151
|
Honarmand Ebrahimi K, Dienemann C, Hoefgen S, Than ME, Hagedoorn PL, Hagen WR. The amyloid precursor protein (APP) does not have a ferroxidase site in its E2 domain. PLoS One 2013; 8:e72177. [PMID: 23977245 PMCID: PMC3747053 DOI: 10.1371/journal.pone.0072177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/02/2013] [Indexed: 02/07/2023] Open
Abstract
The ubiquitous 24-meric iron-storage protein ferritin and multicopper oxidases such as ceruloplasmin or hephaestin catalyze oxidation of Fe(II) to Fe(III), using molecular oxygen as oxidant. The ferroxidase activity of these proteins is essential for cellular iron homeostasis. It has been reported that the amyloid precursor protein (APP) also has ferroxidase activity. The activity is assigned to a ferroxidase site in the E2 domain of APP. A synthetic 22-residue peptide that carries the putative ferroxidase site of E2 domain (FD1 peptide) has been claimed to encompass the same activity. We previously tested the ferroxidase activity of the synthetic FD1 peptide but we did not observe any activity above the background oxidation of Fe(II) by molecular oxygen. Here we used isothermal titration calorimetry to study Zn(II) and Fe(II) binding to the natural E2 domain of APP, and we employed the transferrin assay and oxygen consumption measurements to test the ferroxidase activity of the E2 domain. We found that this domain neither in the presence nor in the absence of the E1 domain binds Fe(II) and it is not able to catalyze the oxidation of Fe(II). Binding of Cu(II) to the E2 domain did not induce ferroxidase activity contrary to the presence of redox active Cu(II) centers in ceruloplasmin or hephaestin. Thus, we conclude that E2 or E1 domains of APP do not have ferroxidase activity and that the potential involvement of APP as a ferroxidase in the pathology of Alzheimer’s disease must be re-evaluated.
Collapse
|
152
|
Harris TV, Morokuma K. QM/MM Structural and Spectroscopic Analysis of the Di-iron(II) and Di-iron(III) Ferroxidase Site in M Ferritin. Inorg Chem 2013; 52:8551-63. [DOI: 10.1021/ic4006168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Travis V. Harris
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
153
|
Rocha ER, Smith CJ. Ferritin-like family proteins in the anaerobe Bacteroides fragilis: when an oxygen storm is coming, take your iron to the shelter. Biometals 2013; 26:577-91. [PMID: 23842847 DOI: 10.1007/s10534-013-9650-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Bacteroides are gram-negative anaerobes and one of the most abundant members the lower GI tract microflora where they play an important role in normal intestinal physiology. Disruption of this commensal relationship has a great impact on human health and disease. Bacteroides spp. are significant opportunistic pathogens causing infections when the mucosal barrier integrity is disrupted following predisposing conditions such as GI surgery, perforated or gangrenous appendicitis, perforated ulcer, diverticulitis, trauma and inflammatory bowel diseases. B. fragilis accounts for 60-90 % of all anaerobic infections despite being a minor component of the genus (<1 % of the flora). Clinical strains of B. fragilis are among the most aerotolerant anaerobes. When shifted from anaerobic to aerobic conditions B. fragilis responds to oxidative stress by inducing the expression of an extensive set of genes involved in protection against oxygen derived radicals and iron homeostasis. In Bacteroides, little is known about the metal/oxidative stress interactions and the mobilization of intra-cellular non-heme iron during the oxidative stress response has been largely overlooked. Here we present an overview of the work carried out to demonstrate that both oxygen-detoxifying enzymes and iron-storage proteins are essential for B. fragilis to survive an adverse oxygen-rich environment. Some species of Bacteroides have acquired multiple homologues of the iron storage and detoxifying ferritin-like proteins but some species contain none. The proteins found in Bacteroides are classical mammalian H-type non-heme ferritin (FtnA), non-specific DNA binding and starvation protein (Dps) and the newly characterized bacterial Dps-Like miniferritin protein. The full contribution of ferritin-like proteins to pathophysiology of commensal and opportunistic pathogen Bacteroides spp. still remains to be elucidated.
