151
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2008; 12:2165-80. [PMID: 19120701 PMCID: PMC2692531 DOI: 10.1111/j.1582-4934.2008.00552.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/08/2008] [Indexed: 12/24/2022] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Appel
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Vetterkind
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | | | - K G Morgan
- Department of Health Sciences, Boston UniversityBoston, MA, USA
- Boston Biomedical Research InstituteWatertown, MA, USA
| |
Collapse
|
152
|
Rai R, Wong CCL, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR, Kashina A. Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 2008; 135:3881-9. [PMID: 18948421 PMCID: PMC2582055 DOI: 10.1242/dev.022723] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-translational arginylation mediated by arginyltransferase (Ate1) is essential for cardiovascular development and angiogenesis in mammals and directly affects myocardium structure in the developing heart. We recently showed that arginylation exerts a number of intracellular effects by modifying proteins involved in the functioning of the actin cytoskeleton and in cell motility. Here, we investigated the role of arginylation in the development and function of cardiac myocytes and their actin-containing structures during embryogenesis. Biochemical and mass spectrometry analyses showed that alpha cardiac actin undergoes arginylation at four sites during development. Ultrastructural analysis of the myofibrils in wild-type and Ate1 knockout mouse hearts showed that the absence of arginylation results in defects in myofibril structure that delay their development and affect the continuity of myofibrils throughout the heart, predicting defects in cardiac contractility. Comparison of cardiac myocytes derived from wild-type and Ate1 knockout mouse embryos revealed that the absence of arginylation results in abnormal beating patterns. Our results demonstrate cell-autonomous cardiac myocyte defects in arginylation knockout mice that lead to severe congenital abnormalities similar to those observed in human disease, and outline a new function of arginylation in the regulation of the actin cytoskeleton in cardiac myocytes.
Collapse
Affiliation(s)
- Reena Rai
- Department of Animal Biology, La Jolla, CA 92037
| | | | - Tao Xu
- The Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | - Anna Kashina
- Department of Animal Biology, La Jolla, CA 92037
| |
Collapse
|
153
|
Curry E, Pratt SL, Kelley DE, Lapin DR, Gibbons JR. Use of a Combined Duplex PCR/Dot Blot Assay for more sensitive genetic characterization. BIOCHEMISTRY INSIGHTS 2008. [DOI: 10.4137/bci.s872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A reliable and sensitive method of genetic analysis is necessary to detect multiple specific nucleic acid sequences from samples containing limited template. The most widely utilized method of specific gene detection, polymerase chain reaction (PCR), imparts inconsistent results when assessing samples with restricted template, especially in a multiplex reaction when copies of target genes are unequal. This study aimed to compare two methods of PCR product analysis, fluorescent detection following agarose gel electrophoresis or dot blot hybridization with chemiluminescent evaluation, in the detection of a single copy gene (SRY) and a multicopy gene (β-actin). Bovine embryo sex determination was employed to exploit the limited DNA template available and the target genes of unequal copies. Primers were used either independently or together in a duplex reaction with purified bovine genomic DNA or DNA isolated from embryos. When used independently, SRY and β-actin products were detected on a gel at the equivalent of 4-cell or 1-cell of DNA, respectively; however, the duplex reaction produced visible SRY bands at the 256 cell DNA equivalent and β-actin products at the 64 cell DNA equivalent. Upon blotting and hybridization of the duplex PCR reaction, product was visible at the 1–4 cell DNA equivalent. Duplex PCR was also conducted on 186 bovine embryos and product was subjected to gel electrophoresis or dot-blot hybridization in duplicate. Using PCR alone, sex determination was not possible for 22.6% of the samples. Using PCR combined with dot blot hybridization, 100.0% of the samples exhibited either both the male specific and β-actin products or the β-actin signal alone, indicating that the reaction worked in all samples. This study demonstrated that PCR amplification followed by dot blot hybridization provided more conclusive results in the evaluation of samples with low DNA concentrations and target genes of unequal copies.
Collapse
Affiliation(s)
- Erin Curry
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| | - Scott L. Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| | - Dale E. Kelley
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| | | | - John R. Gibbons
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
- OvaMax, Inc. Watertown, WI 53094
| |
Collapse
|
154
|
Radwanska A, Baczynska D, Nowak D, Brézillon S, Popow A, Maquart FX, Wegrowski Y, Malicka-Blaszkiewicz M. Lumican affects actin cytoskeletal organization in human melanoma A375 cells. Life Sci 2008; 83:651-60. [PMID: 18848571 DOI: 10.1016/j.lfs.2008.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 12/23/2022]
Abstract
AIMS Lumican, a small leucine-rich proteoglycan (SLRP), has attracted attention as a molecule of the extracellular matrix possibly involved in signalling pathways affecting cancer cell behaviour. The remodelling of the actin cytoskeleton, induced in response to external stimuli, is crucial for cell motility and intracellular signal transduction. The main goal of this study was to examine the effects of recombinant lumican on actin organization, the state of actin polymerization, actin isoform expression, and their sub-cellular distribution in the A375 human melanoma cell line. MAIN METHODS Fluorescence and confocal microscopy were used to observe actin cytoskeletal organization and the sub-cellular distribution of cytoplasmic beta- and gamma-actins. The ability of actin to inhibit DNaseI activity was used to quantify actin. Western blotting and real-time PCR were used to determine the expression levels of the actin isoforms. KEY FINDINGS A375 cells grown on lumican coatings changed in morphology and presented rearranged actin filament organization: from filaments evenly spread throughout the whole cell body to their condensed sub-membrane localization. In the presence of lumican, both actin isoforms were concentrated under the cellular membrane. A statistically significant increase in the total, filamentous, and monomeric actin pools was observed in A375 cells grown on lumican. SIGNIFICANCE Novel biological effects of lumican, an extracellular matrix SLRP, on the actin pool and organization are identified, which may extend our understanding of the mechanism underlying the inhibitory effect of lumican on the migration of melanoma cells.
Collapse
Affiliation(s)
- Agata Radwanska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 2008; 47:6172-6. [PMID: 18646237 DOI: 10.1002/anie.200802376] [Citation(s) in RCA: 1298] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mike Heilemann
- Angewandte Laserphysik & Laserspektroskopie, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Fluoreszenzmikroskopie unterhalb der optischen Auflösungsgrenze mit konventionellen Fluoreszenzsonden. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802376] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
157
|
Joseph JM, Fey P, Ramalingam N, Liu XI, Rohlfs M, Noegel AA, Müller-Taubenberger A, Glöckner G, Schleicher M. The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms. PLoS One 2008; 3:e2654. [PMID: 18612387 PMCID: PMC2441452 DOI: 10.1371/journal.pone.0002654] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 06/06/2008] [Indexed: 11/18/2022] Open
Abstract
Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps). To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group). According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8) as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes.
Collapse
Affiliation(s)
- Jayabalan M. Joseph
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Petra Fey
- dictyBase, Center for Genetic Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nagendran Ramalingam
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Xiao I. Liu
- Department of Biology II, Ludwig-Maximilians-University, Muenchen, Germany
| | - Meino Rohlfs
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Angelika A. Noegel
- Institute for Biochemistry I, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Koeln, Germany
| | - Annette Müller-Taubenberger
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Gernot Glöckner
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Michael Schleicher
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
- * E-mail:
| |
Collapse
|
158
|
Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol 2008; 295:C768-78. [PMID: 18596213 DOI: 10.1152/ajpcell.00174.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.
Collapse
Affiliation(s)
- Hak Rim Kim
- Department of Health Sciences, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
159
|
Bertola LD, Ott EB, Griepsma S, Vonk FJ, Bagowski CP. Developmental expression of the alpha-skeletal actin gene. BMC Evol Biol 2008; 8:166. [PMID: 18518953 PMCID: PMC2443135 DOI: 10.1186/1471-2148-8-166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/02/2008] [Indexed: 01/01/2023] Open
Abstract
Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish). Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.
