151
|
Dorn A, Röhrig S, Papp K, Schröpfer S, Hartung F, Knoll A, Puchta H. The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates. PLoS Genet 2018; 14:e1007674. [PMID: 30222730 PMCID: PMC6160208 DOI: 10.1371/journal.pgen.1007674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Topoisomerase 3α, a class I topoisomerase, consists of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the functions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knockout of TOP3α leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3α missing either the TOPRIM-domain or carrying a mutation of the catalytic tyrosine of the active centre leads to embryo lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUS81, the TOP3α knockout proved to be also embryo lethal. Here, expression of TOP3α without ZFDs, and in particular without the conserved ZFD T1, leads to only a partly complementation in root growth-in contrast to the complete protein, that restores root length to mus81-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (HJ)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD T1 is specifically required for targeting the topoisomerase activity to HJ like recombination intermediates to enable their processing. In the case of an inactivated enzyme, this leads to cell death due to the masking of these intermediates, hindering their resolution by MUS81.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kristin Papp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Frank Hartung
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
152
|
Abstract
During meiosis, maternal and paternal chromosomes undergo exchanges by homologous recombination. This is essential for fertility and contributes to genome evolution. In many eukaryotes, sites of meiotic recombination, also called hotspots, are regions of accessible chromatin, but in many vertebrates, their location follows a distinct pattern and is specified by PR domain-containing protein 9 (PRDM9). The specification of meiotic recombination hotspots is achieved by the different activities of PRDM9: DNA binding, histone methyltransferase, and interaction with other proteins. Remarkably, PRDM9 activity leads to the erosion of its own binding sites and the rapid evolution of its DNA-binding domain. PRDM9 may also contribute to reproductive isolation, as it is involved in hybrid sterility potentially due to a reduction of its activity in specific heterozygous contexts.
Collapse
Affiliation(s)
- Corinne Grey
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| |
Collapse
|
153
|
Smith LJ, Wright J, Clark G, Ul-Hasan T, Jin X, Fong A, Chandra M, St Martin T, Rubin H, Knowlton D, Ellsworth JL, Fong Y, Wong KK, Chatterjee S. Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing. Proc Natl Acad Sci U S A 2018; 115:E7379-E7388. [PMID: 30018062 PMCID: PMC6077703 DOI: 10.1073/pnas.1802343115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+ cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | - Gabriella Clark
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Taihra Ul-Hasan
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Xiangyang Jin
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Abigail Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Manasa Chandra
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | | | | | | | - Yuman Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Kamehameha K Wong
- Department of Hematology and Stem Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010
| | - Saswati Chatterjee
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010;
| |
Collapse
|
154
|
CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab Eng 2018; 48:288-296. [PMID: 29981865 DOI: 10.1016/j.ymben.2018.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 11/22/2022]
Abstract
Here we describe a method for robust directed evolution using mutagenesis of large sequence spaces in their genomic contexts. The method employs error-prone PCR and Cas9-mediated genome integration of mutant libraries of large-sized donor variants into single or multiple genomic sites with efficiencies reaching 98-99%. From sequencing of genome integrants, we determined that the mutation frequency along the donor fragments is maintained evenly and successfully integrated into the genomic target loci, indicating that there is no bias of mutational load towards the proximity of the double strand break. To validate the applicability of the method for directed evolution of metabolic gene products we engineered two essential enzymes in the mevalonate pathway of Saccharomyces cerevisiae with selected variants supporting up to 11-fold higher production of isoprenoids. Taken together, our method extends on existing CRISPR technologies by facilitating efficient mutagenesis of hundreds of nucleotides in cognate genomic contexts.
Collapse
|
155
|
Ahmed EA, Rosemann M, Scherthan H. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres. HEALTH PHYSICS 2018; 115:102-107. [PMID: 29787435 DOI: 10.1097/hp.0000000000000852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure of cells to ionizing radiation induces DNA double-strand breaks. To repair double-strand breaks correctly, cells must distinguish between the ends of chromosomes (telomeres) and DNA double-strand breaks within chromosomes. Double-strand breaks in telomeric DNA may lead to telomere shortening and mutagenesis. Eukaryotic cells repair double-strand breaks primarily by two mechanisms: error-free homologous recombination and error-prone nonhomologous end joining, of which homologous recombination is used in early meiotic prophase I to create recombined haploid gametes by two meiotic cell divisions lacking an intervening S-phase. Genotoxic exposures put meiosis at risk to transmit mutations, and ionizing radiation is known to induce large double-strand break-marking phospho (gamma)-H2AX foci along the cores and ends of mouse meiotic chromosomes. However, it remained unclear through which repair pathway the ionizing radiation-induced telomeric double-strand breaks are repaired in late prophase I spermatocytes. Using male wild-type and nonhomologous end joining-deficient (severe combined immunodeficient) mice, this study investigated the kinetics of in vivo double-strand break formation and repair at telomeres of late prophase I chromosomes up to 12 h after 0.5 Gy of whole-body gamma irradiation. Late pachytene and diplotene spermatocytes revealed overlapping gamma-H2AX and telomere repeat signal foci, indicating telomeric DNA damage. The comparison of double-strand break repair rates at telomeres and internal prophase chromosome sites revealed a more rapid double-strand break repair at wild-type telomeres during the first hour after irradiation. Increased double-strand break foci numbers at nonhomologous end joining-deficient telomeres and chromosomes and a slowed repair rate in this DNA-dependent protein kinase catalytic subunit mutant suggest that the fast repair of double-strand breaks in telomeric DNA repeats during late prophase I is largely mediated by canonical nonhomologous end joining.
Collapse
Affiliation(s)
- Emad A Ahmed
- Lab of Immunology and Molecular Physiology, Zoology Department, Assiut University, 71515 Assiut, Egypt
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, 80937 Munich, Germany
| | - Michael Rosemann
- Institute of Radiation Biology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, 80937 Munich, Germany
| |
Collapse
|
156
|
Strauss BS. Why Is DNA Double Stranded? The Discovery of DNA Excision Repair Mechanisms. Genetics 2018; 209:357-366. [PMID: 29844089 PMCID: PMC5972412 DOI: 10.1534/genetics.118.300958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The persistence of hereditary traits over many generations testifies to the stability of the genetic material. Although the Watson-Crick structure for DNA provided a simple and elegant mechanism for replication, some elementary calculations implied that mistakes due to tautomeric shifts would introduce too many errors to permit this stability. It seemed evident that some additional mechanism(s) to correct such errors must be required. This essay traces the early development of our understanding of such mechanisms. Their key feature is the cutting out of a section of the strand of DNA in which the errors or damage resided, and its replacement by a localized synthesis using the undamaged strand as a template. To the surprise of some of the founders of molecular biology, this understanding derives in large part from studies in radiation biology, a field then considered by many to be irrelevant to studies of gene structure and function. Furthermore, genetic studies suggesting mechanisms of mismatch correction were ignored for almost a decade by biochemists unacquainted or uneasy with the power of such analysis. The collective body of results shows that the double-stranded structure of DNA is critical not only for replication but also as a scaffold for the correction of errors and the removal of damage to DNA. As additional discoveries were made, it became clear that the mechanisms for the repair of damage were involved not only in maintaining the stability of the genetic material but also in a variety of biological phenomena for increasing diversity, from genetic recombination to the immune response.
