune cell entry into the CNS and which immunomodulatory treatments for MS target the brain barriers. Finally, we will explore current knowledge on genetic and environmental factors that may influence immune cell entry into the CNS during neuroinflammation in Africa.
Collapse
Affiliation(s)
| | - Houyam Tibar
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | - Wafa Regragui
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | | |
Collapse
|
162
|
Di Marco Barros R, Fitzpatrick Z, Clatworthy MR. The gut-meningeal immune axis: Priming brain defense against the most likely invaders. J Exp Med 2022; 219:213031. [PMID: 35195681 PMCID: PMC8932540 DOI: 10.1084/jem.20211520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
The gastrointestinal tract contains trillions of microorganisms that exist symbiotically with the host due to a tolerant, regulatory cell–rich intestinal immune system. However, this intimate relationship with the microbiome inevitably comes with risks, with intestinal organisms being the most common cause of bacteremia. The vasculature of the brain-lining meninges contains fenestrated endothelium, conferring vulnerability to invasion by circulating microbes. We propose that this has evolutionarily led to close links between gut and meningeal immunity, to prime the central nervous system defense against the most likely invaders. This paradigm is exemplified by the dural venous sinus IgA defense system, where the antibody repertoire mirrors that of the gut.
Collapse
Affiliation(s)
| | | | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
163
|
Li AM, Xu J. Cerebrospinal fluid-tissue exchange revealed by phase alternate labeling with null recovery MRI. Magn Reson Med 2022; 87:1207-1217. [PMID: 34799860 PMCID: PMC8794537 DOI: 10.1002/mrm.29092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop phase alternate labeling with null recovery (PALAN) MRI methods for the quantification of the water exchange between cerebrospinal fluid (CSF) and other surrounding tissues in the brain. METHOD In both T1 -PALAN and apparent diffusion coefficient (ADC)-PALAN MRI methods, the cerebrospinal fluid signal was nulled, whereas the partial recovery of other tissues with shorter T1 (T1 -PALAN) or lower ADC values (ADC-PALAN) was labeled by alternating the phase of pulses. The water exchange was extracted from the difference between the recovery curves of CSF with and without labeling. RESULTS Both T1 -PALAN and ADC-PALAN observed a rapid occurrence of CSF water exchange with the surrounding tissues at 67 ± 56 ms and 13 ± 2 ms transit times, respectively. The T1 and ADC-PALAN signal peaked at 1.5 s. The CSF water exchange was 1153 ± 270 mL/100 mL/min with T1 -PALAN in the third and lateral ventricles, which was higher than 891 ± 60 mL/100 mL/min obtained by ADC-PALAN. T1 -PALAN ∆S values for the rostral and caudal ventricles are 0.015 ± 0.013 and 0.034 ± 0.01 (p = 0.022, n = 5), whereas similar ΔS values in both rostral and caudal lateral ventricles were observed by ADC-PALAN (3.9 ± 1.9 × 10-3 vs 4.4 ± 1.4 × 10-3 ; p = 0.66 and n = 5). CONCLUSION The PALAN methods are suitable tools to study CSF water exchange across different compartments in the brain.
Collapse
Affiliation(s)
- Anna M. Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding Author: Jiadi Xu, Ph.D., Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD, 21205, , Tel: 443-923-9572, Fax: 443-923-9505
| |
Collapse
|
164
|
Tsutsumi S, Ono H, Ishii H. Hyperintense areas in the cisternal segments of the cranial nerves: a magnetic resonance imaging study. Surg Radiol Anat 2022; 44:503-509. [PMID: 35195771 DOI: 10.1007/s00276-022-02902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The study aimed to explore hyperintense areas in the cisternal segments of the cranial nerves using magnetic resonance imaging (MRI). METHODS Seventy outpatients underwent thin-sliced, coronal constructive interference steady-state (CISS) sequence and sagittal T2-weighted MRI following conventional MRI examination. RESULTS With the coronal CISS sequence, hyperintense areas were located in the central parts of the olfactory bulbs in 65.7% of patients. For the intracranial optic nerve and optic chiasm, hyperintense areas were detected in 98.6% of the CISS sequences and 100% of the T2-weighted images. In the optic tract, hyperintense areas were detected in 51.4% of cases. In 35% of the patients who underwent the CISS sequence, the intracranial optic nerves were considerably compressed by the internal carotid and anterior cerebral arteries, with hyperintense areas similar to those in patients without vascular compression. Hyperintense areas of the cisternal segments of the oculomotor nerve and trigeminal root were identified in 52.9% and 87.1% of the patients, respectively. CONCLUSIONS The hyperintense areas found within the cisternal segments of the cranial nerves delineated on the coronal CISS sequence and sagittal T2-weighted imaging may indicate the intracranial part of the glymphatic pathway through the cranial nerves. The cranial nerves may function as part of the glymphatic pathway.
