151
|
Riaz SK, Iqbal Y, Malik MFA. Diagnostic and therapeutic implications of the vascular endothelial growth factor family in cancer. Asian Pac J Cancer Prev 2016; 16:1677-82. [PMID: 25773809 DOI: 10.7314/apjcp.2015.16.5.1677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer progression is attained by uncontrolled cell division and metastasis. Increase in tumor size triggers different vascular channel formation to address cell nutritional demands. These channels are responsible for transferring of nutrients and gaseous to the cancer cells. Cancer vascularization is regulated by numerous factors including vascular endothelial growth factors (VEGFs). These factors play an important role during embryonic development. Members included in this group are VEGFA, VEGFB, VEGFC, PIGF and VEGFD which markedly influence cellular growth and apoptosis. Being freely diffusible these proteins act in both autocrine and paracrine fashions. In this review, genetic characterization these molecules and their putative role in cancer staging has been elaborated. Prognostic significance of these molecules along with different stages of cancer has also been summarized. Brief outline of ongoing efforts to target hot spot target sites against these VEGFs and their cognate limitations for therapeutic implications are also highlighted.
Collapse
Affiliation(s)
- Syeda Kiran Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan E-mail :
| | | | | |
Collapse
|
152
|
Drolet DW, Green LS, Gold L, Janjic N. Fit for the Eye: Aptamers in Ocular Disorders. Nucleic Acid Ther 2016; 26:127-46. [PMID: 26757406 PMCID: PMC4900223 DOI: 10.1089/nat.2015.0573] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For any new class of therapeutics, there are certain types of indications that represent a natural fit. For nucleic acid ligands in general, and aptamers in particular, the eye has historically been an attractive site for therapeutic intervention. In this review, we recount the discovery and early development of three aptamers designated for use in ophthalmology, one approved (Macugen), and two in late-stage development (Fovista and Zimura). Every one of these molecules was originally intended for other indications. Key improvements in technology, specifically with regard to libraries used for in vitro selection and subsequent chemical optimization of aptamers, have played an important role in allowing the identification of development candidates with suitable properties. The lessons learned from the selection of these molecules are valuable for informing us about the many remaining opportunities for aptamer-based therapeutics in ophthalmology as well as for identifying additional indications for which aptamers as a class of therapeutics have distinct advantages.
Collapse
|
153
|
Walker A, Chung CW, Neu M, Burman M, Batuwangala T, Jones G, Tang CM, Steward M, Mullin M, Tournier N, Lewis A, Korczynska J, Chung V, Catchpole I. Novel Interaction Mechanism of a Domain Antibody-based Inhibitor of Human Vascular Endothelial Growth Factor with Greater Potency than Ranibizumab and Bevacizumab and Improved Capacity over Aflibercept. J Biol Chem 2016; 291:5500-5511. [PMID: 26728464 PMCID: PMC4786692 DOI: 10.1074/jbc.m115.691162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 12/27/2022] Open
Abstract
A potent VEGF inhibitor with novel antibody architecture and antigen binding mode has been developed. The molecule, hereafter referred to as VEGF dual dAb (domain antibody), was evaluated in vitro for binding to VEGF and for potency in VEGF-driven models and compared with other anti-VEGF biologics that have been used in ocular anti-angiogenic therapeutic regimes. VEGF dual dAb is more potent than bevacizumab and ranibizumab for VEGF binding, inhibition of VEGF receptor binding assays (RBAs), and VEGF-driven in vitro models of angiogenesis and displays comparable inhibition to aflibercept (Eylea). VEGF dual dAb is dimeric, and each monomer contains two distinct anti-VEGF domain antibodies attached via linkers to a human IgG1 Fc domain. Mechanistically, the enhanced in vitro potency of VEGF dual dAb, in comparison to other anti-VEGF biologics, can be explained by increased binding stoichiometry. A consistent model of the target engagement has been built based on the x-ray complexes of each of the two isolated domain antibodies with the VEGF antigen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Vicky Chung
- BioPharm Process Research, GSK Medicine's Research Centre, Stevenage, Herts SG1 2NY, United Kingdom
| | | |
Collapse
|
154
|
Kang JI, Yoo ES, Hyun JW, Koh YS, Lee NH, Ko MH, Ko CS, Kang HK. Promotion Effect of Apo-9'-fucoxanthinone from Sargassum muticum on Hair Growth via the Activation of Wnt/β-Catenin and VEGF-R2. Biol Pharm Bull 2016; 39:1273-83. [PMID: 27476937 DOI: 10.1248/bpb.b16-00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was conducted to evaluate the effects of Sargassum muticum extract and apo-9'-fucoxanthinone, a principal component of S. muticum, on hair growth. When rat vibrissa follicles were treated with S. muticum extract for 21 d, the hair-fiber lengths for the vibrissa follicles increased significantly. Treatment with the S. muticum extract and the EtOAc fraction of the S. muticum extract markedly increased the proliferation of dermal papilla cells (DPCs) and decreased the 5α-reductase activity. In addition, the EtOAc fraction of the S. muticum extract significantly promoted anagen initiation in C57BL/6 mice. Especially, apo-9'-fucoxanthinone, an active constituent from the S. muticum extract, caused an increase in DPC proliferation and a decrease in 5α-reductase activity. To elucidate the molecular mechanisms of apo-9'-fucoxanthinone on the proliferation of DPCs, we examined the level of various signaling proteins. Apo-9'-fucoxanthinone increased the level of vascular endothelial growth factor receptor-2 (VEGF-R2), Wnt/β-catenin signaling proteins such as phospho(ser9)-glycogen synthase kinase-3β (GSK-3β) and phospho(ser552)-β-catenin, whereas apo-9'-fucoxanthinone did not affect the transforming growth factor-β (TGF-β) signaling proteins such as Smad2/3. These results suggest that apo-9'-fucoxanthinone from S. muticum could have the potential for hair growth with DPC proliferation via the activation of Wnt/β-catenin signaling and the VEGF-R2 pathway.
Collapse
Affiliation(s)
- Jung-Il Kang
- Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Smith G, Tomlinson D, Harrison M, Ponnambalam S. Chapter Eight - Ubiquitin-Mediated Regulation of Cellular Responses to Vascular Endothelial Growth Factors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:313-38. [DOI: 10.1016/bs.pmbts.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
156
|
Foerster A, Hołowacz I, Sunil Kumar GB, Anandakumar S, Wall JG, Wawrzyńska M, Paprocka M, Kantor A, Kraskiewicz H, Olsztyńska-Janus S, Hinder SJ, Bialy D, Podbielska H, Kopaczyńska M. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications. J Biomed Mater Res A 2015; 104:821-32. [PMID: 26566715 DOI: 10.1002/jbm.a.35616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 09/23/2015] [Accepted: 11/11/2015] [Indexed: 01/22/2023]
Abstract
Stainless steel 316 L material is commonly used for the production of coronary and peripheral vessel stents. Effective biofunctionalization is a key to improving the performance and safety of the stents after implantation. This paper reports the method for the immobilization of recombinant antibody fragments (scFv) on stainless steel 316 L to facilitate human endothelial progenitor cell (EPC) growth and thus improve cell viability of the implanted stents for cardiovascular applications. The modification of stent surface was conducted in three steps. First the stent surface was coated with titania based coating to increase the density of hydroxyl groups for successful silanization. Then silanization with 3 aminopropyltriethoxysilane (APTS) was performed to provide the surface with amine groups which presence was verified using FTIR, XPS, and fluorescence microscopy. The maximum density of amine groups (4.8*10(-5) mol/cm(2)) on the surface was reached after reaction taking place in ethanol for 1 h at 60 °C and 0.04M APTS. On such prepared surface the glycosylated scFv were subsequently successfully immobilized. The influence of oxidation of scFv glycan moieties and the temperature on scFv coating were investigated. The fluorescence and confocal microscopy study indicated that the densest and most uniformly coated surface with scFv was obtained at 37 °C after oxidation of glycan chain. The results demonstrate that the scFv cannot be efficiently immobilized without prior aminosilanization of the surface. The effect of the chemical modification on the cell viability of EPC line 55.1 (HucPEC-55.1) was performed indicating that the modifications to the 316 L stainless steel are non-toxic to EPCs.
Collapse
Affiliation(s)
- A Foerster
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - I Hołowacz
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - G B Sunil Kumar
- Microbiology and Centre for Research in Medical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - S Anandakumar
- Microbiology and Centre for Research in Medical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - J G Wall
- Microbiology and Centre for Research in Medical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - M Wawrzyńska
- Department of Medical Emergency, Wroclaw Medical University, Wrocław, Poland
| | - M Paprocka
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - A Kantor
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - S Olsztyńska-Janus
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - S J Hinder
- Department of Mechanical Engineering Sciences, University of Surrey, England
| | - D Bialy
- Clinic of Cardiology, Wroclaw Medical University, Wrocław, Poland
| | - H Podbielska
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - M Kopaczyńska
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| |
Collapse
|
157
|
Bekhite MM, Müller V, Tröger SH, Müller JP, Figulla HR, Sauer H, Wartenberg M. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells. Cell Tissue Res 2015; 364:159-74. [PMID: 26553657 DOI: 10.1007/s00441-015-2303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 09/28/2015] [Indexed: 02/02/2023]
Abstract
The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration.