Collapse
Affiliation(s)
- Bernard S Strauss
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637
| |
Collapse
|
157
|
Tiemann-Boege I, Schwarz T, Striedner Y, Heissl A. The consequences of sequence erosion in the evolution of recombination hotspots. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0462. [PMID: 29109225 PMCID: PMC5698624 DOI: 10.1098/rstb.2016.0462] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans-acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro. Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Collapse
Affiliation(s)
- Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| |
Collapse
|
158
|
Woglar A, Villeneuve AM. Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination. Cell 2018; 173:1678-1691.e16. [PMID: 29754818 DOI: 10.1016/j.cell.2018.03.066] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 01/20/2023]
Abstract
Meiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. We use structured-illumination microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutSγ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutSγ population, and lose RPA. These and other data suggest that the SC may protect CO intermediates from being dismantled inappropriately and promote CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites.
Collapse
Affiliation(s)
- Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
159
|
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75:1641-1655. [PMID: 29116362 PMCID: PMC11105789 DOI: 10.1007/s00018-017-2702-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity. Biochemical studies revealed that HR-mediated repair of DSBs is more efficient in the mitochondria of testes as compared to that of brain, kidney and spleen. Interestingly, a significant increase in the efficiency of HR was observed when a DSB was introduced. Analyses of the clones suggest that most of the recombinants were generated through reciprocal exchange, while ~ 30% of recombinants were due to gene conversion in testicular extracts. Colocalization and immunoblotting studies showed the presence of RAD51 and MRN complex proteins in the mitochondria and immunodepletion of MRE11, RAD51 or NIBRIN suppressed the HR-mediated repair. Thus, our results reveal importance of homologous recombination in the maintenance of mitochondrial genome stability.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubham Dubey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
160
|
Piazza A, Heyer WD. Multi-Invasion-Induced Rearrangements as a Pathway for Physiological and Pathological Recombination. Bioessays 2018; 40:e1700249. [PMID: 29578583 PMCID: PMC6072258 DOI: 10.1002/bies.201700249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Indexed: 01/24/2023]
Abstract
Cells mitigate the detrimental consequences of DNA damage on genome stability by attempting high fidelity repair. Homologous recombination templates DNA double-strand break (DSB) repair on an identical or near identical donor sequence in a process that can in principle access the entire genome. Other physiological processes, such as homolog recognition and pairing during meiosis, also harness the HR machinery using programmed DSBs to physically link homologs and generate crossovers. A consequence of the homology search process by a long nucleoprotein filament is the formation of multi-invasions (MI), a joint molecule in which the damaged ssDNA has invaded more than one donor molecule. Processing of MI joint molecules can compromise the integrity of both donor sites and lead to their rearrangement. Here, two mechanisms for the generation of rearrangements as a pathological consequence of MI processing are detailed and the potential relevance for non-allelic homologous recombination discussed. Finally, it is proposed that MI-induced crossover formation may be a feature of physiological recombination.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, CA, 95616, USA
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, CA, 95616, USA
- Department of Molecular and Cellular Biology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| |
Collapse
|
161
|
Fraczek MG, Naseeb S, Delneri D. History of genome editing in yeast. Yeast 2018; 35:361-368. [PMID: 29345746 PMCID: PMC5969250 DOI: 10.1002/yea.3308] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022] Open
Abstract
For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas.
Collapse
Affiliation(s)
- Marcin G. Fraczek
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Samina Naseeb
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| | - Daniela Delneri
- The University of Manchester, Faculty of Biology, Medicine and HealthManchester Institute of BiotechnologyManchesterM1 7DNUK
| |
Collapse
|
162
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
163
|
Choi K, Zhao X, Tock AJ, Lambing C, Underwood CJ, Hardcastle TJ, Serra H, Kim J, Cho HS, Kim J, Ziolkowski PA, Yelina NE, Hwang I, Martienssen RA, Henderson IR. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res 2018; 28:532-546. [PMID: 29530928 PMCID: PMC5880243 DOI: 10.1101/gr.225599.117] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/08/2018] [Indexed: 02/02/2023]
Abstract
Meiotic recombination initiates from DNA double-strand breaks (DSBs) generated by SPO11 topoisomerase-like complexes. Meiotic DSB frequency varies extensively along eukaryotic chromosomes, with hotspots controlled by chromatin and DNA sequence. To map meiotic DSBs throughout a plant genome, we purified and sequenced Arabidopsis thaliana SPO11-1-oligonucleotides. SPO11-1-oligos are elevated in gene promoters, terminators, and introns, which is driven by AT-sequence richness that excludes nucleosomes and allows SPO11-1 access. A positive relationship was observed between SPO11-1-oligos and crossovers genome-wide, although fine-scale correlations were weaker. This may reflect the influence of interhomolog polymorphism on crossover formation, downstream from DSB formation. Although H3K4me3 is enriched in proximity to SPO11-1-oligo hotspots at gene 5' ends, H3K4me3 levels do not correlate with DSBs. Repetitive transposons are thought to be recombination silenced during meiosis, to prevent nonallelic interactions and genome instability. Unexpectedly, we found high SPO11-1-oligo levels in nucleosome-depleted Helitron/Pogo/Tc1/Mariner DNA transposons, whereas retrotransposons were coldspots. High SPO11-1-oligo transposons are enriched within gene regulatory regions and in proximity to immunity genes, suggesting a role as recombination enhancers. As transposon mobility in plant genomes is restricted by DNA methylation, we used the met1 DNA methyltransferase mutant to investigate the role of heterochromatin in SPO11-1-oligo distributions. Epigenetic activation of meiotic DSBs in proximity to centromeres and transposons occurred in met1 mutants, coincident with reduced nucleosome occupancy, gain of transcription, and H3K4me3. Together, our work reveals a complex relationship between chromatin and meiotic DSBs within A. thaliana genes and transposons, with significance for the diversity and evolution of plant genomes.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom;,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Andrew J. Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Charles J. Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom;,Howard Hughes Medical Institute–Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Thomas J. Hardcastle
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Juhyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Robert A. Martienssen
- Howard Hughes Medical Institute–Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
164
|
Underwood CJ, Choi K, Lambing C, Zhao X, Serra H, Borges F, Simorowski J, Ernst E, Jacob Y, Henderson IR, Martienssen RA. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res 2018; 28:519-531. [PMID: 29530927 PMCID: PMC5880242 DOI: 10.1101/gr.227116.117] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 02/02/2023]
Abstract
Eukaryotic centromeres contain the kinetochore, which connects chromosomes to the spindle allowing segregation. During meiosis, centromeres are suppressed for inter-homolog crossover, as recombination in these regions can cause chromosome missegregation and aneuploidy. Plant centromeres are surrounded by transposon-dense pericentromeric heterochromatin that is epigenetically silenced by histone 3 lysine 9 dimethylation (H3K9me2), and DNA methylation in CG and non-CG sequence contexts. However, the role of these chromatin modifications in control of meiotic recombination in the pericentromeres is not fully understood. Here, we show that disruption of Arabidopsis thaliana H3K9me2 and non-CG DNA methylation pathways, for example, via mutation of the H3K9 methyltransferase genes KYP/SUVH4 SUVH5 SUVH6, or the CHG DNA methyltransferase gene CMT3, increases meiotic recombination in proximity to the centromeres. Using immunocytological detection of MLH1 foci and genotyping by sequencing of recombinant plants, we observe that H3K9me2 and non-CG DNA methylation pathway mutants show increased pericentromeric crossovers. Increased pericentromeric recombination in H3K9me2/non-CG mutants occurs in hybrid and inbred backgrounds and likely involves contributions from both the interfering and noninterfering crossover repair pathways. We also show that meiotic DNA double-strand breaks (DSBs) increase in H3K9me2/non-CG mutants within the pericentromeres, via purification and sequencing of SPO11-1-oligonucleotides. Therefore, H3K9me2 and non-CG DNA methylation exert a repressive effect on both meiotic DSB and crossover formation in plant pericentromeric heterochromatin. Our results may account for selection of enhancer trap Dissociation (Ds) transposons into the CMT3 gene by recombination with proximal transposon launch-pads.
