151
|
Nguyen AH, Abdelrasoul GN, Lin D, Maadi H, Tong J, Chen G, Wang R, Anwar A, Shoute L, Fang Q, Wang Z, Chen J. Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0775-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
152
|
Vakilinezhad MA, Alipour S, Montaseri H. Fabrication and in vitro evaluation of magnetic PLGA nanoparticles as a potential Methotrexate delivery system for breast cancer. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
153
|
Martinkova P, Brtnicky M, Kynicky J, Pohanka M. Iron Oxide Nanoparticles: Innovative Tool in Cancer Diagnosis and Therapy. Adv Healthc Mater 2018; 7. [PMID: 29205944 DOI: 10.1002/adhm.201700932] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Although cancer is one of the most dangerous and the second most lethal disease in the world, current therapy including surgery, chemotherapy, radiotherapy, etc., is highly insufficient not in the view of therapy success rate or the amount of side effects. Accordingly, procedures with better outcomes are highly desirable. Iron oxide nanoparticles (IONPs) present an innovative tool-ideal for innovation and implementation into practice. This review is focused on summarizing some well-known facts about pharmacokinetics, toxicity, and the types of IONPs, and furthermore, provides a survey of their use in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pavla Martinkova
- Faculty of Military Health Science; University of Defense; Trebesska 1575 50011 Hradec Kralove Czech Republic
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
| | - Martin Brtnicky
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| | - Jindrich Kynicky
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Science; University of Defense; Trebesska 1575 50011 Hradec Kralove Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| |
Collapse
|
154
|
Lv YB, Chandrasekharan P, Li Y, Liu XL, P Avila J, Yang Y, Chuang KH, Liang XJ, Ding J. Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T 1-enhanced contrast. J Mater Chem B 2018; 6:1470-1478. [PMID: 32254211 DOI: 10.1039/c7tb03129g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic iron oxide nanoparticles have been used for various applications such as in the treatment of iron deficiency, as theranostic agents, and as drug carriers. The effective delivery of magnetic iron oxide nanoparticles into the lesion and iron quantification are vital for in vivo theranostic application. To determine the feasibility of using T1 contrast to non-invasively quantify and monitor the IONPs in vivo, monodispersed Gd-doped iron oxide nanoparticles (GdIONPs) with 4 nm core size were fabricated and were used as T1-weighted contrast agents to quantify iron contents based on MRI longitudinal relaxation times (T1). Signal enhancement in positive T1 contrast caused by GdIONPs was observed in this work. The in vivo T1 relaxivity of GdIONPs in a tumor matched well with both in vitro T1 relaxivity and ICP-MS results, demonstrating that the concentration of iron at the tumor site can be directly read from real-time in vivo MRI T1 relaxivity. Hence, by using this strategy, the Fe content in the lesion can be accurately monitored based on MRI longitudinal relaxation times, and this may shed light on effective magnetic hyperthermia cancer therapy in future.
Collapse
Affiliation(s)
- Y B Lv
- Department of Materials Science & Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
The phenomenal advances in pharmaceutical sciences over the last few decades have led to the development of new therapeutics like peptides, proteins, RNAs, DNAs and highly potent small molecules. Fruitful applications of these therapeutics have been challenged by several anatomical and physiological barriers that limit adequate drug disposition at the site-of-action and by off-target drug distribution to undesired tissues, which together result in the reduced effectiveness and increased side effects of therapeutic agents. As such, the development of drug delivery and targeting systems has been recognised as a cornerstone for future drug development. Research in pharmaceutical sciences is now devoted to tackling delivery challenges through engineering delivery systems that move beyond conventional dosage forms and regimens into state-of-the-art targeted drug delivery tailored toward specific therapeutic needs. Modern drug delivery systems comprise passive and active targeting approaches. While passive targeting relies on the natural course of distribution of drugs or drug carriers in the body, as governed by their physicochemical properties, active targeting often exploits targeting moieties that home preferentially into target tissues. Here, we provide an overview of theories of and approaches to passive and active drug delivery. As the design of drug delivery is dependent on the unique structure of target tissues and organs, we present our discussion in an organ-specific manner with the aim to inspire the development of new strategies for curing disease with high accuracy and efficiency.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- a Department of Pharmaceutical Technology, College of Pharmacy , Jordon University of Science and Technology , Irbid , Jordan
| | - Dexi Liu
- b Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy , University of Georgia , Athens , GA , USA
| |
Collapse
|
156
|
Aftab S, Shah A, Nadhman A, Kurbanoglu S, Aysıl Ozkan S, Dionysiou DD, Shukla SS, Aminabhavi TM. Nanomedicine: An effective tool in cancer therapy. Int J Pharm 2018; 540:132-149. [PMID: 29427746 DOI: 10.1016/j.ijpharm.2018.02.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Abstract
Various types of nanoparticles (NPs) have been used in delivering anticancer drugs to the site of action. This area has become more attractive in recent years due to optimal size and negligible undesirable side effects caused by the NPs. The focus of this review is to explore various types of NPs and their surface/chemical modifications as well as attachment of targeting ligands for tuning their properties in order to facilitate targeted delivery to the cancer sites in a rate-controlled manner. Heme compatibility, biodistribution, longer circulation time, hydrophilic lipophilic balance for high bioavailability, prevention of drug degradation and leakage are important in transporting drugs to the targeted cancer sites. The review discusses advantages of polymeric, magnetic, gold, and mesoporous silica NPs in delivering chemotherapeutic agents over the conventional dosage formulations along with their shortcomings/risks and possible solutions/alternatives.