Collapse
Affiliation(s)
- Edson R Rocha
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
154
|
Lawen A, Lane DJR. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 2013. [PMID: 23199217 DOI: 10.1089/ars.2011.4271] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is a crucial factor for life. However, it also has the potential to cause the formation of noxious free radicals. These double-edged sword characteristics demand a tight regulation of cellular iron metabolism. In this review, we discuss the various pathways of cellular iron uptake, cellular iron storage, and transport. Recent advances in understanding the reduction and uptake of non-transferrin-bound iron are discussed. We also discuss the recent progress in the understanding of transcriptional and translational regulation by iron. Furthermore, we discuss recent advances in the understanding of the regulation of cellular and systemic iron homeostasis and several key diseases resulting from iron deficiency and overload. We also discuss the knockout mice available for studying iron metabolism and the related human conditions.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| | | |
Collapse
|
155
|
Ebrahimi KH, Hagedoorn PL, Hagen WR. A Conserved Tyrosine in Ferritin Is a Molecular Capacitor. Chembiochem 2013; 14:1123-33. [DOI: 10.1002/cbic.201300149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 11/06/2022]
|
156
|
Li X, Liu Y, Zheng Q, Yao G, Cheng P, Bu G, Xu H, Zhang YW. Ferritin light chain interacts with PEN-2 and affects γ-secretase activity. Neurosci Lett 2013; 548:90-4. [PMID: 23685131 DOI: 10.1016/j.neulet.2013.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/15/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is primarily caused by overproduction/deposition of β-amyloid (Aβ) in the brain. Dysregulation of iron in the brain also contributes to AD. Although iron affects β-amyloid precursor protein (APP) expression and Aβ deposition, detailed role of iron in AD requires further elucidation. Aβ is produced by sequential proteolytic cleavages of APP by β-secretase and γ-secretase. The γ-secretase complex comprises presenilins (PS1 or PS2), nicastrin, APH-1, and PEN-2. Herein, we find that PEN-2 can interact with ferritin light chain (FTL), an important component of the iron storage protein ferritin. In addition, we show that overexpression of FTL increases the protein levels of PEN-2 and PS1 amino-terminal fragment (NTF) and promotes γ-secretase activity for more production of Aβ and notch intracellular domain (NICD). Furthermore, iron treatments increase the levels of FTL, PEN-2 and PS1 NTF and promote γ-secretase-mediated NICD production. Moreover, downregulation of FTL decreases the levels of PEN-2 and PS1 NTF. Together, our results suggest that iron can increase γ-secretase activity through promoting the level of FTL that interacts with and stabilizes PEN-2, providing a new molecular link between iron, PEN-2/γ-secretase and Aβ generation in AD.
