151
|
Lou F, Li M, Pang Z, Jiang L, Guan L, Tian L, Hu J, Fan J, Fan H. Understanding the Secret of SARS-CoV-2 Variants of Concern/Interest and Immune Escape. Front Immunol 2021; 12:744242. [PMID: 34804024 PMCID: PMC8602852 DOI: 10.3389/fimmu.2021.744242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
The global pandemic of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), places a heavy burden on global public health. Four SARS-CoV-2 variants of concern including B.1.1.7, B.1.351, B.1.617.2, and P.1, and two variants of interest including C.37 and B.1.621 have been reported to have potential immune escape, and one or more mutations endow them with worrisome epidemiologic, immunologic, or pathogenic characteristics. This review introduces the latest research progress on SARS-CoV-2 variants of interest and concern, key mutation sites, and their effects on virus infectivity, mortality, and immune escape. Moreover, we compared the effects of various clinical SARS-CoV-2 vaccines and convalescent sera on epidemic variants, and evaluated the neutralizing capability of several antibodies on epidemic variants. In the end, SARS-CoV-2 evolution strategies in different transmission stages, the impact of different vaccination strategies on SARS-CoV-2 immune escape, antibody therapy strategies and COVID-19 epidemic control prospects are discussed. This review will provide a systematic and comprehensive understanding of the secret of SARS-CoV-2 variants of interest/concern and immune escape.
Collapse
Affiliation(s)
- Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jiaming Hu
- Tandon School of Engineering, New York University, New York, NY, United States
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
152
|
Chauhan H, Gupta D, Gupta S, Singh A, Aljahdali HM, Goyal N, Noya ID, Kadry S. Blockchain Enabled Transparent and Anti-Counterfeiting Supply of COVID-19 Vaccine Vials. Vaccines (Basel) 2021; 9:vaccines9111239. [PMID: 34835170 PMCID: PMC8620123 DOI: 10.3390/vaccines9111239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has profoundly affected almost all facets of peoples’ lives, various economic areas and regions of the world. In such a situation implementation of a vaccination can be viewed as essential but its success will be dependent on availability and transparency in the distribution process that will be shared among the stakeholders. Various distributed ledgers (DLTs) such as blockchain provide an open, public, immutable system that has numerous applications due the mentioned abilities. In this paper the authors have proposed a solution based on blockchain to increase the security and transparency in the tracing of COVID-19 vaccination vials. Smart contracts have been developed to monitor the supply, distribution of vaccination vials. The proposed solution will help to generate a tamper-proof and secure environment for the distribution of COVID-19 vaccination vials. Proof of delivery is used as a consensus mechanism for the proposed solution. A feedback feature is also implemented in order to track the vials lot in case of any side effect cause to the patient. The authors have implemented and tested the proposed solution using Ethereum test network, RinkeyBy, MetaMask, one clicks DApp. The proposed solution shows promising results in terms of throughput and scalability.
Collapse
Affiliation(s)
- Harsha Chauhan
- Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, India; (H.C.); (D.G.); (S.G.)
| | - Deepali Gupta
- Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, India; (H.C.); (D.G.); (S.G.)
| | - Sheifali Gupta
- Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, India; (H.C.); (D.G.); (S.G.)
| | - Aman Singh
- Department of Computer Science and Engineering, Lovely Professional University, Jalandhar 144001, India;
| | - Hani Moaiteq Aljahdali
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 37848, Saudi Arabia;
| | - Nitin Goyal
- Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, India; (H.C.); (D.G.); (S.G.)
- Correspondence:
| | - Irene Delgado Noya
- Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain;
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, 0459 Kristiansand, Norway;
| |
Collapse
|
153
|
Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021; 13:1759. [PMID: 34834174 PMCID: PMC8624722 DOI: 10.3390/pharmaceutics13111759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.