Collapse
Affiliation(s)
- Laura D Bertola
- Institute of Biology, Department of Integrative Zoology University of Leiden, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
160
|
Poletto AB, Wasko AP, Oliveira C, Azevedo A, Carvalho RF, Silva MDP, Foresti F, Martins C. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus) and other eukaryote species revealed by nucleotide and amino acid sequence analyses. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
161
|
North KN, Laing NG. Skeletal muscle alpha-actin diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:15-27. [PMID: 19181090 DOI: 10.1007/978-0-387-84847-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle alpha-actin is the principal protein component of the adult skeletal muscle thin filament. The interaction between skeletal muscle alpha-actin and the various myosin heavy chain proteins in the different muscle fibre types generates the force of muscle contraction. Skeletal muscle alpha-alpha actin is thus of fundamental importance to normal muscle contraction. To date over 140 different disease-causing mutations have been identified in the skeletal muscle alpha-actin gene ACTA1. These mutations are associated with histologically distinct congenital myopathies, including nemaline myopathy, actin myopathy, intranuclear rod myopathy, congenital fibre type disproportion and myopathy with cores. Mutations in ACTA1 are associated with a wide range of clinical severity although the majority of patients tend to have severe congenital-onset disease. Most of the patients have de novo dominant mutations not present in either parent. However mild ACTA1 disease may be dominantly inherited and there are also recessive mutations. The recessive mutations are either genetic or functional null mutations. Patients with no skeletal actin retain cardiac actin, the fetal isoform of actin in skeletal muscle. Information from the clinic suggests that exercise and L-tyrosine may benefit some patients and that in the future decreasing the proportion of mutant actin may ameliorate the disease in some patients.
Collapse
Affiliation(s)
- Kathryn N North
- Discipline of Paediatrics, Department of Medicine, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
162
|
Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007; 39:1488-93. [DOI: 10.1038/ng.2007.6] [Citation(s) in RCA: 624] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/04/2007] [Indexed: 11/09/2022]
|
163
|
Abstract
One of the most important stages of pregnancy is the activation of uterine contractions that result in the expulsion of the fetus. The timely onset of labour is clearly important for a healthy start to life but incomplete understanding of the precise mechanisms regulating labour onset have prohibited the development of effective and safe treatments for preterm labour. This review explores the activation of the myometrium at labour onset, focussing on mechanisms of uterine contractility, including those proteins that play an important role in smooth muscle contractility. The review primarily focuses on human work but in the absence of human data describes animal studies. A broad overview of myometrial contraction mechanisms is provided before discussing more detailed aspects and identifying areas where uncertainty remains. Also discussed is the recent application of ‘omics’ based approaches to parturition research, which has facilitated an increase in the understanding of myometrial activation.
Collapse
|
164
|
|
165
|
Dormoy-Raclet V, Ménard I, Clair E, Kurban G, Mazroui R, Di Marco S, von Roretz C, Pause A, Gallouzi IE. The RNA-binding protein HuR promotes cell migration and cell invasion by stabilizing the beta-actin mRNA in a U-rich-element-dependent manner. Mol Cell Biol 2007; 27:5365-80. [PMID: 17548472 PMCID: PMC1952093 DOI: 10.1128/mcb.00113-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/27/2007] [Accepted: 05/21/2007] [Indexed: 12/14/2022] Open
Abstract
A high expression level of the beta-actin protein is required for important biological mechanisms, such as maintaining cell shape, growth, and motility. Although the elevated cellular level of the beta-actin protein is directly linked to the long half-life of its mRNA, the molecular mechanisms responsible for this effect are unknown. Here we show that the RNA-binding protein HuR stabilizes the beta-actin mRNA by associating with a uridine-rich element within its 3' untranslated region. Using RNA interference to knock down the expression of HuR in HeLa cells, we demonstrate that HuR plays an important role in the stabilization but not in the nuclear/cytoplasmic distribution of the beta-actin mRNA. HuR depletion in HeLa cells alters key beta-actin-based cytoskeleton functions, such as cell adhesion, migration, and invasion, and these defects correlate with a loss of the actin stress fiber network. Together our data establish that the posttranscriptional event involving HuR-mediated beta-actin mRNA stabilization could be a part of the regulatory mechanisms responsible for maintaining cell integrity, which is a prerequisite for avoiding transformation and tumor formation.
Collapse
Affiliation(s)
- Virginie Dormoy-Raclet
- Department of Biochemistry, and McGill Cancer Center, McGill University, McIntyre Building, Room 904, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Nowak KJ, Sewry CA, Navarro C, Squier W, Reina C, Ricoy JR, Jayawant SS, Childs AM, Dobbie JA, Appleton RE, Mountford RC, Walker KR, Clement S, Barois A, Muntoni F, Romero NB, Laing NG. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 2007; 61:175-84. [PMID: 17187373 DOI: 10.1002/ana.21035] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate seven congenital myopathy patients from six families: one French Gypsy, one Spanish Gypsy, four British Pakistanis, and one British Indian. Three patients required mechanical ventilation from birth, five died before 22 months, one is ventilator-dependent, but one, at 30 months, is sitting with minimal support. All parents were unaffected. METHODS The alpha-skeletal muscle actin gene (ACTA1) was sequenced. Available muscle biopsies were investigated by standard histological and electron microscopic techniques. The expression of various proteins was determined by immunohistochemistry, western blotting, or both. RESULTS Three homozygous ACTA1 null mutations were identified: p.Arg41X in the French patient, p.Tyr364fsX in the Spanish patient, and p.Asp181fsX10 in all five British patients. An absence of alpha-skeletal muscle actin protein but presence of alpha-cardiac actin was shown in all muscle biopsies examined, with more alpha-cardiac actin in the biopsy from the child with the greatest muscle function. Muscle biopsies from all patients exhibited nemaline bodies whereas three also contained zebra bodies. INTERPRETATION The seven patients have recessive nemaline myopathy caused by absence of alpha-skeletal muscle actin. The level of retention of alpha-cardiac actin, the skeletal muscle fetal actin isoform, may determine alpha-skeletal muscle actin disease severity. This has implications for possible future therapy.
Collapse
Affiliation(s)
- Kristen J Nowak
- Centre for Medical Research, University of Western Australia, Nedlands, Australia, and Centre for Inherited Neuromuscular Disorders, Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust, Oswestry, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Horigane M, Ogihara K, Nakajima Y, Honda H, Taylor D. Identification and expression analysis of an actin gene from the soft tick, Ornithodoros moubata (Acari: Argasidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:186-99. [PMID: 17366597 DOI: 10.1002/arch.20170] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Actin genes are found in all living organisms and highly conserved in various animals as shown by numerous studies on actin gene expression and function. Because of this ubiquitous nature of actin, it is often used as an internal control in gene expression studies. To clarify the suitability of actin gene as an internal control in soft ticks, isolation and expression analyses of an actin gene from Ornithodoros moubata was performed. An actin gene of Ornithodoros moubata (OmAct2, GenBank accession no. AB208021) with 1,131 bp and 376 amino acid residues was identified. The homology of OmAct2 with other arthropod actin genes was greater than 80% in nucleotides and 99% in amino acids. OmAct2 gene was classified as a cytoskeletal actin type by absence of muscle-specific amino acids commonly found in insects and ubiquitous expression in all stages and both sexes. Southern blot revealed that O. moubata has four to seven actin genes. In addition, actin expression analyzed by real-time PCR before and after blood feeding was not significantly different indicating OmAct2 is an appropriate internal control for the analysis of gene expression in these ticks.