Collapse
Affiliation(s)
- Xinxin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 2013; 31:1292-307. [PMID: 23680191 DOI: 10.1016/j.biotechadv.2013.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/18/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Collapse
|
158
|
Arruda LF, Arruda SF, Campos NA, de Valencia FF, Siqueira EMDA. Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats. PLoS One 2013; 8:e61058. [PMID: 23593390 PMCID: PMC3625229 DOI: 10.1371/journal.pone.0061058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/05/2013] [Indexed: 01/02/2023] Open
Abstract
Iron is an essential element. However, in its free form, iron participates in redox-reactions, leading to the production of free radicals that increase oxidative stress and the risk of damaging processes. Living organisms have an efficient mechanism that regulates iron absorption according to their iron content to protect against oxidative damage. The effects of restricted and enriched-iron diets on oxidative stress and aging biomarkers were investigated. Adult Wistar rats were fed diets containing 10, 35 or 350 mg/kg iron (adult restricted-iron, adult control-iron and adult enriched-iron groups, respectively) for 78 days. Rats aged two months were included as a young control group. Young control group showed higher hemoglobin and hematocrit values, lower levels of iron and lower levels of MDA or carbonyl in the major studied tissues than the adult control group. Restricted-iron diet reduced iron concentrations in skeletal muscle and oxidative damage in the majority of tissues and also increased weight loss. Enriched-iron diet increased hematocrit values, serum iron, gamma-glutamyl transferase, iron concentrations and oxidative stress in the majority of tissues. As expected, young rats showed higher mRNA levels of heart and hepatic L-Ferritin (Ftl) and kidneys SMP30 as well as lower mRNA levels of hepatic Hamp and interleukin-1 beta (Il1b) and also lower levels of liver protein ferritin. Restricted-iron adult rats showed an increase in heart Ftl mRNA and the enriched-iron adult rats showed an increase in liver nuclear factor erythroid derived 2 like 2 (Nfe2l2) and Il1b mRNAs and in gut divalent metal transporter-1 mRNA (Slc11a2) relative to the control adult group. These results suggest that iron supplementation in adult rats may accelerate aging process by increasing oxidative stress while iron restriction may retards it. However, iron restriction may also impair other physiological processes that are not associated with aging.
Collapse
Affiliation(s)
- Lorena Fernandes Arruda
- Health Sciences Faculty, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil.
| | | | | | | | | |
Collapse
|
159
|
Scudiero R, Esposito MG, Trinchella F. Middle ferritin genes from the icefish Chionodraco rastrospinosus: Comparative analysis and evolution of fish ferritins. C R Biol 2013; 336:134-41. [DOI: 10.1016/j.crvi.2013.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
160
|
Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide. J Bacteriol 2013; 195:1970-8. [PMID: 23435977 DOI: 10.1128/jb.00059-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity that is uniquely activated by Fe(2+) or H2O2 at below neutral pH. The Dps-DNA binding activity correlated with the ability of Dps to self-aggregate. The Dps-DNA interaction was inhibited by NaCl and Mg(2+), suggesting the formation of ionic interactions between Dps and DNA. Alkylation of cysteines affected DNA binding in the presence of H2O2 but not in the presence of Fe(2+). Replacement of all cysteines in C. jejuni Dps with serines did not affect DNA binding, excluding the participation of cysteine in H2O2 sensing. Dps was able to protect DNA in vitro from enzymatic cleavage and damage by hydroxyl radicals. A C. jejuni dps mutant was less resistant to H2O2 in vivo. The concerted activation of Dps-DNA binding in response to low pH, H2O2, and Fe(2+) may protect C. jejuni DNA during host colonization.
Collapse
|
161
|
Watt RK. A Unified Model for Ferritin Iron Loading by the Catalytic Center: Implications for Controlling “Free Iron” during Oxidative Stress. Chembiochem 2013; 14:415-9. [DOI: 10.1002/cbic.201200783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Indexed: 11/07/2022]
|
162
|
Abstract
Ferritins, highly symmetrical protein nanocages, are reactors for Fe2+ and dioxygen or hydrogen peroxide that are found in all kingdoms of life and in many different cells of multicellular organisms. They synthesize iron concentrates required for cells to make cofactors of iron proteins (heme, FeS, mono and diiron). The caged ferritin biominerals, Fe2O3•H2O are also antioxidants, acting as sinks for iron and oxidants scavenged from damaged proteins; genetic regulation of ferritin biosynthesis is sensitive to both iron and oxidants. Here, the emphasis here is ferritin oxidoreductase chemistry, ferritin ion channels for Fe 2+ transit into and out of the protein cage and Fe 3+ O mineral nucleation, and uses of ferritin cages in nanocatalysis and nanomaterial synthesis. The Fe2+ and O ferritin protein reactors, likely critical in the transition from anaerobic to aerobic life on earth, play central, contemporary roles that balance iron and oxygen chemistry in biology and have emerging roles in nanotechnology.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
- Department of Nutritional Science and Toxicology, University of California, Berkeley
| | | | | |
Collapse
|
163
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
164
|
Amos FF, Cole KE, Meserole RL, Gaffney JP, Valentine AM. Titanium mineralization in ferritin: a room temperature nonphotochemical preparation and biophysical characterization. J Biol Inorg Chem 2012. [PMID: 23179270 DOI: 10.1007/s00775-012-0959-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The incremental addition of titanium(III) citrate to H-chain homopolymers of human ferritin results in the formation of 1.5-6.5-nm particles of amorphous TiO(2) within the nanocage of the protein. The mineralization conditions are mild, featuring ambient temperature and no need for photochemical activation. Low ratios of titanium to protein favor intraprotein mineralization, and the products are characterized by stained and unstained transmission electron microscopy, UV-vis spectroscopy, dynamic light scattering, analytical ultracentrifugation, and metal analysis. With up to 1,000 equiv of metal, there is no change to the protein hydrodynamic radius or diffusion constant. There is, however, a systematic shift in the sedimentation coefficient, which confirms mineralization within the protein core.