Collapse
Affiliation(s)
- Saima Aftab
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey.
| | - Akhtar Nadhman
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Sibel Aysıl Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Shyam S Shukla
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Tejraj M Aminabhavi
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|
157
|
Tudisco C, Cambria MT, Giuffrida AE, Sinatra F, Anfuso CD, Lupo G, Caporarello N, Falanga A, Galdiero S, Oliveri V, Satriano C, Condorelli GG. Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe 3O 4 Magnetic Nanoparticles for Enhanced Cell Internalization. NANOSCALE RESEARCH LETTERS 2018; 13:45. [PMID: 29417388 PMCID: PMC5803153 DOI: 10.1186/s11671-018-2459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/26/2018] [Indexed: 05/20/2023]
Abstract
A versatile synthetic route based on magnetic Fe3O4 nanoparticle (MNP) prefunctionalization with a phosphonic acid monolayer has been used to covalently bind the gH625 peptide on the nanoparticle surface. gH625 is a membranotropic peptide capable of easily crossing the membranes of various cells including the typical human blood-brain barrier components. A similar synthetic route was used to prepare another class of MNPs having a functional coating based on PEG, rhodamine, and folic acid, a well-known target molecule, to compare the performance of the two cell-penetrating systems (i.e., gH625 and folic acid). Our results demonstrate that the uptake of gH625-decorated MNPs in immortalized human brain microvascular endothelial cells after 24 h is more evident compared to folic acid-functionalized MNPs as evidenced by confocal laser scanning microscopy. On the other hand, both functionalized systems proved capable of being internalized in a brain tumor cell line (i.e., glioblastoma A-172). These findings indicate that the functionalization of MNPs with gH625 improves their endothelial cell internalization, suggesting a viable strategy in designing functional nanostructures capable of first crossing the BBB and, then, of reaching specific tumor brain cells.
Collapse
Affiliation(s)
- C Tudisco
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
- INSTM UdR di Catania, 95125, Catania, Italy
| | - M T Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - A E Giuffrida
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
- INSTM UdR di Catania, 95125, Catania, Italy
| | - F Sinatra
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - C D Anfuso
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - G Lupo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - N Caporarello
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - A Falanga
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80134, Napoli, Italy
| | - S Galdiero
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80134, Napoli, Italy
| | - V Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
| | - C Satriano
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
| | - G G Condorelli
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy.
- INSTM UdR di Catania, 95125, Catania, Italy.
| |
Collapse
|
158
|
Angelopoulou A, Voulgari E, Kolokithas-Ntoukas A, Bakandritsos A, Avgoustakis K. Magnetic Nanoparticles for the Delivery of Dapagliflozin to Hypoxic Tumors: Physicochemical Characterization and Cell Studies. AAPS PharmSciTech 2018; 19:621-633. [PMID: 28924948 DOI: 10.1208/s12249-017-0874-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
In solid tumors, hypoxia (lack of oxygen) is developed, which leads to the development of resistance of tumor cells to chemotherapy and radiotherapy through various mechanisms. Nevertheless, hypoxic cells are particularly vulnerable when glycolysis is inhibited. For this reason, in this study, the development of magnetically targetable nanocarriers of the sodium-glucose transporter protein (SGLT2) inhibitor dapagliflozin (DAPA) was developed for the selective delivery of DAPA in tumors. This nanomedicine in combination with radiotherapy or chemotherapy should be useful for effective treatment of hypoxic tumors. The magnetic nanoparticles consisted of a magnetic iron oxide core and a poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (PMAA-g-PEGMA) polymeric shell. The drug (dapagliflozin) molecules were conjugated on the surface of these nanoparticles via in vivo hydrolysable ester bonds. The nanoparticles had an average size of ~ 70 nm and exhibited a DAPA loading capacity 10.75% (w/w) for a theoretical loading 21.68% (w/w). The magnetic responsiveness of the nanoparticles was confirmed with magnetophoresis experiments. The dapagliflozin-loaded magnetic nanoparticles exhibited excellent colloidal stability in aqueous and biological media. Minimal (less than 15% in 24 h) drug release from the nanoparticles occurred in physiological pH 7.4; however, drug release was significantly accelerated in pH 5.5. Drug release was also accelerated (triggered) under the influence of an alternating magnetic field. The DAPA-loaded nanoparticles exhibited higher in vitro anticancer activity (cytotoxicity) against A549 human lung cancer cells than free DAPA. The application of an external magnetic field gradient increased the uptake of nanoparticles by cells, leading to increased cytotoxicity. The results justify further in vivo studies of the suitability of DAPA-loaded magnetic nanoparticles for the treatment of hypoxic tumors.
Collapse
|
159
|
Kuraica MM, Iskrenović P, Perić M, Krstić I, Nikolić AS. External magnetic field influence on magnetite and cobalt-ferrite nano-particles in ferrofluid. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-017-0380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
160
|
Xiong F, Huang S, Gu N. Magnetic nanoparticles: recent developments in drug delivery system. Drug Dev Ind Pharm 2018; 44:697-706. [PMID: 29370711 DOI: 10.1080/03639045.2017.1421961] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanostructured functional materials have demonstrated their great potentials in medical applications, attracting increasing attention because of the opportunities in cancer therapy and the treatment of other ailments. This article reviews the problems and recent advances in the development of magnetic NPs for drug delivery.
Collapse
Affiliation(s)
- Fei Xiong
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Shengxin Huang
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Ning Gu
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| |
Collapse
|
161
|
Ronco LI, Feuser PE, da Cas Viegas A, Minari RJ, Gugliotta LM, Sayer C, Araújo PHH. Incorporation of Magnetic Nanoparticles in Poly(Methyl Methacrylate) Nanocapsules. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ludmila I. Ronco
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC UNL-CONICET); Güemes 3450 Santa Fe 3000 Argentina
| | - Paulo E. Feuser
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| | - Alexandre da Cas Viegas
- Department of Physic; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC UNL-CONICET); Güemes 3450 Santa Fe 3000 Argentina
| | - Luis M. Gugliotta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC UNL-CONICET); Güemes 3450 Santa Fe 3000 Argentina
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| | - Pedro H. H. Araújo
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| |
Collapse
|
162
|
Nigam S, Bahadur D. Doxorubicin-loaded dendritic-Fe 3O 4 supramolecular nanoparticles for magnetic drug targeting and tumor regression in spheroid murine melanoma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:759-768. [PMID: 29339187 DOI: 10.1016/j.nano.2018.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 01/22/2023]
Abstract
This work evaluates the magnetically-guided delivery of DOX-loaded dendritic-Fe3O4 nanoparticles and their tumor regression efficacy in subcutaneous melanoma in C57BL/6 mice. The hematological, biochemical and histopathological parameters were minimally affected. The nanoparticles localized in lungs, liver and spleen suggesting non-specific uptake. However, in tumor-bearing mice, substantially higher localization in magnetically-targeted tumor was observed when compared to passive localization in non-targeted tumor. The animals of treated group showed significantly high iron levels (161 μg of Fe/mg dry organ weight) in the tumor against the control (<25 μg of Fe/mg dry organ weight). This high localization led to high concentrations of DOX in the tumor which not only induced significant tumor regression but also arrested further growth. Within 14 days, the average tumor volume was reduced to 55±8.3 mm3 (treated) as compared to 4794±844 mm3 (control), i.e. ~88-fold decrease. The tumor disappeared by the end of 20th day post-treatment and ~100% survival rate was observed.
