151
|
Vaidya AJ, Solomon KV. Surface Functionalization of Rod-Shaped Viral Particles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:1980-1989. [PMID: 35148077 DOI: 10.1021/acsabm.1c01204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While synthetic nanoparticles play a very important role in modern medicine, concerns regarding toxicity, sustainability, stability, and dispersity are drawing increasing attention to naturally derived alternatives. Rod-shaped plant viruses and virus-like particles (VLPs) are biological nanoparticles with powerful advantages such as biocompatibility, tunable size and aspect ratio, monodispersity, and multivalency. These properties facilitate controlled biodistribution and tissue targeting for powerful applications in medicine. Ongoing research efforts focus on functionalizing or otherwise engineering these structures for a myriad of applications, including vaccines, imaging, and drug delivery. These include chemical and biological strategies for conjugation to small molecule chemical dyes, drugs, metals, polymers, peptides, proteins, carbohydrates, and nucleic acids. Many strategies are available and vary greatly in efficiency, modularity, selectivity, and simplicity. This review provides a comprehensive summary of VLP functionalization approaches while highlighting biomedically relevant examples. Limitations of current strategies and opportunities for further advancement will also be discussed.
Collapse
Affiliation(s)
- Akash J Vaidya
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| | - Kevin V Solomon
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| |
Collapse
|
152
|
Virus-Like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines (Basel) 2022; 10:vaccines10020227. [PMID: 35214685 PMCID: PMC8879290 DOI: 10.3390/vaccines10020227] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.
Collapse
|
153
|
Zamora-Ceballos M, Moreno N, Gil-Cantero D, Castón JR, Blanco E, Bárcena J. Immunogenicity of Multi-Target Chimeric RHDV Virus-like Particles Delivering Foreign B-Cell Epitopes. Vaccines (Basel) 2022; 10:vaccines10020229. [PMID: 35214688 PMCID: PMC8875457 DOI: 10.3390/vaccines10020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The rabbit hemorrhagic disease virus (RHDV) vaccine platform is a nanoparticle composed of 180 copies of the viral capsid protein, VP60, self-assembled into virus-like particles (VLPs). RHDV VLPs are able to accept the simultaneous incorporation of target epitopes at different insertion sites. The resulting chimeric RHDV VLPs displaying immunogenic foreign antigens have been shown to induce specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes in the mouse and pig models. In this study, we explored whether RHDV-based engineered VLPs can be developed as efficient multivalent vaccines co-delivering different foreign B-cell antigens. We generated bivalent chimeric RHDV VLPs displaying two model B-cell epitopes at different surface-exposed insertion sites, as well as the corresponding monovalent chimeric VLPs. The immunogenic potential of the bivalent chimeric VLPs versus the monovalent constructs was assessed in the mouse model. We found that the bivalent chimeric VLPs elicited a strong and balanced antibody response towards the two target epitopes tested, although slight reductions were observed in the levels of specific serum antibody titers induced by bivalent chimeric VLPs as compared with the corresponding monovalent constructs. These results suggest that RHDV VLPs could represent a promising platform for the development of efficient multivalent vaccines.
Collapse
Affiliation(s)
- María Zamora-Ceballos
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
| | - Noelia Moreno
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
| | - David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (D.G.-C.); (J.R.C.)
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (D.G.-C.); (J.R.C.)
| | - Esther Blanco
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
| | - Juan Bárcena
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
- Correspondence: ; Tel.: +34-916-202-300
| |
Collapse
|
154
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
155
|
Soares DCF, Poletto F, Eberhardt MJ, Domingues SC, De Sousa FB, Tebaldi ML. Polymer-hybrid nanosystems for antiviral applications: Current advances. Biomed Pharmacother 2022; 146:112249. [PMID: 34972632 DOI: 10.1016/j.biopha.2021.112249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/02/2022] Open
Abstract
The emergence of many new viruses in recent times has resulted in a significant scientific challenge for discovering drugs and vaccines that effectively treat and prevent viral diseases. Nanotechnology has opened doors to prevent the spread of several diseases, including those caused by viruses. Polymer-hybrid nanodevices are a class of nanotechnology platforms for biomedical applications that present synergistic properties among their components, with improved performance compared to conventional forms of therapy. Considering the growing interest in this emerging field and the promising technological advantages of polymer-hybrid nanodevices, this work presents the current status of these systems in the context of prevention and treatment of viral diseases. A brief description of the different types of polymer-hybrid nanodevices highlighting some peculiar characteristics such as their composition, biodistribution, delivery of antigens, and overall immune responses in systemic tissues are discussed. Finally, the work presents the future trends for new nanotechnological hybrid materials based on polymers and perspectives for clinical use.
Collapse
Affiliation(s)
| | - Fernanda Poletto
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Marcelo J Eberhardt
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Stephanie Calazans Domingues
- Laboratório de Bioengenharia - Universidade Federal de Itajubá (UNIFEI) - Campus Itabira, Itabira, MG 35903-087, Brazil
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) - Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, MG 37500-903, Brazil
| | - Marli Luiza Tebaldi
- Laboratório de Bioengenharia - Universidade Federal de Itajubá (UNIFEI) - Campus Itabira, Itabira, MG 35903-087, Brazil
| |
Collapse
|
156
|
Chen K, Li H, Xu Y, Ge H, Ning X. Photoactive "Bionic Virus" Robustly Elicits the Synergy Anticancer Activity of Immunophotodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4456-4468. [PMID: 35021012 DOI: 10.1021/acsami.1c23983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coronavirus represents an inspiring model for designing drug delivery systems due to its unique infection machinery mechanism. Herein, we have developed a biomimetic viruslike nanocomplex, termed SDN, for improving cancer theranostics. SDN has a unique core-shell structure consisting of photosensitizer chlorin e6 (Ce6)-loaded nanostructured lipid carrier (CeNLC) (virus core)@poly(allylamine hydrochloride)-functionalized MnO2 nanoparticles (virus spike), generating a virus-mimicking nanocomplex. SDN not only prompted cellular uptake through rough-surface-mediated endocytosis but also achieved mitochondrial accumulation by the interaction of cationic spikes and the anionic mitochondrial surface, leading to mitochondria-specific photodynamic therapy. Meanwhile, SDN could even mediate oxygen generation to relieve tumor hypoxia and, consequently, improve macrophage-associated anticancer immune response. Importantly, SDN served as a robust magnetic resonance imaging (MRI) contrast agent due to the fast release of Mn2+ in the presence of intracellular redox components. We identified that SDN selectively accumulated in tumors and released Mn2+ to generate a 5.71-fold higher T1-MRI signal, allowing for effectively detecting suspected tumors. Particularly, SDN induced synergistic immunophotodynamic effects to eliminate malignant tumors with minimal adverse effects. Therefore, we present a novel biomimetic strategy for improving targeted theranostics, which has a wide range of potential biomedical applications.