Collapse
Affiliation(s)
- Fairland F Amos
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | | | |
Collapse
|
165
|
Reig AJ, Pires MM, Snyder RA, Wu Y, Jo H, Kulp DW, Butch SE, Calhoun JR, Szyperski T, Szyperski TG, Solomon EI, DeGrado WF. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nat Chem 2012; 4:900-6. [PMID: 23089864 PMCID: PMC3568993 DOI: 10.1038/nchem.1454] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
De novo proteins provide a unique opportunity for investigating the structure-function relationships of metalloproteins in a minimal, well-defined, and controlled scaffold. Herein, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the due ferri family. Originally created to catalyze O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyze the selective N-hydroxylation of arylamines by remodeling the substrate access cavity and introducing a critical third His ligand to the metal binding cavity. Additional second-and third-shell modifications were required to stabilize the His ligand in the core of the protein. These changes resulted in at least a 106 –fold increase in the relative rates of the two reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of geometric and electronic factors that influence the catalytic tuning of di-iron active sites.
Collapse
Affiliation(s)
- Amanda J Reig
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Ebrahimi KH, Hagedoorn PL, Hagen WR. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP) does not catalytically oxidize iron. PLoS One 2012; 7:e40287. [PMID: 22916096 PMCID: PMC3419245 DOI: 10.1371/journal.pone.0040287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/07/2012] [Indexed: 11/21/2022] Open
Abstract
The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.
Collapse
Affiliation(s)
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
167
|
Liao X, Lv C, Zhang X, Masuda T, Li M, Zhao G. A novel strategy of natural plant ferritin to protect DNA from oxidative damage during iron oxidation. Free Radic Biol Med 2012; 53:375-82. [PMID: 22580341 DOI: 10.1016/j.freeradbiomed.2012.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/01/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
Abstract
Plant ferritin is a naturally occurring heteropolymer in plastids, where Fe(2+) is oxidatively deposited into the protein. However, the effect of this process on the coexistence of DNA and plant ferritin in the plastids is unknown. To investigate this effect, we built a system in which various plant ferritins and DNA coexist, followed by treatment with ferrous ions under aerobic conditions. Interestingly, naturally occurring soybean seed ferritin (SSF), a heteropolymer with an H-1/H-2 ratio of 1 to 1 in the apo form, completely protected DNA from oxidative damage during iron oxidative deposition into protein, and a similar result was obtained with its recombinant form, but not with its homopolymeric counterparts, apo rH-1 and apo rH-2. We demonstrate that the difference in DNA protection between heteropolymeric and homopolymeric plant ferritins stems from their different strategies to control iron chemistry during the above oxidative process. For example, the detoxification reaction occurs only in the presence of apo heteropolymeric SSF (hSSF), thereby preventing the production of hydroxyl radicals. In contrast, hydroxyl radicals are apparently generated via the Fenton reaction when apo rH-1 or rH-2 is used instead of apo hSSF. Thus, a combination of H-1 and H-2 subunits in hSSF seems to impart a unique DNA-protective function to the protein, which was previously unrecognized. This new finding advances our understanding of the structure and function of ferritin and of the widespread occurrence of heteropolymeric plant ferritin in nature.