Collapse
Affiliation(s)
- Mari Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Ibaraki, Japan
| | | | | | | | | |
Collapse
|
168
|
Reiter M, Walf VM, Christians A, Pfaffl MW, Meyer HHD. Modification of mRNA expression after treatment with anabolic agents and the usefulness for gene expression-biomarkers. Anal Chim Acta 2007; 586:73-81. [PMID: 17386698 DOI: 10.1016/j.aca.2006.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/08/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
With this feasibility study a first step towards a new monitoring system for hormonal treatments was done. Screening of regulation and function of anabolic sex steroids via modified gene expression of mRNA in various tissues could be a new approach to trace treatments with unknown drugs or newly combined cocktails. In the study, uterus, liver and muscle tissue from 24 cycling heifers were taken after the animals were treated either with Melengestrol Acetate (MGA), Finaplix-H (200 mg Trenbolone Acetate) or Ralgro (36 mg Zeranol) for 56 days. In every treatment group always two heifers were given 1-fold, 3-fold and 10-fold doses of the standard preparation, the control group without any treatment consisted of two animals. The different tissue gene expression profiles were investigated via the candidate gene approach. Totally 57 candidate genes were selected according to their functionality by screening the actual literature and composed to functional groups: angiogenesis, apoptosis, cell cycle, endocrine factors, energy metabolism, inflammatory factors, muscle function, oncogenes, protein metabolism and transcription factors. Gene expression was measured using quantitative real-time RT-PCR (qRT-PCR) technology. From 24 tested candidate genes in the liver, 17 showed a significant regulation. Eight genes were influenced by MGA, 9 by Finaplix-H, and 4 by Ralgro. For the muscle tissue 19 genes were tested with the result that in the neck muscle 11 genes were regulated and in the hind limb muscle 8 genes. In the neck 5 genes were affected by MGA, 6 by Finaplix-H and 3 by Ralgro. Only 2 genes were influenced by MGA in the hind limb muscle. Finaplix-H affected 6 and Ralgro 4 genes. In the uterus 29 target genes were tested and 13 were significantly influenced by the anabolic sex steroids. Under Finaplix-H treatment eight target genes were regulated and Ralgro and MGA showed a significant regulation in four target genes. The highest gene expression changes under anabolic treatment were observed in the uterus. The analyzed genes showed significant regulations but further studies, testing different animal husbandry conditions will be needed to identify meaningful expression patterns for the different tissues. With the investigation of the regulation and possible function of anabolic sex steroids via gene expression, a preparatory work for the development of an expression pattern for drug screening was made.
Collapse
Affiliation(s)
- Martina Reiter
- Physiology Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | | | | | | | |
Collapse
|
169
|
Butt RH, Lee MWY, Pirshahid SA, Backlund PS, Wood S, Coorssen JR. An initial proteomic analysis of human preterm labor: placental membranes. J Proteome Res 2007; 5:3161-72. [PMID: 17081068 DOI: 10.1021/pr060282n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human preterm labor (PL) is the single most significant problem in modern Obstetrics and Gynecology, affecting approximately 10% of pregnancies worldwide, constituting the leading cause of perinatal mortality and morbidity, and contributing significantly to chronic childhood disease. Currently, our molecular understanding of PL remains staggeringly inadequate to reliably diagnose or rationally intervene in PL events; several molecular alterations have been implicated in PL, but these have proven of limited value as diagnostic/prognostic markers. The majority of PL events remain spontaneous and unpredictable: critical care emergencies. Here, we apply functional proteomics to dissect molecular mechanisms of human PL. Human placental tissue was collected in clearly differentiated cases of preterm and term labor. Highly refined two-dimensional gel electrophoresis (2DE) was used for protein separation, coupled with automated differential gel image analysis to compare the resulting proteomic maps. For this initial study, only the most important protein differences were selected for further analysis, that is, proteins that were unique to one sample, and absent from the other, with 100% reproducibility across the sample population. In total, 11 such proteins were identified by tandem mass spectrometry, falling into three distinct functional classes: structural/cytoskeletal components, ER lumenal proteins with enzymatic or chaperone functions, and proteins with anticoagulant properties. These expression changes form the groundwork for further molecular investigation of this devastating medical condition. This approach therefore holds the potential not only to define the underlying molecular components, but also to identify novel diagnostic tools and targets for rational drug intervention.
Collapse
Affiliation(s)
- R Hussain Butt
- Department of Physiology & Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
170
|
Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 257:143-79. [PMID: 17280897 DOI: 10.1016/s0074-7696(07)57004-x] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The contraction of granulation tissue from skin wounds was first described in the 1960s. Later it was discovered that during tissue repair, fibroblasts undergo a change in phenotype from their normal relatively quiescent state in which they are involved in slow turnover of the extracellular matrix, to a proliferative and contractile phenotype termed myofibroblasts. These cells show some of the phenotypic characteristics of smooth muscle cells and have been shown to contract in vitro. In the 1990s, a number of researchers in different fields showed that myofibroblasts are present during tissue repair or response to injury in a variety of other tissues, including the liver, kidney, and lung. During normal repair processes, the myofibroblastic cells are lost as repair resolves to form a scar. This cell loss is via apoptosis. In pathological fibroses, myofibroblasts persist in the tissue and are responsible for fibrosis via increased matrix synthesis and for contraction of the tissue. In many cases this expansion of the extracellular matrix impedes normal function of the organ. For this reason much interest has centered on the derivation of myofibroblasts and the factors that influence their differentiation, proliferation, extracellular matrix synthesis, and survival. Further understanding of how fibroblast differentiation and myofibroblast phenotype is controlled may provide valuable insights into future therapies that can control fibrosis and scarring.
Collapse
Affiliation(s)
- Ian A Darby
- School of Medical Sciences, RMIT University, Melbourne, Australia
| | | |
Collapse
|
171
|
Warskulat U, Andrée B, Lüsebrink J, Köhrer K, Häussinger D. Switch from actin α1 to α2 expression and upregulation of biomarkers for pressure overload and cardiac hypertrophy in taurine-deficient mouse heart. Biol Chem 2006; 387:1449-54. [PMID: 17081118 DOI: 10.1515/bc.2006.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractTaurine is the most abundant free amino acid in heart muscle and protects against heart failure. In the present study, the consequences of hereditary taurine deficiency on cardiac gene expression were examined in 2- and 15–16-month-old taurine transporter knockout (taut-/-) mice using a mouse-specific DNA microarray. This oligonucleotide-based microarray contains probes for 251 genes with relevance for heart function. Of these, 163 probes exhibited a reproducible hybridization signal and were analyzed. α-Actin type 1 mRNA levels were 70% lower in the heart of young and oldertaut-/-mice compared to wild-type controls. Interestingly, the hearts oftaut-/-mice showed a switch from α-actin 1 to α-actin 2 expression, as confirmed by real-time PCR and Western blot analysis. In addition, mRNA levels of biomarkers for pressure overload and hypertension were upregulated intaut-/-hearts, i.e., atrial natriuretic factor (+848%), brain natriuretic peptide (+90%), cardiac ankyrin repeat protein (+118%), and procollagen 1a1, 1a2 and 3a1 (+40% at least). These results point to a stress situation in the heart oftaut-/-mice under laboratory conditions, and it can be speculated thattaut-/-hearts may be even more susceptible to failure in the wild when under exogenous stress.
Collapse
Affiliation(s)
- Ulrich Warskulat
- Klinik für Gastroenterologie, Hepatologie and Infektiologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
172
|
Kawai M, Ishiwata S. Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation. J Muscle Res Cell Motil 2006; 27:455-68. [PMID: 16909198 PMCID: PMC2896216 DOI: 10.1007/s10974-006-9075-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
The technique of selective removal of the thin filament by gelsolin in bovine cardiac muscle fibres, and reconstitution of the thin filament from isolated proteins is reviewed, and papers that used reconstituted preparations are discussed. By comparing the results obtained in the absence/presence of regulatory proteins tropomyosin (Tm) and troponin (Tn), it is concluded that the role of Tm and Tn in force generation is not only to expose the binding site of actin to myosin, but also to modify actin for better stereospecific and hydrophobic interaction with myosin. This conclusion is further supported by experiments that used a truncated Tm mutant and the temperature study of reconstituted fibres. The conclusion is consistent with the hypothesis that there are three states in the thin filament: blocked state, closed state, and open state. Tm is the major player to produce these effects, with Tn playing the role of Ca2+ sensing and signal transmission mechanism. Experiments that changed the number of negative charges at the N-terminal finger of actin demonstrates that this part of actin is essential to promote the strong interaction between actin and myosin molecules, in addition to the well-known weak interaction that positions the myosin head at the active site of actin prior to force generation.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
173
|
Affiliation(s)
- J Chloë Bulinski
- Department of Biological Sciences and the Department of Pathology and Cell Biology, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027-2450, USA.
| |
Collapse
|
174
|
Flakowski J, Bolivar I, Fahrni J, Pawlowski J. Tempo and Mode of Spliceosomal Intron Evolution in Actin of Foraminifera. J Mol Evol 2006; 63:30-41. [PMID: 16755352 DOI: 10.1007/s00239-005-0061-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 02/02/2006] [Indexed: 11/28/2022]
Abstract
Spliceosomal introns are present in almost all eukaryotic genes, yet little is known about their origin and turnover in the majority of eukaryotic phyla. There is no agreement whether most introns are ancestral and have been lost in some lineage or have been gained recently. We addressed this question by analyzing the spatial and temporal distribution of introns in actins of foraminifera, a group of testate protists whose exceptionally rich fossil record permits the calibration of molecular phylogenies to date intron origins. We identified 24 introns dispersed along the sequence of two foraminiferan actin paralogues and actin deviating proteins, an unconventional type of fast-evolving actin found in some foraminifera. Comparison of intron positions indicates that 20 of 24 introns are specific to foraminifera. Four introns shared between foraminifera and other eukaryotes were interpreted as parallel gains because they have been found only in single species belonging to phylogenetically distinctive lineages. Moreover, additional recent intron gain due to the transfer between the actin paralogues was observed in two cultured species. Based on a relaxed molecular clock timescale, we conclude that intron gains in actin took place throughout the evolution of foraminifera, with the oldest introns inserted between 550 and 500 million years ago and the youngest ones acquired less than 100 million years ago.