Collapse
Affiliation(s)
- Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Yousra A. El-Maradny
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt;
| | - Alaa A. Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo 12256, Egypt;
| | - Amira M. G. Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), Alexandria 21934, Egypt;
| | - Hebatallah H. Abo Nahas
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Mohamed A. Abdel-Rahman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Bassem A. Balbool
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12585, Egypt;
| | - Ahmed M. Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
154
|
Basu S. Special Issue on 'Coronavirus: Vaccines and Other Therapeutics' (2020-2021). Vaccines (Basel) 2021; 9:1083. [PMID: 34696191 PMCID: PMC8537649 DOI: 10.3390/vaccines9101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
As is well known, the emergence of SARS-CoV-2 ever since late 2019 [...].
Collapse
Affiliation(s)
- Sankar Basu
- Department of Microbiology, Asutosh College, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Affiliated to Calcutta University, Kolkata 700026, India;
- 3BIO Group (External Scientific Collaborator), ULB, 1050 Brussels, Belgium
| |
Collapse
|
155
|
Galván-Casas C, Català A, Muñoz-Santos C. SARS-CoV-2 Vaccines and the Skin. ACTAS DERMO-SIFILIOGRAFICAS 2021; 112:828-836. [PMID: 34483343 PMCID: PMC8401210 DOI: 10.1016/j.adengl.2021.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccines against the severe acute respiratory coronavirus 2, which are the first to be used in humans against any coronavirus, were developed and produced in record time. Dermatologic adverse effects appeared during clinical trials and have also been described in the population since approval. Just as descriptions and categorization of skin manifestations of the coronavirus disease 2019 proved important for understanding the disease itself, characterizing the effects of vaccines may also further that goal. This paper reviews the properties of the different types of vaccines currently available and under development and describes how they interact with the immune system and the clinical signs they may cause. We focus on dermatologic adverse effects reported to date and recommendations for managing them.
Collapse
Affiliation(s)
- C Galván-Casas
- Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, Spain
| | - A Català
- Servicio de Dermatología, Sede Plató, Hospital Clínic, Barcelona, Spain
| | - C Muñoz-Santos
- Servicio de Dermatología, Hospital General de Granollers, Granollers, Barcelona, Spain
| |
Collapse
|
156
|
Salzer R, Clark JJ, Vaysburd M, Chang VT, Albecka A, Kiss L, Sharma P, Gonzalez Llamazares A, Kipar A, Hiscox JA, Owen A, Aricescu AR, Stewart JP, James LC, Löwe J. Single-dose immunisation with a multimerised SARS-CoV-2 receptor binding domain (RBD) induces an enhanced and protective response in mice. FEBS Lett 2021; 595:2323-2340. [PMID: 34331769 PMCID: PMC8426897 DOI: 10.1002/1873-3468.14171] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has triggered a worldwide health emergency. Here, we show that ferritin-like Dps from hyperthermophilic Sulfolobus islandicus, covalently coupled with SARS-CoV-2 antigens via the SpyCatcher system, forms stable multivalent dodecameric vaccine nanoparticles that remain intact even after lyophilisation. Immunisation experiments in mice demonstrated that the SARS-CoV-2 receptor binding domain (RBD) coupled to Dps (RBD-S-Dps) elicited a higher antibody titre and an enhanced neutralising antibody response compared to monomeric RBD. A single immunisation with RBD-S-Dps completely protected hACE2-expressing mice from serious illness and led to viral clearance from the lungs upon SARS-CoV-2 infection. Our data highlight that multimerised SARS-CoV-2 subunit vaccines are a highly efficacious modality, particularly when combined with an ultra-stable scaffold.