Collapse
Affiliation(s)
- Xiayun Liao
- CAU & ACC Joint Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, and Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
168
|
Abstract
Dps proteins are the structural relatives of bacterioferritins and ferritins ubiquitously present in the bacterial and archaeal kingdoms. The ball-shaped enzymes play important roles in the detoxification of ROS (reactive oxygen species), in iron scavenging to prevent Fenton reactions and in the mechanical protection of DNA. Detoxification of ROS and iron chaperoning represent the most archetypical functions of dodecameric Dps enzymes. Recent crystallographic studies of these dodecameric complexes have unravelled species-dependent mechanisms of iron uptake into the hollow spheres. Subsequent functions in iron oxidation at ferroxidase centres are highly conserved among bacteria. Final nucleation of iron as iron oxide nanoparticles has been demonstrated to originate at acidic residues located on the inner surface. Some Dps enzymes are also implicated in newly observed catalytic functions related to the formation of molecules playing roles in bacterium–host cell communication. Most recently, Dps complexes are attracting attention in semiconductor science as biomimetic tools for the technical production of the smallest metal-based quantum nanodots used in nanotechnological approaches, such as memory storage or solar cell development.
Collapse
|
169
|
Pereira AS, Timóteo CG, Guilherme M, Folgosa F, Naik SG, Duarte AG, Huynh BH, Tavares P. Spectroscopic evidence for and characterization of a trinuclear ferroxidase center in bacterial ferritin from Desulfovibrio vulgaris Hildenborough. J Am Chem Soc 2012; 134:10822-32. [PMID: 22681596 PMCID: PMC3390943 DOI: 10.1021/ja211368u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ferritins are ubiquitous and can be found in practically all organisms that utilize Fe. They are composed of 24 subunits forming a hollow sphere with an inner cavity of ~80 Å in diameter. The main function of ferritin is to oxidize the cytotoxic Fe(2+) ions and store the oxidized Fe in the inner cavity. It has been established that the initial step of rapid oxidation of Fe(2+) (ferroxidation) by H-type ferritins, found in vertebrates, occurs at a diiron binding center, termed the ferroxidase center. In bacterial ferritins, however, X-ray crystallographic evidence and amino acid sequence analysis revealed a trinuclear Fe binding center comprising a binuclear Fe binding center (sites A and B), homologous to the ferroxidase center of H-type ferritin, and an adjacent mononuclear Fe binding site (site C). In an effort to obtain further evidence supporting the presence of a trinuclear Fe binding center in bacterial ferritins and to gain information on the states of the iron bound to the trinuclear center, bacterial ferritin from Desulfovibrio vulgaris (DvFtn) and its E130A variant was loaded with substoichiometric amounts of Fe(2+), and the products were characterized by Mössbauer and EPR spectroscopy. Four distinct Fe species were identified: a paramagnetic diferrous species, a diamagnetic diferrous species, a mixed valence Fe(2+)Fe(3+) species, and a mononuclear Fe(2+) species. The latter three species were detected in the wild-type DvFtn, while the paramagnetic diferrous species was detected in the E130A variant. These observations can be rationally explained by the presence of a trinuclear Fe binding center, and the four Fe species can be properly assigned to the three Fe binding sites. Further, our spectroscopic data suggest that (1) the fully occupied trinuclear center supports an all ferrous state, (2) sites B and C are bridged by a μ-OH group forming a diiron subcenter within the trinuclear center, and (3) this subcenter can afford both a mixed valence Fe(2+)Fe(3+) state and a diferrous state. Mechanistic insights provided by these new findings are discussed and a minimal mechanistic scheme involving O-O bond cleavage is proposed.