Collapse
Affiliation(s)
- Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Huipeng Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
157
|
Core-shellchiralpolymeric-metallic particles obtained in a single step by concurrentlight induced processes. J Colloid Interface Sci 2022; 606:113-123. [PMID: 34388565 DOI: 10.1016/j.jcis.2021.07.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022]
Abstract
Core-shell architecture enables to impart unique customized properties to microparticles, through the proper selection of composition and aggregation state of the inner and outer materials. Here, the synthesis of microparticles with a chiral dielectric core and a metallic shell of gold nanoparticles is demonstrated. The chiral core is obtained by UV induced polymerization of the self-organized droplets of a cholesteric reactive mesogen in a chloroauric acid aqueous solution. Gold nanoparticles precipitation contemporarily occurs upon UV irradiation, covering the microparticles surface. Electron microscopy and optical spectroscopy investigations give evidence that the degree of coverage of the core by gold nanoparticles, with size less than 100 nm, depends on the chloroauric acid concentration, while their aggregation is influenced by the polymeric surface morphology. The optical properties of the chiral microparticles are modified by the gold shell. Specifically, gold coating of dye doped chiral microparticles, working as Bragg onion resonators, clearly improves the stability of omnidirectional microlasers. The proposed strategy, due to the flexibility of the chiral material and of the method, opens a route toward fabrication of microdevices with wide control over light manipulation, in term of intensity, polarization, generation.
Collapse
|
158
|
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342:345-361. [PMID: 35026352 DOI: 10.1016/j.jconrel.2022.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.
Collapse
Affiliation(s)
- Eman A Taha
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Joseph Lee
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
159
|
Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. NANO CONVERGENCE 2022; 9:2. [PMID: 34997888 PMCID: PMC8742799 DOI: 10.1186/s40580-021-00293-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Cancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.
Collapse
Affiliation(s)
- Yao Miao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA.
| |
Collapse
|
160
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
161
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
162
|
Shahgolzari M, Fiering S. Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapies. JOURNAL OF CANCER IMMUNOLOGY 2022; 4:22-29. [PMID: 35600219 PMCID: PMC9121906 DOI: 10.33696/cancerimmunol.4.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapies using plant virus nanoparticles (PVNPs) have achieved considerable success in preclinical studies. PVNP based nanoplatforms can be endogenous immune adjuvants and act as nanocarriers that stabilize and deliver cancer antigens and exogenous immune adjuvants. Although they do not infect mammalian cells, PVNPs are viruses and they are variably recognized by pathogen pattern recognition receptors (PRR), activate innate immune cells including antigen-presenting cells (APCs), and increase the expression of costimulatory molecules. Novel immunotherapy strategies use them as in situ vaccines (ISV) that can effectively inhibit tumor growth after intratumoral administration and generate expanded systemic antitumor immunity. PVNPs combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve both local and systemic anti-tumor immune responses. While not yet in clinical trials in humans, there is accelerating interest and research of the potential of PVNPs for ISV immune therapy for cancer. Thus, antitumor efficacy of PVNPs by themselves, or loaded with soluble toll-like receptor (TLR) agonists and/or cancer antigens, will likely enter human trials over the next few years and potentially contribute to next-generation antitumor immune-based therapies.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, United States
- Norris Cotton Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
163
|
Microbiological Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
164
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
165
|
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021; 14:18. [PMID: 35056915 PMCID: PMC8779479 DOI: 10.3390/pharmaceutics14010018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.
Collapse
Affiliation(s)
- Daniel Ion
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Nicolae Păduraru
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florentina Mușat
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
166
|
Shin MD, Hochberg JD, Pokorski JK, Steinmetz NF. Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59618-59632. [PMID: 34890195 DOI: 10.1021/acsami.1c13183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteinaceous nanoparticles can be used to deliver large payloads of active ingredients, which is advantageous in medicine and agriculture. However, the conjugation of hydrophobic ligands to hydrophilic nanocarriers such as plant viral nanoparticles (plant VNPs) can result in aggregation by reducing overall solubility. Given the benefits of hydrophilic nanocarrier platforms for targeted delivery and multivalent ligand display, coupled with the versatility of hydrophobic drugs, contrast agents, and peptides, this is an issue that must be addressed to realize their full potential. Here, we report two preincubation strategies that use a Pluronic F127 polymer scaffold to prevent the aggregation of conjugated plant VNPs: a plant VNP-polymer precoat (COAT) and an active ingredient formulation combined with a plant VNP-polymer precoat (FORMCOAT). The broad applications of these modified conjugation strategies were highlighted by testing their compatibility with three types of bioconjugation chemistry: N-hydroxysuccinimide ester-amine coupling, maleimide-thiol coupling, and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The COAT and FORMCOAT strategies promoted efficient bioconjugation and prevented the aggregation that accompanies conventional bioconjugation methods, thus improving the stability, homogeneity, and translational potential of plant VNP conjugates in medicine and agriculture.
Collapse
Affiliation(s)
- Matthew D Shin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Justin D Hochberg
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
167
|
Venkataraman S, Apka P, Shoeb E, Badar U, Hefferon K. Plant Virus Nanoparticles for Anti-cancer Therapy. Front Bioeng Biotechnol 2021; 9:642794. [PMID: 34976959 PMCID: PMC8714775 DOI: 10.3389/fbioe.2021.642794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Plant virus nanoparticles (VNPs) are inexpensive to produce, safe, biodegradable and efficacious as treatments. The applications of r plant virus nanoparticles range from epitope carriers for vaccines to agents in cancer immunotherapy. Both VNPs and virus-like particles (VLPs) are highly immunogenic and are readily phagocytosed by antigen presenting cells (APCs), which in turn elicit antigen processing and display of pathogenic epitopes on their surfaces. Since the VLPs are composed of multiple copies of their respective capsid proteins, they present repetitive multivalent scaffolds which aid in antigen presentation. Therefore, the VLPs prove to be highly suitable platforms for delivery and presentation of antigenic epitopes, resulting in induction of more robust immune response compared to those of their soluble counterparts. Since the tumor microenvironment poses the challenge of self-antigen tolerance, VLPs are preferrable platforms for delivery and display of self-antigens as well as otherwise weakly immunogenic antigens. These properties, in addition to their diminutive size, enable the VLPs to deliver vaccines to the draining lymph nodes in addition to promoting APC interactions. Furthermore, many plant viral VLPs possess inherent adjuvant properties dispensing with the requirement of additional adjuvants to stimulate immune activity. Some of the highly immunogenic VLPs elicit innate immune activity, which in turn instigate adaptive immunity in tumor micro-environments. Plant viral VLPs are nontoxic, inherently stable, and capable of being mass-produced as well as being modified with antigens and drugs, therefore providing an attractive option for eliciting anti-tumor immunity. The following review explores the use of plant viruses as epitope carrying nanoparticles and as a novel tools in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Paul Apka
- Theranostics and Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Erum Shoeb
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
168
|
Duyvesteyn HME, Santos-Pérez I, Peccati F, Martinez-Castillo A, Walter TS, Reguera D, Goñi FM, Jiménez-Osés G, Oksanen HM, Stuart DI, Abrescia NGA. Bacteriophage PRD1 as a nanoscaffold for drug loading. NANOSCALE 2021; 13:19875-19883. [PMID: 34851350 PMCID: PMC8667075 DOI: 10.1039/d1nr04153c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Viruses are very attractive biomaterials owing to their capability as nanocarriers of genetic material. Efforts have been made to functionalize self-assembling viral protein capsids on their exterior or interior to selectively take up different payloads. PRD1 is a double-stranded DNA bacteriophage comprising an icosahedral protein outer capsid and an inner lipidic vesicle. Here, we report the three-dimensional structure of PRD1 in complex with the antipsychotic drug chlorpromazine (CPZ) by cryo-electron microscopy. We show that the jellyrolls of the viral major capsid protein P3, protruding outwards from the capsid shell, serve as scaffolds for loading heterocyclic CPZ molecules. Additional X-ray studies and molecular dynamics simulations show the binding modes and organization of CPZ molecules when complexed with P3 only and onto the virion surface. Collectively, we provide a proof of concept for the possible use of the lattice-like organisation and the quasi-symmetric morphology of virus capsomers for loading heterocyclic drugs with defined properties.