Collapse
Affiliation(s)
- Ralf Salzer
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Jordan J. Clark
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolUK
| | | | | | | | - Leo Kiss
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Parul Sharma
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolUK
| | | | - Anja Kipar
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolUK
- Laboratory for Animal Model PathologyInstitute of Veterinary PathologyVetsuisse FacultyUniversity of ZurichSwitzerland
| | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolUK
| | - Andrew Owen
- Department of Pharmacology and TherapeuticsCentre of Excellence in Long‐acting Therapeutics (CELT)University of LiverpoolUK
| | | | - James P. Stewart
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolUK
| | | | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
157
|
Tang N, Zhang Y, Shen Z, Yao Y, Nair V. Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines. CRISPR J 2021; 4:477-490. [PMID: 34406035 DOI: 10.1089/crispr.2021.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technology, discovered originally as a bacterial defense system, has been extensively repurposed as a powerful tool for genome editing for multiple applications in biology. In the field of virology, CRISPR-Cas9 technology has been widely applied on genetic recombination and engineering of genomes of various viruses to ask some fundamental questions about virus-host interactions. Its high efficiency, specificity, versatility, and low cost have also provided great inspiration and hope in the field of vaccinology to solve a series of bottleneck problems in the development of recombinant viral vaccines. This review highlights the applications of CRISPR editing in the technological advances compared to the traditional approaches used for the construction of recombinant viral vaccines and vectors, the main factors affecting their application, and the challenges that need to be overcome for further streamlining their effective usage in the prevention and control of diseases. Factors affecting efficiency, target specificity, and fidelity of CRISPR-Cas editing in the context of viral genome editing and development of recombinant vaccines are also discussed.
Collapse
Affiliation(s)
- Na Tang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yaoyao Zhang
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom.,The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
158
|
Developing-country vaccine manufacturers' technical capabilities can make a difference in global immunization. Vaccine 2021; 39:5153-5161. [PMID: 34362602 PMCID: PMC8330991 DOI: 10.1016/j.vaccine.2021.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
Members of the Developing Countries Vaccine Manufacturers’ Network (DCVMN) have been actively engaged in the development of COVID-19 vaccine candidates. According to the WHO COVID-19 vaccine landscape updated on 29 December 2020, 18 member manufacturers had vaccines in preclinical or clinical trials, including three members with candidates in Phase III trials. Once successful candidates have been identified there will be a need for large scale vaccine manufacturing and supply, in which DCVMN member manufacturers can play a key role. In an internal survey in 2019, DCVMN members reported the capability to supply over 3.5 billion vaccine doses annually, and the provision of over 50 distinct vaccines to 170 countries. To describe the capabilities of DCVMN member manufacturers more precisely, a 121-question survey was circulated to 41 Network members. The survey assessed the manufacturers’ capabilities in utilizing various technology platforms, cell cultures and filling technologies, in addition to their capacities for manufacturing drug products. The survey also evaluated manufacturers’ preparedness to dedicate existing capacities to COVID-19 vaccine production. Results revealed that sampled manufacturers have strong capabilities for manufacturing vaccines based on recombinant technologies, particularly with mammalian cells, and microbial and yeast expression systems. Capabilities in utilizing cell cultures were distributed across multiple cell types, however manufacturing capacities with Vero and CHO cells were prominent. Formulating and filling findings illustrated further large-scale capabilities of Network members. Sampled manufacturers reported that over 50% of their capacity for vaccine manufacturing could be dedicated to COVID-19 vaccine production.
Collapse
|
159
|
Pollet J, Chen WH, Versteeg L, Keegan B, Zhan B, Wei J, Liu Z, Lee J, Kundu R, Adhikari R, Poveda C, Villar MJ, de Araujo Leao AC, Altieri Rivera J, Momin Z, Gillespie PM, Kimata JT, Strych U, Hotez PJ, Bottazzi ME. SARS‑CoV-2 RBD219-N1C1: A yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice. Hum Vaccin Immunother 2021; 17:2356-2366. [PMID: 33847226 PMCID: PMC8054496 DOI: 10.1080/21645515.2021.1901545] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here, we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast (Pichia pastoris), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel® containing formulation and possibly in combination with other immunostimulants.