Collapse
Affiliation(s)
- Charles J. Underwood
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;,Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Filipe Borges
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joe Simorowski
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yannick Jacob
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
165
|
Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 2018; 293:10524-10535. [PMID: 29599286 DOI: 10.1074/jbc.tm118.000372] [Citation(s) in RCA: 420] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination enables the cell to access and copy intact DNA sequence information in trans, particularly to repair DNA damage affecting both strands of the double helix. Here, we discuss the DNA transactions and enzymatic activities required for this elegantly orchestrated process in the context of the repair of DNA double-strand breaks in somatic cells. This includes homology search, DNA strand invasion, repair DNA synthesis, and restoration of intact chromosomes. Aspects of DNA topology affecting individual steps are highlighted. Overall, recombination is a dynamic pathway with multiple metastable and reversible intermediates designed to achieve DNA repair with high fidelity.
Collapse
Affiliation(s)
| | | | - Wolf-Dietrich Heyer
- From the Departments of Microbiology and Molecular Genetics and .,Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665
| |
Collapse
|
166
|
Colombo I, Lheureux S, Oza AM. Rucaparib: a novel PARP inhibitor for BRCA advanced ovarian cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:605-617. [PMID: 29606854 PMCID: PMC5868608 DOI: 10.2147/dddt.s130809] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rucaparib is a potent small-molecule inhibitor of poly (ADP-ribose) polymerase (PARP) proteins (PARP-1, PARP-2 and PARP-3) that play an important role in repairing DNA damage and maintaining genomic stability. Tumors with mutations in BRCA1/2 or other homologous recombination deficiency (HRD) genes are particularly sensitive to PARP inhibitors because of “synthetic lethality”, whereby a therapeutic agent can take advantage of an intrinsic weakness in DNA repair. Rucaparib has been investigated in several preclinical and clinical studies showing promising activity in BRCA-mutant and BRCA–wild-type epithelial ovarian cancers (EOCs). Dose-escalation Phase I studies have established the recommended Phase II dose to be 600 mg twice a day for oral rucaparib. Phase II and III studies have defined its role as treatment for BRCA-mutant recurrent high-grade EOC and as maintenance treatment for platinum-sensitive relapsed EOC following response to platinum-based chemotherapy. Genomic loss of heterozygosity has also been investigated as a potential signature of HRD and as a potential predictive biomarker of response. Treatment-induced adverse events (AEs) have been observed in almost all patients treated with rucaparib, but mainly lower grade; with the most common being nausea, vomiting, asthenia/fatigue, anemia and transient transaminitis. The majority of AEs occurred early in treatment, were transient and have been easily managed with supportive treatment, dose interruption or discontinuation. This review will analyze the results of clinical trials investigating efficacy and safety of rucaparib in patients with ovarian cancer.
Collapse
Affiliation(s)
- Ilaria Colombo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit Manulal Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
167
|
Hum YF, Jinks-Robertson S. DNA strand-exchange patterns associated with double-strand break-induced and spontaneous mitotic crossovers in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007302. [PMID: 29579095 PMCID: PMC5886692 DOI: 10.1371/journal.pgen.1007302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022] Open
Abstract
Mitotic recombination can result in loss of heterozygosity and chromosomal rearrangements that shape genome structure and initiate human disease. Engineered double-strand breaks (DSBs) are a potent initiator of recombination, but whether spontaneous events initiate with the breakage of one or both DNA strands remains unclear. In the current study, a crossover (CO)-specific assay was used to compare heteroduplex DNA (hetDNA) profiles, which reflect strand exchange intermediates, associated with DSB-induced versus spontaneous events in yeast. Most DSB-induced CO products had the two-sided hetDNA predicted by the canonical DSB repair model, with a switch in hetDNA position from one product to the other at the position of the break. Approximately 40% of COs, however, had hetDNA on only one side of the initiating break. This anomaly can be explained by a modified model in which there is frequent processing of an early invasion (D-loop) intermediate prior to extension of the invading end. Finally, hetDNA tracts exhibited complexities consistent with frequent expansion of the DSB into a gap, migration of strand-exchange junctions, and template switching during gap-filling reactions. hetDNA patterns in spontaneous COs isolated in either a wild-type background or in a background with elevated levels of reactive oxygen species (tsa1Δ mutant) were similar to those associated with the DSB-induced events, suggesting that DSBs are the major instigator of spontaneous mitotic recombination in yeast.