Collapse
Affiliation(s)
- Alice S. Pereira
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Cristina G. Timóteo
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Márcia Guilherme
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Filipe Folgosa
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Sunil G. Naik
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Américo G. Duarte
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Boi Hanh Huynh
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Pedro Tavares
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| |
Collapse
|
170
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
171
|
Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:161-87. [PMID: 21856378 PMCID: PMC3258305 DOI: 10.1016/j.bbagen.2011.08.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Not long after the Big Bang, iron began to play a central role in the Universe and soon became mired in the tangle of biochemistry that is the prima essentia of life. Since life's addiction to iron transcends the oxygenation of the Earth's atmosphere, living things must be protected from the potentially dangerous mix of iron and oxygen. The human being possesses grams of this potentially toxic transition metal, which is shuttling through his oxygen-rich humor. Since long before the birth of modern medicine, the blood-vibrant red from a massive abundance of hemoglobin iron-has been a focus for health experts. SCOPE OF REVIEW We describe the current understanding of iron metabolism, highlight the many important discoveries that accreted this knowledge, and describe the perils of dysfunctional iron handling. GENERAL SIGNIFICANCE Isaac Newton famously penned, "If I have seen further than others, it is by standing upon the shoulders of giants". We hope that this review will inspire future scientists to develop intellectual pursuits by understanding the research and ideas from many remarkable thinkers of the past. MAJOR CONCLUSIONS The history of iron research is a long, rich story with early beginnings, and is far from being finished. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Alex D. Sheftel
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada
| | - Anne B. Mason
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Ste.-Catherine Rd., Montréal, QC H3T 1E2, and Departments of Physiology and Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
172
|
Nishida K, Silver PA. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway. PLoS Biol 2012; 10:e1001269. [PMID: 22389629 PMCID: PMC3289596 DOI: 10.1371/journal.pbio.1001269] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/10/2012] [Indexed: 11/18/2022] Open
Abstract
Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.
Collapse
Affiliation(s)
- Keiji Nishida
- Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
173
|
Galatro A, Robello E, Puntarulo S. Soybean ferritin: isolation, characterization, and free radical generation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:45-54. [PMID: 22112169 DOI: 10.1111/j.1744-7909.2011.01091.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The main aim of this work was to assess the multi-task role of ferritin (Ft) in the oxidative metabolism of soybean (Glycine max). Soybean seeds incubated for 24 h yielded 41 ± 5 μg Ft/g fresh weight. The rate of in vitro incorporation of iron (Fe) into Ft was tested by supplementing the reaction medium with physiological Fe chelators. The control rate, observed in the presence of 100 μM Fe, was not significantly different from the values observed in the presence of 100 μM Fe-his. However, it was significantly higher in the presence of 100 μM Fe-citrate (approximately 4.5-fold) or of 100 μM Fe-ATP (approximately 14-fold). Moreover, a substantial decrease in the Trp-dependent fluorescence of the Ft protein was determined during Fe uptake from Fe-citrate, as compared with the control. On the other hand, Ft addition to homogenates from soybean embryonic axes reduced endogenously generated ascorbyl radical, according to its capacity for Fe uptake. The data presented here suggest that Ft could be involved in the generation of free radicals, such as hydroxyl radical, by Fe-catalyzed reactions. Moreover, the scavenging of these radicals by Ft itself could then lead to protein damage. However, Ft could also prevent cellular damage by the uptake of catalytically active Fe.