Collapse
Affiliation(s)
- Satoshi Tsutsumi
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Hideo Ono
- Division of Radiological Technology, Medical Satellite Yaesu Clinic, Tokyo, Japan
| | - Hisato Ishii
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan
| |
Collapse
|
165
|
Bush N, O’Reilly L, Louveau A. Meningeal Lymphatic vasculature in health and disease. Curr Opin Hematol 2022; 29:151-155. [DOI: 10.1097/moh.0000000000000711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
166
|
Abstract
Cerebral venous thrombosis (CVT) is a rare form of stroke that often affects younger age groups, especially reproductive age group females. CVT is a potentially fatal neurological condition that can be frequently overlooked due to the vague nature of its clinical and radiological presentation. Headache is the most common presenting symptom. However, a wide range of symptoms can be present and the symptom onset can be acute, subacute, or chronic. Neuroimaging is mandatory in cases where CVT is suspected. Both magnetic resonance venography and computed tomography venography can confirm a diagnosis of CVT. Anticoagulation with low-molecular-weight heparin is the mainstay of treatment. Intracranial hemorrhage is not considered a contraindication to the use of anticoagulants in CVT. Endovascular intervention is still controversial but can be a treatment option for patients with neurological deterioration or thrombus progression, despite the use of anticoagulation or with development of new or worsening intracerebral hemorrhage. Patients with CVT have an increased risk of recurrence of CVT and other types of venous thromboembolism. This review provides an overview of the epidemiology, diagnosis, and treatment of CVT in adults. Commentary about increased presentation of CVT in patients with coronavirus disease 2019 (COVID-19), or after immunization against COVID-19, is also provided.
Collapse
|
167
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
168
|
Li J, Zhang X, Guo J, Yu C, Yang J. Molecular Mechanisms and Risk Factors for the Pathogenesis of Hydrocephalus. Front Genet 2022; 12:777926. [PMID: 35047005 PMCID: PMC8762052 DOI: 10.3389/fgene.2021.777926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrocephalus is a neurological condition due to the aberrant circulation and/or obstruction of cerebrospinal fluid (CSF) flow with consequent enlargement of cerebral ventricular cavities. However, it is noticed that a lot of patients may still go through symptomatic progression despite standard shunting procedures, suggesting that hydrocephalus is far more complicated than a simple CSF circulative/obstructive disorder. Growing evidence indicates that genetic factors play a fundamental role in the pathogenesis of some hydrocephalus. Although the genetic research of hydrocephalus in humans is limited, many genetic loci of hydrocephalus have been defined in animal models. In general, the molecular abnormalities involved in the pathogenesis of hydrocephalus include brain development and ependymal cell dysfunction, apoptosis, inflammation, free radical generation, blood flow, and cerebral metabolism. Moreover, recent studies have indicated that the molecular abnormalities relevant to aberrant cerebral glymphatic drainage turn into an attractive subject in the CSF circulation disorder. Furthermore, the prevalent risk factors could facilitate the development of hydrocephalus. In this review, we elicited some possible fundamental molecular mechanisms and facilitating risk factors involved in the pathogenesis of hydrocephalus, and aimed to widen the diagnosis and therapeutic strategies for hydrocephalus management. Such knowledge could be used to improve patient care in different ways, such as early precise diagnosis and effective therapeutic regimens.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Guo
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Yu
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jun Yang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
169
|
Mehta NH, Sherbansky J, Kamer AR, Carare RO, Butler T, Rusinek H, Chiang GC, Li Y, Strauss S, Saint-Louis LA, Theise ND, Suss RA, Blennow K, Kaplitt M, de Leon MJ. The Brain-Nose Interface: A Potential Cerebrospinal Fluid Clearance Site in Humans. Front Physiol 2022; 12:769948. [PMID: 35058794 PMCID: PMC8764168 DOI: 10.3389/fphys.2021.769948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
The human brain functions at the center of a network of systems aimed at providing a structural and immunological layer of protection. The cerebrospinal fluid (CSF) maintains a physiological homeostasis that is of paramount importance to proper neurological activity. CSF is largely produced in the choroid plexus where it is continuous with the brain extracellular fluid and circulates through the ventricles. CSF movement through the central nervous system has been extensively explored. Across numerous animal species, the involvement of various drainage pathways in CSF, including arachnoid granulations, cranial nerves, perivascular pathways, and meningeal lymphatics, has been studied. Among these, there is a proposed CSF clearance route spanning the olfactory nerve and exiting the brain at the cribriform plate and entering lymphatics. While this pathway has been demonstrated in multiple animal species, evidence of a similar CSF egress mechanism involving the nasal cavity in humans remains poorly consolidated. This review will synthesize contemporary evidence surrounding CSF clearance at the nose-brain interface, examining across species this anatomical pathway, and its possible significance to human neurodegenerative disease. Our discussion of a bidirectional nasal pathway includes examination of the immune surveillance in the olfactory region protecting the brain. Overall, we expect that an expanded discussion of the brain-nose pathway and interactions with the environment will contribute to an improved understanding of neurodegenerative and infectious diseases, and potentially to novel prevention and treatment considerations.