Collapse
Affiliation(s)
- Saumya Nigam
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
| | - D Bahadur
- Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, India.
| |
Collapse
|
163
|
Shlapa Y, Solopan S, Belous A, Tovstolytkin A. Effect of Synthesis Method of La 1 - xSr x MnO 3 Manganite Nanoparticles on Their Properties. NANOSCALE RESEARCH LETTERS 2018; 13:13. [PMID: 29327154 PMCID: PMC5764900 DOI: 10.1186/s11671-017-2431-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/29/2017] [Indexed: 05/23/2023]
Abstract
Nanoparticles of lanthanum-strontium manganite were synthesized via different methods, namely, sol-gel method, precipitation from non-aqueous solution, and precipitation from reversal microemulsions. It was shown that the use of organic compounds and non-aqueous media allowed significantly decreasing of the crystallization temperature of nanoparticles, and the single-phased crystalline product was formed in one stage. Morphology and properties of nanoparticles depended on the method and conditions of the synthesis. The heating efficiency directly depended on the change in the magnetic parameters of nanoparticles, especially on the magnetization. Performed studies showed that each of these methods of synthesis can be used to obtain weakly agglomerated manganite nanoparticles; however, particles synthesized via sol-gel method are more promising for use as hyperthermia inducers.PACS: 61.46.Df 75.75.Cd 81.20. Fw.
Collapse
Affiliation(s)
- Yulia Shlapa
- V. I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 142, Palladina ave., 32/34, Kiev, 03680 Ukraine
| | - Sergii Solopan
- V. I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 142, Palladina ave., 32/34, Kiev, 03680 Ukraine
| | - Anatolii Belous
- V. I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 142, Palladina ave., 32/34, Kiev, 03680 Ukraine
| | - Alexandr Tovstolytkin
- Institute of Magnetism of the NAS of Ukraine and MES of Ukraine, 36-b Vernadsky Ave., Kiev, 03142 Ukraine
| |
Collapse
|
164
|
Salinas Y, Castilla AM, Resmini M. An l-proline based thermoresponsive and pH-switchable nanogel as a drug delivery vehicle. Polym Chem 2018. [DOI: 10.1039/c8py00308d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterisation of a novel dual stimuli-responsive nanogel, based on thermoresponsive N-n-propylacrylamide and an l-proline based monomer acting as a pH-switcher, is reported here.
Collapse
Affiliation(s)
- Y. Salinas
- Department of Chemistry and Biochemistry
- SBCS
- Queen Mary University of London
- London
- UK
| | - A. M. Castilla
- Department of Chemistry and Biochemistry
- SBCS
- Queen Mary University of London
- London
- UK
| | - M. Resmini
- Department of Chemistry and Biochemistry
- SBCS
- Queen Mary University of London
- London
- UK
| |
Collapse
|
165
|
Singh J, Kukkar P, Sammi H, Rawat M, Singh G, Kukkar D. Enhanced catalytic reduction of 4-nitrophenol and congo red dye By silver nanoparticles prepared from Azadirachta indica leaf extract under direct sunlight exposure. PARTICULATE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1080/02726351.2017.1390512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jagpreet Singh
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Preeti Kukkar
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Heena Sammi
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Gurjinder Singh
- Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
166
|
Zaaeri F, Khoobi M, Rouini M, Akbari Javar H. pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1405348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Farzaaneh Zaaeri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
167
|
Hosseini Sadr S, Davaran S, Alizadeh E, Salehi R, Ramazani A. Enhanced anticancer potency by thermo/pH-responsive PCL-based magnetic nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:277-308. [DOI: 10.1080/09205063.2017.1414482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Soodabeh Davaran
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Advanced Medical Sciences, Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| |
Collapse
|
168
|
PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids Surf B Biointerfaces 2017; 160:11-21. [DOI: 10.1016/j.colsurfb.2017.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
|
169
|
Self-catalyzed surface grafting of Mn3O4 nanoparticles with polylactide and its magnetic properties. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1395-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
170
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
171
|
Matusiak K, Skoczen A, Setkowicz Z, Kubala-Kukus A, Stabrawa I, Ciarach M, Janeczko K, Jung A, Chwiej J. The elemental changes occurring in the rat liver after exposure to PEG-coated iron oxide nanoparticles: total reflection x-ray fluorescence (TXRF) spectroscopy study. Nanotoxicology 2017; 11:1225-1236. [PMID: 29183205 DOI: 10.1080/17435390.2017.1408151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The main goal of this study was to evaluate in vivo effects of low dose of PEG-coated magnetic iron oxide nanoparticles (IONPs) on the rat liver. The IONPs was intravenously injected into rats at a dose equaled to 0.03 mg of Fe per 1 kg of an animal body weight. The elemental composition of liver tissue in rats subjected to IONPs action and controls were compared. Moreover, in order to determine the dynamics of nanoparticles (NPs) induced elemental changes, the tissues taken from animals 2 hours, 24 hours, and 7 days from IONPs injection were examined. The analysis of subtle elemental anomalies occurring as a result of IONPs action required application of highly sensitive analytical method. The total reflection X-ray fluorescence spectroscopy perfectly meets such requirements and therefore it was used in this study. The obtained results showed increasing trend of Fe level within liver occurring 2 hours from IONPs injection. One day after NPs administration, the liver Fe content presented the baseline level what suggests only the short-term accumulation of nanoparticles in the organ. The Ca, Cu, and Zn levels changed significantly as a result of NPs action. Moreover, the anomalies in their accumulation were still observed 7 days after IONPs injection. The level of Cu decreased while those of Ca and Zn increased in the liver of NPs-treated animals. The reduced liver Cu, followed by elevated serum level of this element, might be related in triggering the mechanisms responsible for Fe metabolism in the organism.