Collapse
Affiliation(s)
- Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Wen-Hsiang Chen
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Brian Keegan
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Junfei Wei
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jungsoon Lee
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rahki Kundu
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakesh Adhikari
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Cristina Poveda
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Jose Villar
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | | | | | - Zoha Momin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
160
|
Ow DSW, Oh MK, Chiang CJ, Chao YP. Editorial: Technological Advances Improving Recombinant Protein Production in Bacteria. Front Microbiol 2021; 12:729472. [PMID: 34381439 PMCID: PMC8350157 DOI: 10.3389/fmicb.2021.729472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dave Siak-Wei Ow
- Microbial Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
161
|
Valdés-Fernández BN, Duconge J, Espino AM, Ruaño G. Personalized health and the coronavirus vaccines-Do individual genetics matter? Bioessays 2021; 43:e2100087. [PMID: 34309055 PMCID: PMC8390434 DOI: 10.1002/bies.202100087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Vaccines represent preventative interventions amenable to immunogenetic prediction of how human variability will influence their safety and efficacy. The genetic polymorphism among individuals within any population can render possible that the immunity elicited by a vaccine is variable in length and strength. The same immune challenge (virus and/or vaccine) could provoke partial, complete or even failed protection for some individuals treated under the same conditions. We review genetic variants and mechanistic relationships among chemokines, chemokine receptors, interleukins, interferons, interferon receptors, toll‐like receptors, histocompatibility antigens, various immunoglobulins and major histocompatibility complex antigens. These are the targets for variation among macrophages, dendritic cells, natural killer cells, T‐ and B‐lymphocytes, and complement. The technology platforms (mRNA, viral vectors, proteins) utilized to produce vaccines against SARS‐CoV‐2 infections may each trigger genetically distinct immune reactogenic profiles. With DNA biobanking and immunoprofiling of recipients, global COVID‐19 vaccinations could launch a new era of personalized healthcare.
Collapse
Affiliation(s)
- Bianca N Valdés-Fernández
- Department of Microbiology, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, USA.,Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, Puerto Rico, USA
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Ana M Espino
- Department of Microbiology, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Gualberto Ruaño
- Institute of Living at Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
162
|
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021; 12:701501. [PMID: 34322129 PMCID: PMC8311925 DOI: 10.3389/fimmu.2021.701501] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo Cruz-Reséndiz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Aguirre-Sampieri
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
163
|
Receptor-binding domain recombinant protein RBD219-N1C1 on alum-CpG induces broad protection against SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34268512 DOI: 10.1101/2021.07.06.451353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD219-N1C1 subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This vaccine formulation is similar to one that entered advanced phase 3 clinical development in India. We compared the immune response of mice vaccinated with RBD219-N1C1/alum to mice vaccinated with RBD219-N1C1/alum+CpG. We also evaluated mice immunized with RBD219-N1C1/alum+CpG and boosted with RBD219-N1C1/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the RBD219-N1C1/alum formulation, the RBD219-N1C1/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.1 (Kappa) variants. Notably, the sera from mice that received two 7 µg doses of RBD219-N1C1/alum+CpG showed more than 18 times higher neutralizing antibody titers against B.1.351, than the WHO International Standard for anti-SARS-CoV-2 immunoglobulin NIBSC 20/136. Interestingly, a booster dose did not require the addition of CpG to induce this effect. The data reported here reinforces that the RBD219-N1C1/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including three variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.1 (Kappa).