Collapse
Affiliation(s)
- Helen M E Duyvesteyn
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Isaac Santos-Pérez
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
| | - Francesca Peccati
- Computational Chemistry Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ane Martinez-Castillo
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
| | - Thomas S Walter
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, UK.
| | - David Reguera
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Felix M Goñi
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) and Instituto Biofisika (CSIC, UPV/EHU), Leioa, Spain
| | - Gonzalo Jiménez-Osés
- Computational Chemistry Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford, UK
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
169
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 DOI: 10.1038/s41578-021-00399-395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/28/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
170
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 PMCID: PMC8647509 DOI: 10.1038/s41578-021-00399-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/04/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C. Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P. Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K. Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
171
|
Studying delivery of neuroprotective gabapentin drug by gold nanoparticles using a laser beam affecting surface plasmon resonance. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01800-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
172
|
Hemmati F, Hemmati-Dinarvand M, Karimzade M, Rutkowska D, Eskandari MH, Khanizadeh S, Afsharifar A. Plant-derived VLP: a worthy platform to produce vaccine against SARS-CoV-2. Biotechnol Lett 2021; 44:45-57. [PMID: 34837582 PMCID: PMC8626723 DOI: 10.1007/s10529-021-03211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.
Collapse
Affiliation(s)
- Farshad Hemmati
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marziye Karimzade
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Daria Rutkowska
- CSIR Next Generation Health, PO Box 395, Pretoria, 0001, South Africa
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
173
|
Liao Z, Tu L, Li X, Liang XJ, Huo S. Virus-inspired nanosystems for drug delivery. NANOSCALE 2021; 13:18912-18924. [PMID: 34757354 DOI: 10.1039/d1nr05872j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With over millions of years of evolution, viruses can infect cells efficiently by utilizing their unique structures. Similarly, the drug delivery process is designed to imitate the viral infection stages for maximizing the therapeutic effect. From drug administration to therapeutic effect, nanocarriers must evade the host's immune system, break through multiple barriers, enter the cell, and release their payload by endosomal escape or nuclear targeting. Inspired by the virus infection process, a number of virus-like nanosystems have been designed and constructed for drug delivery. This review aims to present a comprehensive summary of the current understanding of the drug delivery process inspired by the viral infection stages. The most recent construction of virus-inspired nanosystems (VINs) for drug delivery is sorted, emphasizing their novelty and design principles, as well as highlighting the mechanism of these nanosystems for overcoming each biological barrier during drug delivery. A perspective on the VINs for therapeutic applications is provided in the end.
Collapse
Affiliation(s)
- Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xing-Jie Liang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
174
|
Chong SE, Lee D, Oh JH, Kang S, Choi S, Nam SH, Yu J, Koo H, Lee Y. A dimeric α-helical cell penetrating peptide mounted with an HER2-selective affibody. Biomater Sci 2021; 9:7826-7831. [PMID: 34812802 DOI: 10.1039/d1bm00819f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a cell penetrating peptide (CPP) system with high selectivity and penetrability at nanomolar concentrations with a combination of an HER2-selective affibody, ZHER2:342 (ZHER2), and a dimeric α-helical leucine- and lysine-rich peptide, LK-2. ZHER2 and LK-2 are linearly fused together and expressed in a prokaryotic system to create the LK-2-ZHER2 protein, which can successfully distinguish and penetrate HER2-overexpressing cancer cells at nanomolar concentrations. LK-2-ZHER2 has the ability to intracellularly deliver doxorubicin as a conjugate form to enhance its anti-cancer effect on HER2-overexpressing breast cancer cells with a great selectivity. The selective penetrability was confirmed in vitro, in 3D spheroids, and in in vivo models. LK-2-ZHER2 has the capability to overcome the weak points of current CPPs, such as poor penetrability at low concentrations and a lack of selectivity, by combining powerful CPP and affibody sequences.
Collapse
Affiliation(s)
- Seung-Eun Chong
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Donghyun Lee
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Jae Hoon Oh
- Department of Engineering, Kyoto University Katsura, Kyoto, 615-8530, Japan
| | - Sunyoung Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sejong Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - So Hee Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jaehoon Yu
- Department of Chemistry & Education, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Heebeom Koo
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
175
|
Nkanga CI, Chung YH, Shukla S, Zhou J, Jokerst JV, Steinmetz NF. The in vivo fate of tobacco mosaic virus nanoparticle theranostic agents modified by the addition of a polydopamine coat. Biomater Sci 2021; 9:7134-7150. [PMID: 34591046 PMCID: PMC8600448 DOI: 10.1039/d1bm01113h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant virus nanoparticles (VNPs) have multiple advantages over their synthetic counterparts including the cost-effective large-scale manufacturing of uniform particles that are easy to functionalize. Tobacco mosaic virus (TMV) is one of the most promising VNP scaffolds, reflecting its high aspect ratio and ability to carry and/or display multivalent therapeutic ligands and contrast agents. Here we investigated the circulation, protein corona, immunogenicity, and organ distribution/clearance of TMV particles internally co-labeled with cyanine 5 (Cy5) and chelated gadolinium (Gd) for dual tracking by fluorescence imaging and optical emission spectrometry, with or without an external coating of polydopamine (PDA) to confer photothermal and photoacoustic capabilities. The PDA-coated particles (Gd-Cy5-TMV-PDA) showed a shorter plasma circulation time and broader distribution to organs of the reticuloendothelial system (liver, lungs, and spleen) than uncoated Gd-Cy5-TMV particles (liver and spleen only). The Gd-Cy5-TMV-PDA particles were surrounded by 2-10-fold greater protein corona (containing mainly immunoglobulins) compared to Gd-Cy5-TMV particles. However, the enzyme-linked immunosorbent assay (ELISA) revealed that PDA-coated particles bind 2-fold lesser to anti-TMV antibodies elicited by particle injection than uncoated particles, suggesting that the PDA coat enables evasion from systemic antibody surveillance. Gd-Cy5-TMV-PDA particles were cleared from organs after 8 days compared to 5 days for the uncoated particles. The slower tissue clearance of the coated particles makes them ideal for theranostic applications by facilitating sustained local delivery in addition to multimodal imaging and photothermal capabilities. We have demonstrated the potential of PDA-coated proteinaceous nanoparticles for multiple biomedical applications.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA.