Collapse
Affiliation(s)
- Mohamed M Bekhite
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany. .,Department of Zoology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Veronika Müller
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Sebastian H Tröger
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Reiner Figulla
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Maria Wartenberg
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| |
Collapse
|
158
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
159
|
Srinivasan S, Chitalia V, Meyer RD, Hartsough E, Mehta M, Harrold I, Anderson N, Feng H, Smith LEH, Jiang Y, Costello CE, Rahimi N. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 2015; 18:449-62. [PMID: 26059764 PMCID: PMC4600037 DOI: 10.1007/s10456-015-9468-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2.
Collapse
Affiliation(s)
- Srimathi Srinivasan
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Rosana D Meyer
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward Hartsough
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Manisha Mehta
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Itrat Harrold
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Anderson
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Jiang
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Nader Rahimi
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Pathology, Boston University Medical Campus, 670 Albany St., Room 510, Boston, MA, 02118, USA.
| |
Collapse
|
160
|
Paik DT, Rai M, Ryzhov S, Sanders LN, Aisagbonhi O, Funke MJ, Feoktistov I, Hatzopoulos AK. Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis. Circ Res 2015; 117:804-16. [PMID: 26338900 DOI: 10.1161/circresaha.115.306886] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
Abstract
RATIONALE Myocardial infarction causes irreversible tissue damage, leading to heart failure. We recently discovered that canonical Wnt signaling and the Wnt10b ligand are strongly induced in mouse hearts after infarction. Wnt10b regulates cell fate in various organs, but its role in the heart is unknown. OBJECTIVE To investigate the effect of Wnt10b gain-of-function on cardiac repair mechanisms and to assess its potential to improve ventricular function after injury. METHODS AND RESULTS Histological and molecular analyses showed that Wnt10b is expressed in cardiomyocytes and localized in the intercalated discs of mouse and human hearts. After coronary artery ligation or cryoinjury in mice, Wnt10b is strongly and transiently induced in peri-infarct cardiomyocytes during granulation tissue formation. To determine the effect of Wnt10b on neovascularization and fibrosis, we generated a mouse line to increase endogenous Wnt10b levels in cardiomyocytes. We found that gain of Wnt10b function orchestrated a recovery phenotype characterized by robust neovascularization of the injury zone, less myofibroblasts, reduced scar size, and improved ventricular function compared with wild-type mice. Wnt10b stimulated expression of vascular endothelial growth factor receptor 2 in endothelial cells and angiopoietin-1 in vascular smooth muscle cells through nuclear factor-κB activation. These effects coordinated endothelial growth and smooth muscle cell recruitment, promoting robust formation of large, coronary-like blood vessels. CONCLUSION Wnt10b gain-of-function coordinates arterial formation and attenuates fibrosis in cardiac tissue after injury. Because generation of mature blood vessels is necessary for efficient perfusion, our findings could lead to novel strategies to optimize the inherent repair capacity of the heart and prevent the onset of heart failure.
Collapse
Affiliation(s)
- David T Paik
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Meena Rai
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Sergey Ryzhov
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Lehanna N Sanders
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Omonigho Aisagbonhi
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Mitchell J Funke
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Igor Feoktistov
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Antonis K Hatzopoulos
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.).
| |
Collapse
|
161
|
The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Biosci Rep 2015; 35:BSR20150171. [PMID: 26285805 PMCID: PMC4613718 DOI: 10.1042/bsr20150171] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 01/18/2023] Open
Abstract
VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments.
Collapse
|
162
|
Chuang IC, Yang CM, Song TY, Yang NC, Hu ML. The anti-angiogenic action of 2-deoxyglucose involves attenuation of VEGFR2 signaling and MMP-2 expression in HUVECs. Life Sci 2015; 139:52-61. [PMID: 26285173 DOI: 10.1016/j.lfs.2015.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 02/05/2023]
Abstract
AIMS 2-Deoxyglucose (2-DG) is a glucose analogue and has been shown to inhibit angiogenesis in human umbilical vascular endothelial cells (HUVECs) through interference with N-linked glycosylation. However, the anti-angiogenic mechanisms of 2-DG are not fully elucidated. MAIN METHODS We first employed an ex vivo rat aortic ring model to substantiate the anti-angiogenic action of 2-DG and then used HUVECs to investigate the molecular mechanism underlying such an action. KEY FINDINGS Results reveal that 2-DG (0.05-1.0mM) significantly inhibited tube formation in both rat aortic rings and HUVECs. 2-DG (0.1-1.0mM) also significantly inhibited cell invasion and migration, as well as the activity and mRNA and protein expression of matrix metalloproteinase (MMP)-2 in HUVECs. In addition, 2-DG (1.0mM) significantly inhibited mRNA and protein expression of vascular endothelial growth receptor 2 (VEGFR2) in a time-dependent manner. 2-DG also significantly inhibited the phosphorylation of the focal adhesion kinase (FAK) and mitogen-activated protein kinase (p38), the downstream molecules of VEGFR2. The effects of 2-DG on tube formation, MMP-2 activity, and VEGFR2 protein expression in HUVECs were reversed by mannose, an N-linked glycosylation precursor. Mannose also reversed 2-DG-induced accumulation of VEGFR2 in the endoplasmic reticulum. SIGNIFICANCE This ex vivo and in vitro study demonstrates that 2-DG inhibits angiogenesis with an action involving attenuation of VEGFR2 signaling and MMP-2 expression, possibly resulting from interference with N-linked glycosylation of VEGFR2. Further studies are needed to show that 2-DG inhibits VEGF-mediated angiogenesis or that the actual status of N-glycosylation of VEGFR2 is affected by the treatment.
Collapse
Affiliation(s)
- I-Chen Chuang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Min Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Tuzz-Ying Song
- Department of BioIndustry Technology, Dayeh University, Changhua, Taiwan
| | - Nae-Cherng Yang
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Miao-Lin Hu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
163
|
Lopez-Pastrana J, Ferrer LM, Li YF, Xiong X, Xi H, Cueto R, Nelson J, Sha X, Li X, Cannella AL, Imoukhuede PI, Qin X, Choi ET, Wang H, Yang XF. Inhibition of Caspase-1 Activation in Endothelial Cells Improves Angiogenesis: A NOVEL THERAPEUTIC POTENTIAL FOR ISCHEMIA. J Biol Chem 2015; 290:17485-94. [PMID: 26037927 DOI: 10.1074/jbc.m115.641191] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
Deficient angiogenesis may contribute to worsen the prognosis of myocardial ischemia, peripheral arterial disease, ischemic stroke, etc. Dyslipidemic and inflammatory environments attenuate endothelial cell (EC) proliferation and angiogenesis, worsening the prognosis of ischemia. Under these dyslipidemic and inflammatory environments, EC-caspase-1 becomes activated and induces inflammatory cell death that is defined as pyroptosis. However, the underlying mechanism that correlates caspase-1 activation with angiogenic impairment and the prognosis of ischemia remains poorly defined. By using flow cytometric analysis, enzyme and receptor inhibitors, and hind limb ischemia model in caspase-1 knock-out (KO) mice, we examined our novel hypothesis, i.e. inhibition of caspase-1 in ECs under dyslipidemic and inflammatory environments attenuates EC pyroptosis, improves EC survival mediated by vascular endothelial growth factor receptor 2 (VEGFR-2), angiogenesis, and the prognosis of ischemia. We have made the following findings. Proatherogenic lipids induce higher caspase-1 activation in larger sizes of human aortic endothelial cells (HAECs) than in smaller sizes of HAECs. Proatherogenic lipids increase pyroptosis significantly more in smaller sizes of HAECs than in larger sizes of the cells. VEGFR-2 inhibition increases caspase-1 activation in HAECs induced by lysophosphatidylcholine treatment. Caspase-1 activation inhibits VEGFR-2 expression. Caspase-1 inhibition improves the tube formation of lysophosphatidylcholine-treated HAECs. Finally, caspase-1 depletion improves angiogenesis and blood flow in mouse hind limb ischemic tissues. Our results have demonstrated for the first time that inhibition of proatherogenic caspase-1 activation in ECs improves angiogenesis and the prognosis of ischemia.