Collapse
Affiliation(s)
- Katarzyna Matusiak
- a Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science , AGH University of Science and Technology , Krakow , Poland
| | - Agnieszka Skoczen
- a Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science , AGH University of Science and Technology , Krakow , Poland
| | - Zuzanna Setkowicz
- b Department of Neuroanatomy, Institute of Zoology and Biomedical Research , Jagiellonian University , Krakow , Poland
| | - Aldona Kubala-Kukus
- c Institute of Physics , Jan Kochanowski University , Kielce , Poland.,d Holly Cross Center , Kielce , Poland
| | - Ilona Stabrawa
- c Institute of Physics , Jan Kochanowski University , Kielce , Poland.,d Holly Cross Center , Kielce , Poland
| | - Małgorzata Ciarach
- b Department of Neuroanatomy, Institute of Zoology and Biomedical Research , Jagiellonian University , Krakow , Poland
| | - Krzysztof Janeczko
- b Department of Neuroanatomy, Institute of Zoology and Biomedical Research , Jagiellonian University , Krakow , Poland
| | - Aleksandra Jung
- a Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science , AGH University of Science and Technology , Krakow , Poland
| | - Joanna Chwiej
- a Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science , AGH University of Science and Technology , Krakow , Poland
| |
Collapse
|
172
|
Parker CL, Yang Q, Yang B, McCallen JD, Park SI, Lai SK. Multivalent interactions between streptavidin-based pretargeting fusion proteins and cell receptors impede efficient internalization of biotinylated nanoparticles. Acta Biomater 2017; 63:181-189. [PMID: 28870833 DOI: 10.1016/j.actbio.2017.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Pretargeting represents a promising strategy to enhance delivery of nanoparticles. The strategy involves first introducing bispecific antibodies or fusion proteins (BFP) that can bind specific epitopes on target cells with one arm, and use the other arm to capture subsequently administered effector molecules, such as radionuclides or drug-loaded nanoparticles. Nevertheless, it remains unclear whether BFP that bind slowly- or non-internalizing epitopes on target cells can facilitate efficient intracellular delivery. Here, we investigated the cellular uptake of biotin-functionalized nanoparticles with streptavidin-scFv against TAG-72, a membrane protein on Jurkat T-cell leukemia cells. Unlike conventional active-targeted nanoparticles, we found that pretargeting resulted in preferential retention of ∼100nm nanoparticles at the plasma membrane rather than internalization into cells. We found no improvement in nanoparticle internalization by simply reducing nanoparticle concentration or surface biotin density. Interestingly, by adding both the BFP and a monoclonal antibody against TAG-72, we observed a twofold improvement in internalization of pretargeted nanoparticles. Our work illustrates that the cellular fate of pretargeted nanoparticles can be controlled by carefully tuning the interactions between pretargeting molecules and nanoparticles on the cell surface. STATEMENT OF SIGNIFICANCE Pretargeting is a multi-step strategy that utilizes bispecific proteins that recognize both cellular epitopes and subsequently administered therapeutic molecules. This approach has been extensively studied for radiotherapy of blood cancers; however, pretargeting remains largely underexplored for nanoparticle targeting, including whether pretargeting can facilitate efficient intracellular delivery. Here, we found that high density of targeting proteins on the cell surface can effectively limit internalization of pretargeted nanoparticles. Our work underscores the need to carefully assess specific cell-pretargeting molecule pairs for applications requiring intracellular delivery, and the key design requirements for such bispecific pretargeting molecules.
Collapse
|
173
|
Mohapatra A, Harris MA, LeVine D, Ghimire M, Jennings JA, Morshed BI, Haggard WO, Bumgardner JD, Mishra SR, Fujiwara T. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles. J Biomed Mater Res B Appl Biomater 2017; 106:2169-2176. [PMID: 29052337 DOI: 10.1002/jbm.b.34015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/16/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023]
Abstract
Local antibiotic delivery can overcome some of the shortcomings of systemic therapy, such as low local concentrations and delivery to avascular sites. A localized drug delivery system (DDS), ideally, could also use external stimuli to modulate the normal drug release profile from the DDS to provide efficacious drug administration and flexibility to healthcare providers. To achieve this objective, chitosan microbeads embedded with magnetic nanoparticles were loaded with the antibiotic vancomycin and stimulated by a high frequency alternating magnetic field. Three such stimulation sessions separated by 1.5 h were applied to each test sample. The chromatographic analysis of the supernatant from these stimulated samples showed more than approximately 200% higher release of vancomycin from the DDS after the stimulation periods compared to nonstimulated samples. A 16-day long term elution study was also conducted where the DDS was allowed to elute drug through normal diffusion over a period of 11 days and stimulated on day 12 and day 15, when vancomycin level had dropped below therapeutic levels. Magnetic stimulation boosted elution of test groups above minimum inhibitory concentration (MIC), as compared to control groups (with no stimulation) which remained below MIC. The drug release from test groups in the intervals where no stimulation was given showed similar elution behavior to control groups. These results indicate promising possibilities of controlled drug release using magnetic excitation from a biopolymer-based DDS. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2169-2176, 2018.