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| |
Collapse
|
176
|
Shahrivarkevishahi A, Luzuriaga MA, Herbert FC, Tumac AC, Brohlin OR, Wijesundara YH, Adlooru AV, Benjamin C, Lee H, Parsamian P, Gadhvi J, De Nisco NJ, Gassensmith JJ. PhotothermalPhage: A Virus-Based Photothermal Therapeutic Agent. J Am Chem Soc 2021; 143:16428-16438. [PMID: 34551259 DOI: 10.1021/jacs.1c05090] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multifunctional nanocarriers that mimic the architecture of viruses. They can serve as a safe platform for specific functionalization and immunization, which provides benefits in a wide range of biomedical applications. In this work, a new generation immunophotothermal agent is developed that adjuvants photothermal ablation using a chemically modified VLP called bacteriophage Qβ. The design is based on the conjugation of near-infrared absorbing croconium dyes to lysine residues located on the surface of Qβ, which turns it to a powerful NIR-absorber called PhotothermalPhage. This system can generate more heat upon 808 nm NIR laser radiation than free dye and possesses a photothermal efficiency comparable to gold nanostructures, yet it is biodegradable and acts as an immunoadjuvant combined with the heat it produces. The synergistic combination of thermal ablation with the mild immunogenicity of the VLP leads to effective suppression of primary tumors, reduced lung metastasis, and increased survival time.
Collapse
Affiliation(s)
- Arezoo Shahrivarkevishahi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Alisia C Tumac
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Olivia R Brohlin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Abhinay V Adlooru
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Candace Benjamin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Hamilton Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Perouza Parsamian
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jashkaran Gadhvi
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
177
|
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338:813-836. [PMID: 34478750 PMCID: PMC8406542 DOI: 10.1016/j.jconrel.2021.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has forever altered mankind resulting in the COVID-19 pandemic. This respiratory virus further manifests into vital organ damage, resulting in severe post COVID-19 complications. Nanotechnology has been moonlighting in the scientific community to combat several severe diseases. This review highlights the triune of the nano-toolbox in the areas of diagnostics, therapeutics, prevention, and mitigation of SARS-CoV-2. Nanogold test kits have already been on the frontline of rapid detection. Breath tests, magnetic nanoparticle-based nucleic acid detectors, and the use of Raman Spectroscopy present myriads of possibilities in developing point of care biosensors, which will ensure sensitive, affordable, and accessiblemass surveillance. Most of the therapeutics are trying to focus on blocking the viral entry into the cell and fighting with cytokine storm, using nano-enabled drug delivery platforms. Nanobodies and mRNA nanotechnology with lipid nanoparticles (LNPs) as vaccines against S and N protein have regained importance. All the vaccines coming with promising phase 3 clinical trials have used nano-delivery systems for delivery of vaccine-cargo, which are currently administered widely in many countries. The use of chemically diverse metal, carbon and polymeric nanoparticles, nanocages and nanobubbles demonstrate opportunities to develop anti-viral nanomedicine. In order to prevent and mitigate the viral spread, high-performance charged nanofiber filters, spray coating of nanomaterials on surfaces, novel materials for PPE kits and facemasks have been developed that accomplish over 90% capture of airborne SARS-CoV-2. Nano polymer-based disinfectants are being tested to make smart-transport for human activities. Despite the promises of this toolbox, challenges in terms of reproducibility, specificity, efficacy and emergence of new SARS-CoV-2 variants are yet to overcome.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
178
|
Aljabali AAA, Hassan S, Pabari RM, Shahcheraghi SH, Mishra V, Charbe NB, Chellappan DK, Dureja H, Gupta G, Almutary AG, Alnuqaydan AM, Verma SK, Panda PK, Mishra YK, Serrano-Aroca Á, Dua K, Uversky VN, Redwan EM, Bahar B, Bhatia A, Negi P, Goyal R, McCarron P, Bakshi HA, Tambuwala MM. The viral capsid as novel nanomaterials for drug delivery. Future Sci OA 2021; 7:FSO744. [PMID: 34737885 PMCID: PMC8558853 DOI: 10.2144/fsoa-2021-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging.
Collapse
Affiliation(s)
- Alaa AA Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Paschim Medinipur, India
| | - Ritesh M Pabari
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Seyed H Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Suresh K Verma
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Uppsala, 75120, Sweden
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Uppsala, 75120, Sweden
| | - Yogendra Kumar Mishra
- University of Southern Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, Sønderborg 6400, Denmark
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46001, Spain
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Australia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Elrashdy M Redwan
- King Abdulazizi University, Faculty of Science, Department of Biological Science, Saudi Arabia
| | - Bojlul Bahar
- International Institute of Nutritional Sciences & Food Safety Studies, School of Sport & Health Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Amit Bhatia
- Maharaja Ranjit Singh Punjab Technical University Dabwali Road, Bathinda, Punjab, 151001, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Paul McCarron
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| | - Hamid A Bakshi
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
179
|
Ramakrishnan SG, Robert B, Salim A, Ananthan P, Sivaramakrishnan M, Subramaniam S, Natesan S, Suresh R, Rajeshkumar G, Maran JP, Al-Dhabi NA, Karuppiah P, Valan Arasu M. Nanotechnology based solutions to combat zoonotic viruses with special attention to SARS, MERS, and COVID 19: Detection, protection and medication. Microb Pathog 2021; 159:105133. [PMID: 34390768 PMCID: PMC8358084 DOI: 10.1016/j.micpath.2021.105133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/01/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Zoonotic viruses originate from birds or animal sources and responsible for disease transmission from animals to people through zoonotic spill over and presents a significant global health concern due to lack of rapid diagnostics and therapeutics. The Corona viruses (CoV) were known to be transmitted in mammals. Early this year, SARS-CoV-2, a novel strain of corona virus, was identified as the causative pathogen of an outbreak of viral pneumonia in Wuhan, China. The disease later named corona virus disease 2019 (COVID-19), subsequently spread across the globe rapidly. Nano-particles and viruses are comparable in size, which serves to be a major advantage of using nano-material in clinical strategy to combat viruses. Nanotechnology provides novel solutions against zoonotic viruses by providing cheap and efficient detection methods, novel, and new effective rapid diagnostics and therapeutics. The prospective of nanotechnology in COVID 19 is exceptionally high due to their small size, large surface-to-volume ratio, susceptibility to modification, intrinsic viricidal activity. The nano-based strategies address the COVID 19 by extending their role in i) designing nano-materials for drug/vaccine delivery, ii) developing nano-based diagnostic approaches like nano-sensors iii) novel nano-based personal protection equipment to be used in prevention strategies.This review aims to bring attention to the significant contribution of nanotechnology to mitigate against zoonotic viral pandemics by prevention, faster diagnosis and medication point of view.