Collapse
Affiliation(s)
- Neel H. Mehta
- Undergraduate Department of Biology, Cornell University, Ithaca, NY, United States
| | | | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, NYU College of Dentistry, New York, NY, United States
| | - Roxana O. Carare
- Department of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Henry Rusinek
- Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Gloria C. Chiang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sara Strauss
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - L. A. Saint-Louis
- Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Neil D. Theise
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
| | - Richard A. Suss
- Division of Neuroradiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Inst. of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Michael Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
170
|
Nutcracker phenomenon with a daily persistent headache as the primary symptom: Case series and a proposed pathogenesis model based on a novel MRI technique to evaluate for spinal epidural venous congestion. J Neurol Sci 2022; 434:120170. [DOI: 10.1016/j.jns.2022.120170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 11/20/2022]
|
171
|
Kahraman Ozlu EB, Kayalar AE, Ertan Y. Investigation of the Presence of Arachnoid Granulation in Fetuses and Early Infancy. JOURNAL OF CHILD SCIENCE 2022. [DOI: 10.1055/s-0042-1758451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AbstractThe aim of our study is to investigate the importance of arachnoid granulation in cerebrospinal fluid physiology in fetuses and early infancy. Using the random sampling method, postmortem fetuses more than 26 weeks of gestation age and the children under the age of 1 year were chosen from the autopsy materials. Two male and two female intrauterine dead fetus; three male and three female, totally six children under the age of 1 year and one 3-year-old male were included in this study. In cases of intrauterine fetuses more than 26 weeks of gestation and children under the age of 1 year, complete invagination of arachnoid villi into the superior sagittal sinus was examined histologically. In the intrauterine period and in the first 6 months of life, arachnoid villi structures were not found in histologic preparations although in preparations taken after the 6 months of life samples showed similarities to arachnoid granulations. These structures were considered as arachnoid villi drafts after immunohistochemical analysis. In the control case who were 3 years old, maturation of arachnoid villi was complete and the arachnoid villi were invaginated into the superior sagittal sinus as fingerlike extensions. In our study, we think that the failure after E3V intervention in the treatment of hydrocephalus in cases under the age of 1 years may be related to the completion of arachnoid granulation development after the 18th month of life and the immature resorption capacity in this period.
Collapse
Affiliation(s)
| | - Ali Erhan Kayalar
- Department of Neurosurgery, Haydarpasa Education and Research Hospital, Uskudar/Istanbul, Turkey
| | - Yesim Ertan
- Department of Pathology, Ege University Faculty of Medicine, Bornova/Izmir, Turkey
| |
Collapse
|
172
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
173
|
Cousins O, Hodges A, Schubert J, Veronese M, Turkheimer F, Miyan J, Engelhardt B, Roncaroli F. The Blood‐CSF‐Brain Route of Neurological Disease: The Indirect Pathway into the Brain. Neuropathol Appl Neurobiol 2021; 48:e12789. [DOI: 10.1111/nan.12789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Oliver Cousins
- Department of Neuroimaging, IoPPN, King’s College London London United Kingdom
| | - Angela Hodges
- Department of Old Age Psychiatry, IoPPN, King’s College London London United Kingdom
| | - Julia Schubert
- Department of Neuroimaging, IoPPN, King’s College London London United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, IoPPN, King’s College London London United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, IoPPN, King’s College London London United Kingdom
| | - Jaleel Miyan
- Division of Neuroscience and Experimental Psychology School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL
| | | | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL
- Geoffrey Jefferson Brain Research Centre; Manchester Academic Health Science Centre Manchester UK
| |
Collapse
|
174
|