Collapse
Affiliation(s)
- Jahaira Lopez-Pastrana
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research
| | - Lucas M Ferrer
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, the Department of Bioengineering, University of Illinois-Urbana Champaign, Urbana, Illinois 61801
| | - Ya-Feng Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research
| | - Xinyu Xiong
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Departments of Pharmacology
| | - Hang Xi
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Departments of Pharmacology
| | - Ramon Cueto
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Departments of Pharmacology
| | - Jun Nelson
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research
| | - Xiaojin Sha
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research
| | - Xinyuan Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Departments of Pharmacology
| | - Ann L Cannella
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Departments of Pharmacology
| | - Princess I Imoukhuede
- the Department of Bioengineering, University of Illinois-Urbana Champaign, Urbana, Illinois 61801
| | | | - Eric T Choi
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Hong Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Departments of Pharmacology
| | - Xiao-Feng Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Departments of Pharmacology,
| |
Collapse
|
164
|
Gliemann L, Buess R, Nyberg M, Hoppeler H, Odriozola A, Thaning P, Hellsten Y, Baum O, Mortensen SP. Capillary growth, ultrastructure remodelling and exercise training in skeletal muscle of essential hypertensive patients. Acta Physiol (Oxf) 2015; 214:210-20. [PMID: 25846822 DOI: 10.1111/apha.12501] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 01/04/2023]
Abstract
AIM The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extent exercise training can normalize these parameters. METHODS To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies were obtained from m. vastus lateralis in subjects with essential hypertension (n = 10) and normotensive controls (n = 11) before and after 8 weeks of aerobic exercise training. Morphometry was performed after transmission electron microscopy, and protein levels of several angioregulatory factors were determined. RESULTS At baseline, capillary density and capillary-to-fibre ratio were not different between the two groups. However, the hypertensive subjects had 9% lower capillary area (12.7 ± 0.4 vs. 13.9 ± 0.2 μm(2)) and tended to have thicker capillary basement membranes (399 ± 16 vs. 358 ± 13 nm; P = 0.094) than controls. Protein expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 and thrombospondin-1 were similar in normotensive and hypertensive subjects, but tissue inhibitor of matrix metalloproteinase was 69% lower in the hypertensive group. After training, angiogenesis was evident by 15% increased capillary-to-fibre ratio in the hypertensive subjects only. Capillary area and capillary lumen area were increased by 7 and 15% in the hypertensive patients, whereas capillary basement membrane thickness was decreased by 17% (P < 0.05). VEGF expression after training was increased in both groups, whereas VEGF receptor-2 was decreased by 25% in the hypertensive patients(P < 0.05). CONCLUSION Essential hypertension is associated with decreased lumen area and a tendency for increased basement membrane thickening in capillaries of skeletal muscle. Exercise training may improve the diffusion conditions in essential hypertension by altering capillary structure and capillary number.
Collapse
Affiliation(s)
- L. Gliemann
- Integrative Physiology Group; Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - R. Buess
- Institute of Anatomy; University of Bern; Bern Switzerland
| | - M. Nyberg
- Integrative Physiology Group; Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - H. Hoppeler
- Institute of Anatomy; University of Bern; Bern Switzerland
| | - A. Odriozola
- Institute of Anatomy; University of Bern; Bern Switzerland
| | - P. Thaning
- Copenhagen Muscle Research Centre; Rigshospitalet; Copenhagen Denmark
| | - Y. Hellsten
- Integrative Physiology Group; Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - O. Baum
- Institute of Anatomy; University of Bern; Bern Switzerland
| | - S. P. Mortensen
- Copenhagen Muscle Research Centre; Rigshospitalet; Copenhagen Denmark
- Department of Cardiovascular and Renal Research; University of Southern Denmark; Odense Denmark
| |
Collapse
|
165
|
Abstract
Recognition of the vascular endothelial growth factor (VEGF) pathway as a key mediator of angiogenesis has led to the clinical study of several VEGF and VEGF receptor (VEGFR) targeted therapies in non-small-cell lung cancer (NSCLC). These targeted therapies include neutralizing antibodies to VEGF (bevacizumab and aflibercept) and VEGFR-2 (ramucirumab) and tyrosine kinase inhibitors (TKIs) with selectivity for the VEGFRs. Bevacizumab and ramucirumab are associated with survival advantages in the treatment of advanced NSCLC: bevacizumab in the first-line setting in combination with carboplatin/paclitaxel and ramucirumab in combination with docetaxel in the second-line setting. The VEGFR-2 TKIs have been associated with responses and improved progression-free survival in selected NSCLC settings; however, this level of activity has thus far been insufficient to confer significant survival advantages. This review will focus on the current state of VEGF targeted therapies in NSCLC.
Collapse
Affiliation(s)
- Liza C. Villaruz
- Lung Cancer Program, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, 5th Floor Cancer Pavilion, Room 567, Pittsburgh, PA 15232, USA
| | - Mark A. Socinski
- Lung Cancer Program, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, 5th Floor Cancer Pavilion, Room 567, Pittsburgh, PA 15232, USA
| |
Collapse
|
166
|
Visuri MT, Honkonen KM, Hartiala P, Tervala TV, Halonen PJ, Junkkari H, Knuutinen N, Ylä-Herttuala S, Alitalo KK, Saarikko AM. VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study. Angiogenesis 2015; 18:313-26. [DOI: 10.1007/s10456-015-9469-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/12/2015] [Indexed: 11/24/2022]
|
167
|
Serin M, Bayramicli M. Evaluation of scar penetrating neovascularisation in a rat epigastric flap model. J Plast Surg Hand Surg 2015; 49:295-299. [PMID: 25991032 DOI: 10.3109/2000656x.2015.1047451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM The aim of this study is to investigate neovascularisation patterns in the presence of scar tissue and to compare the venous vs arterial components of the scar penetrating neovascularisation. METHODS Forty male Spraque-Dawley Rats, which were divided into four groups, were used for this study. At the beginning of the study a vertical midline abdominal incision was made to all animals. Six weeks after the incisions were made, epigastric flaps based on inferior epigastric vessels were raised. In the first group both left and right epigastric artery and veins were protected. In the second group only the right epigastric artery and vein was protected. In the third group, besides the right epigastric artery and vein, only the left epigastric artery was kept intact. In the fourth group, besides the right epigastric artery and vein, only the left epigastric vein was kept intact. RESULTS The percentages of necrotic areas on the flaps were statistically evaluated. The percentages of the necrotic areas on the left side of the flaps were significantly higher in the second group (p = 0.0305). Total flap area necrosis was also significantly higher in the second group (p = 0.026). In each group, vessel formations were identified which were extending through the midline scar tissue in the angiographic evaluations. CONCLUSIONS These results suggest that scar penetrating neovascularisation on an epigastric flap with one sided pedicle, which is supported by a vein or an artery on the contralateral side, can be enough to facilitate the flap circulation.
Collapse
Affiliation(s)
- Merdan Serin
- a 1 Dermatology Department Yale University School of Medicine , New Haven, CT, USA
| | - Mehmet Bayramicli
- b 2 Department of Plastic and Reconstructive Surgery, Marmara University Medical School , Istanbul, Turkey
| |
Collapse
|
168
|
Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res 2015; 116:1561-78. [PMID: 25908729 PMCID: PMC4869986 DOI: 10.1161/circresaha.115.303565] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
The age-adjusted prevalence of peripheral arterial disease in the US population has been estimated to approach 12%. The clinical consequences of occlusive peripheral arterial disease include pain on walking (claudication), pain at rest, and loss of tissue integrity in the distal limbs; the latter may ultimately lead to amputation of a portion of the lower extremity. Surgical bypass techniques and percutaneous catheter-based interventions may successfully reperfuse the limbs of certain patients with peripheral arterial disease. In many patients, however, the anatomic extent and distribution of arterial occlusion is too severe to permit relief of pain and healing of ischemic ulcers. No effective medical therapy is available for the treatment of such patients, for many of whom amputation represents the only hope for alleviation of symptoms. The ultimate failure of medical treatment and procedural revascularization in significant numbers of patients has led to attempts to develop alternative therapies for ischemic disease. These strategies include administration of angiogenic cytokines, either as recombinant protein or as gene therapy, and more recently, to investigations of stem/progenitor cell therapy. The purpose of this review is to provide an outline of the preclinical basis for angiogenic and stem cell therapies, review the clinical research that has been done, summarize the lessons learned, identify gaps in knowledge, and suggest a course toward successfully addressing an unmet medical need in a large and growing patient population.
Collapse
Affiliation(s)
- John P Cooke
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.); and NeoStem Inc, New York, NY (D.W.L.).
| | - Douglas W Losordo
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.); and NeoStem Inc, New York, NY (D.W.L.).
| |
Collapse
|
169
|
Yan JD, Liu Y, Zhang ZY, Liu GY, Xu JH, Liu LY, Hu YM. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol Res Pract 2015; 211:539-43. [PMID: 25976977 DOI: 10.1016/j.prp.2015.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 12/28/2022]
Abstract
Breast cancer is one of the most common cancers among women in the world. Vascular endothelial growth factor receptor 2 (VEGFR-2) was not only found to play a key role in the development of tumor angiogenesis, but has also been located in tumor cells of a variety of tumors. This study investigated the expression pattern of VEGFR-2 in breast cancer tissue specimens in order to evaluate the role of VEGFR-2 in the prognosis of breast cancer. Expression and localization of VEGFR-2 in tumor cells of breast cancer specimens from 98 invasive breast cancer patients were determined by immunohistochemistry. The relationships between VEGFR-2 expression and clinicopathological features were also analyzed. The results showed that VEGFR-2 expression correlated positively with lymph node (LN) metastasis of breast cancer. Patients with high expression of VEGFR-2 had a significantly worse OS. It was also observed that the expression of epithelial-mesenchymal transition (EMT) marker, including Twist1 and Vimentin, was higher in the tumors with higher VEGFR-2 expression, while the E-cadherin expression was lower in the same tumors, suggesting that VEGFR-2 may serve as a possible mediator of EMT in breast cancer.