Collapse
Affiliation(s)
- Sankar Ganesh Ramakrishnan
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Becky Robert
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Anisha Salim
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Padma Ananthan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | - Sadhasivam Subramaniam
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore, India.
| | - Sivarajasekar Natesan
- Unit Operations laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Rahul Suresh
- Department of Physics, Bharathiar University, Coimbatore, India
| | - G Rajeshkumar
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, Tamilnadu, India
| | - J Prakash Maran
- Department of Food Science and Nutrition, Periyar University, Salem, Tamilnadu, India.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
180
|
Lico C, Tanno B, Marchetti L, Novelli F, Giardullo P, Arcangeli C, Pazzaglia S, Podda MS, Santi L, Bernini R, Baschieri S, Mancuso M. Tomato Bushy Stunt Virus Nanoparticles as a Platform for Drug Delivery to Shh-Dependent Medulloblastoma. Int J Mol Sci 2021; 22:10523. [PMID: 34638864 PMCID: PMC8509062 DOI: 10.3390/ijms221910523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB) is a primary central nervous system tumor affecting mainly young children. New strategies of drug delivery are urgent to treat MB and, in particular, the SHH-dependent subtype-the most common in infants-in whom radiotherapy is precluded due to the severe neurological side effects. Plant virus nanoparticles (NPs) represent an innovative solution for this challenge. Tomato bushy stunt virus (TBSV) was functionally characterized as a carrier for drug targeted delivery to a murine model of Shh-MB. The TBSV NPs surface was genetically engineered with peptides for brain cancer cell targeting, and the modified particles were produced on a large scale using Nicotiana benthamiana plants. Tests on primary cultures of Shh-MB cells allowed us to define the most efficient peptides able to induce specific uptake of TBSV. Immunofluorescence and molecular dynamics simulations supported the hypothesis that the specific targeting of the NPs was mediated by the interaction of the peptides with their natural partners and reinforced by the presentation in association with the virus. In vitro experiments demonstrated that the delivery of Doxorubicin through the chimeric TBSV allowed reducing the dose of the chemotherapeutic agent necessary to induce a significant decrease in tumor cells viability. Moreover, the systemic administration of TBSV NPs in MB symptomatic mice, independently of sex, confirmed the ability of the virus to reach the tumor in a specific manner. A significant advantage in the recognition of the target appeared when TBSV NPs were functionalized with the CooP peptide. Overall, these results open new perspectives for the use of TBSV as a vehicle for the targeted delivery of chemotherapeutics to MB in order to reduce early and late toxicity.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy;
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Luca Marchetti
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Caterina Arcangeli
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.A.); (M.S.P.)
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Maurizio S. Podda
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.A.); (M.S.P.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (L.S.); (R.B.)
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (L.S.); (R.B.)
| | - Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy;
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| |
Collapse
|
181
|
Van de Steen A, Khalife R, Colant N, Mustafa Khan H, Deveikis M, Charalambous S, Robinson CM, Dabas R, Esteban Serna S, Catana DA, Pildish K, Kalinovskiy V, Gustafsson K, Frank S. Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system. Synth Syst Biotechnol 2021; 6:231-241. [PMID: 34541345 PMCID: PMC8435816 DOI: 10.1016/j.synbio.2021.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
The development of Drug Delivery Systems (DDS) has led to increasingly efficient therapies for the treatment and detection of various diseases. DDS use a range of nanoscale delivery platforms produced from polymeric of inorganic materials, such as micelles, and metal and polymeric nanoparticles, but their variant chemical composition make alterations to their size, shape, or structures inherently complex. Genetically encoded protein nanocages are highly promising DDS candidates because of their modular composition, ease of recombinant production in a range of hosts, control over assembly and loading of cargo molecules and biodegradability. One example of naturally occurring nanocompartments are encapsulins, recently discovered bacterial organelles that have been shown to be reprogrammable as nanobioreactors and vaccine candidates. Here we report the design and application of a targeted DDS platform based on the Thermotoga maritima encapsulin reprogrammed to display an antibody mimic protein called Designed Ankyrin repeat protein (DARPin) on the outer surface and to encapsulate a cytotoxic payload. The DARPin9.29 chosen in this study specifically binds to human epidermal growth factor receptor 2 (HER2) on breast cancer cells, as demonstrated in an in vitro cell culture model. The encapsulin-based DDS is assembled in one step in vivo by co-expressing the encapsulin-DARPin9.29 fusion protein with an engineered flavin-binding protein mini-singlet oxygen generator (MiniSOG), from a single plasmid in Escherichia coli. Purified encapsulin-DARPin_miniSOG nanocompartments bind specifically to HER2 positive breast cancer cells and trigger apoptosis, indicating that the system is functional and specific. The DDS is modular and has the potential to form the basis of a multi-receptor targeted system by utilising the DARPin screening libraries, allowing use of new DARPins of known specificities, and through the proven flexibility of the encapsulin cargo loading mechanism, allowing selection of cargo proteins of choice.
Collapse
Key Words
- Annexin V-FITC, Annexin V-Fluorescein IsoThiocyanate Conjugate
- Cytotoxic protein
- DARPin
- DARPin9.29, Designed Ankyrin Repeat Protein 9.29
- DDS, Drug Delivery System
- Drug delivery system
- EPR, Enhanced Permeability and Retention effect
- Encapsulin
- HER2, Human Epidermal growth factor Receptor 2
- His6, Hexahistidine
- MSCs, Mesenchymal Stem Cells
- NPs, NanoParticles
- SK-BR-3, Sloan-Kettering Breast cancer cell line/HER2-overexpressing human breast cancer cell line
- STII, StrepII-tag, an eight-residue peptide sequence (Trp-Ser-His-Pro-Gln-Phe-Glu-Lys) with intrinsic affinity toward streptavidin that can be fused to recombinant protein in various fashions
- T. maritima, Thermotoga maritima
- VLPs, Virus-Like Particle
- iGEM, international Genetically Engineered Machine
- iLOV, improved Light, Oxygen or Voltage-sensing flavoprotein
- mScarlet, a bright monomeric red fluorescent protein
- miniSOG, mini-Singlet Oxygen Generator
- rTurboGFP, recombinant Turbo Green Fluorescent Protein
Collapse
Affiliation(s)
| | - Rana Khalife
- Department of Biochemical Engineering, University College London, UK
| | - Noelle Colant
- Department of Biochemical Engineering, University College London, UK
| | | | - Matas Deveikis
- Department of Biochemical Engineering, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Saverio Charalambous
- Department of Biochemical Engineering, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Clare M. Robinson
- Natural Sciences, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Rupali Dabas
- Natural Sciences, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Sofia Esteban Serna
- Division of Biosciences, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Diana A. Catana
- Division of Biosciences, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Konstantin Pildish
- Division of Biosciences, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Vladimir Kalinovskiy
- Division of Biosciences, University College London, UK
- UCL iGEM Student Team 2019, UK
| | - Kenth Gustafsson
- Department of Biochemical Engineering, University College London, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, UK
| |
Collapse
|
182
|
Zhang W, Jia Q, Teng Y, Yang M, Zhang H, Zhang XE, Wang P, Ge J, Cao S, Li F. An Ultrastable Virus-Like Particle with a Carbon Dot Core and Expanded Sequence Plasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101717. [PMID: 34302443 DOI: 10.1002/smll.202101717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Ordered bio-inorganic hybridization has evolved for the generation of high-performance materials in living organisms and inspires novel strategies to design artificial hybrid materials. Virus-like particles (VLPs) are attracting extensive interest as self-assembling systems and platforms in the fields of biotechnology and nanotechnology. However, as soft nanomaterials, their structural stability remains a general and fundamental problem in various applications. Here, an ultrastable VLP assembled from the major capsid protein (VP1) of simian virus 40 is reported, which contains a carbon dot (C-dot) core. Co-assembly of VP1 with C-dots led to homogeneous T = 1 VLPs with a fourfold increase in VLP yields. The resultant hybrid VLPs showed markedly enhanced structural stability and sequence plasticity. C-dots and a polyhistidine tag fused to the inner-protruding N-terminus of VP1 contributed synergistically to these enhancements, where extensive and strong noncovalent interactions on the C-dot/VP1 interfaces are responsible according to cryo-EM 3D reconstruction, molecular simulation, and affinity measurements. C-dot-enhanced ultrastable VLPs can serve as a new platform, enabling the fabrication of new architectures for bioimaging, theranostics, nanovaccines, etc. The hybridization strategy is simple and can easily be extended to other VLPs and protein nanoparticle systems.
