151
|
Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S791-S806. [DOI: 10.1080/21691401.2018.1513938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance Technique, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - C. Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth Bhavan, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| |
Collapse
|
152
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
153
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
154
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
155
|
Gupta RS. Impact of Genomics on Clarifying the Evolutionary Relationships amongst Mycobacteria: Identification of Molecular Signatures Specific for the Tuberculosis-Complex of Bacteria with Potential Applications for Novel Diagnostics and Therapeutics. High Throughput 2018; 7:ht7040031. [PMID: 30279355 PMCID: PMC6306742 DOI: 10.3390/ht7040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022] Open
Abstract
An alarming increase in tuberculosis (TB) caused by drug-resistant strains of Mycobacterium tuberculosis has created an urgent need for new antituberculosis drugs acting via novel mechanisms. Phylogenomic and comparative genomic analyses reviewed here reveal that the TB causing bacteria comprise a small group of organisms differing from all other mycobacteria in numerous regards. Comprehensive analyses of protein sequences from mycobacterial genomes have identified 63 conserved signature inserts and deletions (indels) (CSIs) in important proteins that are distinctive characteristics of the TB-complex of bacteria. The identified CSIs provide potential means for development of novel diagnostics as well as therapeutics for the TB-complex of bacteria based on four key observations: (i) The CSIs exhibit a high degree of exclusivity towards the TB-complex of bacteria; (ii) Earlier work on CSIs provide evidence that they play important/essential functions in the organisms for which they exhibit specificity; (iii) CSIs are located in surface-exposed loops of the proteins implicated in mediating novel interactions; (iv) Homologs of the CSIs containing proteins, or the CSIs in such homologs, are generally not found in humans. Based on these characteristics, it is hypothesized that the high-throughput virtual screening for compounds binding specifically to the CSIs (or CSI containing regions) and thereby inhibiting the cellular functions of the CSIs could lead to the discovery of a novel class of drugs specifically targeting the TB-complex of organisms.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
156
|
Koch A, Cox H, Mizrahi V. Drug-resistant tuberculosis: challenges and opportunities for diagnosis and treatment. Curr Opin Pharmacol 2018; 42:7-15. [PMID: 29885623 PMCID: PMC6219890 DOI: 10.1016/j.coph.2018.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
With an estimated incidence of 490000 cases in 2016, multidrug resistant tuberculosis (TB), against which key first-line anti-tuberculars are less efficacious, presents major challenges for global health. Poor treatment outcomes coupled with a yawning treatment gap between those in need of second-line therapy and those who receive it, underscore the urgent need for new approaches to tackle the scourge of drug-resistant TB. Against this background, significant progress has been made in understanding the complex biology of TB drug resistance and disease pathogenesis, and in establishing a pipeline for delivering new drugs and drug combinations. In this review, we highlight the challenges of drug-resistant TB and the ways in which new advances could be harnessed to improve treatment outcomes.
Collapse
Affiliation(s)
- Anastasia Koch
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research and Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Helen Cox
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research and Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
157
|
Prasher P, Sharma M. Medicinal chemistry of acridine and its analogues. MEDCHEMCOMM 2018; 9:1589-1618. [PMID: 30429967 PMCID: PMC6195008 DOI: 10.1039/c8md00384j] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023]
Abstract
'Acridine' along with its functional analogue 'Acridone' is the most privileged pharmacophore in medicinal chemistry with diverse applications ranging from DNA intercalators, endonuclease mimics, ratiometric selective ion sensors, and P-glycoprotein inhibitors in countering the multi-drug resistance, enzyme inhibitors, and reversals of neurodegenerative disorders. Their interaction with DNA and ability of selectively identifying numerous biologically useful ions has cemented exploitability of the acridone nucleus in modern day therapeutics. Additionally, most derivatives and salts of acridine are planar, crystalline, and stable displaying a strong fluorescence which, when coupled with their marked bio selectivity and low cytotoxicity, enables the studying and monitoring of several biochemical, metabolic, and pharmacological processes. In this review, a detailed picture covering the important therapeutic aspects of the acridone nucleus and its functional analogues is discussed.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
158
|
Structure-based design of some isonicotinic acid hydrazide analogues as potential antitubercular agents. Bioorg Chem 2018; 80:721-732. [DOI: 10.1016/j.bioorg.2018.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 11/18/2022]
|
159
|
Kataria A, Singh J, Kundu B. Identification and validation of
l
‐asparaginase as a potential metabolic target against
Mycobacterium tuberculosis. J Cell Biochem 2018; 120:143-154. [DOI: 10.1002/jcb.27169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Arti Kataria
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi New Delhi India
| | - Jasdeep Singh
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi New Delhi India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
160
|
Wang A, Huang G, Wang B, Lv K, Wang H, Tao Z, Liu M, Guo H, Lu Y. Design, synthesis and antimycobacterial activity of 3,5-dinitrobenzamide derivatives containing fused ring moieties. Bioorg Med Chem Lett 2018; 28:2945-2948. [PMID: 30006066 DOI: 10.1016/j.bmcl.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023]
Abstract
We report herein the design, synthesis and antimycobacterial activity of 3,5-dinitrobenzamide derivatives containing fused ring moieties. Results reveal that many of the target compounds have considerable in vitro antitubercular activity. Especially, N-((2-(4-fluorophenyl)/N-((2-(3-fluorobenzyl)-1,2,3,4-tetrahydroisoquilin-6-yl)methyl)-3,5-dinitrobenzamides 18a and 20e exhibit potent MIC values of 0.056-0.078 μg/mL against both drug-sensitive Mycobacterium tuberculosis (MTB) H37Rv strain and two clinically isolated multidrug-resistant MTB (MDR-MTB) strains, opening a new direction for further SAR studies.
Collapse
Affiliation(s)
- Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guocheng Huang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Huiyuan Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
161
|
Tanner L, Denti P, Wiesner L, Warner DF. Drug permeation and metabolism in Mycobacterium tuberculosis: Prioritising local exposure as essential criterion in new TB drug development. IUBMB Life 2018; 70:926-937. [PMID: 29934964 PMCID: PMC6129860 DOI: 10.1002/iub.1866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Anti-tuberculosis (TB) drugs possess diverse abilities to penetrate the different host tissues and cell types in which infecting Mycobacterium tuberculosis bacilli are located during active disease. This is important since there is increasing evidence that the respective "lesion-penetrating" properties of the front-line TB drugs appear to correlate well with their specific activity in standard combination therapy. In turn, these observations suggest that rational efforts to discover novel treatment-shortening drugs and drug combinations should incorporate knowledge about the comparative abilities of both existing and experimental anti-TB agents to access bacilli in defined physiological states at different sites of infection, as well as avoid elimination by efflux or inactivation by host or bacterial metabolism. However, while there is a fundamental requirement to understand the mode of action and pharmacological properties of any current or experimental anti-TB agent within the context of the obligate human host, this is complex and, until recently, has been severely limited by the available methodologies and models. Here, we discuss advances in analytical models and technologies which have enabled investigations of drug metabolism and pharmacokinetics (DMPK) for new TB drug development. In particular, we consider the potential to shift the focus of traditional pharmacokinetic-pharmacodynamic analyses away from plasma to a more specific "site of action" drug exposure as an essential criterion for drug development and the design of dosing strategies. Moreover, in summarising approaches to determine DMPK data for the "unit of infection" comprising host macrophage and intracellular bacillus, we evaluate the potential benefits of including these analyses at an early stage in the preclinical drug development algorithm. © 2018 IUBMB Life, 70(9):926-937, 2018.