Collapse
Affiliation(s)
- Ankita Mohapatra
- Electrical and Computer Engineering, University of Memphis, Memphis, Tennessee, 38152
| | - Michael A Harris
- Biomedical Engineering, University of Memphis, Memphis, Tennessee, 38152
| | - David LeVine
- Biomedical Engineering, University of Memphis, Memphis, Tennessee, 38152
| | - Madhav Ghimire
- Physics, University of Memphis, Memphis, Tennessee, 38152
| | - Jessica A Jennings
- Biomedical Engineering, University of Memphis, Memphis, Tennessee, 38152
| | - Bashir I Morshed
- Electrical and Computer Engineering, University of Memphis, Memphis, Tennessee, 38152
| | - Warren O Haggard
- Biomedical Engineering, University of Memphis, Memphis, Tennessee, 38152
| | - Joel D Bumgardner
- Biomedical Engineering, University of Memphis, Memphis, Tennessee, 38152
| | | | | |
Collapse
|
174
|
Samadishadlou M, Farshbaf M, Annabi N, Kavetskyy T, Khalilov R, Saghfi S, Akbarzadeh A, Mousavi S. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1314-1330. [DOI: 10.1080/21691401.2017.1389746] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Material Science and Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Taras Kavetskyy
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
- The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Siamak Saghfi
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Sepideh Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
175
|
García-Jimeno S, Estelrich J, Callejas-Fernández J, Roldán-Vargas S. Reversible and irreversible aggregation of magnetic liposomes. NANOSCALE 2017; 9:15131-15143. [PMID: 28972615 DOI: 10.1039/c7nr05301k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding stabilization and aggregation in magnetic nanoparticle systems is crucial to optimizing the functionality of these systems in real physiological applications. Here we address this problem for a specific, yet representative, system. We present an experimental and analytical study on the aggregation of superparamagnetic liposomes in suspension in the presence of a controllable external magnetic field. We study the aggregation kinetics and report an intermediate time power law evolution and a long time stationary value for the average aggregate diffusion coefficient, both depending on the magnetic field intensity. We then show that the long time aggregate structure is fractal with a fractal dimension that decreases upon increasing the magnetic field intensity. By scaling arguments we also establish an analytical relation between the aggregate fractal dimension and the power law exponent controlling the aggregation kinetics. This relation is indeed independent on the magnetic field intensity. Despite the superparamagnetic character of our particles, we further prove the existence of a population of surviving aggregates able to maintain their integrity after switching off the external magnetic field. Finally, we suggest a schematic interaction scenario to rationalize the observed coexistence between reversible and irreversible aggregation.
Collapse
Affiliation(s)
- Sonia García-Jimeno
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 17-31, E-08028, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
176
|
Kondapavulur S, Cote AM, Neumann KD, Jordan CD, McCoy D, Mabray MC, Liu D, Sze CH, Gautam A, VanBrocklin HF, Wilson M, Hetts SW. Optimization of an endovascular magnetic filter for maximized capture of magnetic nanoparticles. Biomed Microdevices 2017; 18:109. [PMID: 27830455 DOI: 10.1007/s10544-016-0135-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To computationally optimize the design of an endovascular magnetic filtration device that binds iron oxide nanoparticles and to validate simulations with experimental results of prototype devices in physiologic flow testing. Three-dimensional computational models of different endovascular magnetic filter devices assessed magnetic particle capture. We simulated a series of cylindrical neodymium N52 magnets and capture of 1500 iron oxide nanoparticles infused in a simulated 14 mm-diameter vessel. Device parameters varied included: magnetization orientation (across the diameter, "D", along the length, "L", of the filter), magnet outer diameter (3, 4, 5 mm), magnet length (5, 10 mm), and spacing between magnets (1, 3 mm). Top designs were tested in vitro using 89Zr-radiolabeled iron oxide nanoparticles and gamma counting both in continuous and multiple pass flow model. Computationally, "D" magnetized devices had greater capture than "L" magnetized devices. Increasing outer diameter of magnets increased particle capture as follows: "D" designs, 3 mm: 12.8-13.6 %, 4 mm: 16.6-17.6 %, 5 mm: 21.8-24.6 %; "L" designs, 3 mm: 5.6-10 %, 4 mm: 9.4-15.8 %, 5 mm: 14.8-21.2 %. In vitro, while there was significant capture by all device designs, with most capturing 87-93 % within the first two minutes, compared to control non-magnetic devices, there was no significant difference in particle capture with the parameters varied. The computational study predicts that endovascular magnetic filters demonstrate maximum particle capture with "D" magnetization. In vitro flow testing demonstrated no difference in capture with varied parameters. Clinically, "D" magnetized devices would be most practical, sized as large as possible without causing intravascular flow obstruction.
Collapse
Affiliation(s)
- Sravani Kondapavulur
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Andre M Cote
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Kiel D Neumann
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Caroline D Jordan
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - David McCoy
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Marc C Mabray
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Derek Liu
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Chia-Hung Sze
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Ayushi Gautam
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Mark Wilson
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA
| | - Steven W Hetts
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
| |
Collapse
|
177
|
The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response. Sci Rep 2017; 7:11343. [PMID: 28900211 PMCID: PMC5595919 DOI: 10.1038/s41598-017-11673-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022] Open
Abstract
We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to −43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.
Collapse
|
178
|
Dluska E, Markowska-Radomska A, Metera A, Tudek B, Kosicki K. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery. Nanomedicine (Lond) 2017; 12:2183-2197. [DOI: 10.2217/nnm-2017-0112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. Materials & methods: Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette–Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. Results: The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 μM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. Conclusion: Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.
Collapse
Affiliation(s)
- Ewa Dluska
- Faculty of Chemical & Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| | - Agnieszka Markowska-Radomska
- Faculty of Chemical & Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| | - Agata Metera
- Faculty of Chemical & Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| | - Barbara Tudek
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Institute of Genetics & Biotechnology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Konrad Kosicki
- Faculty of Biology, University of Warsaw, Institute of Genetics & Biotechnology, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
179
|
Synthesis and characterization of glycyrrhizic acid coated iron oxide nanoparticles for hyperthermia applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1060-1067. [DOI: 10.1016/j.msec.2017.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 11/18/2022]
|
180
|
An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1349-1362. [DOI: 10.1016/j.msec.2017.03.198] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 11/19/2022]
|
181
|
Ahmadkhani L, Akbarzadeh A, Abbasian M. Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1052-1063. [PMID: 28754064 DOI: 10.1080/21691401.2017.1360323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A drug delivery system based on dual responsive units was developed. An appealing pH- and thermo-responsive triblock terpolymer as the drug carrier was synthesized by RAFT polymerization of N-isopropyl acrylamide and methacrylic acid monomers using PEG-RAFT agent. The Fe3O4 magnetic nanoparticles were synthesized by co-precipitation of Fe salts. Synthesized samples were characterized by FT-IR, XRD, GPC, SEM and TEM. The dual responsive behaviour and self-assembly of the triblock terpolymers in aqueous solution were investigated using UV-vis transmittance and DLS. Based on the results of DLS and TEM, the average size of micelles was 170, 125 and 30 nm. The triblock terpolymer was used as a chemotherapy drug carrier and doxorubicin as a model drug. The release rate of the drug at two different temperatures (37 °C and 42 °C) and pHs (5.8 and 7.4) was studied. The in vitro cytotoxicity assay of free doxorubicin and drug-loaded magnetic nanoparticles was studied. The MTT assay exhibited that these polymers are biocompatible and no toxicity. As well, IC50 of the DOX-loaded triblock terpolymer in MTT test demonstrated that these systems could be suitable for the treatment of cancer.