Schreiner TG, Popescu BO. Amyloid Beta Dynamics in Biological Fluids-Therapeutic Impact. J Clin Med 2021; 10:5986. [PMID: 34945282 PMCID: PMC8706225 DOI: 10.3390/jcm10245986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the significant impact of Alzheimer's disease (AD) at individual and socioeconomic levels and the numerous research studies carried out on this topic over the last decades, the treatments available in daily clinical practice remain less than satisfactory. Among the accepted etiopathogenic hypotheses, the amyloidogenic pathway theory, although intensively studied and even sometimes controversial, is still providing relevant theoretical elements for understanding the etiology of AD and for the further development of possible therapeutic tools. In this sense, this review aims to offer new insights related to beta amyloid (Aβ), an essential biomarker in AD. First the structure and function of Aβ in normal and pathological conditions are presented in detail, followed by a discussion on the dynamics of Aβ at the level of different biological compartments. There is focus on Aβ elimination modalities at central nervous system (CNS) level, and clearance via the blood-brain barrier seems to play a crucial/dominant role. Finally, different theoretical and already-applied therapeutic approaches for CNS Aβ elimination are presented, including the recent "peripheral sink therapeutic strategy" and "cerebrospinal fluid sinks therapeutic strategy". These data outline the need for a multidisciplinary approach designed to deliver a solution to stimulate Aβ clearance in more direct ways, including from the cerebrospinal fluid level.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
175
|
Decker Y, Krämer J, Xin L, Müller A, Scheller A, Fassbender K, Proulx ST. Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice. JCI Insight 2021; 7:150881. [PMID: 34905509 PMCID: PMC8855808 DOI: 10.1172/jci.insight.150881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The anatomical routes for the clearance of cerebrospinal fluid (CSF) remain incompletely understood. However, recent evidence has given strong support for routes leading to lymphatic vessels. A current debate centers upon the routes through which CSF can access lymphatics, with evidence emerging for either direct routes to meningeal lymphatics or along cranial nerves to reach lymphatics outside the skull. Here, a method was established to infuse contrast agent into the ventricles using indwelling cannulae during imaging of mice at 2 and 12 months of age by magnetic resonance imaging. As expected, a significant decline in overall CSF turnover was found with aging. Quantifications demonstrated that the bulk of the contrast agent flowed from the ventricles to the subarachnoid space in the basal cisterns. Comparatively little contrast agent signal was found at the dorsal aspect of the skull. The imaging dynamics from the two cohorts revealed that the contrast agent cleared from the cranium through the cribriform plate to the nasopharyngeal lymphatics. On decalcified sections, we confirmed that fluorescentlylabeled ovalbumin drains through the cribriform plate and can be found within lymphatics surrounding the nasopharynx. In conclusion, routes leading to nasopharyngeal lymphatics appear to be a major efflux pathway for cranial CSF.
Collapse
Affiliation(s)
- Yann Decker
- Department of Neurology, Saarland University, Homburg, Germany
| | - Jonas Krämer
- Department of Neurology, Saarland University, Homburg, Germany
| | - Li Xin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University, Homburg, Germany
| | - Anja Scheller
- Department of Physiology, Saarland University, Homburg, Germany
| | | | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
176
|
Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021; 9:780207. [PMID: 34888312 PMCID: PMC8650308 DOI: 10.3389/fcell.2021.780207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Function of the mature central nervous system (CNS) requires a substantial proportion of the body’s energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
177
|
Leaston J, Kulkarni P, Gharagouzloo C, Qiao J, Bens N, Ferris CF. Do We Swallow the Waste From Our Brain? Front Neurosci 2021; 15:763780. [PMID: 34887724 PMCID: PMC8649892 DOI: 10.3389/fnins.2021.763780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ferumoxytol, an iron oxide nanoparticle, was infused into the lateral cerebroventricle of awake rats to follow its movement and clearance from the brain using magnetic resonance imaging. Within minutes the contrast agent could be observed accumulating in the subarachnoid space, nasal cavity, nasal pharynx, and soft palate at the back of the throat. In a subsequent study fluorescent quantum dots were infused into the brain of rats and within 15 min could be observed in the esophagus using microscopy. These imaging studies clearly show that these large nanoparticle tracers (∼20 nm in diameter) leave the brain through the nasal cavity and end up in the gut. There are numerous studies going back decades reporting the clearance of tracers put directly into the brain. While these studies show the slow accumulation of trace in the blood and lymphatics, they report only accounting for less than 50% of what was originally put in the brain.