Collapse
|
164
|
Abdulla ZA, Al-Bashir SM, Al-Salih NS, Aldamen AA, Abdulazeez MZ. A Summary of the SARS-CoV-2 Vaccines and Technologies Available or under Development. Pathogens 2021; 10:788. [PMID: 34206507 PMCID: PMC8308489 DOI: 10.3390/pathogens10070788] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 01/01/2023] Open
Abstract
Since the beginning of 2020, the world has been in a race to develop vaccines that can control the COVID-19 pandemic. More than 250 projects have been initiated for this purpose, but only 14 of them have been authorized for use, despite being in phase 3 clinical trials. More than 40 other vaccines are also in phase 1/2 clinical trials and show promising outcomes. Regarding the appropriate choice of vaccines for each country or region, we reviewed the currently used vaccines in light of the different influencing parameters. These factors include the mode of action, dosage protocol, age group of the vaccinee, side effects, storage conditions, mounted immune response, and cost. Technically, there are seven types of vaccines developed against SARS-CoV-2: messenger RNA (mRNA), nonreplicating and replicating vectors, inactivated viruses, protein subunits, viral-like particles, DNA vaccines, and live attenuated vaccines. The mRNA type is being used for the first time in humans. Unfortunately, mutated variants of SARS-CoV-2 have started to appear worldwide, and researchers are investigating the effects of the currently used vaccines on them. There are many concerns regarding the long-term protection afforded by these vaccines and their side effects, and whether they require future modifications to be effective against the mutated variants. The development of new vaccines using more advanced technology is paramount for overcoming the difficulties in controlling the COVID-19 pandemic across the world.
Collapse
Affiliation(s)
| | - Sharaf M. Al-Bashir
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Noor S. Al-Salih
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (N.S.A.-S.); (A.A.A.)
| | - Ala A. Aldamen
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (N.S.A.-S.); (A.A.A.)
| | | |
Collapse
|
165
|
Budge JD, Young RJ, Smales CM. Engineering of Chinese Hamster Ovary Cells With NDPK-A to Enhance DNA Nuclear Delivery Combined With EBNA1 Plasmid Maintenance Gives Improved Exogenous Transient Reporter, mAb and SARS-CoV-2 Spike Protein Expression. Front Bioeng Biotechnol 2021; 9:679448. [PMID: 34150735 PMCID: PMC8212061 DOI: 10.3389/fbioe.2021.679448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Transient gene expression (TGE) in mammalian cells is a method of rapidly generating recombinant protein material for initial characterisation studies that does not require time-consuming processes associated with stable cell line construction. High TGE yields are heavily dependent on efficient delivery of plasmid DNA across both the plasma and nuclear membranes. Here, we harness the protein nucleoside diphosphate kinase (NDPK-A) that contains a nuclear localisation signal (NLS) to enhance DNA delivery into the nucleus of CHO cells. We show that co-expression of NDPK-A during transient expression results in improved transfection efficiency in CHO cells, presumably due to enhanced transportation of plasmid DNA into the nucleus via the nuclear pore complex. Furthermore, introduction of the Epstein Barr Nuclear Antigen-1 (EBNA-1), a protein that is capable of inducing extrachromosomal maintenance, when coupled with complementary oriP elements on a transient plasmid, was utilised to reduce the effect of plasmid dilution. Whilst there was attenuated growth upon introduction of the EBNA-1 system into CHO cells, when both NDPK-A nuclear import and EBNA-1 mediated technologies were employed together this resulted in enhanced transient recombinant protein yields superior to those generated using either approach independently, including when expressing the complex SARS-CoV-2 spike (S) glycoprotein.