Collapse
Affiliation(s)
- Ji-Dong Yan
- Department of Thoracic Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Yanrong Liu
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhi-Yong Zhang
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China.
| | - Guang-Yin Liu
- Department of Mammary Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jin-Heng Xu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Li-Yun Liu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Yue-Ming Hu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
170
|
Osaki T, Kakegawa T, Kageyama T, Enomoto J, Nittami T, Fukuda J. Acceleration of vascular sprouting from fabricated perfusable vascular-like structures. PLoS One 2015; 10:e0123735. [PMID: 25860890 PMCID: PMC4393106 DOI: 10.1371/journal.pone.0123735] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/26/2015] [Indexed: 12/17/2022] Open
Abstract
Fabrication of vascular networks is essential for engineering three-dimensional thick tissues and organs in the emerging fields of tissue engineering and regenerative medicine. In this study, we describe the fabrication of perfusable vascular-like structures by transferring endothelial cells using an electrochemical reaction as well as acceleration of subsequent endothelial sprouting by two stimuli: phorbol 12-myristate 13-acetate (PMA) and fluidic shear stress. The electrochemical transfer of cells was achieved using an oligopeptide that formed a dense molecular layer on a gold surface and was then electrochemically desorbed from the surface. Human umbilical vein endothelial cells (HUVECs), adhered to gold-coated needles (ϕ600 μm) via the oligopeptide, were transferred to collagen gel along with electrochemical desorption of the molecular layer, resulting in the formation of endothelial cell-lined vascular-like structures. In the following culture, the endothelial cells migrated into the collagen gel and formed branched luminal structures. However, this branching process was strikingly slow (>14 d) and the cell layers on the internal surfaces became disrupted in some regions. To address these issues, we examined the effects of the protein kinase C (PKC) activator, PMA, and shear stress generated by medium flow. Addition of PMA at an optimum concentration significantly accelerated migration, vascular network formation, and its stabilization. Exposure to shear stress reoriented the cells in the direction of the medium flow and further accelerated vascular network formation. Because of the synergistic effects, HUVECs began to sprout as early as 3 d of perfusion culture and neighboring vascular-like structures were bridged within 5 d. Although further investigations of vascular functions need to be performed, this approach may be an effective strategy for rapid fabrication of perfusable microvascular networks when engineering three-dimensional fully vascularized tissues and organs.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Takahiro Kakegawa
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Junko Enomoto
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Tadashi Nittami
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
- * E-mail:
| |
Collapse
|
171
|
Sağsöz H, Liman N, Alan E. Expression of vascular endothelial growth factor receptors and their ligands in rat uterus during the postpartum involution period. Biotech Histochem 2015; 90:361-74. [DOI: 10.3109/10520295.2015.1007482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
172
|
A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS One 2015; 10:e0117468. [PMID: 25781935 PMCID: PMC4363374 DOI: 10.1371/journal.pone.0117468] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/25/2014] [Indexed: 11/22/2022] Open
Abstract
The number of piglets born alive (NBA) per litter is one of the most important traits in pig breeding due to its influence on production efficiency. It is difficult to improve NBA because the heritability of the trait is low and it is governed by a high number of loci with low to moderate effects. To clarify the biological and genetic background of NBA, genome-wide association studies (GWAS) were performed using 4,012 Large White and Landrace pigs from herdbook and commercial breeding companies in Germany (3), Austria (1) and Switzerland (1). The animals were genotyped with the Illumina PorcineSNP60 BeadChip. Because of population stratifications within and between breeds, clusters were formed using the genetic distances between the populations. Five clusters for each breed were formed and analysed by GWAS approaches. In total, 17 different significant markers affecting NBA were found in regions with known effects on female reproduction. No overlapping significant chromosome areas or QTL between Large White and Landrace breed were detected.
Collapse
|
173
|
|
174
|
Abstract
Vascular endothelial growth factor receptor-1 (VEGFR-1)/Flt-1 is a transmembrane tyrosine kinase receptor for VEGF-A, VEGF-B, and placental growth factor (PlGF). VEGFR-1 is an enigmatic molecule whose precise role in postnatal angiogenesis remains controversial. Although many postnatal and adult studies have been performed by manipulating VEGFR-1 ligands, including competitive binding by truncated VEGFR-1 protein, neutralization by antibodies, or specific ligand overexpression or knockout, much less is known at the level of the receptor per se, especially in vivo. Perplexingly, while VEGFR-1 negatively regulates endothelial cell differentiation during development, it has been implied in promoting angiogenesis under certain conditions in adult tissues, especially in tumors and ischemic tissues. Additionally, it is unclear how VEGFR-1 is involved in vascular maturation and maintenance of vascular quiescence in adult tissues. To facilitate further investigation, we generated a conditional knockout mouse line for VEGFR-1 and characterized angiogenesis in postnatal and adult mice, including angiogenesis in ischemic myocardium. These methods are briefly outlined in this chapter. We also discuss these findings in the context of the interplay between VEGF family members and their receptors, and summarize various mouse models in the VEGF pathway.
Collapse
|
175
|
Gutiérrez-Fernández M, Fuentes B, Rodríguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Díez-Tejedor E. Different protective and reparative effects of olmesartan in stroke according to time of administration and withdrawal. J Neurosci Res 2014; 93:806-14. [PMID: 25524827 DOI: 10.1002/jnr.23532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023]
Abstract
Angiotensin type 1 receptor blockers (ARBs) have induced improved functional recovery and reduced infarct volume in experimental animal models of stroke. Clinical data have indicated a positive correlation between prestroke treatment with ARBs and reduced stroke severity and better outcomes; however, the mechanisms of these beneficial effects are not yet well understood. This study compares the protective and possible reparative effects of continuous oral treatment with olmesartan (OLM) with OLM pretreatment and withdrawal after permanent middle cerebral artery occlusion (pMCAO) in rats. Fifty-two Sprague-Dawley rats were randomly assigned to five groups: MCAO(-/OLM) (OLM 10 mg/kg/day for 14 days after infarct), MCAO(OLM/OLM) (OLM 10 mg/kg/day for 7 days before and 14 days after infarct), MCAO(OLM/-) (OLM 10 mg/kg/day for 7 days before infarct), sham, and control. We analyzed functional recovery; lesion size; cell death; expression of the pro-oxidant enzyme NADPH oxidase 4 (NOX-4); isolectin-B4; and repair markers such as glial fibrillary acidic protein, vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF). All of the OLM-treated groups showed significantly better functional scores and reduced infarct sizes and cell death compared with the control group 14 days after pMCAO. Levels of NOX-4, VEGF, and BDNF were significantly lower in the brains of the MCAO(OLM/OLM) and sham groups compared with the other groups. OLM treatment improved functional recovery and reduced lesion size and cell death after cerebral ischemia. Only the continuous administration of OLM before and after stroke reduced oxidative stress levels, with better tissue preservation, without triggering brain repair marker activation.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
176
|
Geis T, Döring C, Popp R, Grossmann N, Fleming I, Hansmann ML, Dehne N, Brüne B. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma. Exp Cell Res 2014; 331:46-57. [PMID: 25489981 DOI: 10.1016/j.yexcr.2014.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/22/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Abstract
Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause-effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Liver Neoplasms/blood supply
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Neovascularization, Pathologic
- Oligonucleotide Array Sequence Analysis
- Plasminogen Activator Inhibitor 1/genetics
- Plasminogen Activator Inhibitor 1/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Theresa Geis
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Nina Grossmann
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nathalie Dehne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
177
|
Buell TJ, Ding D, Starke RM, Webster Crowley R, Liu KC. Embolization-induced angiogenesis in cerebral arteriovenous malformations. J Clin Neurosci 2014; 21:1866-71. [DOI: 10.1016/j.jocn.2014.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/31/2014] [Accepted: 04/05/2014] [Indexed: 12/13/2022]
|
178
|
Garcia C, Gutmann DH. Using the neurofibromatosis tumor predisposition syndromes to understand normal nervous system development. SCIENTIFICA 2014; 2014:915725. [PMID: 25243094 PMCID: PMC4163293 DOI: 10.1155/2014/915725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Development is a tightly regulated process that involves stem cell self-renewal, differentiation, cell-to-cell communication, apoptosis, and blood vessel formation. These coordinated processes ensure that tissues maintain a size and architecture that is appropriate for normal tissue function. As such, tumors arise when cells acquire genetic mutations that allow them to escape the normal growth constraints. In this regard, the study of tumor predisposition syndromes affords a unique platform to better understand normal development and the process by which normal cells transform into cancers. Herein, we review the processes governing normal brain development, discuss how brain cancer represents a disruption of these normal processes, and highlight insights into both normal development and cancer made possible by the study of tumor predisposition syndromes.