Collapse
Affiliation(s)
- Yee Fang Hum
- Department of Molecular Genetics and Microbiology and the University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology and the University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
168
|
Alonso‐Gutierrez J, Koma D, Hu Q, Yang Y, Chan LJG, Petzold CJ, Adams PD, Vickers CE, Nielsen LK, Keasling JD, Lee TS. Toward industrial production of isoprenoids in
Escherichia coli
: Lessons learned from CRISPR‐Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnol Bioeng 2018; 115:1000-1013. [DOI: 10.1002/bit.26530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Jorge Alonso‐Gutierrez
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Daisuke Koma
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
- Osaka Municipal Technical Research InstituteOsakaJapan
| | - Qijun Hu
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Yuchen Yang
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Leanne J. G. Chan
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Christopher J. Petzold
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Paul D. Adams
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Jay D. Keasling
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkHorsholmDenmark
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyCalifornia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Taek S. Lee
- Joint BioEnergy Institute (JBEI)EmeryvilleCalifornia
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| |
Collapse
|
169
|
Schmelas C, Grimm D. Split Cas9, Not Hairs - Advancing the Therapeutic Index of CRISPR Technology. Biotechnol J 2018; 13:e1700432. [PMID: 29316283 DOI: 10.1002/biot.201700432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/28/2017] [Indexed: 02/06/2023]
Abstract
The discovery that the bacterial CRISPR/Cas9 system can be translated into mammalian cells continues to have an unprecedented impact on the biomedical research community, as it largely facilitates efforts to experimentally interrogate or therapeutically modify the cellular genome. In particular, CRISPR promises the ability to correct disease-associated genetic defects, or to target and destroy invading foreign DNA, in a simple, efficient, and selective manner directly in affected human cells or tissues. Here, we highlight a set of exciting new strategies that aim at further increasing the therapeutic index of CRISPR technologies, by reducing the size of Cas9 expression cassettes and thus enhancing their compatibility with viral gene delivery vectors. Specifically, we discuss the concept of splitCas9 whereby the Cas9 holo-protein is segregated into two parts that are expressed individually and reunited in the cell by various means, including use of 1) the gRNA as a scaffold for Cas9 assembly; 2) the rapamycin-controlled FKBP/FRB system; 3) the light-regulated Magnet system; or 4) inteins. We describe how these avenues, despite pursuing the identical aim, differ in critical features comprising the extent of spatio-temporal control of CRISPR activity, and discuss additional improvements to their efficiency or specificity that should foster their clinical translation.
Collapse
Affiliation(s)
- Carolin Schmelas
- Heidelberg University Hospital, Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
| | - Dirk Grimm
- Heidelberg University Hospital, Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner site Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
| |
Collapse
|
170
|
Urnov FD. Genome Editing B.C. (Before CRISPR): Lasting Lessons from the “Old Testament”. CRISPR J 2018; 1:34-46. [DOI: 10.1089/crispr.2018.29007.fyu] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Fyodor D. Urnov
- Altius Institute for Biomedical Sciences, Seattle, Washington
| |
Collapse
|
171
|
Abstract
Homologous recombination is fundamental to sexual reproduction, facilitating accurate segregation of homologous chromosomes at the first division of meiosis, and creating novel allele combinations that fuel evolution. Following initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs), homologous pairing and DNA strand exchange form joint molecule (JM) intermediates that are ultimately resolved into crossover and noncrossover repair products. Physical monitoring of the DNA steps of meiotic recombination in Saccharomyces cerevisiae (budding yeast) cultures undergoing synchronous meiosis has provided seminal insights into the molecular basis of meiotic recombination and affords a powerful tool for dissecting the molecular roles of recombination factors. This chapter describes a suit of electrophoretic and Southern hybridization techniques used to detect and quantify the DNA intermediates of meiotic recombination at recombination hotspots in budding yeast. DSBs and recombination products (crossovers and noncrossovers) are resolved using one-dimensional electrophoresis and distinguished by restriction site polymorphisms between the parental chromosomes. Psoralen cross-linking is used to stabilize branched JMs, which are resolved from linear species by native/native two-dimensional electrophoresis. Native/denaturing two-dimensional electrophoresis is employed to determine the component DNA strands of JMs and to measure the processing of DSBs. These techniques are generally applicable to any locus where the frequency of recombination is high enough to detect intermediates by Southern hybridization.
Collapse
Affiliation(s)
- Shannon Owens
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, United States; University of California, Davis, Davis, CA, United States; Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Shangming Tang
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, United States; University of California, Davis, Davis, CA, United States; Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, United States; University of California, Davis, Davis, CA, United States.
| |
Collapse
|
172
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
173
|
Voisin M, Vanrobays E, Tatout C. Investigation of Nuclear Periphery Protein Interactions in Plants Using the Membrane Yeast Two-Hybrid (MbY2H) System. Methods Mol Biol 2018; 1840:221-235. [PMID: 30141048 DOI: 10.1007/978-1-4939-8691-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identification of membrane protein interactomes is a key issue to better understand how these molecules carry out their functions. However, protein-protein interactions using conventional interaction assays are particularly challenging for integral membrane proteins, because of their hydrophobic nature. Here we describe the membrane yeast two-hybrid (MbY2H) system, a powerful tool for identifying the interactors of membrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Maxime Voisin
- Université Clermont Auvergne, CNRS, INSERM, Laboratoire GReD, F-63000, Clermont-Ferrand, France
| | - Emmanuel Vanrobays
- Université Clermont Auvergne, CNRS, INSERM, Laboratoire GReD, F-63000, Clermont-Ferrand, France
| | - Christophe Tatout
- Université Clermont Auvergne, CNRS, INSERM, Laboratoire GReD, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
174
|
Jakočiūnas T, Jensen ED, Jensen MK, Keasling JD. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR. Methods Mol Biol 2018; 1671:185-201. [PMID: 29170960 DOI: 10.1007/978-1-4939-7295-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emil D Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
175
|
|
176
|
Alves I, Houle AA, Hussin JG, Awadalla P. The impact of recombination on human mutation load and disease. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160465. [PMID: 29109227 PMCID: PMC5698626 DOI: 10.1098/rstb.2016.0465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Recombination promotes genomic integrity among cells and tissues through double-strand break repair, and is critical for gamete formation and fertility through a strict regulation of the molecular mechanisms associated with proper chromosomal disjunction. In humans, congenital defects and recurrent structural abnormalities can be attributed to aberrant meiotic recombination. Moreover, mutations affecting genes involved in recombination pathways are directly linked to pathologies including infertility and cancer. Recombination is among the most prominent mechanism shaping genome variation, and is associated with not only the structuring of genomic variability, but is also tightly linked with the purging of deleterious mutations from populations. Together, these observations highlight the multiple roles of recombination in human genetics: its ability to act as a major force of evolution, its molecular potential to maintain genome repair and integrity in cell division and its mutagenic cost impacting disease evolution.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Isabel Alves
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
| | - Armande Ang Houle
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
- Department of Molecular Genetics, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Julie G Hussin
- Montreal Heart Institute, Department of Medicine, University of Montreal, 5000 Rue Bélanger, Montréal, Quebec, Canada H1T 1C8
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Philip Awadalla
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
- Department of Molecular Genetics, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
177
|
Abstract
Genetic recombination occurs in all organisms and is vital for genome stability. Indeed, in humans, aberrant recombination can lead to diseases such as cancer. Our understanding of homologous recombination is built upon more than a century of scientific inquiry, but achieving a more complete picture using ensemble biochemical and genetic approaches is hampered by population heterogeneity and transient recombination intermediates. Recent advances in single-molecule and super-resolution microscopy methods help to overcome these limitations and have led to new and refined insights into recombination mechanisms, including a detailed understanding of DNA helicase function and synaptonemal complex structure. The ability to view cellular processes at single-molecule resolution promises to transform our understanding of recombination and related processes.