Collapse
Affiliation(s)
- James D Budge
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robert J Young
- R&D Cell Engineering Group, Lonza Biologics, Chesterford Research Park, Saffron Walden, United Kingdom
| | - Christopher Mark Smales
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
166
|
Damodharan K, Arumugam GS, Ganesan S, Doble M, Thennarasu S. A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2. RSC Adv 2021; 11:20006-20035. [PMID: 35479882 PMCID: PMC9033969 DOI: 10.1039/d0ra09668g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
The unprecedented coronavirus disease 2019 (COVID-19) is triggered by a novel strain of coronavirus namely, Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Researchers are working around the clock to control this pandemic and consequent waves of viral reproduction, through repurposing existing drugs as well as designing new vaccines. Several countries have hastened vaccine design and clinical trials to quickly address this outbreak. Currently, more than 250 aspirants against SARS-CoV-2 are in progress, including mRNA-replicating or non-replicating viral vectored-, DNA-, autologous dendritic cell-based-, and inactivated virus-vaccines. Vaccines work by prompting effector mechanisms such as cells/molecules, which target quickly replicating pathogens and neutralize their toxic constituents. Vaccine-stimulated immune effectors include adjuvant, affinity, avidity, affinity maturation, antibodies, antigen-presenting cells, B lymphocytes, carrier protein, CD4+ T-helper cells. In this review, we describe updated information on the various vaccines available over the last two decades, along with recent progress in the ongoing battle developing 63 diverse vaccines against SARS-CoV-2. The inspiration of our effort is to convey the current investigation focus on registered clinical trials (as of January 08, 2021) that satisfy the safety and efficacy criteria of international wide vaccine development.
Collapse
Affiliation(s)
- Kannan Damodharan
- Department of Organic and Bioorganic Chemistry, CSIR-Central Leather Research Institute (CLRI) Chennai 600020 India
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | | | - Suresh Ganesan
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | - Sathiah Thennarasu
- Department of Organic and Bioorganic Chemistry, CSIR-Central Leather Research Institute (CLRI) Chennai 600020 India
| |
Collapse
|
167
|
Basu S, Chakravarty D, Bhattacharyya D, Saha P, Patra HK. Plausible blockers of Spike RBD in SARS-CoV2-molecular design and underlying interaction dynamics from high-level structural descriptors. J Mol Model 2021; 27:191. [PMID: 34057647 PMCID: PMC8165686 DOI: 10.1007/s00894-021-04779-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Abstract COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design. Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual affinity), the RBDSpike–ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface. Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently “reaction-prone.” The designed mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled with strategic “hydrophobic ↔ polar” mutations serve as a potential breakthrough. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00894-021-04779-0.
Collapse
Affiliation(s)
- Sankar Basu
- Department of Microbiology, Asutosh College (affiliated to University of Calcutta), Kolkata, 700026, West Bengal, India.
| | - Devlina Chakravarty
- Department of Chemistry, University of Rutgers-Camden, Camden, 08102, NJ, USA
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, West Bengal, India
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
168
|
Galván-Casas C, Català A, Muñoz-Santos C. SARS-CoV-2 Vaccines and the Skin. ACTAS DERMO-SIFILIOGRAFICAS 2021. [PMID: 34052201 PMCID: PMC8157492 DOI: 10.1016/j.ad.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Vaccines against the severe acute respiratory coronavirus 2, which are the first to be used in humans against any coronavirus, were developed and produced in record time. Dermatologic adverse effects appeared during clinical trials and have also been described in the population since approval. Just as descriptions and categorization of skin manifestations of the coronavirus disease 2019 proved important for understanding the disease itself, characterizing the effects of vaccines may also further that goal. This paper reviews the properties of the different types of vaccines currently available and under development and describes how they interact with the immune system and the clinical signs they may cause. We focus on dermatologic adverse effects reported to date and recommendations for managing them.
Collapse
Affiliation(s)
- C Galván-Casas
- Servicio de Dermatología, Hospital Universitario de Móstoles, Móstoles, Madrid, España.