Collapse
Affiliation(s)
- Cynthia Garcia
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
179
|
Martinez JO, Evangelopoulos M, Karun V, Shegog E, Wang JA, Boada C, Liu X, Ferrari M, Tasciotti E. The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation. Biomaterials 2014; 35:9824-9832. [PMID: 25176066 DOI: 10.1016/j.biomaterials.2014.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
Nanovectors are a viable solution to the formulation of poorly soluble anticancer drugs. Their bioaccumulation in the tumor parenchyma is mainly achieved exploiting the enhanced permeability and retention (EPR) effect of the leaky neovasculature. In this paper we demonstrate that multistage nanovectors (MSV) exhibit rapid tumoritropic homing independent of EPR, relying on particle geometry and surface adhesion. By studying endothelial cells overexpressing vascular endothelial growth factor receptor-2 (VEGFR2), we developed MSV able to preferentially target VEGFR2 expressing tumor-associated vessels. Static and dynamic targeting revealed that MSV conjugated with anti-VEGFR2 antibodies displayed greater than a 4-fold increase in targeting efficiency towards VEGFR2 expressing cells while exhibiting minimal adherence to control cells. Additionally, VEGFR2 conjugation bestowed MSV with a significant increase in breast tumor targeting and in the delivery of a model payload while decreasing their accumulation in the liver. Surface functionalization with an anti-VEGFR2 antibody provided enhanced affinity towards the tumor vascular endothelium, which promoted enhanced adhesion and tumoritropic accumulation of a reporter molecule released by the MSV.
Collapse
Affiliation(s)
- Jonathan O Martinez
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center, 6767 Bertner Ave., Houston, TX 77030, USA
| | - Michael Evangelopoulos
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Vivek Karun
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Evan Shegog
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Joshua A Wang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Christian Boada
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, 3000 Ave. Morones Prieto Esquina Con Dr. Cantú, Monterrey, Nuevo León, México
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA.
| |
Collapse
|
180
|
Gliemann L, Olesen J, Biensø RS, Schmidt JF, Akerstrom T, Nyberg M, Lindqvist A, Bangsbo J, Hellsten Y. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. Am J Physiol Heart Circ Physiol 2014; 307:H1111-9. [PMID: 25128170 DOI: 10.1152/ajpheart.00168.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis.
Collapse
Affiliation(s)
- Lasse Gliemann
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Jesper Olesen
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Sjørup Biensø
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Friis Schmidt
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Thorbjorn Akerstrom
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Michael Nyberg
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Anna Lindqvist
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Jens Bangsbo
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Ylva Hellsten
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
181
|
Tivers MS, House AK, Smith KC, Wheeler-Jones CPD, Lipscomb VJ. Markers of angiogenesis associated with surgical attenuation of congenital portosystemic shunts in dogs. J Vet Intern Med 2014; 28:1424-32. [PMID: 25132501 PMCID: PMC4895587 DOI: 10.1111/jvim.12411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/10/2014] [Accepted: 06/11/2014] [Indexed: 12/28/2022] Open
Abstract
Background Dogs with congenital portosystemic shunts (CPSS) have hypoplasia of the intrahepatic portal veins. Surgical CPSS attenuation results in the development of the intrahepatic portal vasculature, the precise mechanism for which is unknown, although new vessel formation by angiogenesis is suspected. Hypothesis That the degree of portal vascular development and the increase in portal vascularization after CPSS attenuation is significantly associated with hepatic vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) gene expression and serum VEGF concentration. Animals Client‐owned dogs with CPSS undergoing surgical treatment. Forty‐nine dogs were included in the gene expression data and 35 in the serum VEGF data. Materials and Methods Dogs surgically treated by partial or complete CPSS attenuation were prospectively recruited. Relative gene expression of VEGF and VEGFR2 was measured in liver biopsy samples taken at initial and follow‐up surgery using quantitative polymerase chain reaction. Serum VEGF concentration was measured before and after CPSS attenuation using a canine specific ELISA. Statistical significance was set at the 5% level (P ≤ .05). Results There was a significant increase in the mRNA expression of VEGFR2 after partial attenuation (P = .006). Dogs that could tolerate complete attenuation had significantly greater VEGFR2 mRNA expression than those that only tolerated partial attenuation (P = .037). Serum VEGF concentration was significantly increased at 24 (P < .001) and 48 (P = .003) hours after attenuation. Conclusions and Clinical Importance These findings suggest that intrahepatic angiogenesis is likely to occur after the surgical attenuation of CPSS in dogs, and contributes to the development of the intrahepatic vasculature postoperatively.
Collapse
Affiliation(s)
- M S Tivers
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | | | | | | | | |
Collapse
|
182
|
Park H, Shim JS, Kim BS, Jung HJ, Huh TL, Kwon HJ. Purpurin inhibits adipocyte-derived leucine aminopeptidase and angiogenesis in a zebrafish model. Biochem Biophys Res Commun 2014; 450:561-7. [PMID: 24928393 DOI: 10.1016/j.bbrc.2014.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/30/2022]
Abstract
Adipocyte-derived leucine aminopeptidase (A-LAP) is a novel member of the M1 family of zinc metallopeptidases, which has been reported to play a crucial role in angiogenesis. In the present study, we conducted a target-based screening of natural products and synthetic chemical libraries using the purified enzyme to search novel inhibitors of A-LAP. Amongst several hits isolated, a natural product purpurin was identified as one of the most potent inhibitors of A-LAP from the screening. In vitro enzymatic analyses demonstrated that purpurin inhibited A-LAP activity in a non-competitive manner with a Ki value of 20 M. In addition, purpurin showed a strong selectivity toward A-LAP versus another member of M1 family of zinc metallopeptidase, aminopeptidase N (APN). In angiogenesis assays, purpurin inhibited the vascular endothelial growth factor (VEGF)-induced invasion and tube formation of human umbilical vein endothelial cells (HUVEC). Moreover, purpurin inhibited in vivo angiogenesis in zebrafish embryo without toxicity. These data demonstrate that purpurin is a novel specific inhibitor of A-LAP and could be developed as a new anti-angiogenic agent.
Collapse
Affiliation(s)
- Hyomi Park
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Av. Universidade, Taipa, Macau Special Administrative Region, China
| | - Beom Seok Kim
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hye Jin Jung
- Department of Pharmaceutical Engineering, University of Sun Moon, Asansi, Chungnam 336-708, Republic of Korea
| | - Tae-Lin Huh
- Department of Genetic Engineering, Kyungpook National University, Puk-Gu, Sankyuk-Dong, 702-701 Daegu, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea.
| |
Collapse
|
183
|
Yamamizu K, Hamada Y, Narita M. κ Opioid receptor ligands regulate angiogenesis in development and in tumours. Br J Pharmacol 2014; 172:268-76. [PMID: 24417697 DOI: 10.1111/bph.12573] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Opioid systems mainly regulate physiological functions such as pain, emotional tone and reward circuitry in neural tissues (brain and spinal cord). These systems are also found in extraneural tissues (ganglia, gut, spleen, stomach, lung, pancreas, liver, heart, blood and blood vessels), and recent studies have elucidated their roles in various organs. The current review focuses on the roles of opioid systems in blood vessels, especially angiogenesis, during development and tumour malignancy. The balance between endogenous activators and inhibitors of angiogenesis delicately maintains a normally quiescent vasculature to sustain homeostasis. Disturbance of this balance causes pathogenic angiogenesis and, especially in tumours, several activators such as VEGF are highly expressed in the tumour microenvironment and strongly induce tumour angiogenesis, the so-called angiogenic switch. Recently, we demonstrated that κ opioid receptor agonists function as anti-angiogenic factors, which impede the angiogenic switch, in vascular development and tumour angiogenesis by inhibiting the expression of receptors for VEGF. In clinical medicine, angiogenesis inhibitors that target VEGF signalling such as bevacizumab are used as anti-cancer drugs. Although therapies that inhibit tumour angiogenesis have been highly successful for tumour therapy, most patients eventually develop resistance to this anti-angiogenic therapy. Thus, we must identify novel targets for anti-angiogenic agents to sustain inhibition of angiogenesis for tumour therapy. The regulation of responses to κ opioid receptor ligands could be useful for controlling vascular formation under physiological conditions and in cancers, and thus could offer therapeutic benefits beyond the relief of pain. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | |
Collapse
|
184
|
McCollum CW, Hans C, Shah S, Merchant FA, Gustafsson JÅ, Bondesson M. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:152-163. [PMID: 24768856 DOI: 10.1016/j.aquatox.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems.