Collapse
Affiliation(s)
- Lida Ahmadkhani
- a Department of Chemistry , Payame Noor University , Tehran , Iran
| | - Abolfazl Akbarzadeh
- b National Institute For Medical Research Development (Nimad) , Tehran , Iran.,c Universal Scientific Education and Research Network (USERN) , Tabriz , Iran.,d Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mojtaba Abbasian
- a Department of Chemistry , Payame Noor University , Tehran , Iran
| |
Collapse
|
182
|
Naghizadeh S, Hassanzadeh Nemati N, Hassani Najafabadi A, Niknejad H, Khani MM. Controlled release of fluorouracil (5-FU) from chitosan-co-poly(ethylene glycol)/ poly(glycerol sebacate)-co-poly(ethylene glycol)-coated iron oxide. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1320657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shayan Naghizadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences and the Bio Interfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Hassan Niknejad
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
183
|
Montiel Schneider MG, Lassalle VL. Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed Pharmacother 2017; 93:1098-1115. [PMID: 28738519 DOI: 10.1016/j.biopha.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular complications derivate from atherosclerosis are the main cause of death in western world. An early detection of vulnerable atherosclerotic plaques is primordial for a better care of patients suffering the pathology. In this context nanotechnology has emerged as a promising tool to achieve this goal. Nanoparticles based on magnetic iron oxide (MNPs) have been extensively studied in cardiovascular diseases diagnosis, as well as in the treatment and diagnostic of other pathologies. The present review aims to describe and analyze the most current literature regarding to this topic, offering the level of detail required to reproduce the experimental tasks providing a critical input of the latest available reports. The current diagnostic features are presented and compared, highlighting their advantages and disadvantages. Information on novel technology intended to this purpose is also recompiled and in deep analyzed. Special emphasis is placed in magnetic nanotechnology, remarking the possibility to assess selective and multifunctional systems to the early detection of artherosclerotic pathologies. Finally, in view of the state of the art, the future perspectives about the trends on MNPs in artherosclerorsis diagnostic and treatment have also been addressed.
Collapse
Affiliation(s)
| | - Verónica Leticia Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
184
|
Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 2017; 18:51. [PMID: 28651647 PMCID: PMC5485499 DOI: 10.1186/s12868-017-0369-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the recent decade, iron oxide nanoparticles (IONPs) have been proposed for several applications in the central nervous system (CNS), including targeting amyloid beta (Aβ) in the arteries, inhibiting the microglial cells, delivering drugs, and increasing contrast in magnetic resonance imaging. Conversely, a notable number of studies have reported the role of iron in neurodegenerative diseases. Therefore, this study has reviewed the recent studies to determine whether IONPs iron can threaten the cellular viability same as iron. RESULTS Iron contributes in Fenton's reaction and produces reactive oxygen species (ROS). ROS cause to damage the macromolecules and organelles of the cell via oxidative stress. Iron accumulation and oxidative stress are able to aggregate some proteins, including Aβ and α-synuclein, which play a critical role in Alzheimer's and Parkinson's diseases, respectively. Iron accumulation, oxidative stress, and protein aggregation make a positive feedback loop, which can be toxic for the cell. The release of iron ions from IONPs may result in iron accumulation in the targeted tissue, and thus, activate the positive feedback loop. However, the levels of IONPs induced toxicity depend on the size, concentration, surface charge, and the type of coating and functional groups of IONPs. CONCLUSION IONPs depending on their properties can lead to iron accumulation, oxidative stress and protein aggregation in the neural cells. Therefore, in order to apply IONPs in the CNS, the consideration of IONPs properties is crucial.
Collapse
Affiliation(s)
- Zahra Yarjanli
- Department of Biology, Faculty of Sciences, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, 81746-73441 Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, 81746-73441 Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, 81746-73441 Iran
| | - Soheila Rahgozar
- Department of Biology, Faculty of Sciences, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, 81746-73441 Iran
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, 81746-73441 Iran
| |
Collapse
|
185
|
Aloe-emodin (AE) nanoparticles suppresses proliferation and induces apoptosis in human lung squamous carcinoma via ROS generation in vitro and in vivo. Biochem Biophys Res Commun 2017. [PMID: 28629998 DOI: 10.1016/j.bbrc.2017.06.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human lung squamous cell carcinoma is a deadly cancer for which present therapeutic strategies are inadequate. And traditional chemotherapy results in severe systemic toxicity. Compounds from living organisms often exert a biological activity, triggering several targets, which may be useful for the improvement of novel pharmaceuticals. Aloe-emodin (AE), a well-known natural compound, is a primary component of anthraquinones in Aloe vera and exhibits anti-proliferative and apoptotic effects on various tumor cells. However, the translational and clinical use of AE has been limited owing to its rapid degradation and poor bioavailability. To improve its efficacy, a poly (lactic-co-glycolic acid) based AE nanoparticle formulation (NanoAE) was prepared. Our study indicated that compared to the free AE, nanoAE significantly suppressed cancer cell proliferation, induced cell cycle arrest and apoptosis, evidenced by high cleavage of Caspase-3, poly (ADP-ribose) polymerase (PARP), Caspase-8 and Caspase-9. NanoAE enhanced reactive oxygen species (ROS) production, along with Mitogen-activated protein kinases (MAPKs) activation and PI3K/AKT inactivation. Cell proliferation, apoptosis and MAPKs and PI3K/AKT were dependent on ROS production in nanoAE-treated groups. In vivo, nanoAE exhibited inhibitory effects on the tumor growth with little toxicity. Together, our results indicated that nanoAE might be an effective treatment for human lung squamous cell carcinoma.