Collapse
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyan Jia
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yibo Teng
- Wuhan Ready science and technology corporation Ltd, Wuhan, 430064, China
| | - Mengsi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-En Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Pengfei Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiechao Ge
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sheng Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
183
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
184
|
Chatterjee S, Mishra S, Chowdhury KD, Ghosh CK, Saha KD. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sci 2021; 278:119580. [PMID: 33991549 PMCID: PMC8114615 DOI: 10.1016/j.lfs.2021.119580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata-700006, India
| | - Snehasis Mishra
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009, India
| | - Chandan Kumar Ghosh
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
185
|
Dai Y, Li Q, Zhang S, Shi S, Li Y, Zhao X, Zhou L, Wang X, Zhu Y, Li W. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
186
|
Chan SK, Steinmetz NF. Isolation of Cowpea Mosaic Virus-Binding Peptides. Biomacromolecules 2021; 22:3613-3623. [PMID: 34314166 DOI: 10.1021/acs.biomac.1c00712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The plant virus cowpea mosaic virus (CPMV) is a natural nanocarrier that has been developed as a platform technology for the delivery of various payloads including peptide epitopes for vaccines, contrast agents for imaging, and drugs for therapy. Genetic fusion and chemical conjugations are the mainstay approaches to load the active ingredient to the exterior and/or interior of CPMV. However, these methods have limitations; genetic engineering is limited to biologics, and chemical alteration often requires multistep reactions with modification of both CPMV and the active ingredient. Either method can also result in particle instability. Therefore, to provide an alternate path toward CPMV functionalization, we report the isolation of peptides that specifically bind to CPMV, termed CPMV-binding peptides (CBP). We used a commercial M13 phage display 7-mer peptide library to pan for and select peptides that selectively bind to CPMV. Biopanning and characterization of lead candidates resulted in isolation of the motif "GWRVSEF/L" as the CPMV-specific motif with phenylalanine (F) at the seventh position being stronger than leucine (L). Specificity to CPMV was demonstrated, and cross-reactivity toward other plant viruses was not observed. To demonstrate cargo loading, GWRVSEF was tagged with biotin, fluorescein isothiocyanate (FITC), and a human epidermal growth factor receptor 2 (HER2)-specific targeting peptide ligand. Display of the active ingredient was confirmed, and utility of tagged and targeted CPMV in cell binding assays was demonstrated. The CBP functionalization strategy offers a new avenue for CPMV nanoparticle functionalization and should offer a versatile tool to add active ingredients that otherwise may be difficult to conjugate or display.
Collapse
|
187
|
Mammadova R, Fiume I, Bokka R, Kralj-Iglič V, Božič D, Kisovec M, Podobnik M, Zavec AB, Hočevar M, Gellén G, Schlosser G, Pocsfalvi G. Identification of Tomato Infecting Viruses That Co-Isolate with Nanovesicles Using a Combined Proteomics and Electron-Microscopic Approach. NANOMATERIALS 2021; 11:nano11081922. [PMID: 34443753 PMCID: PMC8399691 DOI: 10.3390/nano11081922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Plant-derived nanovesicles (NVs) have attracted interest due to their anti-inflammatory, anticancer and antioxidative properties and their efficient uptake by human intestinal epithelial cells. Previously we showed that tomato (Solanum lycopersicum L.) fruit is one of the interesting plant resources from which NVs can be obtained at a high yield. In the course of the isolation of NVs from different batches of tomatoes, using the established differential ultracentrifugation or size-exclusion chromatography methods, we occasionally observed the co-isolation of viral particles. Density gradient ultracentrifugation (gUC), using sucrose or iodixanol gradient materials, turned out to be efficient in the separation of NVs from the viral particles. We applied cryogenic transmission electron microscopy (cryo-TEM), scanning electron microscopy (SEM) for the morphological assessment and LC-MS/MS-based proteomics for the protein identification of the gradient fractions. Cryo-TEM showed that a low-density gUC fraction was enriched in membrane-enclosed NVs, while the high-density fractions were rich in rod-shaped objects. Mass spectrometry-based proteomic analysis identified capsid proteins of tomato brown rugose fruit virus, tomato mosaic virus and tomato mottle mosaic virus. In another batch of tomatoes, we isolated tomato spotted wilt virus, potato virus Y and southern tomato virus in the vesicle sample. Our results show the frequent co-isolation of plant viruses with NVs and the utility of the combination of cryo-TEM, SEM and proteomics in the detection of possible viral contamination.
Collapse
Affiliation(s)
- Ramila Mammadova
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
| | - Immacolata Fiume
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
| | - Ramesh Bokka
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.K.-I.); (D.B.)
| | - Darja Božič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.K.-I.); (D.B.)
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (M.P.); (A.B.Z.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (M.P.); (A.B.Z.)
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (M.P.); (A.B.Z.)
| | - Matej Hočevar
- Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, H-1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, H-1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Gabriella Pocsfalvi
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
- Correspondence:
| |
Collapse
|
188
|
The 3M Concept: Biomedical Translational Imaging from Molecules to Mouse to Man. THE EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Imaging keeps pervading biomedical sciences from the nanoscale to the bedside. Connecting the hierarchical levels of biomedicine with relevant imaging approaches, however, remains a challenge.
Here we present a concept, called “3M”, which can deliver a question, formulated at the bedside, across the wide-ranging hierarchical organization of the living organism, from the molecular level, through the small-animal scale, to whole-body human functional imaging. We present an example of nanoparticle development pipeline extending from atomic force microscopy to pre-clinical whole body imaging methods to highlight the essential features of the 3M concept, which integrates multi-scale resolution and quantification into a single logical process.