Collapse
Affiliation(s)
- Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Charu Hans
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Shishir Shah
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Fatima A Merchant
- Department of Computer Science, University of Houston, Houston, TX 77204, USA; Department of Engineering Technology, University of Houston, Houston, TX 77204, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
185
|
Prognostic significance of immunohistochemical expression of VEGFR2 and iNOS in spinal chordoma. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:2416-22. [DOI: 10.1007/s00586-014-3417-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 11/26/2022]
|
186
|
Selvaraju V, Parinandi NL, Adluri RS, Goldman JW, Hussain N, Sanchez JA, Maulik N. Molecular mechanisms of action and therapeutic uses of pharmacological inhibitors of HIF-prolyl 4-hydroxylases for treatment of ischemic diseases. Antioxid Redox Signal 2014; 20:2631-65. [PMID: 23992027 PMCID: PMC4026215 DOI: 10.1089/ars.2013.5186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/06/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE In this review, we have discussed the efficacy and effect of small molecules that act as prolyl hydroxylase domain inhibitors (PHDIs). The use of these compounds causes upregulation of the pro-angiogenic factors and hypoxia inducible factor-1α and -2α (HIF-1α and HIF-2α) to enhance angiogenic, glycolytic, erythropoietic, and anti-apoptotic pathways in the treatment of various ischemic diseases responsible for significant morbidity and mortality in humans. RECENT ADVANCES Sprouting of new blood vessels from the existing vasculature and surgical intervention, such as coronary bypass and stent insertion, have been shown to be effective in attenuating ischemia. However, the initial reentry of oxygen leads to the formation of reactive oxygen species that cause oxidative stress and result in ischemia/reperfusion (IR) injury. This apparent "oxygen paradox" must be resolved to combat IR injury. During hypoxia, decreased activity of PHDs initiates the accumulation and activation of HIF-1α, wherein the modulation of both PHD and HIF-1α appears as promising therapeutic targets for the pharmacological treatment of ischemic diseases. CRITICAL ISSUES Research on PHDs and HIFs has shown that these molecules can serve as therapeutic targets for ischemic diseases by modulating glycolysis, erythropoiesis, apoptosis, and angiogenesis. Efforts are underway to identify and synthesize safer small-molecule inhibitors of PHDs that can be administered in vivo as therapy against ischemic diseases. FUTURE DIRECTIONS This review presents a comprehensive and current account of the existing small-molecule PHDIs and their use in the treatment of ischemic diseases with a focus on the molecular mechanisms of therapeutic action in animal models.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Narasimham L. Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Joshua W. Goldman
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Naveed Hussain
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut
- Division of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
187
|
Dong LQ, Yin H, Wang CX, Hu WF. Effect of the timing of surgery on the fracture healing process and the expression levels of vascular endothelial growth factor and bone morphogenetic protein-2. Exp Ther Med 2014; 8:595-599. [PMID: 25009626 PMCID: PMC4079447 DOI: 10.3892/etm.2014.1735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/25/2014] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to observe the effect of varying the timing of surgery on the fracture healing process and the expression levels of vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)-2 in rats. A total of 192 rats underwent closed femur fracture modelling. The rats underwent open reduction and internal fixation surgery 1, 3, 5, 7, 11 and 14 days subsequent to the fracture occurring. Immunohistochemical staining and analysis of the VEGF and BMP-2 expression levels were simultaneously conducted on bone from the fracture site of the rats on various days. The VEGF and BMP-2 expression levels at the fracture sites were higher and were maintained for a longer period of time in the 7- and 11-day surgery groups than in the other surgery groups and the rats that did not undergo surgery. The 5-day surgery group demonstrated a greater intensity in BMP-2 expression compared with the remaining surgery groups; however, no significant differences were identified between 1-day surgery and non surgery groups. In the 3-day surgery group, the expression levels VEGF and BMP-2 were low at each stage of the fracture-healing process and were lower compared with those observed in the non-surgery group. The timing of the surgical procedures affected the VEGF and BMP-2 expression levels at the fracture sites of the experimental rats and, the optimal time for performing surgery was identified to be within the first two weeks. However, surgery may not be conducive to fracture healing if it is performed within the first few days following fracture.
Collapse
Affiliation(s)
- Li-Qiang Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Hang Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Chang-Xing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Wei-Feng Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
188
|
Wood LM, Paterson Y. Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol 2014; 4:51. [PMID: 24860789 PMCID: PMC4026700 DOI: 10.3389/fcimb.2014.00051] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/04/2014] [Indexed: 12/17/2022] Open
Abstract
For over a century, inactivated or attenuated bacteria have been employed in the clinic as immunotherapies to treat cancer, starting with the Coley's vaccines in the 19th century and leading to the currently approved bacillus Calmette-Guérin vaccine for bladder cancer. While effective, the inflammation induced by these therapies is transient and not designed to induce long-lasting tumor-specific cytolytic T lymphocyte (CTL) responses that have proven so adept at eradicating tumors. Therefore, in order to maintain the benefits of bacteria-induced acute inflammation but gain long-lasting anti-tumor immunity, many groups have constructed recombinant bacteria expressing tumor-associated antigens (TAAs) for the purpose of activating tumor-specific CTLs. One bacterium has proven particularly adept at inducing powerful anti-tumor immunity, Listeria monocytogenes (Lm). Lm is a gram-positive bacterium that selectively infects antigen-presenting cells wherein it is able to efficiently deliver tumor antigens to both the MHC Class I and II antigen presentation pathways for activation of tumor-targeting CTL-mediated immunity. Lm is a versatile bacterial vector as evidenced by its ability to induce therapeutic immunity against a wide-array of TAAs and specifically infect and kill tumor cells directly. It is for these reasons, among others, that Lm-based immunotherapies have delivered impressive therapeutic efficacy in preclinical models of cancer for two decades and are now showing promise clinically. In this review, we will provide an overview of the history leading up to the development of current Lm-based immunotherapies, the advantages and mechanisms of Lm as a therapeutic vaccine vector, the preclinical experience with Lm-based immunotherapies targeting a number of malignancies, and the recent findings from clinical trials along with concluding remarks on the future of Lm-based tumor immunotherapies.
Collapse
Affiliation(s)
- Laurence M Wood
- Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center Abilene, TX, USA
| | - Yvonne Paterson
- Microbiology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA ; University of Pennsylvania School of Nursing Philadelphia, PA, USA
| |
Collapse
|
189
|
Lv WW, Qin SN, Chen CQ, Zhang JJ, Ren TS, Xu YN, Zhao QC. Isoindolone derivative QSN-10c induces leukemic cell apoptosis and suppresses angiogenesis via PI3K/AKT signaling pathway inhibition. Acta Pharmacol Sin 2014; 35:625-35. [PMID: 24786233 DOI: 10.1038/aps.2013.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/19/2013] [Indexed: 12/22/2022]
Abstract
AIM 2-(4,6-Dimethoxy-1,3-dioxoisoindolin-2-yl) ethyl 2-chloroacetate (QSN-10c) is one of isoindolone derivatives with antiproliferative activity against human umbilical vein endothelial cells (HUVECs). The aim of this study was to investigate its antitumor activity in vitro and anti-angiogenic effects in vitro and in vivo. METHODS K562 leukemic cells and HUVECs were used for in vitro studies. Cell viability was examined using MTT assay. Cell apoptosis and mitochondrial transmembrane potential (Δψm) were detected with flow cytometry. Tube formation and migration of HUVECs were studied using two-dimensional Matrigel assay and wound-healing migration assay, respectively. VEGF levels were analyzed with RT-PCR and Western blotting. A zebrafish embryo model was used for in vivo anti-angiogenic studies. The molecular mechanisms for apoptosis in K562 cells and antiangiogenesis were measured with Western blotting. RESULTS In antitumor activity studies, QSN-10c suppressed the viability of K562 cells and induced apoptosis in dose- and time-dependent manners. Furthermore, QSN-10c dose-dependently decreased the Δψm in K562 cells, increased the release of cytochrome c and the level of Bax, and decreased the level of Bcl-2, suggesting that QSN-10c-induced apoptosis of K562 cells was mediated via the mitochondrial apoptotic pathway. In anti-angiogenic activity studies, QSN-10c suppressed the viability of HUVECs and induced apoptosis in dose dependent manners. QSN-10c treatment did not alter the Δψm in HUVECs, but dose-dependently inhibited the expression of VEGF, inhibited the tube formation and cell migration in vitro, and significantly suppressed the number of ISVs in zebrafish embryos in vivo. Furthermore, QSN-10c dose-dependently suppressed the phosphorylation of AKT and GSK3β in both HUVECs and K562 cells. CONCLUSION QSN-10c is a novel antitumor compound that exerts both antitumor and anti-angiogenic effects via inhibiting the PI3K/AKT/GSK3β signaling pathway.