Collapse
Affiliation(s)
- Jérôme Flakowski
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | | | | | | |
Collapse
|
175
|
Procaccio V, Salazar G, Ono S, Styers ML, Gearing M, Davila A, Jimenez R, Juncos J, Gutekunst CA, Meroni G, Fontanella B, Sontag E, Sontag JM, Faundez V, Wainer BH. A mutation of beta -actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia. Am J Hum Genet 2006; 78:947-60. [PMID: 16685646 PMCID: PMC1474101 DOI: 10.1086/504271] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/09/2006] [Indexed: 11/03/2022] Open
Abstract
Actin, one of the major filamentous cytoskeletal molecules, is involved in a variety of cellular functions. Whereas an association between muscle actin mutations and skeletal and cardiac myopathies has been well documented, reports of human disease arising from mutations of nonmuscle actin genes have been rare. We have identified a missense point mutation in the gene coding for beta -actin that results in an arginine-to-tryptophan substitution at position 183. The disease phenotype includes developmental midline malformations, sensory hearing loss, and a delayed-onset generalized dystonia syndrome in monozygotic twins. Cellular studies of a lymphoblastoid cell line obtained from an affected patient demonstrated morphological abnormalities of the actin cytoskeleton and altered actin depolymerization dynamics in response to latrunculin A, an actin monomer-sequestering drug. Resistance to latrunculin A was also observed in NIH 3T3 cells expressing the mutant actin. These findings suggest that mutations in nonmuscle actins may be associated with a broad spectrum of developmental malformations and/or neurological abnormalities such as dystonia.
Collapse
Affiliation(s)
- Vincent Procaccio
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Yoo C, Pal M, Miller FR, Barder TJ, Huber C, Lubman DM. Toward high sequence coverage of proteins in human breast cancer cells using on-line monolith-based HPLC-ESI-TOF MS compared to CE MS. Electrophoresis 2006; 27:2126-38. [PMID: 16637017 DOI: 10.1002/elps.200500651] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A method is developed toward high sequence coverage of proteins isolated from human breast cancer MCF10 cell lines using a 2-D liquid separations. Monolithic-capillary columns prepared by copolymerizing styrene with divinylbenzene are used to achieve high-resolution separation of peptides from protein digests. This separation is performed with minimal sample preparation directly from the 2-D liquid fractionation of the cell lysate. The monolithic column separation is directly interfaced to ESI-TOF MS to obtain a peptide map. The protein digests were also analyzed by MALDI-TOF MS and an accurate M(r) of the intact protein was obtained using an HPLC-ESI-TOF MS. The result is that these techniques provide complementary information where nearly complete sequence coverage of the protein is obtained and can be compared to the experimental M(r) value. The high sequence coverage provides information on isoforms and other post-translational modifications that would not be available from methods that result in low sequence coverage. The results from the use of monolithic columns are compared to that obtained by CE-MS. The monolithic column separations provide a rugged and highly reproducible method for separating protein digests prior to MS analysis and is suited to confidently identify biomarkers associated with cancer progression.
Collapse
MESH Headings
- Amino Acid Sequence
- Breast Neoplasms/chemistry
- Chromatography, High Pressure Liquid/instrumentation
- Chromatography, High Pressure Liquid/methods
- Electrophoresis, Capillary
- Female
- Humans
- Molecular Sequence Data
- Neoplasm Proteins/analysis
- Online Systems
- Peptide Mapping/methods
- Sequence Analysis, Protein/methods
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Chul Yoo
- Department of Chemistry, The University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
177
|
Furness DN, Katori Y, Mahendrasingam S, Hackney CM. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res 2006; 207:22-34. [PMID: 16024192 DOI: 10.1016/j.heares.2005.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
178
|
Warkman AS, Zheng L, Qadir MA, Atkinson BG. Organization and developmental expression of an amphibian vascular smooth muscle alpha-actin gene. Dev Dyn 2005; 233:1546-53. [PMID: 15965984 DOI: 10.1002/dvdy.20457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene encoding a putative homologue of the avian and mammalian vascular smooth muscle alpha-actin was isolated from an amphibian, Rana catesbeiana, and characterized in terms of its sequence, organization, and expression pattern. To assess the expression of this gene during amphibian embryonic development, a cDNA encoding the Xenopus homologue of this mRNA was isolated and characterized by in situ hybridization. The expression of this gene was not detected in the enteric smooth muscle cells or, unlike its avian and mammalian homologues, in the somites/skeletal muscle of the Xenopus embryos/tadpoles. Its initial expression coincides with the onset of cardiac muscle differentiation and is coincidental with the expression of the cardiac alpha-actin mRNAs in the heart-forming region of the stage 26/27 embryo. As development proceeds, transcripts from this gene are expressed throughout the developing heart until the formation of the heart chambers is completed and, thereafter, its expression becomes restricted to the outflow tract of the tadpole heart. The subsequent restricted expression of this gene to the vascular system in both of these amphibians identifies it as the amphibian homologue of the avian and mammalian vascular smooth muscle alpha-actin.
Collapse
Affiliation(s)
- Andrew S Warkman
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
179
|
Gevaert K, Van Damme P, Martens L, Vandekerckhove J. Diagonal reverse-phase chromatography applications in peptide-centric proteomics: Ahead of catalogue-omics? Anal Biochem 2005; 345:18-29. [PMID: 16181830 DOI: 10.1016/j.ab.2005.01.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 11/29/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
Diagonal electrophoresis/chromatography was described 40 years ago and was used to isolate specific sets of peptides from simple peptide mixtures such as protease digests of purified proteins. Recently, we have adapted the core technology of diagonal chromatography so that the technique can be used in so-called gel-free, peptide-centric proteome studies. Here we review the different procedures we have developed over the past few years, sorting of methionyl, cysteinyl, amino terminal, and phosphorylated peptides. We illustrate the power of the technique, termed COFRADIC (combined fractional diagonal chromatography), in the case of a peptide-centric analysis of a sputum sol phase sample of a patient suffering from chronic obstructive pulmonary disease (COPD). We were able to identify an unexpectedly high number of intracellular proteins next to known biomarkers.
Collapse
Affiliation(s)
- Kris Gevaert
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology, Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
180
|
Shynlova O, Tsui P, Dorogin A, Chow M, Lye SJ. Expression and Localization of Alpha-Smooth Muscle and Gamma-Actins in the Pregnant Rat Myometrium1. Biol Reprod 2005; 73:773-80. [PMID: 15972885 DOI: 10.1095/biolreprod.105.040006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The myometrium undergoes dramatic changes as pregnancy progresses through phases of proliferation, hypertrophy, contractile state and labor. In this study, we showed that the composition of the muscle actin isoforms, a major component of the myometrial contractile apparatus and cytoskeleton, was modified during pregnancy. The expression of smooth muscle alpha-actin (Acta2, which we abbreviate as alpha-SM-actin) and gamma-actin mRNAs and proteins was examined by real-time polymerase chain reaction and Western immunoblot, and was localized with immunohistochemistry, in the nonpregnant, pregnant, and postpartum rat uterus. Both alpha-SM-actin (vascular specific actin isoform) and gamma-actin (predominant in visceral smooth muscle) were detected in the rat myometrium. Myometrial expression of alpha-SM-actin mRNA and protein was high throughout pregnancy. The transcript and protein levels of gamma-actin were increased significantly in the second part of gestation (31.8-fold increase for mRNA and 16.7-fold increase for protein relative to nonpregnant). The localization of gamma-actin was markedly altered during pregnancy. In early gestation, myometria from empty and gravid uterine horns of the unilaterally pregnant rats showed abundant gamma-actin immunostaining in the longitudinal layer but weak staining in the circular layer. Gamma-actin immunostaining increased in only the circular layer of the gravid horn after midgestation and remained low in the empty one. Gamma-actin protein translocated to the membranous region of uterine myocytes at late gestation. The temporal alteration in gamma-actin expression and localization at late gestation suggested that this change in myometrial composition of contractile proteins is important to adequately prepare the myometrium for the development of optimal contractions during labor.