Collapse
|
186
|
Berah R, Ghorbani M, Moghadamnia AA. Synthesis of a smart pH-responsive magnetic nanocomposite as high loading carrier of pharmaceutical agents. Int J Biol Macromol 2017; 99:731-738. [DOI: 10.1016/j.ijbiomac.2017.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 01/01/2023]
|
187
|
Wu K, Schliep K, Zhang X, Liu J, Ma B, Wang JP. Characterizing Physical Properties of Superparamagnetic Nanoparticles in Liquid Phase Using Brownian Relaxation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604135. [PMID: 28374941 DOI: 10.1002/smll.201604135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/24/2017] [Indexed: 05/21/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used as bioimaging contrast agents, heating sources for tumor therapy, and carriers for controlled drug delivery and release to target organs and tissues. These applications require elaborate tuning of the physical and magnetic properties of the SPIONs. The authors present here a search-coil-based method to characterize these properties. The nonlinear magnetic response of SPIONs to alternating current magnetic fields induces harmonic signals that contain information of these nanoparticles. By analyzing the phase lag and harmonic ratios in the SPIONs, the authors can predict the saturation magnetization, the average hydrodynamic size, the dominating relaxation processes of SPIONs, and the distinction between single- and multicore particles. The numerical simulations reveal that the harmonic ratios are inversely proportional to saturation magnetizations and core diameters of SPIONs, and that the phase lag is dependent on the hydrodynamic volumes of SPIONs, which corroborate the experimental results. Herein, the authors stress the feasibility of using search coils as a method to characterize physical and magnetic properties of SPIONs, which may be applied as building blocks in nanoparticle characterization devices.
Collapse
Affiliation(s)
- Kai Wu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karl Schliep
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiaowei Zhang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jinming Liu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bin Ma
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Jian-Ping Wang
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
188
|
Jao D, Xue Y, Medina J, Hu X. Protein-Based Drug-Delivery Materials. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E517. [PMID: 28772877 PMCID: PMC5459032 DOI: 10.3390/ma10050517] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 12/17/2022]
Abstract
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function-including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments-are summarized at the end of this review.
Collapse
Affiliation(s)
- Dave Jao
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Ye Xue
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Jethro Medina
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical and Translational Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
189
|
Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Biosens Bioelectron 2017; 91:664-672. [DOI: 10.1016/j.bios.2017.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
|
190
|
Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Adv Healthc Mater 2017; 6. [PMID: 28338285 DOI: 10.1002/adhm.201700002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The remote control of cellular functions through smart nanomaterials represents a biomanipulation approach with unprecedented potential applications in many fields of medicine, ranging from cancer therapy to tissue engineering. By actively responding to external stimuli, smart nanomaterials act as real nanotransducers able to mediate and/or convert different forms of energy into both physical and chemical cues, fostering specific cell behaviors. This report describes those classes of nanomaterials that have mostly paved the way to a "wireless" control of biological phenomena, focusing the discussion on some examples close to the clinical practice. In particular, magnetic fields, light irradiation, ultrasound, and pH will be presented as means to manipulate the cellular fate, due to the peculiar physical/chemical properties of some smart nanoparticles, thus providing realistic examples of "nanorobots" approaching the visionary ideas of Richard Feynman.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Agostina Grillone
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Ilaria Pezzini
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
- Politecnico di Torino, Department of Aerospace and Mechanical Engineering, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
191
|
Niescioruk A, Nieciecka D, Puszko AK, Królikowska A, Kosson P, Perret GY, Krysinski P, Misicka A. Physicochemical properties and in vitro cytotoxicity of iron oxide-based nanoparticles modified with antiangiogenic and antitumor peptide A7R. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:160. [PMID: 28503085 PMCID: PMC5406482 DOI: 10.1007/s11051-017-3859-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Superparamagnetic iron oxide-based nanoparticles (SPIONs) are promising carriers as targeted drug delivery vehicles, because they can be guided to their target with the help of an external magnetic field. Functionalization of nanoparticles' surface with molecules, which bind with high affinity to receptors on target tissue significantly facilitates delivery of coated nanoparticles to their targeted site. Here, we demonstrate conjugation of an antiangiogenic and antitumor peptide ATWLPPR (A7R) to SPIONs modified with sebacic acid (SPIONs-SA). Successful conjugation was confirmed by various analytical techniques (FTIR, SERS, SEM-EDS, TEM, TGA). Cell cytotoxicity studies, against two cell lines (HUVEC and MDA-MB-231) indicated that SPIONs modified with A7R reduced HUVEC cell viability at concentrations higher than 0.01 mg Fe/mL, in comparison to cells that were exposed to either the nanoparticles modified with sebacic acid or A7R peptide solely, what might be partially caused by a process of internalization.
Collapse
Affiliation(s)
- Anna Niescioruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dorota Nieciecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna K. Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agata Królikowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Kosson
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Gerard Y. Perret
- Sorbonne Paris Cité, Université Paris 13, INSERM U1125, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Pawel Krysinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
192
|
Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E77. [PMID: 28379201 PMCID: PMC5408169 DOI: 10.3390/nano7040077] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/07/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
siRNA is a promising therapeutic solution to address gene overexpression or mutations as a post-transcriptional gene regulation process for several pathological conditions such as viral infections, cancer, genetic disorders, and autoimmune disorders like arthritis. This therapeutic method is currently being actively pursued in cancer therapy because siRNA has been found to suppress the oncogenes and address mutations in tumor suppressor genes and elucidate the key molecules in cellular pathways in cancer. It is also effective in personalized gene therapy for several diseases due to its specificity, adaptability, and broad targeting capability. However, naked siRNA is unstable in the bloodstream and cannot efficiently cross cell membranes besides being immunogenic. Therefore, careful design of the delivery systems is essential to fully utilize the potential of this therapeutic solution. This review presents a comprehensive update on the challenges of siRNA delivery and the current strategies used to develop nanoparticulate delivery systems.