Collapse
|
190
|
Hazama S, Nakamura Y, Tanaka H, Hirakawa K, Tahara K, Shimizu R, Ozasa H, Etoh R, Sugiura F, Okuno K, Furuya T, Nishimura T, Sakata K, Yoshimatsu K, Takenouchi H, Tsunedomi R, Inoue Y, Kanekiyo S, Shindo Y, Suzuki N, Yoshino S, Shinozaki H, Kamiya A, Furukawa H, Yamanaka T, Fujita T, Kawakami Y, Oka M. A phase ΙI study of five peptides combination with oxaliplatin-based chemotherapy as a first-line therapy for advanced colorectal cancer (FXV study). J Transl Med 2014; 12:108. [PMID: 24884643 PMCID: PMC4021539 DOI: 10.1186/1479-5876-12-108] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously conducted a phase I trial for advanced colorectal cancer (CRC) using five HLA-A*2402-restricted peptides, three derived from oncoantigens and two from vascular endothelial growth factor (VEGF) receptors, and confirmed safety and immunological responses. To evaluate clinical benefits of cancer vaccination treatment, we conducted a phase II trial using the same peptides in combination with oxaliplatin-based chemotherapy as a first-line therapy. METHODS The primary objective of the study was the response rates (RR). Progression free survival (PFS), overall survival (OS), and immunological parameters were evaluated as secondary objective. The planned sample size was more than 40 patients for both HLA2402-matched and -unmatched groups. All patients received a cocktail of five peptides (3 mg each) mixed with 1.5 ml of IFA which was subcutaneously administered weekly for the first 12 weeks followed by biweekly administration. Presence or absence of the HLA-A*2402 genotype were used for classification of patients into two groups. RESULTS Between February 2009 and November 2012, ninety-six chemotherapy naïve CRC patients were enrolled under the masking of their HLA-A status. Ninety-three patients received mFOLFOX6 and three received XELOX. Bevacizumab was added in five patients. RR was 62.0% and 60.9% in the HLA-A*2402-matched and -unmatched groups, respectively (p=0.910). The median OS was 20.7 months in the HLA-A*2402-matched group and 24.0 months in the unmatched group (log-rank, p=0.489). In subgroup with a neutrophil/lymphocyte ratio (NLR) of <3.0, patients in the HLA-matched group did not survive significantly longer than those in the unmatched group (log-rank, p=0.289) but showed a delayed response. CONCLUSIONS Although no significance was observed for planned statistical efficacy endpoints, a delayed response was observed in subgroup with a NLR of <3.0. Biomarkers such as NLR might be useful for selecting patients with a better treatment outcome by the vaccination. TRIAL REGISTRATION Trial registration: UMIN000001791.
Collapse
Affiliation(s)
- Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yusuke Nakamura
- Department of Medicine and Surgery, The University of Chicago, Chicago, IL, USA
| | - Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ko Tahara
- Department of Surgery, Kure-Kyosai Hospital, Kure, Japan
| | - Ryoichi Shimizu
- Department of Surgery, Ogori Daiichi General Hospital, Yamaguchi, Japan
| | - Hiroaki Ozasa
- Department of Surgery, Ogori Daiichi General Hospital, Yamaguchi, Japan
| | - Ryuichi Etoh
- Department of Surgery, Ogori Daiichi General Hospital, Yamaguchi, Japan
| | - Fumiaki Sugiura
- Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kiyotaka Okuno
- Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takumi Furuya
- Department of Surgery, Kanmon-Medical Center, Shimonoseki, Japan
| | - Taku Nishimura
- Department of Surgery, Shimonoseki-Kosei Hospital, Shimonoseki, Japan
| | - Koichiro Sakata
- Department of Surgery, Shimonoseki-Kosei Hospital, Shimonoseki, Japan
| | | | - Hiroko Takenouchi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryouichi Tsunedomi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuka Inoue
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinsuke Kanekiyo
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoshitaro Shindo
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Nobuaki Suzuki
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigefumi Yoshino
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Akira Kamiya
- Department of Pharmacy, Yamaguchi University Hospital, Ube, Japan
| | | | | | - Tomonobu Fujita
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masaaki Oka
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
191
|
Mechanisms controlling the effects of bevacizumab (avastin) on the inhibition of early but not late formed corneal neovascularization. PLoS One 2014; 9:e94205. [PMID: 24714670 PMCID: PMC3979754 DOI: 10.1371/journal.pone.0094205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 03/13/2014] [Indexed: 11/29/2022] Open
Abstract
Purpose To evaluate the effects and underlying mechanisms of early and late subconjunctival injection of bevacizumab on the inhibition of corneal neovascularization (NV). Methods Corneal NV was induced by closed eye contact lens wear followed by a silk suture tarsorrhaphy in rabbits. Weekly subconjunctival injections of bevacizumab (5.0 mg) for 1 month were started immediately (early treatment group) or 1 month after induction of corneal NV with continuous induction (late treatment group). The severity of corneal NV was evaluated. Immunostaining was used to evaluate the intracorneal diffusion of bevacizumab, and the existence of pericytes and smooth muscle cells around the NV. The expression of AM-3K, an anti-macrophage antibody, vascular endothelial growth factor (VEGF) with its receptors (VEGFR1 and VEGFR2), and vascular endothelial apoptosis were also evaluated. Western blot analysis was performed to quantify the expression level of VEGF, VEGFR1 and VEGFR2 on corneal epithelium and stroma in different groups. Results Early treatment with bevacizumab inhibited corneal NV more significantly than late treatment. Intracorneal diffusion of bevacizumab was not different among different groups. Immunostaining showed pericytes and smooth muscle cells around newly formed vessels as early as 2 weeks after induction. Immunostaining and Western blot analysis showed that VEGF, VEGFR1, and VEGFR2 on corneal stroma increased significantly in no treatment groups and late treatment groups, but not in early treatment group. Bevacizumab significantly inhibited macrophage infiltration in the early but not late treatment group. Sporadic vascular endothelial apoptosis was found at 4 weeks in the late but not early treatment group. Conclusions Early but not late injection of bevacizumab inhibited corneal NV. Late injection of bevacizumab did not alter macrophage infiltration, and can't inhibit the expression of VEGF, VEGFR1, and VEGFR2 on corneal vessels. The inhibition of corneal NV in early treatment group does not occur via vascular endothelial apoptosis.
Collapse
|
192
|
Green tea polyphenol decreases the severity of portosystemic collaterals and mesenteric angiogenesis in rats with liver cirrhosis. Clin Sci (Lond) 2014; 126:633-44. [PMID: 24063570 DOI: 10.1042/cs20130215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abnormal angiogenesis in liver cirrhosis often leads to severe complications such as variceal haemorrhage and encephalopathy. Furthermore, splanchnic angiogenesis elevates portal pressure, in which angiogenic factors play pivotal roles. GTP (green tea polyphenol) extracted from Camellia sinensis has anti-angiogenic properties, but the effects on the parameters described above in cirrhosis have not been investigated. The aim of the present study was to determine the effects of GTP in cirrhosis and to investigate the underlying mechanism. Liver cirrhosis was induced in Spraque-Dawley rats by common BDL (bile duct ligation). They randomly received GTP or DW (distilled water, vehicle) for 28 days, then haemodynamic parameters, portosystemic shunting, mesenteric window vascular density, intrahepatic angiogenesis, liver fibrosis, plasma VEGF (vascular endothelial growth factor) concentration, mesenteric angiogenic factor and receptor protein expression, and serum and mesenteric oxidative stress parameters were assessed. Compared with the DW group, GTP significantly decreased portosystemic shunting, liver fibrosis, intrahepatic angiogenesis, mesenteric window vascular density, VEGF concentration and down-regulated the mesenteric HIF (hypoxia-inducible factor)-1α, VEGF and phospho-Akt expression. In conclusion, GTP ameliorates the severity of portosystemic shunting and mesenteric angiogenesis via the suppression of HIF-1α, Akt activation and VEGF. GTP appears to be an appropriate agent in controlling portal hypertension-related complications via anti-angiogenesis.
Collapse
|
193
|
Hazama S, Nakamura Y, Takenouchi H, Suzuki N, Tsunedomi R, Inoue Y, Tokuhisa Y, Iizuka N, Yoshino S, Takeda K, Shinozaki H, Kamiya A, Furukawa H, Oka M. A phase I study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome. J Transl Med 2014; 12:63. [PMID: 24612787 PMCID: PMC4007571 DOI: 10.1186/1479-5876-12-63] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 02/08/2023] Open
Abstract
Background To evaluate the safety of combination vaccine treatment of multiple peptides, phase I clinical trial was conducted for patients with advanced colorectal cancer using five novel HLA-A*2402-restricted peptides, three peptides derived from oncoantigens, ring finger protein 43 (RNF43), 34 kDa-translocase of the outer mitochondrial membrane (TOMM34), and insulin-like growth factor–II mRNA binding protein 3 (KOC1), and the remaining two from angiogenesis factors, vascular endothelial growth factor receptor 1 (VEGFR1) and VEGFR2. Methods Eighteen HLA- A*2402-positive colorectal cancer patients who had failed to standard therapy were enrolled in this study. 0.5 mg, 1.0 mg or 3.0 mg each of the peptides was mixed with incomplete Freund’s adjuvant and then subcutaneously injected at five separated sites once a week. We also examined possible effect of a single site injection of “the cocktail of 5 peptides” on the immunological responses. ELISPOT assay was performed before and after vaccinations in the schedule of every 4 weeks. Results The vaccine treatment using multiple peptides was well tolerated without any severe treatment-associated systemic adverse events. Dose-dependent induction of peptide-specific cytotoxic T lymphocytes was observed. The single injection of “peptides cocktail” did not diminish the immunological responses. Regarding the clinical outcome, one patient achieved complete response and 6 patients revealed stable disease for 4 to 7 months. The median overall survival time (MST) was 13.5 months. Patients, in which we detected induction of cytotoxic T lymphocytes specific to 3 or more peptides, revealed significantly better prognosis (MST; 27.8 months) than those with poorer immune responses (MST; 3.7 months) (p = 0.032). Conclusion Our cancer vaccine treatment using multiple peptides is a promising approach for advanced colorectal cancer with the minimum risk of systemic adverse reactions. Clinical trial registration UMIN-CTR number UMIN000004948.