| | - A Català
- Servicio de Dermatología, Sede Plató, Hospital Clínic, Barcelona, España
| | - C Muñoz-Santos
- Servicio de Dermatología, Hospital General de Granollers, Granollers, Barcelona, España
| |
Collapse
|
169
|
Chemotherapy vs. Immunotherapy in combating nCOVID19: An update. Hum Immunol 2021; 82:649-658. [PMID: 34020832 PMCID: PMC8130497 DOI: 10.1016/j.humimm.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022]
Abstract
The nCOVID-19 pandemic initiated its course of contagion from the city of Wuhan and now it has spread all over the globe. SARS-CoV-2 is the causative virus and the infection as well as its symptoms are distributed across the multi-organ perimeters. Interactions between the host and virus governs the induction of ‘cytokine storm’ resulting various immunopathological consequences leading to death. Till now it has caused tens of millions of casualties and yet no credible cure has emerged to vision. This article presents a comprehensive overview on the two most promising remedial approaches that are being attempted for the management, treatment, and plausible cure of nCOVID-19. In this context, chemotherapeutic approach primarily aims to interrupt the interactions between the host and the virus causing inhibition of its entry into the host cell and/or its proliferation and suppressing the inflammatory milieu in the infected patients. On the other side, immunotherapeutic approaches aim to modulate the host immunity by fine tuning the inflammatory signaling cascades to achieve phylaxis from the virus and restoring immune-homeostasis. Considering most of the path-breaking findings, combinatorial therapy involving of chemotherapeutics as well as vaccine could usher to be a hope for all of us to eradicate the crisis
Collapse
|
170
|
Process development and scale-up optimization of the SARS-CoV-2 receptor binding domain-based vaccine candidate, RBD219-N1C1. Appl Microbiol Biotechnol 2021; 105:4153-4165. [PMID: 33959781 PMCID: PMC8102132 DOI: 10.1007/s00253-021-11281-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022]
Abstract
Abstract A SARS-CoV-2 RBD219-N1C1 (RBD219-N1C1) recombinant protein antigen formulated on Alhydrogel® has recently been shown to elicit a robust neutralizing antibody response against SARS-CoV-2 pseudovirus in mice. The antigen has been produced under current good manufacturing practices (cGMPs) and is now in clinical testing. Here, we report on process development and scale-up optimization for upstream fermentation and downstream purification of the antigen. This includes production at the 1-L and 5-L scales in the yeast, Pichia pastoris, and the comparison of three different chromatographic purification methods. This culminated in the selection of a process to produce RBD219-N1C1 with a yield of >400 mg per liter of fermentation with >92% purity and >39% target product recovery after purification. In addition, we show the results from analytical studies, including SEC-HPLC, DLS, and an ACE2 receptor binding assay that were performed to characterize the purified proteins to select the best purification process. Finally, we propose an optimized upstream fermentation and downstream purification process that generates quality RBD219-N1C1 protein antigen and is fully scalable at a low cost. Key points • Yeast fermentation conditions for a recombinant COVID-19 vaccine were determined. • Three purification protocols for a COVID-19 vaccine antigen were compared. • Reproducibility of a scalable, low-cost process for a COVID-19 vaccine was shown. Graphical abstract
![]() Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11281-3.
Collapse
|
171
|
Affiliation(s)
- Gavin Yamey
- Center for Policy Impact in Global Health, Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
172
|
Pollet J, Chen WH, Versteeg L, Keegan B, Zhan B, Wei J, Liu Z, Lee J, Kundu R, Adhikari R, Poveda C, Villar MJ, de Araujo Leao AC, Rivera JA, Momin Z, Gillespie PM, Kimata JT, Strych U, Hotez PJ, Bottazzi ME. SARS-CoV-2 RBD219-N1C1: A Yeast-Expressed SARS-CoV-2 Recombinant Receptor-Binding Domain Candidate Vaccine Stimulates Virus Neutralizing Antibodies and T-cell Immunity in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.04.367359. [PMID: 33173864 PMCID: PMC7654852 DOI: 10.1101/2020.11.04.367359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast ( Pichia pastoris ), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel ® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ, IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel ® containing formulation and possibly in combination with other immunostimulants.
Collapse
|
173
|
Adebayo O, Efuntoye O, Obafemi O, Folayan O, Amoo A, Ogundipe H, Enebeli U, Ogbonna V, Kanmodi K, Olalere T, Obazenu L. Review of COVID-19 vaccine. NIGERIAN JOURNAL OF MEDICINE 2021. [DOI: 10.4103/njm.njm_67_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|