Using the nanoscale to human clinical whole body approach, we present the successful development, characterisation and application of Prussian Blue nanoparticles for a variety of imaging modalities, extending it to isotope payload quantification and shape-biodistribution relationships.
The translation of an idea from the bedside to the molecular level and back requires a set of novel combinatorial imaging methodologies interconnected into a logical pipeline. The proposed integrative molecules-to-mouse-to-man (3M) approach offers a promising, clinically oriented toolkit that lends the prospect of obtaining an ever-increasing amount of correlated information from as small a voxel of the human body as possible.
Collapse
|
189
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
190
|
Alvandi N, Rajabnejad M, Taghvaei Z, Esfandiari N. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J Drug Target 2021; 30:151-165. [PMID: 34210232 DOI: 10.1080/1061186x.2021.1949600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanoscale engineering is one of the novel methods to cure multitudes of diseases, such as types of cancers, neurological disorders, and infectious illnesses. Viruses can play a vital role in nanoscale engineering due to their specific properties like minuscule size, high stability in different body conditions, and large-scale production. Viral-like particles (VLPs) as specific nanoscale scaffolds can encapsulate a wide range of cargos, including nucleic acids, proteins, peptides, and drugs. The Exterior portion of VLPs can be changed by genetical or chemical conjugation as well as targeting ligands or peptides. The aforementioned features of VLPs can be used in several applications, such as drug delivery, bioimaging, tissue engineering, vaccine production, and disease detection. This review article attempts to investigate appearance characteristics, modification strategies, and manufacturing methods of VLPs. Additionally, drug delivery to cancer cells as one of the VLPs applications along with different cellular uptake mechanisms of VLPs by cancer cells are chosen for investigation. This review also tries to gather most of the recent studies of drug delivery to cancer cells by VLPs.
Collapse
Affiliation(s)
- Nikta Alvandi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Rajabnejad
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zeynab Taghvaei
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
191
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
192
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
193
|
Serwer P, Wright ET, De La Chapa J, Gonzales CB. Basics for Improved Use of Phages for Therapy. Antibiotics (Basel) 2021; 10:antibiotics10060723. [PMID: 34208477 PMCID: PMC8234457 DOI: 10.3390/antibiotics10060723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Blood-borne therapeutic phages and phage capsids increasingly reach therapeutic targets as they acquire more persistence, i.e., become more resistant to non-targeted removal from blood. Pathogenic bacteria are targets during classical phage therapy. Metastatic tumors are potential future targets, during use of drug delivery vehicles (DDVs) that are phage derived. Phage therapy has, to date, only sometimes been successful. One cause of failure is low phage persistence. A three-step strategy for increasing persistence is to increase (1) the speed of lytic phage isolation, (2) the diversity of phages isolated, and (3) the effectiveness and speed of screening phages for high persistence. The importance of high persistence-screening is illustrated by our finding here of persistence dramatically higher for coliphage T3 than for its relative, coliphage T7, in murine blood. Coliphage T4 is more persistent, long-term than T3. Pseudomonas chlororaphis phage 201phi2-1 has relatively low persistence. These data are obtained with phages co-inoculated and separately assayed. In addition, highly persistent phage T3 undergoes dispersal to several murine organs and displays tumor tropism in epithelial tissue (xenografted human oral squamous cell carcinoma). Dispersal is an asset for phage therapy, but a liability for phage-based DDVs. We propose increased focus on phage persistence—and dispersal—screening.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
- Correspondence: ; Tel.: +1-210-567-3765
| | - Elena T. Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
| | - Jorge De La Chapa
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| | - Cara B. Gonzales
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| |
Collapse
|
194
|
Dymova MA, Kuligina EV, Richter VA. Molecular Mechanisms of Drug Resistance in Glioblastoma. Int J Mol Sci 2021; 22:6385. [PMID: 34203727 PMCID: PMC8232134 DOI: 10.3390/ijms22126385] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, is highly resistant to conventional radiation and chemotherapy, and is not amenable to effective surgical resection. The present review summarizes recent advances in our understanding of the molecular mechanisms of therapeutic resistance of GBM to already known drugs, the molecular characteristics of glioblastoma cells, and the barriers in the brain that underlie drug resistance. We also discuss the progress that has been made in the development of new targeted drugs for glioblastoma, as well as advances in drug delivery across the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB).
Collapse
Affiliation(s)
- Maya A. Dymova
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.K.); (V.A.R.)
| | | | | |
Collapse
|
195
|
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6:225. [PMID: 34099630 PMCID: PMC8182741 DOI: 10.1038/s41392-021-00631-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decades, great interest has been given to biomimetic nanoparticles (BNPs) since the rise of targeted drug delivery systems and biomimetic nanotechnology. Biological vectors including cell membranes, extracellular vesicles (EVs), and viruses are considered promising candidates for targeted delivery owing to their biocompatibility and biodegradability. BNPs, the integration of biological vectors and functional agents, are anticipated to load cargos or camouflage synthetic nanoparticles to achieve targeted delivery. Despite their excellent intrinsic properties, natural vectors are deliberately modified to endow multiple functions such as good permeability, improved loading capability, and high specificity. Through structural modification and transformation of the vectors, they are pervasively utilized as more effective vehicles that can deliver contrast agents, chemotherapy drugs, nucleic acids, and genes to target sites for refractory disease therapy. This review summarizes recent advances in targeted delivery vectors based on cell membranes, EVs, and viruses, highlighting the potential applications of BNPs in the fields of biomedical imaging and therapy industry, as well as discussing the possibility of clinical translation and exploitation trend of these BNPs.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
196
|
Shukla S, Marks I, Church D, Chan SK, Pokorski JK, Steinmetz NF. Tobacco mosaic virus for the targeted delivery of drugs to cells expressing prostate-specific membrane antigen. RSC Adv 2021; 11:20101-20108. [PMID: 34178308 PMCID: PMC8180379 DOI: 10.1039/d1ra03166j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a membrane-bound protein that is preferentially expressed in the prostate gland and induced in many prostate cancers, making it an important target for new diagnostics and therapeutics. To improve the efficacy of nanoparticle formulations for the imaging and/or eradication of prostate cancer, we synthesized the PSMA-binding glutamic acid derivative DUPA and conjugated it to the external surface of tobacco mosaic virus (TMV) particles. DUPA-targeted TMV was subsequently loaded with the antineoplastic agent mitoxantrone (MTO) or conjugated internally with the fluorescent dye cyanine 5 (Cy5). We found that TMV particles could be efficiently decorated with DUPA and loaded with MTO or Cy5 while maintaining structural integrity. DUPA-targeted TMV particles were able to bind more efficiently to the surface of PSMA+ LNCaP cells compared to non-targeted TMV; but there was little difference in binding efficiency between targeted and untargeted TMV when we tested PSMA− PC3 cells (both cell lines are prostate cancer cell lines). DUPA-targeted TMV particles were internalized by LNCaP cells enabling drug delivery. Finally, we loaded the DUPA-targeted TMV particles and untargeted control particles with MTO to test their cytotoxicity against LNCaP cells in vitro. The cytotoxicity of the TMV-MTO particles (IC50 = 10.2 nM) did not differ significantly from that of soluble MTO at an equivalent dose (IC50 = 12.5 nM) but the targeted particles (TMV-DUPA-MTO) were much more potent (IC50 = 2.80 nM). The threefold increase in cytotoxicity conferred by the DUPA ligand suggests that MTO-loaded, DUPA-coated TMV particles are promising as a therapeutic strategy for PSMA+ prostate cancer and should be advanced to preclinical testing in mouse models of prostate cancer. Prostate-specific membrane antigen (PSMA) is a membrane-bound protein that is preferentially expressed in the prostate gland and induced in many prostate cancers, making it an important target for new diagnostics and therapeutics.![]()
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California San Diego La Jolla CA 92093 USA
| | - Isaac Marks
- Department of NanoEngineering, University of California San Diego La Jolla CA 92093 USA
| | - Derek Church
- Department of NanoEngineering, University of California San Diego La Jolla CA 92093 USA
| | - Soo-Khim Chan
- Department of NanoEngineering, University of California San Diego La Jolla CA 92093 USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego La Jolla CA 92093 USA .,Center for Nano-ImmunoEngineering, University of California San Diego La Jolla CA 92093 USA.,Institute for Materials Discovery and Design, University of California San Diego La Jolla CA 92093 USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego La Jolla CA 92093 USA .,Department of Bioengineering, University of California San Diego La Jolla CA 92093 USA.,Department of Radiology, University of California San Diego La Jolla CA 92093 USA.,Moores Cancer Center, University of California San Diego La Jolla CA 92093 USA.,Center for Nano-ImmunoEngineering, University of California San Diego La Jolla CA 92093 USA.,Institute for Materials Discovery and Design, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
197
|
Ojasalo S, Piskunen P, Shen B, Kostiainen MA, Linko V. Hybrid Nanoassemblies from Viruses and DNA Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1413. [PMID: 34071795 PMCID: PMC8228324 DOI: 10.3390/nano11061413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as "structured" genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.