Collapse
Affiliation(s)
- Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Li Q, Qiao G, Ma J, Li Y. Downregulation of VEGF expression attenuates malignant biological behavior of C6 glioma stem cells. Int J Oncol 2014; 44:1581-8. [PMID: 24627040 DOI: 10.3892/ijo.2014.2331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/14/2014] [Indexed: 11/05/2022] Open
Abstract
Several lines of direct evidence show that gliomas express high levels of vascular endothelial growth factor (VEGF). VEGF can promote the growth of gliomas through angiogenesis. It is believed that gliomas originate in the brain tumor stem cells (BTSCs). However, the direct effect of VEGF on the biological behavior of BTSCs has not been completely elucidated. In this study, we established C6 glioma stem cells (C6GSCs) from the C6 glioma cells. Furthermore, we suppressed the VEGF expression of C6GSCs using lentiviral vector-VEGF shRNA. After transfection, the VEGF expression of C6GSCs was downregulated significantly. The proliferation and invasion capacity of transfected C6GSCs was impaired and the ability of differentiation was enhanced. The data demonstrate that downregulation of VEGF expression attenuates malignant biological behavior of C6GSCs. RNA interference of VEGF expression implies an effective anti-gliomas strategy.
Collapse
Affiliation(s)
- Qingquan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| | - Guanqun Qiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| | - Jun Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| |
Collapse
|
195
|
Pandurangan AK, Dharmalingam P, Sadagopan SKA, Ganapasam S. Luteolin inhibits matrix metalloproteinase 9 and 2 in azoxymethane-induced colon carcinogenesis. Hum Exp Toxicol 2014; 33:1176-85. [PMID: 24532706 DOI: 10.1177/0960327114522502] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present investigation deals with the antimetastatic role of luteolin (LUT) by inhibiting matrix metalloproteinase (MMP)-9 and -2 in azoxymethane (AOM)-induced colon carcinogenesis in Balb/C mice. Animals received AOM at a dosage of 15 mg/kg body weight intraperitoneally once a week for 3 weeks. AOM-induced mice was treated with LUT (1.2 mg of LUT/kg body weight/day orally). After the experimental period, the tumor markers such as γ-glutamyl transferase (GGT), 5' nucleotidase (5'ND), cathepsin-D (Cat-D), and carcinoembroyonic antigen (CEA) were elevated upon induction with AOM. Subsequent treatment with LUT results in the reduction of the tumor markers was recorded. The expressions of MMP-9 and MMP-2 were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence methods. The expressions of MMP-9 and MMP-2 were increased during AOM induction and upon treatment with LUT reduced the expressions. RT-PCR analysis of tissue inhibitor of matrix metalloproteinase (TIMP)-2 was limited during AOM-induced colorectal cancer (CRC). Supplementation of LUT increased the expression of TIMP-2. To conclude, LUT acts as an antimetastatic agent by suppressing MMP-9 and MMP-2 productions and upregulating TIMP-2 expression, thereby suggesting that LUT can be a chemotherapeutic agent against CRC.
Collapse
Affiliation(s)
- A K Pandurangan
- Department of Biochemistry, Cell Biology, University of Madras, Chennai, Tamil Nadu, India
| | - P Dharmalingam
- Department of Biochemistry, Cell Biology, University of Madras, Chennai, Tamil Nadu, India
| | - S K A Sadagopan
- Department of Biochemistry, Cell Biology, University of Madras, Chennai, Tamil Nadu, India
| | - S Ganapasam
- Department of Biochemistry, Cell Biology, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
196
|
Expression and localization of locally produced growth factors regulating lymphangiogenesis during different stages of the estrous cycle in corpus luteum of buffalo (Bubalus bubalis). Theriogenology 2014; 81:428-36. [DOI: 10.1016/j.theriogenology.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/23/2022]
|
197
|
Ma J, Xie SL, Geng YJ, Jin S, Wang GY, Lv GY. In vitro regulation of hepatocellular carcinoma cell viability, apoptosis, invasion, and AEG-1 expression by LY294002. Clin Res Hepatol Gastroenterol 2014; 38:73-80. [PMID: 23910058 DOI: 10.1016/j.clinre.2013.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, and is characterized by advanced clinical stages at diagnosis and very poor prognosis. SUBJECTS AND METHODS This study investigated the effects of PI3K inhibitor, LY294002, on suppression of astrocyte elevated gene-1 (AEG-1) and regulation of HCC cell viability, apoptosis, and invasion in vitro. Cell lines derived from normal liver and HCC were treated with LY294002 and evaluated by RT-PCR, western blot, cell viability, migration, and invasion assays. RESULTS The data showed that AEG-1 mRNA and protein were overexpressed in HCC cells, compared to the normal liver cells. LY294002 treatment of HCC cells significantly reduced tumor cell viability, but promoted apoptosis. Tumor cell migration and invasion assays showed that LY294002 treatment also decreased the capacity of HCC cell migration and invasion. Molecularly, LY294002 treatment down-regulated AEG-1 expression, AKT and GSK3β phosphorylation, and expression of cyclinD1, CDK4, VEGF and Bcl2, but up-regulated Bax and c-Myc expression. CONCLUSION The data from this study demonstrated usefulness of LY294002 for effective control of HCC. Future studies should investigate the effects of LY294002 on HCC cells in vivo before initiating clinical trials in HCC patients.
Collapse
Affiliation(s)
- Jian Ma
- Department of Hepatobillary and Pancreatic Surgery, The First Norman Bethune Hospital of Jilin University, Changchun 130021, China
| | - Shu-Li Xie
- Department of Hepatobillary and Pancreatic Surgery, The First Norman Bethune Hospital of Jilin University, Changchun 130021, China
| | - Ya-Jun Geng
- Department of Hepatobillary and Pancreatic Surgery, The First Norman Bethune Hospital of Jilin University, Changchun 130021, China
| | - Shuo Jin
- Department of Hepatobillary and Pancreatic Surgery, The First Norman Bethune Hospital of Jilin University, Changchun 130021, China
| | - Guang-Yi Wang
- Department of Hepatobillary and Pancreatic Surgery, The First Norman Bethune Hospital of Jilin University, Changchun 130021, China.
| | - Guo-Yue Lv
- Department of Hepatobillary and Pancreatic Surgery, The First Norman Bethune Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
198
|
Morgensztern D, Govindan R. Clinical trials of antiangiogenic therapy in non-small cell lung cancer: focus on bevacizumab and ZD6474. Expert Rev Anticancer Ther 2014; 6:545-51. [PMID: 16613542 DOI: 10.1586/14737140.6.4.545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lung cancer is the leading cause of cancer deaths in the USA. Despite the development of new chemotherapy regimens, the prognosis remains poor. Several studies comparing various platinum-based regimens failed to produce a significant impact in the outcomes for patients with non-small cell lung cancer and this therapeutic modality appears to be reaching a plateau. It has become clear that further advances will require the addition of agents with a different mechanism of action. Bevacizumab is the antiangiogenic agent at the most advanced stage of development in the treatment of cancer. Bevacizumab is synergistic with chemotherapy and usually well tolerated. The addition of bevacizumab to chemotherapy improved survival in patients with metastatic non-small cell lung cancer in a randomized clinical trial. Several small molecule antiangiogenic agents are in development. In this article, currently available data from clinical trials of antiangiogenic compounds in advanced non-small cell lung cancer are reviewed.
Collapse
Affiliation(s)
- Daniel Morgensztern
- Alvin J Siteman Cancer Center at Washington University School of Medicine, Division of Oncology, 4960 Children's Place, St Louis, MO 63110, USA.
| | | |
Collapse
|
199
|
Angiogenesis factors involved in the pathogenesis of colorectal cancer. CURRENT HEALTH SCIENCES JOURNAL 2013; 40:5-11. [PMID: 24791198 PMCID: PMC4006338 DOI: 10.12865/chsj.40.01.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/15/2013] [Indexed: 12/30/2022]
Abstract
Colorectal cancer stands at the top of oncologic pathology in the world, and in the same measure in Romania because is the third most frequent cancer diagnosed in men and women. Colorectal cancer develops as a result of mutations in genes that control proliferation and cell death. It was established that in the development of a tumor there is originally a prevascular phase followed by a phase of tumor angiogenesis. In the future it is necessary to develop new clinical protocols that angiogenesis inhibitors are associated with chemo or radiotherapy, conventional or other methods such as immunotherapy and gene therapy.
Collapse
|
200
|
Barratt S, Medford AR, Millar AB. Vascular endothelial growth factor in acute lung injury and acute respiratory distress syndrome. Respiration 2013; 87:329-342. [PMID: 24356493 DOI: 10.1159/000356034] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/03/2013] [Indexed: 02/05/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of lung injury, characterised by alveolar oedema and vascular permeability, in part due to disruption of the alveolar capillary membrane integrity. Vascular endothelial growth factor (VEGF) was originally identified as a vascular permeability factor and has been implicated in the pathogenesis of acute lung injury/ARDS. This review describes our current knowledge of VEGF biology and summarises the literature investigating the potential role VEGF may play in normal lung maintenance and in the development of lung injury.
Collapse
Affiliation(s)
- S Barratt
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | | | | |
Collapse
|