Collapse
Affiliation(s)
- Lloyd Tanner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Paolo Denti
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Lubbe Wiesner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Digby F. Warner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|
162
|
Synthesis and biological evaluation of dihydroquinoline carboxamide derivatives as anti-tubercular agents. Eur J Med Chem 2018; 157:1-13. [DOI: 10.1016/j.ejmech.2018.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
|
163
|
Identification and characterization of aspartyl-tRNA synthetase inhibitors against Mycobacterium tuberculosis by an integrated whole-cell target-based approach. Sci Rep 2018; 8:12664. [PMID: 30140040 PMCID: PMC6107548 DOI: 10.1038/s41598-018-31157-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has surpassed HIV as the leading cause of death due to an infectious disease worldwide, being responsible for more than 1.5 million deaths in low-income countries. In response to a pandemic threat by drug resistant strains, the tuberculosis research community is searching for new chemical entities with novel mechanisms of action to avoid drug resistance and shorten treatment regimens using combinatorial chemotherapy. Herein, we have identified several novel chemical scaffolds, GSK97C (spiro-oxazolidin-2-one), GSK93A (2-amino-1,3-thiazole, GSK85A and GSK92A (enamides), which target M. tuberculosis aspartyl-tRNA synthetase (Mt-AspRS), an essential component of the protein synthesis machinery of tuberculosis, using a whole-cell target-based screening strategy against a genetically modified Mycobacterium bovis BCG strain. We also provide further evidence of protein inhibition and inhibitor profiling through a classical aminoacylation reaction and a tRNA-independent assay, respectively. Altogether, our results have identified a number of hit new molecules with novel mechanism of action for further development through medicinal chemistry as hits and leads.
Collapse
|
164
|
Synthesis of carbohydrazides and carboxamides as anti-tubercular agents. Eur J Med Chem 2018; 156:871-884. [DOI: 10.1016/j.ejmech.2018.07.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
|
165
|
Zhang NN, Liu ZY, Liang J, Tang YX, Qian L, Gao YM, Zhang TY, Yan M. Design, synthesis, and biological evaluation of m-amidophenol derivatives as a new class of antitubercular agents. MEDCHEMCOMM 2018; 9:1293-1304. [PMID: 30151083 PMCID: PMC6096355 DOI: 10.1039/c8md00212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
A series of m-amidophenol derivatives (6a-6l, 7a-7q, 9a, 9b, 12a-12c, 14 and 15) were designed and synthesized. Their antitubercular activities were evaluated in vitro against M. tuberculosis strains H37Ra and H37Rv and clinically isolated multidrug-resistant M. tuberculosis strains. Ten compounds displayed minimal inhibitory concentrations (MICs) against M. tuberculosis H37Ra below 2.5 μg mL-1 and 6g was the most active compound (MIC = 0.625 μg mL-1). Compounds 6g and 7a also showed potent inhibitory activity against M. tuberculosis H37Rv (MIC = 0.39 μg mL-1) and several clinically isolated multidrug-resistant M. tuberculosis strains (MIC = 0.39-3.125 μg mL-1). The compounds did not show inhibitory activity against normal Gram-positive and Gram-negative bacteria. They exhibited low cytotoxicity against HepG2 and RAW264.7 cell lines. The results demonstrated m-amidophenol as an attractive scaffold for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Niu-Niu Zhang
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| | - Zhi-Yong Liu
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Jie Liang
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| | - Yun-Xiang Tang
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
- Institute of Physical Science and Information Technology , Anhui University , Hefei , China
| | - Lu Qian
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| | - Ya-Min Gao
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Tian-Yu Zhang
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Ming Yan
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| |
Collapse
|
166
|
Chen H, Nyantakyi SA, Li M, Gopal P, Aziz DB, Yang T, Moreira W, Gengenbacher M, Dick T, Go ML. The Mycobacterial Membrane: A Novel Target Space for Anti-tubercular Drugs. Front Microbiol 2018; 9:1627. [PMID: 30072978 PMCID: PMC6060259 DOI: 10.3389/fmicb.2018.01627] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/28/2018] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis (TB) poses an enduring threat to global health. Consistently ranked among the top 10 causes of death worldwide since 2000, TB has now exceeded HIV-AIDS in terms of deaths inflicted by a single infectious agent. In spite of recently declining TB incident rates, these decreases have been incremental and fall short of threshold levels required to end the global TB epidemic. As in other infectious diseases, the emergence of resistant organisms poses a major impediment to effective TB control. Resistance in mycobacteria may evolve from genetic mutations in target genes which are transmitted during cell multiplication from mother cells to their progeny. A more insidious form of resistance involves sub-populations of non-growing (“dormant”) mycobacterial persisters. Quiescent and genetically identical to their susceptible counterparts, persisters exhibit non-inheritable drug tolerance. Their prevalence account for the protracted treatment period that is required for the treatment of TB. In order to improve the efficacy of treatment against mycobacterial persisters and drug-resistant organisms, novel antitubercular agents are urgently required. Selective targeting of bacterial membranes has been proposed as a viable therapeutic strategy against infectious diseases. The underpinning rationale is that a functionally intact cell membrane is vital for both replicating and dormant bacteria. Perturbing the membrane would thus disrupt a multitude of embedded targets with lethal pleiotropic consequences, besides limiting the emergence of resistant strains. There is growing interest in exploring small molecules as selective disruptors of the mycobacterial membrane. In this review, we examined the recent literature on different chemotypes with membrane perturbing properties, the mechanisms by which they induce membrane disruption and their potential as anti-TB agents. Cationic amphiphilicity is a signature motif that is required of membrane targeting agents but adherence to this broad physical requirement does not necessarily translate to conformity in terms of biological outcomes. Nor does it ensure selective targeting of mycobacterial membranes. These are unresolved issues that require further investigation.