Collapse
Affiliation(s)
- Sofia Ojasalo
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| |
Collapse
|
198
|
Mi Y, Xie T, Zhu B, Tan J, Li X, Luo Y, Li F, Niu H, Han J, Lv W, Wang J. Production of SARS-CoV-2 Virus-Like Particles in Insect Cells. Vaccines (Basel) 2021; 9:vaccines9060554. [PMID: 34073159 PMCID: PMC8227081 DOI: 10.3390/vaccines9060554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease (COVID-19) causes a serious threat to human health. Virus-like particles (VLPs) constitute a promising platform in SARS-CoV-2 vaccine development. In this study, the E, M, and S genes were cloned into multiple cloning sites of a new triple expression plasmid with one p10 promoter, two pPH promoters, and three multiple cloning sites. The plasmid was transformed into DH10 BacTMEscherichia coli competent cells to obtain recombinant bacmid. Then the recombinant bacmid was transfected in ExpiSf9TM insect cells to generate recombinant baculovirus. After ExpiSf9TM cells infection with the recombinant baculovirus, the E, M, and S proteins were expressed in insect cells. Finally, SARS-CoV-2 VLPs were self-assembled in insect cells after infection. The morphology and the size of SARS-CoV-2 VLPs are similar to the native virions.
Collapse
Affiliation(s)
- Youjun Mi
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Tao Xie
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
- Correspondence:
| | - Jiying Tan
- Institute of Immunology, School of Basic Medicine, Lanzhou University, Lanzhou 730070, China; (J.T.); (Y.L.)
| | - Xuefeng Li
- Institute of Combined Western and Chinese Traditional Medicine, Lanzhou University, Lanzhou 730070, China;
| | - Yanping Luo
- Institute of Immunology, School of Basic Medicine, Lanzhou University, Lanzhou 730070, China; (J.T.); (Y.L.)
| | - Fei Li
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Jiangyuan Han
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Wei Lv
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Juan Wang
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| |
Collapse
|
199
|
Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. J Drug Target 2021; 30:61-81. [PMID: 33983096 DOI: 10.1080/1061186x.2021.1927055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and its incidence is increasing due to the ageing population. Currently, the main limitations of AD treatment are low blood-brain barrier permeability, severe off-target of drugs, and immune abnormality. In this review, four hypotheses for Alzheimer's pathogenesis and three challenges for Alzheimer's drug delivery are discussed. In addition, this article summarises the different strategies of brain targeting nano-drug delivery systems (NDDSs) developed in the last 10 years. These strategies include receptor-mediated (transferrin receptor, low-density lipoprotein receptor-related protein, lactoferrin receptor, etc.), adsorption-mediated (cationic, alkaline polypeptide, cell-penetrating peptides, etc.), and transporter-mediated (P-gp, GLUT1, etc.). Moreover, it provides insights into novel strategies used in AD, such as exosomes, virus-like particles, and cell membrane coating particles. Hence, this review will help researchers to understand the current progress in the field of NDDSs for the central nervous system and find new directions for AD therapy.HighlightsCharacteristics and challenges based on the pathogenesis of AD were discussed.Recent advances in novel brain-targeting NDDSs for AD over the past 10 years were summarised.
Collapse
Affiliation(s)
- Qin Ouyang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Jianbin Tong
- Department of Anaesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
200
|
Vervoort DF, Heiringhoff R, Timmermans SBPE, van Stevendaal MHME, van Hest JCM. Dual Site-Selective Presentation of Functional Handles on Protein-Engineered Cowpea Chlorotic Mottle Virus-Like Particles. Bioconjug Chem 2021; 32:958-963. [PMID: 33861931 PMCID: PMC8154214 DOI: 10.1021/acs.bioconjchem.1c00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/29/2021] [Indexed: 01/14/2023]
Abstract
Protein cages hold much promise as carrier systems in nanomedicine, due to their well-defined size, cargo-loading capacity, and inherent biodegradability. In order to make them suitable for drug delivery, they have to be stable under physiological conditions. In addition, often surface modifications are required, for example, to improve cell targeting or reduce the particle immunogenicity by PEGylation. For this purpose, we investigated the functionalization capacity of the capsid of cowpea chlorotic mottle virus (CCMV), modified at the interior with a stabilizing elastin-like polypeptide (ELP) tag, by employing a combination of protein engineering and bio-orthogonal chemistry. We first demonstrated the accessibility of the native cysteine residue in ELP-CCMV as a site-selective surface-exposed functional handle, which was not available in the native CCMV capsid. An additional bio-orthogonal functional handle was introduced by incorporation of the noncanonical amino acid, azido-phenylalanine (AzF), using the amber suppression mechanism. Dual site-selective presentation of both a cell-penetrating TAT peptide and a fluorophore to track the particles was demonstrated successfully in HeLa cell uptake studies.
Collapse
Affiliation(s)
- Daan F.
M. Vervoort
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| | - Robin Heiringhoff
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| | - Suzanne B. P. E. Timmermans
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| | - Marleen H. M. E. van Stevendaal
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| |
Collapse
|