Collapse
Affiliation(s)
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Codi Gharagouzloo
- Imaginostics, Inc., Cambridge, MA, United States.,Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Ju Qiao
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Nicole Bens
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| |
Collapse
|
178
|
Eide PK, Ringstad G. Cerebrospinal fluid egress to human parasagittal dura and the impact of sleep deprivation. Brain Res 2021; 1772:147669. [PMID: 34587499 DOI: 10.1016/j.brainres.2021.147669] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Emerging evidence suggests that the glymphatic system and meningeal lymphatic vessels are instrumental for clearance of toxic metabolites from the brain. Animal and human studies suggest that glymphatic circulation is up-regulated during sleep. Meningeal lymphatic clearance may be more efficient in the wake state, as shown in rodents. We have previously shown clearance of cerebrospinal fluid directly from the subarachnoid space to the parasagittal dura, which harbors meningeal lymphatic vessels. Hence, assessing molecular clearance from parasagittal dura provides an opportunity to decipher the role of sleep/sleep deprivation in human lymphatic clearance function. In this study, we applied magnetic resonance imaging to explore whether sleep deprivation modifies molecular clearance from human parasagittal dura, utilizing an intrathecal magnetic resonance imaging contrast agent as tracer. We hypothesized that tracer enhancement in parasagittal dura would differ after sleep deprivation. One group of individuals (n = 7) underwent one night's total sleep deprivation while a control group (n = 9) was allowed unrestricted sleep. There were no sleep restrictions after the 24-hour time point. After one night of sleep deprivation (at 24 h), we found neither evidence for altered tracer enrichment in the parasagittal dura, nor after a day of unrestricted sleep (at 48 h). The hypothesis of altered molecular egress to parasagittal dura after sleep deprivation was not supported by our data. Further studies are required to determine the role of sleep for molecular clearance from cerebrospinal fluid to meningeal lymphatic vessels in humans.
Collapse
Affiliation(s)
- Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
179
|
Ma L, He W, Li X, Liu X, Cao H, Guo L, Xiao X, Xu Y, Wu Y. Decreased CSF Dynamics in Treatment-Naive Patients with Essential Hypertension: A Study with Phase-Contrast Cine MR Imaging. AJNR Am J Neuroradiol 2021; 42:2146-2151. [PMID: 34620585 DOI: 10.3174/ajnr.a7284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Arterial sclerosis resulting from hypertension slows CSF transportation in the perivascular spaces, showing the intrinsic relationship between the CSF and the blood vasculature. However, the exact effect of hypertension on human CSF flow dynamics remains unclear. The present study aimed to evaluate CSF flow dynamics in treatment-naive patients with essential hypertension using phase-contrast cine MR imaging. MATERIALS AND METHODS The study included 60 never-treated patients with essential hypertension and 60 subjects without symptomatic atherosclerosis. CSF flow parameters, such as forward flow volume, forward peak velocity, reverse flow volume, reverse peak velocity, average flow, and net flow volume, were measured with phase-contrast cine MR imaging. Differences between the 2 groups were assessed to determine the independent determinants of these CSF flow parameters. RESULTS Forward flow volume, forward peak velocity, reverse flow volume, reverse peak velocity, and average flow in the patients with hypertension significantly decreased (all, P < .05). Increasing systolic blood pressure was significantly associated with lower forward flow volume (β = -0.44 mL/mL/mm Hg; 95% CI, -0.83 to -0.06 mL/mL/mm Hg), forward peak velocity (β = -0.50 cm/s/mm Hg; 95% CI, -0.88 to -0.12 cm/s/mm Hg), reverse flow volume (β = -0.61 mL/mL/mm Hg; 95% CI, -0.97 to -0.26 mL/mL/mm Hg), reverse peak velocity (β = -0.55 cm/s/mm Hg; 95% CI, -0.91-0.18 cm/s/mm Hg), and average flow (β = -0.50 mL/min/mm Hg; 95% CI, -0.93 to -0.08 mL/min/mm Hg). CONCLUSIONS The CSF flow dynamics in patients with hypertension are decreased, and increasing systolic blood pressure is strongly associated with lower CSF flow dynamics.
Collapse
Affiliation(s)
- L Ma
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W He
- Department of Radiology (W.H.), Guangdong 999 Brain Hospital, Guangzhou, China
| | - X Li
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Liu
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - H Cao
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L Guo
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Xiao
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Xu
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Wu
- From the Department of Medical Imaging (L.M., X. Li, X. Liu, H.C., L.G., X.X., Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
180
|
Grondel B, Cramberg M, Greer S, Young BA. The morphology of the suboccipital region in snakes, and the anatomical and functional diversity of the myodural bridge. J Morphol 2021; 283:123-133. [PMID: 34783076 DOI: 10.1002/jmor.21431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022]
Abstract
The myodural bridge, that is, skeletal muscle fibers attaching to the cervical dura mater, has been described from a variety of mammals and other amniotes. To test an earlier assumption about the presence of the myodural bridge in snakes, a comparative study was designed using a group of Colubrine snakes. Serial histological sections revealed no evidence of the myodural bridge in any of the snakes examined. Further analyses, including histology, computed tomography (CT), and micro-CT imaging of other distantly related snakes, also turned up no evidence of a myodural bridge. The close apposition of adjacent neural arches in snakes may preclude muscle tendons from passing through the intervertebral joint to reach the spinal dura. It is hypothesized that the myodural bridge functions in the clearance of the cerebrospinal fluid (CSF) by creating episodic CSF pressure pulsations, and that snakes are capable of creating equivalent CSF pressure pulsations through vertebral displacement.