Collapse
|
178
|
Shi W, Massaia A, Louzada S, Banerjee R, Hallast P, Chen Y, Bergström A, Gu Y, Leonard S, Quail MA, Ayub Q, Yang F, Tyler-Smith C, Xue Y. Copy number variation arising from gene conversion on the human Y chromosome. Hum Genet 2017; 137:73-83. [PMID: 29209947 DOI: 10.1007/s00439-017-1857-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 11/27/2022]
Abstract
We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.
Collapse
Affiliation(s)
- Wentao Shi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 30070, China
| | - Andrea Massaia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Sandra Louzada
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ruby Banerjee
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Pille Hallast
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Yuan Chen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Yong Gu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven Leonard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Michael A Quail
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Qasim Ayub
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Science, Monash University Malaysia, Jalan Lagoon Selantan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
179
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
180
|
The Role of Blm Helicase in Homologous Recombination, Gene Conversion Tract Length, and Recombination Between Diverged Sequences in Drosophilamelanogaster. Genetics 2017; 207:923-933. [PMID: 28912341 DOI: 10.1534/genetics.117.300285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/10/2017] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a particularly deleterious class of DNA damage that threatens genome integrity. DSBs are repaired by three pathways: nonhomologous-end joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). Drosophila melanogaster Blm (DmBlm) is the ortholog of Saccharomyces cerevisiae SGS1 and human BLM, and has been shown to suppress crossovers in mitotic cells and repair mitotic DNA gaps via HR. To further elucidate the role of DmBlm in repair of a simple DSB, and in particular recombination mechanisms, we utilized the Direct Repeat of white (DR-white) and Direct Repeat of whitewith mutations (DR-white.mu) repair assays in multiple mutant allele backgrounds. DmBlm null and helicase-dead mutants both demonstrated a decrease in repair by noncrossover HR, and a concurrent increase in non-HR events, possibly including SSA, crossovers, deletions, and NHEJ, although detectable processing of the ends was not significantly impacted. Interestingly, gene conversion tract lengths of HR repair events were substantially shorter in DmBlm null but not helicase-dead mutants, compared to heterozygote controls. Using DR-white.mu, we found that, in contrast to Sgs1, DmBlm is not required for suppression of recombination between diverged sequences. Taken together, our data suggest that DmBlm helicase function plays a role in HR, and the steps that contribute to determining gene conversion tract length are helicase-independent.
Collapse
|
181
|
Hillmer M, Summerer A, Mautner VF, Högel J, Cooper DN, Kehrer-Sawatzki H. Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Hum Mutat 2017; 38:1711-1722. [PMID: 28862369 DOI: 10.1002/humu.23319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 01/30/2023]
Abstract
Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR-mediated rearrangements has generally been performed by comparison of the breakpoint-spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint-mapping. We studied the transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild-type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9-binding sites. Sequence comparisons between the parental wild-type PRS1 or PRS2 haplotypes and the deletion breakpoint-spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269-bp in contrast to 502-bp by method #1. Our findings imply that paralog-specific haplotype diversity of NAHR hotspots (such as PRS2) and population-specific haplotype diversity must be taken into account in order to accurately ascertain NAHR-mediated rearrangement breakpoints.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
182
|
Al-Sweel N, Raghavan V, Dutta A, Ajith VP, Di Vietro L, Khondakar N, Manhart CM, Surtees JA, Nishant KT, Alani E. mlh3 mutations in baker's yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide. PLoS Genet 2017; 13:e1006974. [PMID: 28827832 PMCID: PMC5578695 DOI: 10.1371/journal.pgen.1006974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/31/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022] Open
Abstract
Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker’s yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3’s enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated. During meiosis, diploid germ cells that become eggs or sperm undergo a single round of DNA replication followed by two consecutive chromosomal divisions. The segregation of chromosomes at the first meiotic division is dependent in most organisms on at least one genetic exchange, or crossover event, between chromosome homologs. Homologs that do not receive a crossover frequently undergo nondisjunction at the first meiotic division, yielding gametes that lack chromosomes or contain additional copies. Such events have been linked to human disease and infertility. Recent studies suggest that the Mlh1-Mlh3 complex is an endonuclease that resolves recombination intermediates into crossovers. Interestingly, this complex also acts as a matchmaker in DNA mismatch repair (MMR) to remove DNA replication errors. How does one complex act in two different processes? We investigated this question by performing a mutational analysis of the baker’s yeast Mlh3 protein. Five mutations were identified that disrupted MMR but not crossing over, and one mutation disrupted crossing over while maintaining MMR. Using a combination of biochemical and genetic analyses to further characterize these mutants we illustrate the importance of protein-protein interactions for Mlh1-Mlh3’s activity. Importantly, our data illustrate how defective meiotic components can alter the outcome of meiotic recombination events. They also provide new insights for the basis of infertility syndromes.