Collapse
Affiliation(s)
- Oksana Shynlova
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
181
|
Kostesha NV, Laman AG, Shepelyakovskaya AO, Zaitseva IS, Orlov VP, Dykman LA, Brovko FA, Sokolov OI. Selection and Characterization of Phage Miniantibodies to Actins of Different Origin. BIOCHEMISTRY (MOSCOW) 2005; 70:884-9. [PMID: 16212544 DOI: 10.1007/s10541-005-0198-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Single-chain miniantibodies (scFv's) to actin were obtained by the phage display method. A naive combinatorial phage display library of murine scFv's (containing 2x10(8) independent recombinant clones) was used to select miniantibodies. After three rounds of selection two clones producing miniantibodies to chicken smooth muscle actin with affinity constants of 1.4x10(7) and 1.2x10(6) M(-1) were chosen. The isolated miniantibodies could specifically detect various plant and animal actins.
Collapse
Affiliation(s)
- N V Kostesha
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
183
|
Kumar A, Crawford K, Flick R, Klevitsky R, Lorenz JN, Bove KE, Robbins J, Lessard JL. Transgenic overexpression of cardiac actin in the mouse heart suggests coregulation of cardiac, skeletal and vascular actin expression. Transgenic Res 2005; 13:531-40. [PMID: 15672834 DOI: 10.1007/s11248-004-2823-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that depletion of cardiac actin by targeted disruption is associated with increased expression of alternative actins in the mouse heart. Here we have studied the effects of transgenic overexpression of cardiac actin using the alpha-myosin heavy chain promoter. Lines carrying 7 or 8 copies of the transgene showed a 2-fold increase in cardiac actin mRNA and also displayed decreased expression of skeletal and vascular actin in their hearts. In contrast, a line with more than 250 copies of the transgene did not show a similar decrease in the expression of skeletal and vascular actin despite a 3-fold increase in cardiac actin mRNA. While the low copy number transgenic mice displayed hearts that were similar to non-transgenic controls, the high copy number transgenic line showed larger hearts with distinct atrial enlargement and cardiomyocyte hypertrophy. Further, while the low copy number transgenic mouse hearts were mildly hypocontractile when compared with non-transgenic mouse hearts, the high copy number transgenic mouse hearts were significantly so. We conclude that in the presence of a small number of copies of the cardiac actin transgene, homeostatic mechanisms involved in maintaining actin levels are active and negatively regulate skeletal and vascular actin levels in the heart in response to increased expression of cardiac actin. However, these putative mechanisms are either inoperative in the high copy number transgenic line or are countered by the enhanced expression of skeletal and vascular actin during cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- A Kumar
- Division of Developmental Biology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Zappulla JP, Angers A, Barbas D, Castellucci VF, DesGroseillers L. A novel actin isoform is expressed in the ovotestis of Aplysia californica. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:403-9. [PMID: 15694588 DOI: 10.1016/j.cbpc.2004.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/02/2004] [Accepted: 11/07/2004] [Indexed: 10/26/2022]
Abstract
The actin family encodes a large number of protein isoforms with quasi-identical primary structure but distinct function and localization. In oocytes, actin is known to play important roles in different processes such as those leading to fertilization or to mRNA localization during oogenesis. In this paper, we report the characterization of a novel actin isoform (apACTov) in Aplysia californica that is specifically expressed in ovotestis. The apACTov cDNA codes for a putative protein of 376 amino acids that shows 96% and 94% sequence identity with two other actin isoforms previously characterized in Aplysia. In situ hybridization experiments showed that the apACTov transcript is not uniformly distributed but is found in crescent or filipodia-like structures at the surface of the oocyte. Our results suggest that apACTov may contribute to the differential distribution of critical material during egg division and/or cell differentiation.
Collapse
Affiliation(s)
- Jacques P Zappulla
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
185
|
Wang SX, Elder PK, Zheng Y, Strauch AR, Kelm RJ. Cell Cycle-mediated Regulation of Smooth Muscle α-Actin Gene Transcription in Fibroblasts and Vascular Smooth Muscle Cells Involves Multiple Adenovirus E1A-interacting Cofactors. J Biol Chem 2005; 280:6204-14. [PMID: 15576380 DOI: 10.1074/jbc.m409506200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of smooth muscle alpha-actin in growth factor-induced myofibroblasts and in differentiated vascular smooth muscle cells is transcriptionally controlled by multiple positive or negative trans-acting factors interacting with distinct cis-elements in the 5'-flanking region of the gene. Because none of the transcriptional regulators reported to date is smooth muscle cell- or myofibroblast-specific per se, the dynamic interplay among many factors interacting at specific sites along the promoter appears to be a signature feature of smooth muscle alpha-actin gene regulation in these cell types. Herein, the ability of the adenovirus E1A 12 S protein to bind and functionally inactivate specific cell regulatory factors has been exploited to identify several previously unknown coactivators of the mouse smooth muscle alpha-actin promoter in rodent fibroblasts and vascular smooth muscle cells. In transient cotransfection assays, ectopic expression of wild type E1A suppressed promoter activity in a dose- and cis-element-dependent manner. In asynchronous cells, N-terminal E1A mutants defective in CREB-binding protein (CBP) and p300 binding capacity exhibited markedly reduced inhibitory activity toward a smooth muscle alpha-actin promoter driven by a composite TEF-1-, SRF-, and Sp1/3-regulated enhancer. In synchronized cells, however, a more complex mutant E1A inhibitory pattern indicated that collaboration between CBP/p300 and the retinoblastoma family of pocket proteins was required to produce a fully functional enhancer. Cotransfection experiments conducted with Rb(-/-) fibroblasts demonstrated the necessity of pRB in augmenting smooth muscle alpha-actin enhancer/promoter activity. Physical interaction studies with the use of purified wild type and mutant E1A proteins confirmed that CBP, p300, and pRB were targets of E1A binding in nuclear extracts of vascular smooth muscle cells and/or fibroblasts. Collectively, these results suggest that a repertoire of E1A-interacting proteins, namely CBP/p300 and pRB, serve to integrate the activities of multiple trans-acting factors to control smooth muscle alpha-actin gene transcription in a cell type- and cell cycle-dependent manner.