Collapse
Affiliation(s)
- Bryson Grondel
- Department of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, Missouri, USA
| | - Michael Cramberg
- Department of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, Missouri, USA
| | - Skye Greer
- Department of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, Missouri, USA
| | - Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, Missouri, USA
| |
Collapse
|
181
|
Cui J, Xu H, Lehtinen MK. Macrophages on the margin: choroid plexus immune responses. Trends Neurosci 2021; 44:864-875. [PMID: 34312005 PMCID: PMC8551004 DOI: 10.1016/j.tins.2021.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022]
Abstract
The choroid plexus (ChP), an epithelial bilayer containing a network of mesenchymal, immune, and neuronal cells, forms the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While best recognized for secreting CSF, the ChP is also a hotbed of immune cell activity and can provide circulating peripheral immune cells with passage into the central nervous system (CNS). Here, we review recent studies on ChP immune cells, with a focus on the ontogeny, development, and behaviors of ChP macrophages, the principal resident immune cells of the ChP. We highlight the implications of immune cells for ChP barrier function, CSF cytokines and volume regulation, and their contribution to neurodevelopmental disorders, with possible age-specific features to be elucidated in the future.
Collapse
Affiliation(s)
- Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
182
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Justin Rustenhoven
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
183
|
Xu K, Jiang X, Ariston Gabriel AN, Li X, Wang Y, Xu S. Evolving Landscape of Long Non-coding RNAs in Cerebrospinal Fluid: A Key Role From Diagnosis to Therapy in Brain Tumors. Front Cell Dev Biol 2021; 9:737670. [PMID: 34692695 PMCID: PMC8529119 DOI: 10.3389/fcell.2021.737670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs that act as molecular fingerprints and modulators of many pathophysiological processes, particularly in cancer. Specifically, lncRNAs can be involved in the pathogenesis and progression of brain tumors, affecting stemness/differentiation, replication, invasion, survival, DNA damage response, and chromatin dynamics. Furthermore, the aberrations in the expressions of these transcripts can promote treatment resistance, leading to tumor recurrence. The development of next-generation sequencing technologies and the creation of lncRNA-specific microarrays have boosted the study of lncRNA etiology. Cerebrospinal fluid (CSF) directly mirrors the biological fluid of biochemical processes in the brain. It can be enriched for small molecules, peptides, or proteins released by the neurons of the central nervous system (CNS) or immune cells. Therefore, strategies that identify and target CSF lncRNAs may be attractive as early diagnostic and therapeutic options. In this review, we have reviewed the studies on CSF lncRNAs in the context of brain tumor pathogenesis and progression and discuss their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kanghong Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | | | - Xiaomeng Li
- Department of Hematology, Jining First People's Hospital, Jining, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
184
|
Brouillard P, Witte MH, Erickson RP, Damstra RJ, Becker C, Quéré I, Vikkula M. Primary lymphoedema. Nat Rev Dis Primers 2021; 7:77. [PMID: 34675250 DOI: 10.1038/s41572-021-00309-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Lymphoedema is the swelling of one or several parts of the body owing to lymph accumulation in the extracellular space. It is often chronic, worsens if untreated, predisposes to infections and causes an important reduction in quality of life. Primary lymphoedema (PLE) is thought to result from abnormal development and/or functioning of the lymphatic system, can present in isolation or as part of a syndrome, and can be present at birth or develop later in life. Mutations in numerous genes involved in the initial formation of lymphatic vessels (including valves) as well as in the growth and expansion of the lymphatic system and associated pathways have been identified in syndromic and non-syndromic forms of PLE. Thus, the current hypothesis is that most cases of PLE have a genetic origin, although a causative mutation is identified in only about one-third of affected individuals. Diagnosis relies on clinical presentation, imaging of the structure and functionality of the lymphatics, and in genetic analyses. Management aims at reducing or preventing swelling by compression therapy (with manual drainage, exercise and compressive garments) and, in carefully selected cases, by various surgical techniques. Individuals with PLE often have a reduced quality of life owing to the psychosocial and lifelong management burden associated with their chronic condition. Improved understanding of the underlying genetic origins of PLE will translate into more accurate diagnosis and prognosis and personalized treatment.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Marlys H Witte
- Department of Surgery, Neurosurgery, and Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Robert J Damstra
- VASCERN PPL European Reference Centre; Department of Dermatology, Phlebology and Lymphology, Nij Smellinghe Hospital, Drachten, Netherlands
| | | | - Isabelle Quéré
- Department of Vascular Medicine, Centre de référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium. .,VASCERN VASCA European Reference Centre; Center for Vascular Anomalies, Division of Plastic Surgery, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium. .,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