Collapse
Affiliation(s)
- Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Abhishek Dutta
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - V. P. Ajith
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Luigi Di Vietro
- Department of Life Sciences and Systems Biology, University of Turin, Via Verdi, Turin, Italy
| | - Nabila Khondakar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Carol M. Manhart
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jennifer A. Surtees
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - K. T. Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- Center for Computation Modelling and Simulation, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- * E-mail: (EA); (KTN)
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (EA); (KTN)
| |
Collapse
|
183
|
Piazza A, Wright WD, Heyer WD. Multi-invasions Are Recombination Byproducts that Induce Chromosomal Rearrangements. Cell 2017; 170:760-773.e15. [PMID: 28781165 PMCID: PMC5554464 DOI: 10.1016/j.cell.2017.06.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
Inaccurate repair of broken chromosomes generates structural variants that can fuel evolution and inflict pathology. We describe a novel rearrangement mechanism in which translocation between intact chromosomes is induced by a lesion on a third chromosome. This multi-invasion-induced rearrangement (MIR) stems from a homologous recombination byproduct, where a broken DNA end simultaneously invades two intact donors. No homology is required between the donors, and the intervening sequence from the invading molecule is inserted at the translocation site. MIR is stimulated by increasing homology length and spatial proximity of the donors and depends on the overlapping activities of the structure-selective endonucleases Mus81-Mms4, Slx1-Slx4, and Yen1. Conversely, the 3'-flap nuclease Rad1-Rad10 and enzymes known to disrupt recombination intermediates (Sgs1-Top3-Rmi1, Srs2, and Mph1) inhibit MIR. Resolution of MIR intermediates propagates secondary chromosome breaks that frequently cause additional rearrangements. MIR features have implications for the formation of simple and complex rearrangements underlying human pathologies.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - William Douglass Wright
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
184
|
Abstract
BACKGROUND Helicobacter pylori is well adapted to colonize the epithelial surface of the human gastric mucosa and can cause persistent infections. In order to infect the gastric mucosa, it has to survive in the gastric acidic pH. This organism has well developed mechanisms to neutralize the effects of acidic pH. OBJECTIVE This review article was designed to summarize the various functional and molecular aspects by which the bacterium can combat and survive the gastric acidic pH in order to establish the persistent infections. METHODS We used the keywords (acid acclimation, gastric acidic environment, H. pylori and survival) in combination or alone for pubmed search of recent scientific literatures. One hundred and forty one papers published between 1989 and 2016 were sorted out. The articles published with only abstracts, other than in English language, case reports and reviews were excluded. RESULTS Many literatures describing the role of several factors in acid survival were found. Recently, the role of several other factors has been claimed to participate in acid survival. CONCLUSION In conclusion, this organism has well characterized mechanisms for acid survival.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan,Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, Texas, USA,Corresponding author: Yoshio Yamaoka, MD, PhD, Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan, Tel: +81-97-586-5740; Fax: +81-97-586-5749,
| |
Collapse
|
185
|
Ye L, Jiao N, Tang X, Chen Y, Ye X, Ren L, Hu F, Wang S, Wen M, Zhang C, Tao M, Liu S. Chimeras Linked to Tandem Repeats and Transposable Elements in Tetraploid Hybrid Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:401-409. [PMID: 28681105 DOI: 10.1007/s10126-017-9764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
The formation of the allotetraploid hybrid lineage (4nAT) encompasses both distant hybridization and polyploidization processes. The allotetraploid offspring have two sets of sub-genomes inherited from both parental species, and therefore, it is important to explore its genetic structure. Herein, we construct a bacterial artificial chromosome library of allotetraploids, and then sequence and analyze the full-length sequences of 19 bacterial artificial chromosomes. Sixty-eight DNA chimeras are identified, which are divided into four models according to the distribution of the genomic DNA derived from the parents. Among the 68 genetic chimeras, 44 (64.71%) are linked to tandem repeats (TRs) and 23 (33.82%) are linked to transposable elements (TEs). The chimeras linked to TRs are related to slipped-strand mispairing and double-strand break repair while the chimeras linked to TEs benefit from the intervention of recombinases. In addition, TRs and TEs can also result in insertions/deletions of DNA segments. We conclude that DNA chimeras accompanied by TRs and TEs coordinate a balance between the sub-genomes derived from the parents. It is the first report on the relationship between formation of the DNA chimeras and TRs and TEs in the polyploid animals.
Collapse
Affiliation(s)
- Lihai Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ni Jiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaojun Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yiyi Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaolan Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
186
|
Yin Y, Dominska M, Yim E, Petes TD. High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast. eLife 2017; 6. [PMID: 28714850 PMCID: PMC5531827 DOI: 10.7554/elife.28069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination. DOI:http://dx.doi.org/10.7554/eLife.28069.001
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Eunice Yim
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| |
Collapse
|
187
|
Yin K, Chhabra Y, Tropée R, Lim YC, Fane M, Dray E, Sturm RA, Smith AG. NR4A2 Promotes DNA Double-strand Break Repair Upon Exposure to UVR. Mol Cancer Res 2017; 15:1184-1196. [PMID: 28607006 DOI: 10.1158/1541-7786.mcr-17-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Exposure of melanocytes to ultraviolet radiation (UVR) induces the formation of UV lesions that can produce deleterious effects in genomic DNA. Encounters of replication forks with unrepaired UV lesions can lead to several complex phenomena, such as the formation of DNA double-strand breaks (DSBs). The NR4A family of nuclear receptors are transcription factors that have been associated with mediating DNA repair functions downstream of the MC1R signaling pathway in melanocytes. In particular, emerging evidence shows that upon DNA damage, the NR4A2 receptor can translocate to sites of UV lesion by mechanisms requiring post-translational modifications within the N-terminal domain and at a serine residue in the DNA-binding domain at position 337. Following this, NR4A2 aids in DNA repair by facilitating chromatin relaxation, allowing accessibility for DNA repair machinery. Using A2058 and HT144 melanoma cells engineered to stably express wild-type or mutant forms of the NR4A2 proteins, we reveal that the expression of functional NR4A2 is associated with elevated cytoprotection against UVR. Conversely, knockdown of NR4A2 expression by siRNA results in a significant loss of cell viability after UV insult. By analyzing the kinetics of the ensuing 53BP1 and RAD51 foci following UV irradiation, we also reveal that the expression of mutant NR4A2 isoforms, lacking the ability to translocate, transactivate, or undergo phosphorylation, display compromised repair capacity.Implications: These data expand the understanding of the mechanism by which the NR4A2 nuclear receptor can facilitate DNA DSB repair. Mol Cancer Res; 15(9); 1184-96. ©2017 AACR.
Collapse
Affiliation(s)
- Kelvin Yin
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Yash Chhabra
- Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia.,Dermatology Research Centre, The University of Queensland-Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Romain Tropée
- Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Yi Chieh Lim
- Translational Brain Cancer Research, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mitchell Fane
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eloise Dray
- Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia.,Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia.,Mater Research - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland-Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Aaron G Smith
- Dermatology Research Centre, The University of Queensland-Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia. .,Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia
| |
Collapse
|
188
|
Gabriel W, Lynch M, Bürger R. MULLER'S RATCHET AND MUTATIONAL MELTDOWNS. Evolution 2017; 47:1744-1757. [PMID: 28567994 DOI: 10.1111/j.1558-5646.1993.tb01266.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1992] [Accepted: 04/06/1993] [Indexed: 11/28/2022]
Abstract
We extend our earlier work on the role of deleterious mutations in the extinction of obligately asexual populations. First, we develop analytical models for mutation accumulation that obviate the need for time-consuming computer simulations in certain ranges of the parameter space. When the number of mutations entering the population each generation is fairly high, the number of mutations per individual and the mean time to extinction can be predicted using classical approaches in quantitative genetics. However, when the mutation rate is very low, a fixation-probability approach is quite effective. Second, we show that an intermediate selection coefficient (s) minimizes the time to extinction. The critical value of s can be quite low, and we discuss the evolutionary implications of this, showing that increased sensitivity to mutation and loss of capacity for DNA repair can be selectively advantageous in asexual organisms. Finally, we consider the consequences of the mutational meltdown for the extinction of mitochondrial lineages in sexual species.