Collapse
Affiliation(s)
- Andrea Galatro
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| | | | | |
Collapse
|
174
|
Cabán-Hernández K, Gaudier JF, Espino AM. Characterization and differential expression of a ferritin protein from Fasciola hepatica. Mol Biochem Parasitol 2011; 182:54-61. [PMID: 22240114 DOI: 10.1016/j.molbiopara.2011.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/21/2011] [Accepted: 12/20/2011] [Indexed: 12/31/2022]
Abstract
Ferritins are proteins that play a central role in maintaining intracellular iron balance. A cDNA clone of Fasciola hepatica (687 bp long) encoding a putative 228-amino acid polypeptide (FhFtn-1) homologous with ferritins of vertebrates and invertebrates was identified. FhFtn-1 contains a conserved motif of the ferroxidase center typical of vertebrate ferritins. Phylogenetic tree analysis showed that FhFtn-1 clusters with two ferritins of Paragonimus westermani, which suggests a common ancestry for the ferritins of these two trematodes. Recombinant FhFtn-1 protein expressed and purified from an Escherichia coli system showed iron-uptake ability. Moreover, FhFtn-1 showed strong reactivity with sera from rabbits infected with F. hepatica for 2-12 weeks, which suggests that this protein could be a potential antigen for immunodiagnosis of fascioliasis. qPCR analysis demonstrated that FhFtn-1-mRNA is expressed at significantly higher levels in adults and unembryonated eggs than in juveniles or miracidia. These results represent the first characterization of a ferritin protein from the liver fluke F. hepatica.
Collapse
Affiliation(s)
- Kimberly Cabán-Hernández
- Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | | | | |
Collapse
|
175
|
Romney SJ, Newman BS, Thacker C, Leibold EA. HIF-1 regulates iron homeostasis in Caenorhabditis elegans by activation and inhibition of genes involved in iron uptake and storage. PLoS Genet 2011; 7:e1002394. [PMID: 22194696 PMCID: PMC3240588 DOI: 10.1371/journal.pgen.1002394] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1–dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage. Due to its presence in proteins involved in hemoglobin synthesis, DNA synthesis, and mitochondrial respiration, eukaryotic cells require iron for survival. Excess iron can lead to oxidative damage, while iron deficiency reduces cell growth and causes cell death. Dysregulation of iron homeostasis in humans caused by iron deficiency or excess leads to anemia, diabetes, and neurodegenerative disorders. All organisms have thus developed mechanisms to sense, acquire, and store iron. We use Caenorhabditis elegans as a model organism to study mechanisms of iron regulation. Our previous studies show that the iron-storage protein ferritin (FTN-1, FTN-2) is transcriptionally inhibited in intestine during iron deficiency, but the mechanisms regulating iron regulation are not known. Here, we find that hypoxia-inducible factor 1 (HIF-1) transcriptionally inhibits ftn-1 and ftn-2 during iron deficiency. We also show that HIF-1 activates the iron uptake gene smf-3. Transcriptional activation and inhibition by HIF-1 is dependent on an iron enhancer in the promoters of these genes. HIF-1 is a known transcriptional activator, but its role in transcriptional inhibition is not well understood. Our data show that HIF-1 regulates iron homeostasis by activating and inhibiting iron uptake and storage genes, and they provide insight into HIF-1 transcriptional inhibition.
Collapse
Affiliation(s)
- Steven Joshua Romney
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Ben S. Newman
- University of Washington, Seattle, Washington, United States of America
| | - Colin Thacker
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
176
|
Liu X, Wei W, Yuan Q, Zhang X, Li N, Du Y, Ma G, Yan C, Ma D. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem Commun (Camb) 2011; 48:3155-7. [PMID: 22129765 DOI: 10.1039/c1cc15815e] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
4.5 nm nanoceria particles are successfully encapsulated into the apoferritin cavity via a dissociation-reconstruction route. The apoferritin coating not only improves the biocompatibility and changes the cellular uptake route of nanoceria, but also manipulates the electron localization at the surface of the nanoparticle thereby ameliorating the ROS-scavenging activity.
Collapse
Affiliation(s)
- Xiangyou Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Haldar S, Bevers LE, Tosha T, Theil EC. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit. J Biol Chem 2011; 286:25620-7. [PMID: 21592958 DOI: 10.1074/jbc.m110.205278] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of [Fe³⁺O](n) multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²⁺ access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) [Fe³⁺O](n) transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.