Collapse
Affiliation(s)
- Huan Chen
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Samuel A Nyantakyi
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ming Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pooja Gopal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dinah B Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tianming Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wilfried Moreira
- Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Singapore, Singapore, Singapore
| | - Martin Gengenbacher
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Thomas Dick
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Mei L Go
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
167
|
Lee BS, Pethe K. Therapeutic potential of promiscuous targets in Mycobacterium tuberculosis. Curr Opin Pharmacol 2018; 42:22-26. [PMID: 30015177 DOI: 10.1016/j.coph.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
In the field of tuberculosis drug development, the term 'promiscuous' was coined to collectively describe targets that repeatedly show up in whole-cell screenings. With the current climate leaning towards the exclusion of these targets in future drug screens, this review discusses and clarifies misconceptions surrounding this classification, the prospects of developing compounds targeting promiscuous targets, and their potential impact on tuberculosis drug development. The dominance of these targets in cell-based screens reflect not only bias introduced by experimental setup, but also some of the pathogen's greatest vulnerabilities. Coupled with favourable predictions of their in vivo efficacies and synergism with other TB drugs, these targets open opportunities to be explored for the development of rational drug combination for tuberculosis.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore.
| |
Collapse
|
168
|
Li L, Lv K, Yang Y, Sun J, Tao Z, Wang A, Wang B, Wang H, Geng Y, Liu M, Guo H, Lu Y. Identification of N-Benzyl 3,5-Dinitrobenzamides Derived from PBTZ169 as Antitubercular Agents. ACS Med Chem Lett 2018; 9:741-745. [PMID: 30034611 DOI: 10.1021/acsmedchemlett.8b00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
A series of benzamide scaffolds were designed and synthesized by the thiazinone ring opening of PBTZ169, and N-benzyl 3,5-dinitrobenzamides were finally identified as anti-TB agents in this work. 3,5-Dinitrobenzamides D5, 6, 7, and 12 exhibit excellent in vitro activity against the drug susceptive Mycobacterium tuberculosis H37Rv strain (MIC: 0.0625 μg/mL) and two clinically isolated multidrug-resistant strains (MIC < 0.016-0.125 μg/mL). Compound D6 displays acceptable safety and better pharmacokinetic profiles than PBTZ169, suggesting its promising potential to be a lead compound for future antitubercular drug discovery.
Collapse
Affiliation(s)
- Linhu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Limin Chemical Co., Ltd., Xinyi 221422, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yupeng Yang
- Department of Stomatology, Hebei General Hospital, Shijiazhuang 050051, China
| | | | - Zeyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongjian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunhe Geng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huiyuan Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
169
|
Synthesis and evaluation of nitrofuranyl methyl N-heterocycles derivatives as novel antitubercular agents. Future Med Chem 2018; 10:2059-2068. [PMID: 29992836 DOI: 10.4155/fmc-2018-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM Tuberculosis (TB) is one of the world's deadliest chronic infectious diseases caused mainly by Mycobacterium tuberculosis (MTB). Many nitrofuran derivatives were found to possess promising anti-TB potential and have been widely studied. In our previous study, we discovered diazaspiro-nitrofuran IMB1701-1702 as potent anti-TB agents. METHODOLOGY We report herein a series of nitrofuranyl methyl N-heterocycles based on IMB1701-1702. Results reveal that most of them show potent activity (minimum inhibitory concentration: <0.016-0.062 μg/ml) against MTB H37Rv strain. Especially, compound 7h without cytotoxicity, has the same minimum inhibitory concentration value of ≤0.016 μg/ml as PBTZ169 against both MTB H37Rv strain and two clinically isolated multidrug-resistant MTB strains. CONCLUSION The newly designed compound 7h might be a promising anti-TB candidate.
Collapse
|
170
|
Machado D, Girardini M, Viveiros M, Pieroni M. Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis. Front Microbiol 2018; 9:1367. [PMID: 30018597 PMCID: PMC6037898 DOI: 10.3389/fmicb.2018.01367] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 01/28/2023] Open
Abstract
The emergence of multi- and extensively drug resistant tuberculosis worldwide poses a great threat to human health and highlight the need to discover and develop new, effective and inexpensive antituberculosis agents. High-throughput screening assays against well-validated drug targets and structure based drug design have been employed to discover new lead compounds. However, the great majority fail to demonstrate any antimycobacterial activity when tested against Mycobacterium tuberculosis in whole-cell screening assays. This is mainly due to some of the intrinsic properties of the bacilli, such as the extremely low permeability of its cell wall, slow growth, drug resistance, drug tolerance, and persistence. In this sense, understanding the pathways involved in M. tuberculosis drug tolerance, persistence, and pathogenesis, may reveal new approaches for drug development. Moreover, the need for compounds presenting a novel mode of action is of utmost importance due to the emergence of resistance not only to the currently used antituberculosis agents, but also to those in the pipeline. Cheminformatics studies have shown that drugs endowed with antituberculosis activity have the peculiarity of being more lipophilic than many other antibacterials, likely because this leads to improved cell penetration through the extremely waxy mycobacterial cell wall. Moreover, the interaction of the lipophilic moiety with the membrane alters its stability and functional integrity due to the disruption of the proton motive force, resulting in cell death. When a ligand-based medicinal chemistry campaign is ongoing, it is always difficult to predict whether a chemical modification or a functional group would be suitable for improving the activity. Nevertheless, in the “instruction manual” of medicinal chemists, certain functional groups or certain physicochemical characteristics (i.e., high lipophilicity) are considered red flags to look out for in order to safeguard drug-likeness and avoid attritions in the drug discovery process. In this review, we describe how antituberculosis compounds challenge established rules such as the Lipinski's “rule of five” and how medicinal chemistry for antituberculosis compounds must be thought beyond such dogmatic schemes.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Miriam Girardini
- P4T Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Marco Pieroni
- P4T Group, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
171
|
De Rycker M, Baragaña B, Duce SL, Gilbert IH. Challenges and recent progress in drug discovery for tropical diseases. Nature 2018; 559:498-506. [PMID: 30046073 PMCID: PMC6129172 DOI: 10.1038/s41586-018-0327-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Infectious tropical diseases have a huge effect in terms of mortality and morbidity, and impose a heavy economic burden on affected countries. These diseases predominantly affect the world's poorest people. Currently available drugs are inadequate for the majority of these diseases, and there is an urgent need for new treatments. This Review discusses some of the challenges involved in developing new drugs to treat these diseases and highlights recent progress. While there have been notable successes, there is still a long way to go.