Collapse
Affiliation(s)
- Shu-Xia Wang
- Department of Medicine, University of Vermont, 208 South Park Dr., Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
186
|
Lu X, Bryant MK, Bryan KE, Rubenstein PA, Kawai M. Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres. J Physiol 2005; 564:65-82. [PMID: 15649975 PMCID: PMC1456038 DOI: 10.1113/jphysiol.2004.078055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutant yeast actins were used to determine the role of actin's N-terminal negative charges in force generation. The thin filament was selectively removed from bovine cardiac skinned muscle fibres by gelsolin, and the actin filament was reconstituted from purified G-actin. In this reconstitution, yeast wild-type actin (2Ac: two N-terminal negative charges), yeast mutant actins (3Ac and 4Ac), and rabbit skeletal muscle actin (MAc) were used. The effects of phosphate, ATP and ADP on force development were studied at 25 degrees C. With MAc, isometric tension was 77% of the initial tension owing to the lack of a regulatory system. With 2Ac, isometric tension was 10% of the initial tension; with 3Ac, isometric tension was 23%; and with 4Ac, isometric tension was 44%. Stiffness followed a similar pattern (2Ac < 3Ac < 4Ac < MAc). A similar trend was observed during rigor induction and relaxation. Sinusoidal analysis was performed to obtain the kinetic constants of the cross-bridge cycle. The results showed that the variability of the kinetic constants was < or = 2.5-fold among the 2Ac, 4Ac and MAc muscle models. When the cross-bridge distribution was examined, there was no significant reapportionment among these three models examined. These results indicate that force supported by each cross-bridge is modified by the N-terminal negative charges of actin, presumably via the actomyosin interface. We conclude that two N-terminal negative charges are not adequate, three negative charges are intermediate, and four negative charges are necessary to generate force.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Mary K Bryant
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Keith E Bryan
- Department of Biochemistry, University of IowaIowa City, IA 52242, USA
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
- Corresponding author M. Kawai: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
187
|
Shimomoto T, Yoshida M, Katsuda SI, Takahashi M, Uematsu F, Kuniyasu H, Maekawa A, Nakae D. .ALPHA.-Smooth Muscle Actin-positive Stromal Cells Reactive to Estrogens Surround Endometrial Glands in Rats but not Mice. J Toxicol Pathol 2005. [DOI: 10.1293/tox.18.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Midori Yoshida
- Department of Pathology, Sasaki Institute, Sasaki Foundation
| | - Shin-ichi Katsuda
- Department of Biological Safety Research, Tama laboratory, Japan Food Research Laboratories
| | | | | | | | | | - Dai Nakae
- Department of Pathology, Sasaki Institute, Sasaki Foundation
| |
Collapse
|
188
|
da Silva Vaz I, Imamura S, Nakajima C, de Cardoso FC, Ferreira CAS, Renard G, Masuda A, Ohashi K, Onuma M. Molecular cloning and sequence analysis of cDNAs encoding for Boophilus microplus, Haemaphysalis longicornis and Rhipicephalus appendiculatus actins. Vet Parasitol 2004; 127:147-55. [PMID: 15631908 DOI: 10.1016/j.vetpar.2004.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2004] [Indexed: 11/24/2022]
Abstract
The nucleotide and deduced amino acid sequences of the actins from ticks, Boophilus microplus, Haemaphysalis longicornis and Rhipicephalus appendiculatus, have been determined. Nucleotide sequence analysis showed open reading frames of 1128-nucleotide-long encoding proteins of 376 amino acids with a predicted molecular weight of 41.82 kDa each. Comparison between the nucleic acid and deduced amino acid sequences as well as structural and phylogenetic analyses of these genes confirmed the high similarity among actins from ticks in comparison to other species.
Collapse
Affiliation(s)
- Itabajara da Silva Vaz
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Sapporo 060-0818, Hokkaido, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Zimmerman RA, Tomasek JJ, McRae J, Haaksma CJ, Schwartz RJ, Lin HK, Cowan RL, Jones AN, Kropp BP. Decreased expression of smooth muscle alpha-actin results in decreased contractile function of the mouse bladder. J Urol 2004; 172:1667-72. [PMID: 15371786 DOI: 10.1097/01.ju.0000139874.48574.1b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Smooth muscle alpha-actin (SMalphaA) is an important actin isoform for functional contractility in the mouse bladder. Alterations in the expression of SMalphaA have been associated with a variety of bladder pathological conditions. Recently, a SMalphaA-null mouse was generated and differences in vascular tone and contractility were observed between wild-type and SMalphaA-null mice suggesting alterations in function of vascular smooth muscle. We used SMalphaA-null mice to explore the hypothesis that SMalphaA is necessary for normal bladder function. MATERIALS AND METHODS Reverse transcriptase polymerase chain reaction, Western blotting and immunohistochemical staining were used to confirm the absence of SMalphaA transcript and protein in the bladder of SMalphaA-null mice. In vitro bladder contractility compared between bladder rings harvested from wild-type and SMalphaA-null mice was determined by force measurement following electrical field stimulation (EFS), and exposure to chemical agonists and antagonists including KCl, carbachol, atropine and tetrodotoxin. Resulting force generation profiles for each tissue and agent were analyzed. RESULTS There was no detectable SMalphaA transcript and protein expression in the bladder of SMalphaA-null mice. Nine wild-type and 9 SMalphaA-null mice were used in the contractility study. Bladders from SMalphaA-null mice generated significantly less force than wild-type mice in response to EFS after KCl. Similarly, bladders from SMalphaA-null mice generated less force than wild-type mice in response to pretreatment EFS, and EFS after carbachol and atropine, although the difference was not significant. Surprisingly, the bladders in SMalphaA-null mice appeared to function normally and showed no gross or histological abnormalities. CONCLUSIONS SMalphaA appears to be necessary for the bladder to be able to generate normal levels of contractile force. No functional deficits were observed in the bladders of these animals but no stress was placed on these bladders. To our knowledge this study represents the first report to demonstrate the importance of expression of SMalphaA in force generation in the bladder.
Collapse
Affiliation(s)
- R A Zimmerman
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Chaponnier C, Gabbiani G. Pathological situations characterized by altered actin isoform expression. J Pathol 2004; 204:386-95. [PMID: 15495226 DOI: 10.1002/path.1635] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Modulation of actin isoform expression is a well-established feature of developmental phenomena. As one might expect, it is also characteristic of several pathological situations that are the subject of the present review. alpha-Smooth muscle actin has proven to be a reliable marker for identifying (a) vascular smooth muscle cells during vascular development and vascular diseases, and (b) myofibroblasts during wound healing, fibrocontractive diseases, and stromal reaction to epithelial tumours. The hallmark of a differentiated myofibroblast relies on the acquisition of an organized contractile apparatus characterized by alpha-smooth muscle actin-expressing stress fibres. More and more data suggest that alpha-smooth muscle actin plays a direct role in myofibroblast contractile activity through its N-terminal domain AcEEED. Newly developed antibodies against alpha-skeletal and alpha-cardiac actins have allowed the detection of subpopulations of alpha-skeletal positive cardiomyocytes in adult, hypertrophic, and failing heart. These antibodies have also permitted us to identify the differentiation degree of malignant cells in tumours such as rhabdomyosarcoma. Whether the differential expression of actin isoforms in human diseases is functionally relevant is not yet fully established, although studies on human actin mutations, actin null mice, and the N-terminal end of alpha-smooth muscle actin support this possibility.
Collapse
Affiliation(s)
- Christine Chaponnier
- Department of Pathology and Immunology, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
191
|
Niessen P, Clément S, Fontao L, Chaponnier C, Teunissen B, Rensen S, van Eys G, Gabbiani G. Biochemical evidence for interaction between smoothelin and filamentous actin. Exp Cell Res 2004; 292:170-8. [PMID: 14720516 DOI: 10.1016/j.yexcr.2003.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The two major isoforms of smoothelin (A and B) contain a calponin homology (CH) domain, colocalize with alpha-smooth muscle actin (alpha-SMA) in stress fibers and are only expressed in contractile smooth muscle cells (SMCs). Based on these findings, we hypothesized that smoothelins are involved in smooth muscle cell contraction, presumably via interaction with actin. The interaction between smoothelins and three different actin isoforms (alpha- and gamma-smooth muscle and alpha-skeletal actin [alpha-SKA]) was investigated using several in vitro assays. Smoothelin-B co-immunoprecipitated with alpha-smooth muscle actin from pig aorta extracts. In rat embryonic fibroblasts, transfected smoothelins-A and -B associated with stress fibers. In vitro dot blot assays, in which immobilized actin was overlaid with radio-labeled smoothelin, showed binding of smoothelin-A to actin filaments, but not to monomeric G-actin. A truncated smoothelin, containing the calponin homology domain, associated with stress fibers when transfected and bound to actin filaments in overlay, but to a lesser extent. ELISA results showed that the binding of smoothelin to actin has no significant isoform specificity. Our results indicate an interaction between smoothelin and actin filaments. Moreover, the calponin homology domain and its surrounding sequences appear to be sufficient to accomplish this interaction, although the presence of other domains is apparently necessary to facilitate and/or strengthen the binding to actin.