Collapse
Affiliation(s)
- Katyayani Tatiparti
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Samaresh Sau
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Sushil Kumar Kashaw
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar 470003, India.
| | - Arun K Iyer
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
193
|
Abasian M, Hooshangi V, Moghadam PN. Synthesis of polyvinyl alcohol hydrogel grafted by modified Fe3O4 nanoparticles: characterization and doxorubicin delivery studies. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0521-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
194
|
Yu EY, Bishop M, Zheng B, Ferguson RM, Khandhar AP, Kemp SJ, Krishnan KM, Goodwill PW, Conolly SM. Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection. NANO LETTERS 2017; 17:1648-1654. [PMID: 28206771 PMCID: PMC5724561 DOI: 10.1021/acs.nanolett.6b04865] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cancer remains one of the leading causes of death worldwide. Biomedical imaging plays a crucial role in all phases of cancer management. Physicians often need to choose the ideal diagnostic imaging modality for each clinical presentation based on complex trade-offs among spatial resolution, sensitivity, contrast, access, cost, and safety. Magnetic particle imaging (MPI) is an emerging tracer imaging modality that detects superparamagnetic iron oxide (SPIO) nanoparticle tracer with high image contrast (zero tissue background signal), high sensitivity (200 nM Fe) with linear quantitation, and zero signal depth attenuation. MPI is also safe in that it uses safe, in some cases even clinically approved, tracers and no ionizing radiation. The superb contrast, sensitivity, safety, and ability to image anywhere in the body lends MPI great promise for cancer imaging. In this study, we show for the first time the use of MPI for in vivo cancer imaging with systemic tracer administration. Here, long circulating MPI-tailored SPIOs were created and administered intravenously in tumor bearing rats. The tumor was highlighted with tumor-to-background ratio of up to 50. The nanoparticle dynamics in the tumor was also well-appreciated, with initial wash-in on the tumor rim, peak uptake at 6 h, and eventual clearance beyond 48 h. Lastly, we demonstrate the quantitative nature of MPI through compartmental fitting in vivo.
Collapse
Affiliation(s)
- Elaine Y Yu
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
| | - Mindy Bishop
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
| | | | | | - Scott J Kemp
- Lodespin Labs LLC, Seattle, Washington 98103, United States
| | - Kannan M Krishnan
- Department of Materials Science, University of Washington , Seattle, Washington 98195, United States
| | | | - Steven M Conolly
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
195
|
Crall MD, Keller MW. Targeted Self-Healing by Magnetically Guiding Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6504-6511. [PMID: 28095672 DOI: 10.1021/acsami.7b00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Magnetically guided microcapsules are used to achieve self-healing with 1/10th of the healing components required using traditional self-healing approaches. Microcapsules are rendered responsive to magnetic fields by suspending magnetic nanoparticles in the core material. The nanoparticles are surface-modified to enable urea-formaldehyde encapsulation within a phenyl acetate core. Magnetic fields are used to guide the microcapsules to the expected fracture location in tapered double-cantilever beam (TDCB) epoxy specimens. This guiding method achieves an order of magnitude increase in local microcapsule concentration over controls, resulting in successful self-healing at microcapsule concentrations as low as 0.025 wt %. Additionally, the observed healing is both more consistent and significantly higher than that of control specimens, remaining relatively constant across all weight percentages tested.
Collapse
Affiliation(s)
- Matthew D Crall
- Department of Mechanical Engineering, The University of Tulsa , 800 S. Tucker Dr., Tulsa, Oklahoma 74104, United States
| | - Michael W Keller
- Department of Mechanical Engineering, The University of Tulsa , 800 S. Tucker Dr., Tulsa, Oklahoma 74104, United States
| |
Collapse
|
196
|
Section Editor's Notebook: The Future of Breast Imaging—Find It and Fix It. AJR Am J Roentgenol 2017; 208:245-247. [DOI: 10.2214/ajr.16.17591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
197
|
Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim Biophys Acta Gen Subj 2017; 1861:1530-1544. [PMID: 28130158 DOI: 10.1016/j.bbagen.2017.01.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. SCOPE OF REVIEW The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. MAJOR CONCLUSIONS Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. GENERAL SIGNIFICANCE The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality.
Collapse
|
198
|
Fendt SM. Is There a Therapeutic Window for Metabolism-Based Cancer Therapies? Front Endocrinol (Lausanne) 2017; 8:150. [PMID: 28725214 PMCID: PMC5495852 DOI: 10.3389/fendo.2017.00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/15/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt,
| |
Collapse
|
199
|
Chikh Alard I, Soubhye J, Berger G, Gelbcke M, Spassov S, Amighi K, Goole J, Meyer F. Triple-stimuli responsive polymers with fine tuneable magnetic responses. Polym Chem 2017. [DOI: 10.1039/c7py00218a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of multi-stimuli responsive polymers exhibiting magnetic, pH and light sensitivity is reported.
Collapse
Affiliation(s)
- I. Chikh Alard
- Laboratory of Pharmaceutics and Biopharmaceutics
- Faculty of Pharmacy
- Université Libre de Bruxelles
- 1050 Brussels
- Belgium
| | - J. Soubhye
- Laboratory of Therapeutic Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles
- 1050 Brussels
- Belgium
| | - G. Berger
- Laboratory of Therapeutic Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles
- 1050 Brussels
- Belgium
| | - M. Gelbcke
- Laboratory of Therapeutic Chemistry
- Faculty of Pharmacy
- Université Libre de Bruxelles
- 1050 Brussels
- Belgium
| | - S. Spassov
- Institut Royal Météorologique
- Centre de Physique du Globe
- 5670 Dourbes (Viroinval)
- Belgium
| | - K. Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics
- Faculty of Pharmacy
- Université Libre de Bruxelles
- 1050 Brussels
- Belgium
| | - J. Goole
- Laboratory of Pharmaceutics and Biopharmaceutics
- Faculty of Pharmacy
- Université Libre de Bruxelles
- 1050 Brussels
- Belgium
| | - F. Meyer
- Laboratory of Biopolymers and Supramolecular Nanomaterials
- Faculty of Pharmacy
- Université Libre de Bruxelles
- 1050 Brussels
- Belgium
| |
Collapse
|
200
|
Rahimi M, Safa KD, Alizadeh E, Salehi R. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. NEW J CHEM 2017. [DOI: 10.1039/c6nj04107h] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel smart, biocompatible, and pH-responsive magnetic highly branched chitosan was synthesized efficiently for use in dual-anticancer drug delivery systems.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Kazem D. Safa
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Effat Alizadeh
- Drug Applied Research Centre and School of Advanced Medical Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Roya Salehi
- Drug Applied Research Centre and School of Advanced Medical Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|