Collapse
Affiliation(s)
- Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Beatriz Baragaña
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Suzanne L Duce
- Medicines Monitoring Unit (MEMO), Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
172
|
Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother 2018; 105:1353-1359. [PMID: 30021373 DOI: 10.1016/j.biopha.2018.06.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Drug resistance is still the major threat to global tuberculosis (TB) control, and drug-resistant (DR) Mycobacterium tuberculosis (M. tuberculosis) strains have become the main challenge worldwide. Currently used antibiotics for treatment of DR-TB are often poorly tolerated and not sufficiently effective. Since the therapeutic options are still limited, the main strategy for treatment of DR-TB is to repurpose existing anti-mycobacterial agents. Clofazimine (CFZ) is one such drug that has recently attracted interest against DR-TB. CFZ is a hydrophobic riminophenazine that was initially synthesized as an anti-TB antibiotic. Although the mechanisms of action of CFZ are not yet entirely understood, it has been suggested that outer membrane is its primary action site, and the respiratory chain and ion transporters are the putative targets. In this review, we will discuss the anti-mycobacterial properties of CFZ, and provide new insights into the clinical use of this drug.
Collapse
|
173
|
HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter. Antimicrob Agents Chemother 2018; 62:AAC.02459-17. [PMID: 29661875 DOI: 10.1128/aac.02459-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is a deadly disease that requires a long course of treatment. The emergence of drug-resistant strains has driven efforts to discover new small molecules that can kill the bacterium. Here, we report characterizations of the compound HC2091, which kills M. tuberculosis in a time- and dose-dependent manner in vitro and inhibits M. tuberculosis growth in macrophages. Whole-genome sequencing of spontaneous HC2091-resistant mutants identified single-nucleotide variants in the mmpL3 mycolic acid transporter gene. HC2091-resistant mutants do not exhibit cross-resistance with the well-characterized Mycobacterium membrane protein large 3 (MmpL3) inhibitor SQ109, suggesting a distinct mechanism of interaction with MmpL3. Additionally, HC2091 does not modulate bacterial membrane potential or kill nonreplicating M. tuberculosis, thus acting differently from other known MmpL3 inhibitors. RNA sequencing (RNA-seq) transcriptional profiling and lipid profiling of M. tuberculosis treated with HC2091 or SQ109 show that the two compounds target a similar pathway. HC2091 has a chemical structure dissimilar to those of previously described MmpL3 inhibitors, supporting the notion that HC2091 is a new class of MmpL3 inhibitor.
Collapse
|
174
|
Ngo HX, Green KD, Gajadeera CS, Willby MJ, Holbrook SYL, Hou C, Garzan A, Mayhoub AS, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Potent 1,2,4-Triazino[5,6 b]indole-3-thioether Inhibitors of the Kanamycin Resistance Enzyme Eis from Mycobacterium tuberculosis. ACS Infect Dis 2018; 4:1030-1040. [PMID: 29601176 DOI: 10.1021/acsinfecdis.8b00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A common cause of resistance to kanamycin (KAN) in tuberculosis is overexpression of the enhanced intracellular survival (Eis) protein. Eis is an acetyltransferase that multiacetylates KAN and other aminoglycosides, rendering them unable to bind the bacterial ribosome. By high-throughput screening, a series of substituted 1,2,4-triazino[5,6 b]indole-3-thioether molecules were identified as effective Eis inhibitors. Herein, we purchased 17 and synthesized 22 new compounds, evaluated their potency, and characterized their steady-state kinetics. Four inhibitors were found not only to inhibit Eis in vitro, but also to act as adjuvants of KAN and partially restore KAN sensitivity in a Mycobacterium tuberculosis KAN-resistant strain in which Eis is upregulated. A crystal structure of Eis in complex with a potent inhibitor and CoA shows that the inhibitors bind in the aminoglycoside binding site snugly inserted into a hydrophobic cavity. These inhibitors will undergo preclinical development as novel KAN adjuvant therapies to treat KAN-resistant tuberculosis.
Collapse
Affiliation(s)
- Huy X. Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Keith D. Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Chathurada S. Gajadeera
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Melisa J. Willby
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Selina Y. L. Holbrook
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Abdelrahman S. Mayhoub
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Oleg. V. Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
175
|
Gruzdev DA, Musiyak VV, Levit GL, Krasnov VP, Charushin VN. Purine derivatives with antituberculosis activity. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes the data published over the last 10 – 15 years concerning the key groups of purine derivatives with antituberculosis activity. The structures of purines containing heteroatoms (S, O, N), fragments of heterocycles, amino acids and peptides, in the 6-position, as well as of purine nucleosides are presented. The possible targets for the action of such compounds and structure – activity relationship are discussed. Particular attention is paid to the most active compounds, which are of considerable interest as a basis for the development of efficient antituberculosis drugs.
The bibliography includes 99 references.
Collapse
|
176
|
Design, synthesis and antitubercular evaluation of benzothiazinones containing a piperidine moiety. Eur J Med Chem 2018; 151:1-8. [DOI: 10.1016/j.ejmech.2018.03.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/27/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
|
177
|
Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:AAC.01696-17. [PMID: 29483110 DOI: 10.1128/aac.01696-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/08/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis and the fast-growing species Mycobacterium abscessus are two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistant M. tuberculosis strains and the high level of intrinsic resistance of M. abscessus call for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), against M. abscessus and M. tuberculosis We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicating in vitro conditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverse M. tuberculosis and M. abscessus clinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target the M. tuberculosis gyrase. In vitro enzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity against M. tuberculosis and M. abscessus that act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.
Collapse
|
178
|
Ajmal MR, Almutairi F, Zaidi N, Alam P, Siddiqi MK, Khan MV, Zaman M, Ishtikhar M, Khan RH. Biophysical insights into the interaction of clofazimine with human alpha 1-acid glycoprotein: a multitechnique approach. J Biomol Struct Dyn 2018; 37:1390-1401. [DOI: 10.1080/07391102.2018.1461686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Fahad Almutairi
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Ishtikhar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
179
|
Halicki PCB, Ferreira LA, De Moura KCG, Carneiro PF, Del Rio KP, Carvalho TDSC, Pinto MDCFR, da Silva PEA, Ramos DF. Naphthoquinone Derivatives as Scaffold to Develop New Drugs for Tuberculosis Treatment. Front Microbiol 2018; 9:673. [PMID: 29686657 PMCID: PMC5900025 DOI: 10.3389/fmicb.2018.00673] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Despite being a curable disease, tuberculosis (TB) remains a public health problem worldwide mainly due to lengthy treatment, as well as its toxic effects, TB/HIV co-infection and the emergence of resistant Mycobacterium tuberculosis strains. These barriers reinforcing the need for development of new antimicrobial agents, that ideally should reduce the time of treatment and be active against susceptible and resistant strains. Quinones are compounds found in natural sources and among them, the naphthoquinones show antifungal, antiparasitic, and antimycobacterial activity. Thus, we evaluated the potential antimycobacterial activity of six 1,4-naphthoquinones derivatives. We determined the minimum inhibitory concentration (MIC) of the compounds against three M. tuberculosis strains: a pan-susceptible H37Rv (ATCC 27294); one mono-resistant to isoniazid (ATCC 35822); and one mono-resistant to rifampicin (ATCC 35838); the cytotoxicity in the J774A.1 (ATCC TIB-67) macrophage lineage; performed in silico analysis about absorption, distribution, metabolism, and excretion (ADME) and docking sites. All evaluated naphthoquinones were active against the three strains with MIC between 206.6 and 12.5 μM, and the compounds with lower MIC values have also showed low cytotoxicity. Moreover, two naphthoquinones derivatives 5 and 6 probably do not exhibit cross resistance with isoniazid and rifampicin, respectively, and regarding ADME analysis, no compound violated the Lipinski's rule-of-five. Considering the set of findings in this study, we conclude that these naphthoquinones could be promising scaffolds to develop new therapeutic strategies to TB.