Collapse
Affiliation(s)
- Petra Niessen
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Hall TE, Cole NJ, Johnston IA. Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod Gadus morhua L. J Exp Biol 2003; 206:3187-200. [PMID: 12909700 DOI: 10.1242/jeb.00535] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven cDNA clones coding for different muscle-specific proteins (MSPs) were isolated from the fast muscle tissue of Atlantic cod Gadus morhua L. In situ hybridization using cRNA probes was used to characterize the temporal and spatial patterns of gene expression with respect to somite stage in embryos incubated at 4 degrees C, 7 degrees C and 10 degrees C. MyoD transcripts were first observed in the presomitic mesoderm prior to somite formation, and in the lateral compartment of the forming somites. MyoD expression was not observed in the adaxial cells that give rise to the slow muscle layer, and expression was undetectable by in situ hybridization in the lateral somitic mesoderm after the 35-somite stage, during development of the final approximately 15 somites. RT-PCR analysis, however, confirmed the presence of low levels of the transcript during these later stages. A phylogenetic comparison of the deduced aminoacid sequences of the full-length MyoD cDNA clone and those from other teleosts, and inference from the in situ expression pattern suggested homology with a second paralogue (MyoD2) recently isolated from the gilthead seabream Sparus aurata. Following MyoD expression, alpha-actin was the first structural gene to be switched on at the 16-somite stage, followed by myosin heavy chain, troponin T, troponin I and muscle creatine kinase. The final mRNA in the series to be expressed was troponin C. All genes were switched on prior to myofibril assembly. The troponin C sequence was unusual in that it showed the greatest sequence identity with the rainbow trout Oncorhynchus mykiss cardiac/slow form, but was expressed in the fast myotomal muscle and not in the heart. In addition, the third TnC calcium binding site showed a lower level of sequence conservation than the rest of the sequence. No differences were seen in the timing of appearance or rate of posterior progression (relative to somite stage) of any MSP transcripts between embryos raised at the different temperatures. It was concluded that myofibrillar genes are activated asynchronously in a distinct temporal order prior to myofibrillar assembly and that this process was highly canalized over the temperature range studied.
Collapse
Affiliation(s)
- Thomas E Hall
- Gatty Marine Laboratory, School of Biology, University of St Andrews, Fife, KY16 8LB, UK.
| | | | | |
Collapse
|
193
|
Anthony Akkari P, Nowak KJ, Beckman K, Walker KR, Schachat F, Laing NG. Production of human skeletal alpha-actin proteins by the baculovirus expression system. Biochem Biophys Res Commun 2003; 307:74-9. [PMID: 12849983 DOI: 10.1016/s0006-291x(03)01133-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations within the human skeletal muscle alpha-actin gene cause three different skeletal muscle diseases. Functional studies of the mutant proteins are necessary to better understand the pathogenesis of these diseases, however, no satisfactory system for the expression of mutant muscle actin proteins has been available. We investigated the baculovirus expression vector system (BEVS) for the abundant production of both normal and mutant skeletal muscle alpha-actin. We show that non-mutated actin produced in the BEVS behaves similarly to native actin, as shown by DNase I affinity purification, Western blotting, and consecutive cycles of polymerisation and depolymerisation. Additionally, we demonstrate the production of mutant actin proteins in the BEVS, without detriment to the insect cells in which they are expressed. The BEVS therefore is the method of choice for studying mutant actin proteins causing human diseases.
Collapse
Affiliation(s)
- P Anthony Akkari
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australian Neuromuscular Research Institute, 4th Floor, 'A' Block, QEII Medical Centre, Nedlands, 6009, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
194
|
Kitamura N, Yoshiki A, Sasaki M, Baltazar ET, Hondo E, Yamamoto Y, Agungpriyono S, Yamada J. Immunohistochemical evaluation of the muscularis mucosae in the ruminant forestomach. Anat Histol Embryol 2003; 32:175-8. [PMID: 12823104 DOI: 10.1046/j.1439-0264.2003.00456.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The muscularis mucosae and condensed fibrous layer of the ruminant forestomach were studied by immunohistochemistry using specific antibodies against alpha-smooth muscle actin (alphaSMA) and gamma-smooth muscle actin (gammaSMA). The specimens were collected from the rumen, reticulum and omasum of cattle, water buffalo, sheep, goat, Barbary sheep, Japanese serow, sika deer and mouse deer. The muscularis mucosae showed immunoreactivity for both alphaSMA and gammaSMA. On the other hand, the condensed fibrous layer appearing between the propria mucosa and tela submucosa was immunoreactive only for alphaSMA except for that in the goat and Barbary sheep reticulum which is intermingled with gammaSMA immunoreactivity. The distribution of muscularis mucosae and/or condensed fibrous layer varied among the compartments of forestomach and ruminant species. In the rumen, only the condensed fibrous layer was detected. On the other hand, the omasum contained only the muscularis mucosae. In the reticulum, both were detected. The amount of the condensed fibrous layer in the reticulum varied among different species in the following order of abundance: goat > Barbary sheep > sika deer> sheep > water buffalo > cattle and Japanese serow. Smooth muscle cells of external muscle layer were immunoreactive for alphaSMA and gammaSMA whereas those of blood vessels and pericytes were immunoreactive only for alphaSMA. The present findings on the actin immunoreactivity and distribution profile of muscularis mucosae and the condensed fibrous layer provide additional knowledge to further understand the histophysiological specialization of the different compartments of the ruminant forestomach.
Collapse
Affiliation(s)
- N Kitamura
- Department of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C. Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 2003; 14:2508-19. [PMID: 12808047 PMCID: PMC194898 DOI: 10.1091/mbc.e02-11-0729] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cultured myofibroblasts are characterized by stress fibers, containing alpha-smooth muscle actin (alpha-SMA) and by supermature focal adhesions (FAs), which are larger than FAs of alpha-SMA-negative fibroblasts. We have investigated the role of alpha-SMA for myofibroblast adhesion and FA maturation. Inverted centrifugation reveals two phases of initial myofibroblast attachment: during the first 2 h of plating microfilament bundles contain essentially cytoplasmic actin and myofibroblast adhesion is similar to that of alpha-SMA-negative fibroblasts. Then, myofibroblasts incorporate alpha-SMA in stress fibers, develop mature FAs and their adhesion capacity is significantly increased. When alpha-SMA expression is induced in 5 d culture by TGFbeta or low serum levels, fibroblast adhesion is further increased correlating with a "supermaturation" of FAs. Treatment of myofibroblasts with alpha-SMA fusion peptide (SMA-FP), which inhibits alpha-SMA-mediated contractile activity, reduces their adhesion to the level of alpha-SMA negative fibroblasts. With the use of flexible micropatterned substrates and EGFP-constructs we show that SMA-FP application leads to a decrease of myofibroblast contraction, shortly followed by disassembly of paxillin- and beta3 integrin-containing FAs; alpha5 integrin distribution is not affected. FRAP of beta3 integrin-EGFP demonstrates an increase of FA protein turnover following SMA-FP treatment. We conclude that the formation and stability of supermature FAs depends on a high alpha-SMA-mediated contractile activity of myofibroblast stress fibers.
Collapse
Affiliation(s)
- Boris Hinz
- Department of Pathology, Centre Medical Universitaire, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
196
|
dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83:433-73. [PMID: 12663865 DOI: 10.1152/physrev.00026.2002] [Citation(s) in RCA: 721] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The actin cytoskeleton is a complex structure that performs a wide range of cellular functions. In 2001, significant advances were made to our understanding of the structure and function of actin monomers. Many of these are likely to help us understand and distinguish between the structural models of actin microfilaments. In particular, 1) the structure of actin was resolved from crystals in the absence of cocrystallized actin binding proteins (ABPs), 2) the prokaryotic ancestral gene of actin was crystallized and its function as a bacterial cytoskeleton was revealed, and 3) the structure of the Arp2/3 complex was described for the first time. In this review we selected several ABPs (ADF/cofilin, profilin, gelsolin, thymosin beta4, DNase I, CapZ, tropomodulin, and Arp2/3) that regulate actin-driven assembly, i.e., movement that is independent of motor proteins. They were chosen because 1) they represent a family of related proteins, 2) they are widely distributed in nature, 3) an atomic structure (or at least a plausible model) is available for each of them, and 4) each is expressed in significant quantities in cells. These ABPs perform the following cellular functions: 1) they maintain the population of unassembled but assembly-ready actin monomers (profilin), 2) they regulate the state of polymerization of filaments (ADF/cofilin, profilin), 3) they bind to and block the growing ends of actin filaments (gelsolin), 4) they nucleate actin assembly (gelsolin, Arp2/3, cofilin), 5) they sever actin filaments (gelsolin, ADF/cofilin), 6) they bind to the sides of actin filaments (gelsolin, Arp2/3), and 7) they cross-link actin filaments (Arp2/3). Some of these ABPs are essential, whereas others may form regulatory ternary complexes. Some play crucial roles in human disorders, and for all of them, there are good reasons why investigations into their structures and functions should continue.