Collapse
Affiliation(s)
- W Gabriel
- Department of Physiological Ecology, Max Planck Institute for Limnology, Postfach 165, D-24302 Plön, Germany
| | - M Lynch
- Department of Biology, University of Oregon, Eugene, Oregon, 97403
| | - R Bürger
- Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
| |
Collapse
|
189
|
Federico C, Dugo K, Bruno F, Longo AM, Grillo A, Saccone S. Somatic mosaicism with reversion to normality of a mutated transthyretin allele related to a familial amyloidotic polyneuropathy. Hum Genet 2017; 136:867-873. [DOI: 10.1007/s00439-017-1810-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022]
|
190
|
Kan Y, Batada NN, Hendrickson EA. Human somatic cells deficient for RAD52 are impaired for viral integration and compromised for most aspects of homology-directed repair. DNA Repair (Amst) 2017; 55:64-75. [PMID: 28549257 DOI: 10.1016/j.dnarep.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 01/28/2023]
Abstract
Homology-directed repair (HDR) maintains genomic integrity by eliminating lesions such as DNA double-strand breaks (DSBs), interstrand crosslinks (ICLs) and stalled replication forks and thus a deficiency in HDR is associated with genomic instability and cancer predisposition. The mechanism of HDR is best understood and most rigorously characterized in yeast. The inactivation of the fungal radiation sensitive 52 (RAD52) gene, which has both recombination mediator and single-strand annealing (SSA) activities in vitro, leads to severe HDR defects in vivo. Confusingly, however, the inactivation of murine and chicken RAD52 genes resulted in mouse and chicken cells, respectively, that were largely aphenotypic. To clarify this issue, we have generated RAD52 knockout human cell lines. Human RAD52-null cells retain a significant level of SSA activity demonstrating perforce that additional SSA-like activities must exist in human cells. Moreover, we confirmed that the SSA activity associated with RAD52 is involved in, but not absolutely required for, most HDR subpathways. Specifically, a deficiency in RAD52 impaired the repair of DNA DSBs and intriguingly decreased the random integration of recombinant adeno-associated virus (rAAV). Finally, an analysis of pan-cancer genome data from The Cancer Genome Atlas (TCGA) revealed an association between aberrant levels of RAD52 expression and poor overall survival in multiple cancers. In toto, our work demonstrates that RAD52 contributes to the maintenance of genome stability and tumor suppression in human cells.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Nizar N Batada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Eric A Hendrickson
- BMBB Department, University of Minnesota Medical School, 6-155 Jackson Hall, 321 Church St., SE., Minneapolis, MN 55455, United States.
| |
Collapse
|
191
|
Trombetta B, D'Atanasio E, Cruciani F. Patterns of Inter-Chromosomal Gene Conversion on the Male-Specific Region of the Human Y Chromosome. Front Genet 2017; 8:54. [PMID: 28515739 PMCID: PMC5413550 DOI: 10.3389/fgene.2017.00054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
The male-specific region of the human Y chromosome (MSY) is characterized by the lack of meiotic recombination and it has long been considered an evolutionary independent region of the human genome. In recent years, however, the idea that human MSY did not have an independent evolutionary history begun to emerge with the discovery that inter-chromosomal gene conversion (ICGC) can modulate the genetic diversity of some portions of this genomic region. Despite the study of the dynamics of this molecular mechanism in humans is still in its infancy, some peculiar features and consequences of it can be summarized. The main effect of ICGC is to increase the allelic diversity of MSY by generating a significant excess of clustered single nucleotide polymorphisms (SNPs) (defined as groups of two or more SNPs occurring in close proximity and on the same branch of the Y phylogeny). On the human MSY, 13 inter-chromosomal gene conversion hotspots (GCHs) have been identified so far, involving donor sequences mainly from the X-chromosome and, to a lesser extent, from autosomes. Most of the GCHs are evolutionary conserved and overlap with regions involved in aberrant X–Y crossing-over. This review mainly focuses on the dynamics and the current knowledge concerning the recombinational landscape of the human MSY in the form of ICGC, on how this molecular mechanism may influence the evolution of the MSY, and on how it could affect the information enclosed within a genomic region which, until recently, appeared to be an evolutionary independent unit.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR),Rome, Italy
| |
Collapse
|
192
|
DiCarlo JE, Sengillo JD, Justus S, Cabral T, Tsang SH, Mahajan VB. CRISPR-Cas Genome Surgery in Ophthalmology. Transl Vis Sci Technol 2017; 6:13. [PMID: 28573077 PMCID: PMC5450921 DOI: 10.1167/tvst.6.3.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022] Open
Abstract
Genetic disease affecting vision can significantly impact patient quality of life. Gene therapy seeks to slow the progression of these diseases by treating the underlying etiology at the level of the genome. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (Cas) represent powerful tools for studying diseases through the creation of model organisms generated by targeted modification and by the correction of disease mutations for therapeutic purposes. CRISPR-Cas systems have been applied successfully to the visual sciences and study of ophthalmic disease - from the modification of zebrafish and mammalian models of eye development and disease, to the correction of pathogenic mutations in patient-derived stem cells. Recent advances in CRISPR-Cas delivery and optimization boast improved functionality that continues to enhance genome-engineering applications in the eye. This review provides a synopsis of the recent implementations of CRISPR-Cas tools in the field of ophthalmology.
Collapse
Affiliation(s)
- James E. DiCarlo
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
| | - Jesse D. Sengillo
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
- State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sally Justus
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
| | - Thiago Cabral
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Federal University of Espírito Santo, Vitoria, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen H. Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
- Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
193
|
Ren X, Holsteens K, Li H, Sun J, Zhang Y, Liu LP, Liu Q, Ni JQ. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. SCIENCE CHINA-LIFE SCIENCES 2017; 60:476-489. [PMID: 28527116 DOI: 10.1007/s11427-017-9029-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/05/2017] [Indexed: 12/16/2022]
Abstract
Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods, ethyl methane sulfonate (EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.
Collapse
Affiliation(s)
- Xingjie Ren
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kristof Holsteens
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyi Li
- French International School of Hong Kong, Hong Kong SAR, 999000, China
| | - Jin Sun
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yifan Zhang
- Department of Biology, University of California, San Diego, 92093, USA
| | - Lu-Ping Liu
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
194
|
Zapotoczny G, Sekelsky J. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair. G3 (BETHESDA, MD.) 2017; 7:1191-1199. [PMID: 28179392 PMCID: PMC5386867 DOI: 10.1534/g3.116.037390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/03/2017] [Indexed: 12/27/2022]
Abstract
DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells.
Collapse
Affiliation(s)
- Grzegorz Zapotoczny
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
195
|
Delabaere L, Ertl HA, Massey DJ, Hofley CM, Sohail F, Bienenstock EJ, Sebastian H, Chiolo I, LaRocque JR. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells. Aging Cell 2017; 16:320-328. [PMID: 28000382 PMCID: PMC5334535 DOI: 10.1111/acel.12556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/23/2022] Open
Abstract
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.