Collapse
Affiliation(s)
- Priscila C. B. Halicki
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Laís A. Ferreira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Kelly C. G. De Moura
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula F. Carneiro
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina P. Del Rio
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiane dos S. C. Carvalho
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria do C. F. R. Pinto
- Núcleo de Pesquisas em Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro E. A. da Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Daniela F. Ramos
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
180
|
DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1019:247-262. [PMID: 29116639 DOI: 10.1007/978-3-319-64371-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.
Collapse
|
181
|
Jiang HW, Czajkowsky DM, Wang T, Wang XD, Wang JB, Zhang HN, Liu CX, Wu FL, He X, Xu ZW, Chen H, Guo SJ, Li Y, Bi LJ, Deng JY, Xie J, Pei JF, Zhang XE, Tao SC. Identification of Serine 119 as an Effective Inhibitor Binding Site of M. tuberculosis Ubiquitin-like Protein Ligase PafA Using Purified Proteins and M. smegmatis. EBioMedicine 2018; 30:225-236. [PMID: 29622495 PMCID: PMC5952411 DOI: 10.1016/j.ebiom.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Owing to the spread of multidrug resistance (MDR) and extensive drug resistance (XDR), there is a pressing need to identify potential targets for the development of more-effective anti-M. tuberculosis (Mtb) drugs. PafA, as the sole Prokaryotic Ubiquitin-like Protein ligase in the Pup-proteasome System (PPS) of Mtb, is an attractive drug target. Here, we show that the activity of purified Mtb PafA is significantly inhibited upon the association of AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride) to PafA residue Serine 119 (S119). Mutation of S119 to amino acids that resemble AEBSF has similar inhibitory effects on the activity of purified Mtb PafA. Structural analysis reveals that although S119 is distant from the PafA catalytic site, it is located at a critical position in the groove where PafA binds the C-terminal region of Pup. Phenotypic studies demonstrate that S119 plays critical roles in the function of Mtb PafA when tested in M. smegmatis. Our study suggests that targeting S119 is a promising direction for developing an inhibitor of M. tuberculosis PafA. The pupylation activity of purified M. tuberculosis PafA is almost completely inhibited upon the association of AEBSF. The AEBSF binding site, Ser 119 plays critical roles in both the pupylation and depupylation activity of purified M. tuberculosis PafA. Disruption of purified M. tuberculosis PafA Ser 119 causes a dramatic reduction in Pup binding.
Drug-resistant tuberculosis is a major challenge worldwide, there is an urgent need to identify potential drug targets for developing more effective anti-tubercular drugs. M. tuberculosis ubiquitin-like protein ligase PafA is an attractive drug target, however, effective PafA inhibitors have not yet been identified. Here, we show that interruption of a single amino acid, S119, causes dramatic loss of PafA activity. S119 could thus serve as a promising precise target for developing M. tuberculosis PafA inhibitors.
Collapse
Affiliation(s)
- He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel M Czajkowsky
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai 200240, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; SZCDC-SUSTech Joint Key Laboratory for Tropical Diseases, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xu-De Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia-Bin Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng-Xi Liu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Lin Wu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang He
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Wei Xu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Jun Bi
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; TB Healthcare Biotechnology Co., Ltd., Foshan, Guangdong 528000, China; School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Jiao-Yu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian-Feng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
182
|
Fullerene quinazolinone conjugates targeting Mycobacterium tuberculosis: a combined molecular docking, QSAR, and ONIOM approach. Struct Chem 2018. [DOI: 10.1007/s11224-018-1100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
183
|
The Discovery of an Iridium(III) Dimer Complex as a Potent Antibacterial Agent against Non-Replicating Mycobacterium smegmatis. Polymers (Basel) 2018; 10:polym10030297. [PMID: 30966332 PMCID: PMC6414957 DOI: 10.3390/polym10030297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Novel agents are urgently needed to rapidly kill drug-resistant Mycobacterium tuberculosis. Noble metal complexes, particularly polypyridyl iridium complexes serving as therapeutic agents, have attracted considerable interest recently, due to their significant cytotoxic or antimicrobial activities. Here, we reported an polypyridyl iridium dimer complex [Ir(ppy)2Cl]2 (3), with ppy = phenylpyridine, which was found to be active against both exponential growing and non-replicating M. smegmatis, with minimum inhibitory concentration values of 2 μg/mL, and exhibited rapid bactericidal kinetics, killing pathogens within 30–60 min. Moreover, 3 was demonstrated to generate a large amount of reactive oxygen species and to be effective in drug-resistant strains. Taken together, the selectively active iridium(III) dimer complex showed promise for use as a novel drug candidate for the treatment of M. tuberculosis infection.
Collapse
|
184
|
Wang A, Yang Y, Jun Y, Wang B, Lv K, Liu M, Guo H, Lu Y. Synthesis, evaluation and CoMFA/CoMSIA study of nitrofuranyl methyl N-heterocycles as novel antitubercular agents. Bioorg Med Chem 2018; 26:2073-2084. [PMID: 29551372 DOI: 10.1016/j.bmc.2018.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
Abstract
A series of novel nitrofuranyl methyl N-heterocycles based on the structure of IIIM-MCD-211 were designed and synthesized. Compounds 6d, 8b and 12a show excellent activity against MTB H37Rv strain (MIC: 0.031-0.062 μg/mL) roughly comparable to INH and IIIM-MCD-211. In addition, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The developed CoMFA and CoMSIA models display high external predictability (r2pred of 0.954 and 0.935, respectively) and good statistical robustness. More importantly, the newly designed compounds 16a and 16b (MIC: <0.016 μg/mL) based on the two models, as expected, were found to be more active than 12a and IIIM-MCD-21. Design and synthesis of more potent nitrofuranyl methyl N-heterocycles as anti-TB agents are currently in progress.