185
|
Nitz E, Smitka M, Schallner J, Akgün K, Ziemssen T, von der Hagen M, Tüngler V. Serum neurofilament light chain in pediatric spinal muscular atrophy patients and healthy children. Ann Clin Transl Neurol 2021; 8:2013-2024. [PMID: 34482646 PMCID: PMC8528467 DOI: 10.1002/acn3.51449] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The aim of this study was to evaluate neurofilament light chain as blood biomarker for disease activity in children and adolescents with different types of spinal muscular atrophy (SMA) and establish pediatric reference values. Methods We measured neurofilament light chain levels in serum (sNfL) and cerebral spinal fluid (cNfL) of 18 children with SMA and varying numbers of SMN2 copies receiving nusinersen by single‐molecule array (SiMoA) assay and analyzed correlations with baseline characteristics and motor development. Additionally, we examined sNfL in 97 neurologically healthy children. Results Median sNfL levels in treatment‐naïve SMA patients with 2 SMN2 copies are higher than in those with >2 SMN2 copies (P < 0.001) as well as age‐matched controls (P = 0.010) and decline during treatment. The median sNfL concentration of healthy controls is 4.73 pg/mL with no differences in sex (P = 0.486) but age (P < 0.001). In all children with SMA, sNfL levels correlate strongly with cNfL levels (r = 0.7, P < 0.001). In children with SMA and 2 SMN2 copies, sNfL values correlate with motor function (r = –0.6, P = 0.134), in contrast to older SMA children with >2 SMN2 copies (r = –0.1, P = 0.744). Interpretation Reference sNfL values of our large pediatric control cohort may be applied for future studies. Strong correlations between sNfL and cNfL together with motor function suggest that sNfL may be a suitable biomarker for disease activity in children with 2 SMN2 copies and those with >2 SMN2 copies within their initial stages during early childhood.
Collapse
Affiliation(s)
- Elisa Nitz
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Martin Smitka
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Jens Schallner
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical Neuroscience, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical Neuroscience, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maja von der Hagen
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Victoria Tüngler
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany.,University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
186
|
Bothwell SW, Omileke D, Hood RJ, Pepperall DG, Azarpeykan S, Patabendige A, Spratt NJ. Altered Cerebrospinal Fluid Clearance and Increased Intracranial Pressure in Rats 18 h After Experimental Cortical Ischaemia. Front Mol Neurosci 2021; 14:712779. [PMID: 34434088 PMCID: PMC8380845 DOI: 10.3389/fnmol.2021.712779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Oedema-independent intracranial pressure (ICP) rise peaks 20-22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1-9.43, n = 12, vs. -0.3 mmHg, IQR = -1.9-1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 μg/mL, IQR = 0-0.11) and without ICP rise (0 μg/mL, IQR = 0-4.47) compared with sham rats (4.17 μg/mL, IQR = 0.74-8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = -0.59, p = 0.006, Spearman's correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow.
Collapse
Affiliation(s)
- Steven W Bothwell
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Daniel Omileke
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J Hood
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Debbie-Gai Pepperall
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sara Azarpeykan
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Adjanie Patabendige
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil J Spratt
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Hunter New England Local Health District, Newcastle, NSW, Australia
| |
Collapse
|
187
|
Wafford KA. Aberrant waste disposal in neurodegeneration: why improved sleep could be the solution. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100025. [PMID: 36324713 PMCID: PMC9616228 DOI: 10.1016/j.cccb.2021.100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/16/2023]
Abstract
Sleep takes up a large percentage of our lives and the full functions of this state are still not understood. However, over the last 10 years a new and important function has emerged as a mediator of brain clearance. Removal of toxic metabolites and proteins from the brain parenchyma generated during waking activity and high levels of synaptic processing is critical to normal brain function and only enabled during deep sleep. Understanding of this process is revealing how impaired sleep contributes an important and likely causative role in the accumulation and aggregation of aberrant proteins such as β-amyloid and phosphorylated tau, as well as inflammation and neuronal damage. We are also beginning to understand how brain slow-wave activity interacts with vascular function allowing the flow of CSF and interstitial fluid to drain into the body's lymphatic system. New methodology is enabling visualization of this process in both animals and humans and is revealing how these processes break down during ageing and disease. With this understanding we can begin to envisage novel therapeutic approaches to the treatment of neurodegeneration, and how reversing sleep impairment in the correct manner may provide a way to slow these processes and improve brain function.