Collapse
Affiliation(s)
- Suranjana Haldar
- Children's Hospital Oakland Research Institute, Oakland, California 94609 , USA
| | | | | | | |
Collapse
|
178
|
Khare G, Gupta V, Nangpal P, Gupta RK, Sauter NK, Tyagi AK. Ferritin structure from Mycobacterium tuberculosis: comparative study with homologues identifies extended C-terminus involved in ferroxidase activity. PLoS One 2011; 6:e18570. [PMID: 21494619 PMCID: PMC3072985 DOI: 10.1371/journal.pone.0018570] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/04/2011] [Indexed: 11/19/2022] Open
Abstract
Ferritins are recognized as key players in the iron storage and detoxification processes. Iron acquisition in the case of pathogenic bacteria has long been established as an important virulence mechanism. Here, we report a 3.0 Å crystal structure of a ferritin, annotated as Bacterioferritin B (BfrB), from Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis that continues to be one of the world's deadliest diseases. Similar to the other members of ferritin family, the Mtb BfrB subunit exhibits the characteristic fold of a four-helical bundle that possesses the ferroxidase catalytic centre. We compare the structure of Mtb BfrB with representatives of the ferritin family belonging to the archaea, eubacteria and eukarya. Unlike most other ferritins, Mtb BfrB has an extended C-terminus. To dissect the role of this extended C-terminus, truncated Mtb BfrB was purified and biochemical studies implicate this region in ferroxidase activity and iron release in addition to providing stability to the protein. Functionally important regions in a protein of known 3D-structure can be determined by estimating the degree of conservation of the amino-acid sites with its close homologues. Based on the comparative studies, we identify the slowly evolving conserved sites as well as the rapidly evolving variable sites and analyze their role in relation to structure and function of Mtb BfrB. Further, electrostatic computations demonstrate that although the electrostatic environment of catalytic residues is preserved within the family, extensive variability is exhibited by residues defining the channels and pores, in all likelihood keeping up with the diverse functions executed by these ferritins in varied environments.
Collapse
Affiliation(s)
- Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prachi Nangpal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rakesh K. Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Nicholas K. Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
179
|
The many faces of the octahedral ferritin protein. Biometals 2011; 24:489-500. [PMID: 21267633 DOI: 10.1007/s10534-011-9415-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/13/2011] [Indexed: 12/14/2022]
Abstract
Iron is an essential trace nutrient required for the active sites of many enzymes, electron transfer and oxygen transport proteins. In contrast, to its important biological roles, iron is a catalyst for reactive oxygen species (ROS). Organisms must acquire iron but must protect against oxidative damage. Biology has evolved siderophores, hormones, membrane transporters, and iron transport and storage proteins to acquire sufficient iron but maintain iron levels at safe concentrations that prevent iron from catalyzing the formation of ROS. Ferritin is an important hub for iron metabolism because it sequesters iron during times of iron excess and releases iron during iron paucity. Ferritin is expressed in response to oxidative stress and is secreted into the extracellular matrix and into the serum. The iron sequestering ability of ferritin is believed to be the source of the anti-oxidant properties of ferritin. In fact, ferritin has been used as a biomarker for disease because it is synthesized in response to oxidative damage and inflammation. The function of serum ferritin is poorly understood, however serum ferritin concentrations seem to correlate with total iron stores. Under certain conditions, ferritin is also associated with pro-oxidant activity. The source of this switch from anti-oxidant to pro-oxidant has not been established but may be associated with unregulated iron release from ferritin. Recent reports demonstrate that ferritin is involved in other aspects of biology such as cell activation, development, immunity and angiogenesis. This review examines ferritin expression and secretion in correlation with anti-oxidant activity and with respect to these new functions. In addition, conditions that lead to pro-oxidant conditions are considered.
Collapse
|
180
|
Andrews SC. The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta Gen Subj 2010; 1800:691-705. [DOI: 10.1016/j.bbagen.2010.05.010] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
|