Collapse
Affiliation(s)
- Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yangsheng Jun
- Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of parmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Huiyuan Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of parmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
185
|
Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99:735-745. [DOI: 10.1016/j.biopha.2018.01.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
|
186
|
Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D'Ambrosio L, Migliori GB. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology 2018; 24:86-98. [PMID: 29487031 DOI: 10.1016/j.rppnen.2017.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/25/2017] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) is the ninth cause of global death, more than any other infectious disease. With growing drug resistance the epidemic remains and will require significant attention and investment for the elimination of this disease to occur. With susceptible TB treatment not changing over the last four decades and the advent of drug resistance, new drugs and regimens are required. Recently, through greater collaboration and research networks some progress with significant advances has taken place, not withstanding the comparatively low amount of resources invested. Of late the availability of the new drugs bedaquiline, delamanid and repurposed drugs linezolid, clofazimine and carbapenems are being used more frequently in drug-resistant TB regimens. The WHO shorter multidrug-resistant tuberculosis regimen promises to reach more patients and treat them more quickly and more cheaply. With this new enthusiasm and hope we this review gives an update on the new drugs and perspectives for the treatment of drug-susceptible and drug-resistant tuberculosis.
Collapse
Affiliation(s)
- S Tiberi
- Barts Health NHS Trust, Royal London Hospital, Division of Infection, 80 Newark Street, E1 2ES London, United Kingdom; Blizard Institute, Barts and the London School of Medicine and Dentistry, Centre for Primary Care and Public Health, E1 2AB London, United Kingdom
| | - M Muñoz-Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias - INER - Ciudad de México, Mexico
| | - R Duarte
- National Reference Centre for MDR-TB, Hospital Centre Vila Nova de Gaia, Department of Pneumology, Public Health Science and Medical Education Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - M Dalcolmo
- Hélio Fraga Reference Center, Fiocruz/MoH, Rio de Janeiro, Brazil
| | - L D'Ambrosio
- Public Health Consulting Group, Lugano 6900, Switzerland; World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, IRCCS (Istituto di Ricovero e Cura a Carattere Sceintifico), Via Roncaccio 16, Tradate 21049, Italy
| | - G-B Migliori
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, IRCCS (Istituto di Ricovero e Cura a Carattere Sceintifico), Via Roncaccio 16, Tradate 21049, Italy.
| |
Collapse
|
187
|
Evans JC, Mizrahi V. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Curr Opin Microbiol 2018; 45:39-46. [PMID: 29482115 DOI: 10.1016/j.mib.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Claiming close to two million lives each year, tuberculosis is now the leading cause of death from an infectious disease. The rise in number of Mycobacterium tuberculosis (Mtb) strains resistant to existing TB drugs has underscored the urgent need to develop new antimycobacterials with novel mechanisms of action. To meet this need, a drug pipeline has been established that is populated with new and repurposed drugs. Recent advances in identifying molecules with inhibitory activity against Mtb under conditions modelled on those encountered during infection, and in elucidating their mechanisms of action, have primed the pipeline with promising drug/target couples, hit compounds and new targets. In this review, we highlight recent advances and emerging areas of opportunity in this field.
Collapse
Affiliation(s)
- Joanna C Evans
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| |
Collapse
|
188
|
Rehberg N, Akone HS, Ioerger TR, Erlenkamp G, Daletos G, Gohlke H, Proksch P, Kalscheuer R. Chlorflavonin Targets Acetohydroxyacid Synthase Catalytic Subunit IlvB1 for Synergistic Killing of Mycobacterium tuberculosis. ACS Infect Dis 2018; 4:123-134. [PMID: 29108416 DOI: 10.1021/acsinfecdis.7b00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flavonoid natural compound chlorflavonin was isolated from the endophytic fungus Mucor irregularis, which was obtained from the Cameroonian medicinal plant Moringa stenopetala. Chlorflavonin exhibited strong growth inhibitory activity in vitro against Mycobacterium tuberculosis (MIC90 1.56 μM) while exhibiting no cytotoxicity toward the human cell lines MRC-5 and THP-1 up to concentrations of 100 μM. Mapping of resistance-mediating mutations employing whole-genome sequencing, chemical supplementation assays, and molecular docking studies as well as enzymatic characterization revealed that chlorflavonin specifically inhibits the acetohydroxyacid synthase catalytic subunit IlvB1, causing combined auxotrophies to branched-chain amino acids and to pantothenic acid. While exhibiting a bacteriostatic effect in monotreatment, chlorflavonin displayed synergistic effects with the first-line antibiotic isoniazid and particularly with delamanid, leading to a complete sterilization in liquid culture in combination treatment. Using a fluorescent reporter strain, intracellular activity of chlorflavonin against Mycobacterium tuberculosis inside infected macrophages was demonstrated and was superior to streptomycin treatment.
Collapse
Affiliation(s)
- Nidja Rehberg
- Institute of Pharmaceutical
Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Herve Sergi Akone
- Institute of Pharmaceutical
Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Faculty of Science, Department of Chemistry, University of Douala,
PO Box 24157, 2701 Douala, Cameroon
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, 710 Ross St., College Station, Texas 77843, United States
| | - German Erlenkamp
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Georgios Daletos
- Institute of Pharmaceutical
Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical
Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical
Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
189
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
190
|
Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, Darban-Sarokhalil D. Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis (Edinb) 2017; 109:17-27. [PMID: 29559117 DOI: 10.1016/j.tube.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Despite the low expensive and effective four-drug treatment regimen (isoniazid, rifampicin, pyrazinamide and ethambutol) was introduced 40 years ago, TB continues to cause considerable morbidity and mortality worldwide. In 2015, the WHO estimated a total of 10.4 million new tuberculosis (TB) cases worldwide. Currently, the increased number of multidrug-resistant (MDR-TB), extensively-drug resistant (XDR-TB) and in some recent reports, totally drug-resistant TB (TDR-TB) cases raises concerns about this disease. MDR-TB and XDR-TB have lower cure rates and higher mortality levels due to treatment problems. Novel drugs and regimens for all forms of TB have emerged in recent years. Moreover, scientific interest has recently increased in the field of host-directed therapies (HDTs) in order to identify new treatments for MDR-TB. In this review, we offer an update on the discovery of new drugs for TB therapy with a glance at molecular mechanisms leading to drug resistance in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michel Drancourt
- Institut Hospital-Universitaire (IHU) Mediterranée Infection, AP-HM, Marseille, France; Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Mohsen Heidary
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
191
|
Wilson CR, Gessner RK, Moosa A, Seldon R, Warner DF, Mizrahi V, Soares de Melo C, Simelane SB, Nchinda A, Abay E, Taylor D, Njoroge M, Brunschwig C, Lawrence N, Boshoff HIM, Barry CE, Sirgel FA, van Helden P, Harris CJ, Gordon R, Ghidelli-Disse S, Pflaumer H, Boesche M, Drewes G, Sanz O, Santos G, Rebollo-Lopez MJ, Urones B, Selenski C, Lafuente-Monasterio MJ, Axtman M, Lelièvre J, Ballell L, Mueller R, Street LJ, Ghorpade SR, Chibale K. Novel Antitubercular 6-Dialkylaminopyrimidine Carboxamides from Phenotypic Whole-Cell High Throughput Screening of a SoftFocus Library: Structure-Activity Relationship and Target Identification Studies. J Med Chem 2017; 60:10118-10134. [PMID: 29148755 PMCID: PMC5748279 DOI: 10.1021/acs.jmedchem.7b01347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
A BioFocus
DPI SoftFocus library of ∼35 000 compounds was screened
against Mycobacterium tuberculosis (Mtb) in order
to identify novel hits with antitubercular activity. The hits were
evaluated in biology triage assays to exclude compounds suggested to function via frequently encountered promiscuous mechanisms of action including inhibition of the QcrB subunit of the cytochrome bc1 complex, disruption of cell–wall homeostasis, and DNA damage. Among the hits that passed this screening cascade, a 6-dialkylaminopyrimidine carboxamide series was prioritized for hit to lead optimization. Compounds from this series were active against clinical Mtb strains, while no cross-resistance to conventional antituberculosis drugs was observed. This suggested a novel mechanism of action, which was confirmed by chemoproteomic analysis leading to the identification of BCG_3193 and BCG_3827 as putative targets of the series with unknown function. Initial structure–activity relationship studies have resulted in compounds with moderate to potent antitubercular activity and improved physicochemical properties.