Collapse
Affiliation(s)
- C G dos Remedios
- Institute for Biomedical Research, Muscle Research Unit, Department of Anatomy and Histology, University of Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
MECs are distributed on the basal aspect of the intercalated duct and acinus of human and rat salivary glands. However, they do not occur in the acinus of rat parotid glands, and sometimes occur in the striated duct of human salivary glands. MECs, as the name implies, have structural features of both epithelial and smooth muscle cells. They contract by autonomic nervous stimulation, and are thought to assist the secretion by compressing and/or reinforcing the underlying parenchyma. MECs can be best observed by immunocytochemistry. There are three types of immunocytochemical markers of MECs in salivary glands. The first type includes smooth muscle protein markers such as alpha-SMA, SMMHC, h-caldesmon and basic calponin, and these are expressed by MECs and the mesenchymal vasculature. The second type is expressed by MECs and the duct cells and includes keratins 14, 5 and 17, alpha 1 beta 1 integrin, and metallothionein. Vimentin is the third type and, in addition to MECs, is expressed by the mesenchymal cells and some duct cells. The same three types of markers are used for studying the developing gland. Development of MECs starts after the establishment of an extensively branched system of cellular cords each of which terminates as a spherical cell mass, a terminal bud. The pluripotent stem cell generates the acinar progenitor in the terminal bud and the ductal progenitor in the cellular cord. The acinar progenitor differentiates into MECs, acinar cells and intercalated duct cells, whereas the ductal progenitor differentiates into the striated and excretory duct cells. Both in the terminal bud and in the cellular cord, the immediate precursors of all types of the epithelial cells appear to express vimentin. The first identifiable MECs are seen at the periphery of the terminal bud or the immature acinus (the direct progeny of the terminal bud) as somewhat flattened cells with a single cilium projecting toward them. They express vimentin and later alpha-SMA and basic calponin. At the next developmental stage, MECs acquire cytoplasmic microfilaments and plasmalemmal caveolae but not as much as in the mature cell. They express SMMHC and, inconsistently, K14. This protein is consistently expressed in the mature cell. K14 is expressed by duct cells, and vimentin is expressed by both mesenchymal and epithelial cells. After development, the acinar progenitor and the ductal progenitor appear to reside in the acinus/intercalated duct and the larger ducts, respectively, and to contribute to the tissue homeostasis. Under unusual conditions such as massive parenchymal destruction, the acinar progenitor contributes to the maintenance of the larger ducts that result in the occurrence of striated ducts with MECs. The acinar progenitor is the origin of salivary gland tumors containing MECs. MECs in salivary gland tumors are best identified by immunocytochemistry for alpha-SMA. There are significant numbers of cells related to luminal tumor cells in the non-luminal tumor cells that have been believed to be neoplastic MECs.
Collapse
Affiliation(s)
- Yuzo Ogawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
198
|
Crawford K, Flick R, Close L, Shelly D, Paul R, Bove K, Kumar A, Lessard J. Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 2002; 22:5887-96. [PMID: 12138199 PMCID: PMC133984 DOI: 10.1128/mcb.22.16.5887-5896.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All four of the muscle actins (skeletal, cardiac, vascular, and enteric) in higher vertebrates show distinct expression patterns and display highly conserved amino acid sequences. While it is hypothesized that each of the muscle isoactins is specifically adapted to its respective tissue and that the minor variations among them have developmental and/or physiological relevance, the exact functional and developmental significance of these proteins remains largely unknown. In order to begin to assess these issues, we disrupted the skeletal actin gene by homologous recombination. All mice lacking skeletal actin die in the early neonatal period (day 1 to 9). These null animals appear normal at birth and can breathe, walk, and suckle, but within 4 days, they show a markedly lower body weight than normal littermates and many develop scoliosis. Null mice show a loss of glycogen and reduced brown fat that is consistent with malnutrition leading to death. Newborn skeletal muscles from null mice are similar to those of wild-type mice in size, fiber type, and ultrastructural organization. At birth, both hemizygous and homozygous null animals show an increase in cardiac and vascular actin mRNA in skeletal muscle, with no skeletal actin mRNA present in null mice. Adult hemizygous animals show an increased level of skeletal actin mRNA in hind limb muscle but no overt phenotype. Extensor digitorum longus (EDL) muscle isolated from skeletal-actin-deficient mice at day 2 to 3 showed a marked reduction in force production compared to that of control littermates, and EDL muscle from hemizygous animals displayed an intermediate force generation. Thus, while increases in cardiac and vascular smooth-muscle actin can partially compensate for the lack of skeletal actin in null mice, this is not sufficient to support adequate skeletal muscle growth and/or function.
Collapse
Affiliation(s)
- K Crawford
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Hinz B, Gabbiani G, Chaponnier C. The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 2002; 157:657-63. [PMID: 11994316 PMCID: PMC2173846 DOI: 10.1083/jcb.200201049] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myofibroblasts are specialized fibroblasts responsible for granulation tissue contraction and the soft tissue retractions occurring during fibrocontractive diseases. The marker of fibroblast-myofibroblast modulation is the neo expression of alpha-smooth muscle actin (alpha-SMA), the actin isoform typical of vascular smooth muscle cells that has been suggested to play an important role in myofibroblast force generation. Actin isoforms differ slightly in their NH2-terminal sequences; these conserved differences suggest different functions. When the NH2-terminal sequence of alpha-SMA Ac-EEED is delivered to cultured myofibroblast in the form of a fusion peptide (FP) with a cell penetrating sequence, it inhibits their contractile activity; moreover, upon topical administration in vivo it inhibits the contraction of rat wound granulation tissue. The NH2-terminal peptide of alpha-skeletal actin has no effect on myofibroblasts, whereas the NH2-terminal peptide of beta-cytoplasmic actin abolishes the immunofluorescence staining for this isoform without influencing alpha-SMA distribution and cell contraction. The FPs represent a new tool to better understand the specific functions of actin isoforms. Our findings support the crucial role of alpha-SMA in wound contraction. The alpha-SMA-FP will be useful for the understanding of the mechanisms of connective tissue remodeling; moreover, it furnishes the basis for a cytoskeleton-dependent preventive and/or therapeutic strategy for fibrocontractive pathological situations.
Collapse
Affiliation(s)
- Boris Hinz
- Department of Pathology, Centre Médical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
200
|
Nakamura H, Isaka Y, Tsujie M, Rupprecht HD, Akagi Y, Ueda N, Imai E, Hori M. Introduction of DNA enzyme for Egr-1 into tubulointerstitial fibroblasts by electroporation reduced interstitial alpha-smooth muscle actin expression and fibrosis in unilateral ureteral obstruction (UUO) rats. Gene Ther 2002; 9:495-502. [PMID: 11948374 DOI: 10.1038/sj.gt.3301681] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 01/18/2002] [Indexed: 11/09/2022]
Abstract
The phenotypic alteration of interstitial fibroblasts into 'myofibroblasts', acquiring characteristics of both fibroblasts and smooth muscle cells is a key event in the formation of tubulointerstitial fibrosis. The up-regulation of the early growth response gene 1 (Egr-1) preceded the increased interstitial expression of alpha-smooth muscle actin (alphaSMA), a marker of phenotypic changes, in obstructed kidney, a model of interstitial fibrosis. To target Egr-1 expression in the interstitium of obstructed kidneys, we introduced a DNA enzyme for Egr-1 (ED5) or scrambled DNA (SCR) into interstitial fibroblasts by electroporation-mediated gene transfer. Northern blot analysis confirmed an increase in the cortical mRNA expression of Egr-1 in the obstructed kidneys from untreated or SCR-treated rats, while ED5 transfection blocked Egr-1 expression with a concomitant reduction in TGF-beta, alphaSMA and type I collagen mRNA expression. Consequently, ED5 inhibited interstitial fibrosis. In conclusion, electroporation-mediated retrograde gene transfer can be an ideal vehicle into interstitial fibroblasts, and molecular intervention of Egr-1 in the interstitium may become a new therapeutic strategy for interstitial fibrosis.
Collapse
Affiliation(s)
- H Nakamura
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|