Collapse
Affiliation(s)
- Laetitia Delabaere
- Molecular and Computational Biology Department; University of Southern California; Los Angeles CA 90089 USA
| | - Henry A. Ertl
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Dashiell J. Massey
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Carolyn M. Hofley
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Faraz Sohail
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| | - Elisa J. Bienenstock
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
- College of Public Service & Community Solutions; Arizona State University; Phoenix AZ 85004 USA
| | - Hans Sebastian
- Molecular and Computational Biology Department; University of Southern California; Los Angeles CA 90089 USA
| | - Irene Chiolo
- Molecular and Computational Biology Department; University of Southern California; Los Angeles CA 90089 USA
| | - Jeannine R. LaRocque
- Department of Human Science; Georgetown University Medical Center; Washington DC 20057 USA
| |
Collapse
|
196
|
Modliszewski JL, Copenhaver GP. Meiotic recombination gets stressed out: CO frequency is plastic under pressure. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:95-102. [PMID: 28258986 DOI: 10.1016/j.pbi.2016.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/13/2016] [Indexed: 05/02/2023]
Abstract
Meiotic recombination ensures the fertility of gametes and creates novel genetic combinations. Although meiotic crossover (CO) frequency is under homeostatic control, CO frequency is also plastic in nature and can respond to environmental conditions. Most investigations have focused on temperature and recombination, but other external and internal stimuli also have important roles in modulating CO frequency. Even less is understood about the molecular mechanisms that underly these phenomenon, but recent work has begun to advance our knowledge in this field. In this review, we identify and explore potential mechanisms including changes in: the synaptonemal complex, chromatin state, DNA methylation, and RNA splicing.
Collapse
Affiliation(s)
- Jennifer L Modliszewski
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States.
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
| |
Collapse
|
197
|
Y chromosome palindromes and gene conversion. Hum Genet 2017; 136:605-619. [PMID: 28303348 DOI: 10.1007/s00439-017-1777-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023]
Abstract
The presence of large and near-identical inverted repeat sequences (called palindromes) is a common feature of the constitutively haploid sex chromosomes of different species. Despite the fact palindromes originated in a non-recombining context, they have evolved a strong recombinational activity in the form of abundant arm-to-arm gene conversion. Their independent appearance in different species suggests they can have a profound biological significance that has yet to be fully clarified. It has been theorized that natural selection may have favored palindromic organization of male-specific genes and that the establishment of intra-palindrome gene conversion has strong adaptive significance. Arm-to-arm gene conversion allows the efficient removal of deleterious mutations, increases the fixation rate of beneficial mutations and has played an important role in modulating the equilibrium between gene loss and acquisition during Y chromosome evolution. Additionally, a palindromic organization of duplicates could favor the formation of unusual chromatin structures and could optimize the use of gene conversion as a mechanism to maintain the structural integrity of male-specific genes. In this review, we describe the structural features of palindromes on mammalian sex chromosomes and summarize different hypotheses regarding palindrome evolution and the functional benefits of arm-to-arm gene conversion on the unique haploid portion of the nuclear genome.
Collapse
|
198
|
Pattabiraman D, Roelens B, Woglar A, Villeneuve AM. Meiotic recombination modulates the structure and dynamics of the synaptonemal complex during C. elegans meiosis. PLoS Genet 2017; 13:e1006670. [PMID: 28339470 PMCID: PMC5384771 DOI: 10.1371/journal.pgen.1006670] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/07/2017] [Accepted: 03/06/2017] [Indexed: 12/04/2022] Open
Abstract
During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.
Collapse
Affiliation(s)
- Divya Pattabiraman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
199
|
Christensen CL, Choy FYM. A Prospective Treatment Option for Lysosomal Storage Diseases: CRISPR/Cas9 Gene Editing Technology for Mutation Correction in Induced Pluripotent Stem Cells. Diseases 2017; 5:E6. [PMID: 28933359 PMCID: PMC5456334 DOI: 10.3390/diseases5010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Ease of design, relatively low cost and a multitude of gene-altering capabilities have all led to the adoption of the sophisticated and yet simple gene editing system: clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The CRISPR/Cas9 system holds promise for the correction of deleterious mutations by taking advantage of the homology directed repair pathway and by supplying a correction template to the affected patient's cells. Currently, this technique is being applied in vitro in human-induced pluripotent stem cells (iPSCs) to correct a variety of severe genetic diseases, but has not as of yet been used in iPSCs derived from patients affected with a lysosomal storage disease (LSD). If adopted into clinical practice, corrected iPSCs derived from cells that originate from the patient themselves could be used for therapeutic amelioration of LSD symptoms without the risks associated with allogeneic stem cell transplantation. CRISPR/Cas9 editing in a patient's cells would overcome the costly, lifelong process associated with currently available treatment methods, including enzyme replacement and substrate reduction therapies. In this review, the overall utility of the CRISPR/Cas9 gene editing technique for treatment of genetic diseases, the potential for the treatment of LSDs and methods currently employed to increase the efficiency of this re-engineered biological system will be discussed.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
200
|
Pal J, Nanjappa P, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett's Adenocarcinoma Cells. ACTA ACUST UNITED AC 2017; 6:2286-2295. [PMID: 29399538 PMCID: PMC5796564 DOI: 10.17554/j.issn.2224-3992.2017.06.687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In normal cells, RAD51-mediated homologous recombination (HR) is a
precise DNA repair mechanism which plays a key role in the maintenance of
genomic integrity and stability. However, elevated (dysregulated) RAD51 is
implicated in genomic instability and is a potential target for treatment of
certain cancers, including Barrett’s adenocarcinoma (BAC). In this
study, we investigated genomic impact and translational significance of
moderate vs. strong suppression of RAD51 in BAC cells. METHODS BAC cells (FLO-1 and OE33) were transduced with non-targeting control
(CS) or RAD51-specific shRNAs, mediating a moderate (40–50%)
suppression or strong (80-near 100%) suppression of the gene. DNA
breaks, spontaneous or following exposure to DNA damaging agent, were
examined by comet assay and 53BP1 staining. Gene expression was monitored by
microarrays (Affymetrix). Homologous recombination (HR) and single strand
annealing (SSA) activities were measured using plasmid based assays. RESULTS We show that although moderate suppression consistenly
inhibits/reduces HR activity, the strong suppression is associated with
increase in HR activity (by ~15 – ≥ 50% in various
experiments), suggesting activation of RAD51-independent pathway. Contrary
to moderate suppression, a strong suppression of RAD51 is associated with a
significant induced DNA breaks as well as altered expression of genes
involved in detection/processing of DNA breaks and apoptosis. Stronger RAD51
suppression was also associated with mutagenic single strand annealing
mediated HR. Suppression of RAD51C inhibited RAD51-independent
(SSA-mediated) HR in BAC cells. CONCLUSION Elevated (dysregulated) RAD51 in BAC is implicated in both the repair
of DNA breaks as well as ongoing genomic rearrangements. Moderate
suppression of this gene reduces HR activity, whereas strong or near
complete suppression of this gene activates RAD51C-dependent HR involving a
mechanism known as single strand annealing (SSA). SSA-mediated HR, which is
a mutagenic HR pathway, further disrupts genomic integrity by increasing DNA
breaks in BAC cells.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Multi-disciplinary Research Units (MRUs), Pt J.N.M. Medical College, Raipur, CG, India
| | - Purushothama Nanjappa
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States
| | - Nikhil C Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Masood A Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| |
Collapse
|