Collapse
Affiliation(s)
- Colin R Wilson
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Richard K Gessner
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Atica Moosa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town , Rondebosch 7701, South Africa
| | - Ronnett Seldon
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Rondebosch 7701, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town , Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Rondebosch 7701, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town , Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Rondebosch 7701, South Africa
| | - Candice Soares de Melo
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Sandile B Simelane
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Aloysius Nchinda
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Efrem Abay
- Department of Medicine, Division of Clinical Pharmacology, Drug Discovery and Development Centre (H3D), University of Cape Town , Observatory, 7925, South Africa
| | - Dale Taylor
- Department of Medicine, Division of Clinical Pharmacology, Drug Discovery and Development Centre (H3D), University of Cape Town , Observatory, 7925, South Africa
| | - Mathew Njoroge
- Department of Medicine, Division of Clinical Pharmacology, Drug Discovery and Development Centre (H3D), University of Cape Town , Observatory, 7925, South Africa
| | - Christel Brunschwig
- Department of Medicine, Division of Clinical Pharmacology, Drug Discovery and Development Centre (H3D), University of Cape Town , Observatory, 7925, South Africa
| | - Nina Lawrence
- Department of Medicine, Division of Clinical Pharmacology, Drug Discovery and Development Centre (H3D), University of Cape Town , Observatory, 7925, South Africa
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Frederick A Sirgel
- DST/NRF Centre of Excellence for Biomedical TB Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University , 7505 Tygerberg, South Africa
| | - Paul van Helden
- DST/NRF Centre of Excellence for Biomedical TB Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University , 7505 Tygerberg, South Africa
| | - C John Harris
- CJH Consultants , Ford Cottage, South Weirs, Brockenhurst, Hampshire SO42 7UQ, U.K
| | - Richard Gordon
- Strategic Health Innovation Partnerships (SHIP), South African Medical Research Council , Parow Valley, Cape Town, South Africa
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline , Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Hannah Pflaumer
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline , Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Markus Boesche
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline , Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline , Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Olalla Sanz
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Gracia Santos
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Maria José Rebollo-Lopez
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Beatriz Urones
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Carolyn Selenski
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | | | - Matthew Axtman
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Joël Lelièvre
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline , Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Rudolf Mueller
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Leslie J Street
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Sandeep R Ghorpade
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, Drug Discovery and Development Centre (H3D), University of Cape Town , Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| |
Collapse
|
192
|
Herrmann J, Rybniker J, Müller R. Novel and revisited approaches in antituberculosis drug discovery. Curr Opin Biotechnol 2017; 48:94-101. [DOI: 10.1016/j.copbio.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
|
193
|
Mahomed S, Naidoo K, Dookie N, Padayatchi N. Whole genome sequencing for the management of drug-resistant TB in low income high TB burden settings: Challenges and implications. Tuberculosis (Edinb) 2017; 107:137-143. [DOI: 10.1016/j.tube.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/26/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
|
194
|
Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
195
|
Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb Pathog 2017; 114:80-89. [PMID: 29174699 DOI: 10.1016/j.micpath.2017.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is a devastating threat to human health whose treatment without the emergence of drug resistant Mycobacterium tuberculosis (M. tuberculosis) is the million-dollar question at present. The pathogenesis of M. tuberculosis has been extensively studied which represents unique defence strategies by infecting macrophages. Several anti-tubercular drugs with varied mode of action and administration from diversified sources have been used for the treatment of TB that later contributed to the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). However, few of potent anti-tubercular drugs are scheduled for clinical trials status in 2017-2018. Peptides of varied origins such as human immune cells and non-immune cells, bacteria, fungi, and venoms have been widely investigated as anti-tubercular agents for the replacement of existing anti-tubercular drugs in future. In the present review, we spotlighted not only on the mechanisms of action and mode of administration of currently available anti-tubercular drugs but also the recent comprehensive report of World Health Organization (WHO) on TB epidemic, diagnosis, prevention, and treatment. The major excerpt of the study also inspects the direct contribution of different computational tools during drug designing strategies against M. tuberculosis in order to grasp the interplay between anti-tubercular peptides and targeted bacterial protein. The potentiality of some of these anti-tubercular peptides as therapeutic agents unlocks a new portal for achieving the goal of end TB strategy.
Collapse
|
196
|
Melander RJ, Zurawski DV, Melander C. Narrow-Spectrum Antibacterial Agents. MEDCHEMCOMM 2017; 9:12-21. [PMID: 29527285 PMCID: PMC5839511 DOI: 10.1039/c7md00528h] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
While broad spectrum antibiotics play an invaluable role in the treatment of bacterial infections, there are some drawbacks to their use, namely selection for and spread of resistance across multiple bacterial species, and the detrimental effect they can have upon the host microbiome. If the causitive agent of the infection is known, the use of narrow-spectrum antibacterial agents has the potential to mitigate some of these issues. This review outlines the advantages and challenges of narrow-spectrum antibacterial agents, discusses the progress that has been made toward developing diagnostics to enable their use, and describes some of the narrow-spectrum antibacterial agents currently being investigated against some of the most clinically important bacteria including Clostridium difficile, Mycobacterium tuberculosis and several ESKAPE pathogens.