Collapse
Key Words
- AQP4, aquaporin-4
- Alzheimer's disease
- Amyloid
- Aquaporin-4
- Astrocyte
- Aβ, beta amyloid
- BOLD, blood-oxygen level dependent imaging
- CAA, cerebral amyloid angiopathy
- CSF, Cerebrospinal fluid
- Clearance
- EEG, electroencephalography
- EMG, electromyography
- Glymphatic
- ISF, interstitial fluid
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- NOS, nitric oxide synthase
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PET, positron emission tomography
- REM, rapid-eye movement
- SWA, slow wave activity
- SWS, slow-wave sleep
- Slow-wave sleep
- iNPH, idiopathic normal pressure hydrocephalus
Collapse
|
188
|
Kumar V, Umair Z, Kumar S, Goutam RS, Park S, Kim J. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS 2021; 18:31. [PMID: 34233705 PMCID: PMC8261947 DOI: 10.1186/s12987-021-00265-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is an ultra-filtrated colorless brain fluid that circulates within brain spaces like the ventricular cavities, subarachnoid space, and the spine. Its continuous flow serves many primary functions, including nourishment, brain protection, and waste removal. Main body The abnormal accumulation of CSF in brain cavities triggers severe hydrocephalus. Accumulating evidence had indicated that synchronized beats of motile cilia (cilia from multiciliated cells or the ependymal lining in brain ventricles) provide forceful pressure to generate and restrain CSF flow and maintain overall CSF circulation within brain spaces. In humans, the disorders caused by defective primary and/or motile cilia are generally referred to as ciliopathies. The key role of CSF circulation in brain development and its functioning has not been fully elucidated. Conclusions In this review, we briefly discuss the underlying role of motile cilia in CSF circulation and hydrocephalus. We have reviewed cilia and ciliated cells in the brain and the existing evidence for the regulatory role of functional cilia in CSF circulation in the brain. We further discuss the findings obtained for defective cilia and their potential involvement in hydrocephalus. Furthermore, this review will reinforce the idea of motile cilia as master regulators of CSF movements, brain development, and neuronal diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Shiv Kumar
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street. St. Andrews, Fife, KY16 9JP, UK
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
189
|
Hsu M, Laaker C, Sandor M, Fabry Z. Neuroinflammation-Driven Lymphangiogenesis in CNS Diseases. Front Cell Neurosci 2021; 15:683676. [PMID: 34248503 PMCID: PMC8261156 DOI: 10.3389/fncel.2021.683676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
190
|
Zhou J, Guo P, Guo Z, Sun X, Chen Y, Feng H. Fluid metabolic pathways after subarachnoid hemorrhage. J Neurochem 2021; 160:13-33. [PMID: 34160835 DOI: 10.1111/jnc.15458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 06/20/2021] [Indexed: 01/05/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating cerebrovascular disease with high mortality and morbidity. In recent years, a large number of studies have focused on the mechanism of early brain injury (EBI) and delayed cerebral ischemia (DCI), including vasospasm, neurotoxicity of hematoma and neuroinflammatory storm, after aSAH. Despite considerable efforts, no novel drugs have significantly improved the prognosis of patients in phase III clinical trials, indicating the need to further re-examine the multifactorial pathophysiological process that occurs after aSAH. The complex pathogenesis is reflected by the destruction of the dynamic balance of the energy metabolism in the nervous system after aSAH, which prevents the maintenance of normal neural function. This review focuses on the fluid metabolic pathways of the central nervous system (CNS), starting with ruptured aneurysms, and discusses the dysfunction of blood circulation, cerebrospinal fluid (CSF) circulation and the glymphatic system during disease progression. It also proposes a hypothesis on the metabolic disorder mechanism and potential therapeutic targets for aSAH patients.
Collapse
Affiliation(s)
- Jiru Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
191
|
Cells with Many Talents: Lymphatic Endothelial Cells in the Brain Meninges. Cells 2021; 10:cells10040799. [PMID: 33918497 PMCID: PMC8067019 DOI: 10.3390/cells10040799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The lymphatic system serves key functions in maintaining fluid homeostasis, the uptake of dietary fats in the small intestine, and the trafficking of immune cells. Almost all vascularized peripheral tissues and organs contain lymphatic vessels. The brain parenchyma, however, is considered immune privileged and devoid of lymphatic structures. This contrasts with the notion that the brain is metabolically extremely active, produces large amounts of waste and metabolites that need to be cleared, and is especially sensitive to edema formation. Recently, meningeal lymphatic vessels in mammals and zebrafish have been (re-)discovered, but how they contribute to fluid drainage is still not fully understood. Here, we discuss these meningeal vessel systems as well as a newly described cell population in the zebrafish and mouse meninges. These cells, termed brain lymphatic endothelial cells/Fluorescent Granular Perithelial cells/meningeal mural lymphatic endothelial cells in fish, and Leptomeningeal Lymphatic Endothelial Cells in mice, exhibit remarkable features. They have a typical lymphatic endothelial gene expression signature but do not form vessels and rather constitute a meshwork of single cells, covering the brain surface.
Collapse
|