Collapse
Affiliation(s)
- Roberta J. Melander
- Department of Chemistry
, North Carolina State University
,
Raleigh
, NC
, USA
.
| | - Daniel V. Zurawski
- Wound Infections Department
, Bacterial Diseases Branch
, Walter Reed Army Institute of Research
,
Silver Spring
, MD
, USA
| | - Christian Melander
- Department of Chemistry
, North Carolina State University
,
Raleigh
, NC
, USA
.
| |
Collapse
|
197
|
Bown L, Srivastava SK, Piercey BM, McIsaac CK, Tahlan K. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. J Membr Biol 2017; 251:105-117. [DOI: 10.1007/s00232-017-9997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
|
198
|
Li X, Hernandez V, Rock FL, Choi W, Mak YSL, Mohan M, Mao W, Zhou Y, Easom EE, Plattner JJ, Zou W, Pérez-Herrán E, Giordano I, Mendoza-Losana A, Alemparte C, Rullas J, Angulo-Barturen I, Crouch S, Ortega F, Barros D, Alley MRK. Discovery of a Potent and Specific M. tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J Med Chem 2017; 60:8011-8026. [PMID: 28953378 DOI: 10.1021/acs.jmedchem.7b00631] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is an urgent need to develop new and safer antitubercular agents that possess a novel mode of action. We synthesized and evaluated a novel series of 3-aminomethyl 4-halogen benzoxaboroles as Mycobacterium tuberculosis (Mtb) leucyl-tRNA synthetase (LeuRS) inhibitors. A number of Mtb LeuRS inhibitors were identified that demonstrated good antitubercular activity with high selectivity over human mitochondrial and cytoplasmic LeuRS. Further evaluation of these Mtb LeuRS inhibitors by in vivo pharmacokinetics (PK) and murine tuberculosis (TB) efficacy models led to the discovery of GSK3036656 (abbreviated as GSK656). This molecule shows potent inhibition of Mtb LeuRS (IC50 = 0.20 μM) and in vitro antitubercular activity (Mtb H37Rv MIC = 0.08 μM). Additionally, it is highly selective for the Mtb LeuRS enzyme with IC50 of >300 μM and 132 μM for human mitochondrial LeuRS and human cytoplasmic LeuRS, respectively. In addition, it exhibits remarkable PK profiles and efficacy against Mtb in mouse TB infection models with superior tolerability over initial leads. This compound has been progressed to clinical development for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Xianfeng Li
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Vincent Hernandez
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Fernando L Rock
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Wai Choi
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Yvonne S L Mak
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Manisha Mohan
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Weimin Mao
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Yasheen Zhou
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Eric E Easom
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Jacob J Plattner
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| | - Wuxin Zou
- BioDuro LLC , Building E, No. 29, Life Science Park Road, Beijing 102206, P. R. China
| | - Esther Pérez-Herrán
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Ilaria Giordano
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Alfonso Mendoza-Losana
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Carlos Alemparte
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joaquín Rullas
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Iñigo Angulo-Barturen
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sabrinia Crouch
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Fátima Ortega
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - David Barros
- GlaxoSmithKline , Tres Cantos Medicines Development Campus, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - M R K Alley
- Anacor Pharmaceuticals, Inc. , 1020 E. Meadow Circle, Palo Alto, California 94303, United States
| |
Collapse
|
199
|
De Mulder P, Harth C, Ide L, Vallaeys J, Baelde N, De Bo T. An uncommon cause of sciatic pain: tuberculous osteomyelitis of the ischial tuberosity. Acta Clin Belg 2017; 72:357-360. [PMID: 28074705 DOI: 10.1080/17843286.2016.1271499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A 66-year-old Caucasian female presented with insidious sciatic pain leading to an uncommon diagnosis of tuberculous osteomyelitis with unknown portal entry. The patient did not report a history of a previous tuberculosis (TB) infection and her chest X-ray was negative for TB. Considering TB in the differential diagnosis of a 'bone abscess', it is of paramount importance to come to a correct diagnosis. Conventional radiographs still remain the first-line imaging modality for evaluation of skeletal symptomatology. However, biopsies or aspirates are often needed to yield the definitive diagnosis. The lack of awareness of the potential extrapulmonary involvement of TB leads to an important delay in diagnosis and treatment. Antituberculous drugs should be started at the time of biopsy and continued during 12-18 months, due to poor drug penetration into osseous and fibrous tissues.
Collapse
Affiliation(s)
| | | | - Louis Ide
- Department of Microbiology, Jan Palfijn Hospital, Ghent, Belgium
| | - Jurgen Vallaeys
- Department of Pathology, Jan Palfijn Hospital, Ghent, Belgium
| | - Nick Baelde
- Department of Radiology, Jan Palfijn Hospital, Ghent, Belgium
| | - Thomas De Bo
- Department of Orthopaedic surgery, Jan Palfijn Hospital, Ghent, Belgium
| |
Collapse
|
200
|
Alumasa JN, Manzanillo PS, Peterson ND, Lundrigan T, Baughn AD, Cox JS, Keiler KC. Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister Mycobacterium tuberculosis Cells. ACS Infect Dis 2017; 3:634-644. [PMID: 28762275 PMCID: PMC5594445 DOI: 10.1021/acsinfecdis.7b00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
emergence of Mycobacterium tuberculosis (MTB) strains
that are resistant to most or all available antibiotics has created
a severe problem for treating tuberculosis and has spurred a quest
for new antibiotic targets. Here, we demonstrate that trans-translation is essential for growth of MTB and is a viable target
for development of antituberculosis drugs. We also show that an inhibitor
of trans-translation, KKL-35, is bactericidal against
MTB under both aerobic and anoxic conditions. Biochemical experiments
show that this compound targets helix 89 of the 23S rRNA. In silico molecular docking predicts a binding pocket for
KKL-35 adjacent to the peptidyl-transfer center in a region not targeted
by conventional antibiotics. Computational solvent mapping suggests
that this pocket is a druggable hot spot for small molecule binding.
Collectively, our findings reveal a new target for antituberculosis
drug development and provide critical insight on the mechanism of
antibacterial action for KKL-35 and related 1,3,4-oxadiazole benzamides.
Collapse
Affiliation(s)
- John N. Alumasa
- Department of Biochemistry
and Molecular Biology, The Pennsylvania State University, 401 Althouse Laboratory, University Park, Pennsylvania 16802, United States
| | - Paolo S. Manzanillo
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Nicholas D. Peterson
- Department of Microbiology and Immunology,
Microbiology Research Facility, University of Minnesota, Rm4-115, 689 23rd Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Tricia Lundrigan
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Anthony D. Baughn
- Department of Microbiology and Immunology,
Microbiology Research Facility, University of Minnesota, Rm4-115, 689 23rd Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Jeffery S. Cox
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Kenneth C. Keiler
- Department of Biochemistry
and Molecular Biology, The Pennsylvania State University, 401 Althouse Laboratory, University Park, Pennsylvania 16802, United States
| |
Collapse
|