151
|
Zhang YG, Zhu YJ, Chen F, Lu BQ. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance. Colloids Surf B Biointerfaces 2017; 159:337-348. [DOI: 10.1016/j.colsurfb.2017.07.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
|
152
|
Shokrollahi H, Salimi F, Doostmohammadi A. The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery. J Mech Behav Biomed Mater 2017; 74:365-370. [DOI: 10.1016/j.jmbbm.2017.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
153
|
Biocompatible waterborne polyurethane-urea elastomer as intelligent anticancer drug release matrix: A sustained drug release study. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
154
|
Moghanizadeh-Ashkezari M, Shokrollahi P, Zandi M, Shokrolahi F. Polyurethanes with separately tunable biodegradation behavior and mechanical properties for tissue engineering. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Mojgan Zandi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| |
Collapse
|
155
|
|
156
|
Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydr Polym 2017; 171:281-291. [DOI: 10.1016/j.carbpol.2017.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/24/2017] [Accepted: 05/07/2017] [Indexed: 11/22/2022]
|
157
|
Firoozi N, Rezayan AH, Tabatabaei Rezaei SJ, Mir-Derikvand M, Nabid MR, Nourmohammadi J, Mohammadnejad Arough J. Synthesis of poly(ε-caprolactone)-based polyurethane semi-interpenetrating polymer networks as scaffolds for skin tissue regeneration. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1276059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Negar Firoozi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Mohammad Mir-Derikvand
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Nabid
- Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Javad Mohammadnejad Arough
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
158
|
Raddatz L, de Vries I, Austerjost J, Lavrentieva A, Geier D, Becker T, Beutel S, Scheper T. Additive manufactured customizable labware for biotechnological purposes. Eng Life Sci 2017; 17:931-939. [PMID: 32624842 DOI: 10.1002/elsc.201700055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Yet already developed in the 1980s, the rise of 3D printing technology did not start until the beginning of this millennium as important patents expired, which opened the technology to a whole new group of potential users. One of the first who used this manufacturing tool in biotechnology was Lücking et al. in 2012, demonstrating potential uses 1, 2. This study shows applications of custom-built 3D-printed parts for biotechnological experiments. It gives an overview about the objects' computer-aided design (CAD) followed by its manufacturing process and basic studies on the used printing material in terms of biocompatibility and manageability. Using the stereolithographic (SLA) 3D-printing technology, a customizable shake flask lid was developed, which was successfully used to perform a bacterial fed-batch shake flask cultivation. The lid provides Luer connectors and tube adapters, allowing both sampling and feeding without interrupting the process. In addition, the digital blueprint the lid is based on, is designed for a modular use and can be modified to fit specific needs. All connectors can be changed and substituted in this CAD software-based file. Hence, the lid can be used for other applications, as well. The used printing material was tested for biocompatibility and showed no toxic effects neither on mammalian, nor on bacteria cells. Furthermore an SDS-PAGE-comb was drawn and printed and its usability evaluated to demonstrate the usefulness of 3D printing for everyday labware. The used manufacturing technique for the comb (multi jet printing, MJP) generates highly smooth surfaces, allowing this application.
Collapse
Affiliation(s)
- Lukas Raddatz
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany.,Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Ingo de Vries
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| | - Jonas Austerjost
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany.,Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Antonina Lavrentieva
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| | - Dominik Geier
- Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Thomas Becker
- Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Sascha Beutel
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| |
Collapse
|
159
|
Pei B, Wang W, Fan Y, Wang X, Watari F, Li X. Fiber-reinforced scaffolds in soft tissue engineering. Regen Biomater 2017; 4:257-268. [PMID: 28798872 PMCID: PMC5544910 DOI: 10.1093/rb/rbx021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022] Open
Abstract
Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies. Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure, fiber-reinforced scaffolds have the advantage to mimic the structure, mechanical and biological environment of natural soft tissues, which benefits for their regeneration and remodeling. This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics, mechanical strength and biological activities in vitro and in vivo. In general, the concept of fiber-reinforced scaffolds with adjustable microstructures, mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine.
Collapse
Affiliation(s)
- Baoqing Pei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Fumio Watari
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
160
|
Namdari M, Negahdari B, Eatemadi A. Paediatric nanofibrous bioprosthetic heart valve. IET Nanobiotechnol 2017; 11:493-500. [PMID: 28745279 PMCID: PMC8676244 DOI: 10.1049/iet-nbt.2016.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 09/22/2023] Open
Abstract
The search for an optimal aortic valve implant with durability, calcification resistance, excellent haemodynamic parameters and ability to withstand mechanical loading is yet to be met. Thus, there has been struggled to fabricate bio-prosthetics heart valve using bioengineering. The consequential product must be resilient with suitable mechanical features, biocompatible and possess the capacity to grow. Defective heart valves replacement by surgery is now common, this improves the value and survival of life for a lot of patients. The recent paediatric heart valve implant is suboptimal due to their inability of somatic growth. They usually have multiple surgeries to change outgrown valves. Short-lived valve bio-prostheses occurring in older patients and younger ones who more usually need the replacement of its damaged heart with prosthesis led to a new invasive surgical interventions with an improved quality of life. The authors propose that nanofibre scaffold for paediatric tissue-engineered heart valve will meet most of these conditions, most particularly those related to somatic growth, and, as the nanofibre scaffold is eroded, new valve is produced, the valve matures in the child until adulthood.
Collapse
Affiliation(s)
- Mehrdad Namdari
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran.
| |
Collapse
|
161
|
Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1797-1825. [PMID: 28707508 DOI: 10.1080/09205063.2017.1354674] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current strategies of tissue engineering are focused on the reconstruction and regeneration of damaged or deformed tissues by grafting of cells with scaffolds and biomolecules. Recently, much interest is given to scaffolds which are based on mimic the extracellular matrix that have induced the formation of new tissues. To return functionality of the organ, the presence of a scaffold is essential as a matrix for cell colonization, migration, growth, differentiation and extracellular matrix deposition, until the tissues are totally restored or regenerated. A wide variety of approaches has been developed either in scaffold materials and production procedures or cell sources and cultivation techniques to regenerate the tissues/organs in tissue engineering applications. This study has been conducted to present an overview of the different scaffold fabrication techniques such as solvent casting and particulate leaching, electrospinning, emulsion freeze-drying, thermally induced phase separation, melt molding and rapid prototyping with their properties, limitations, theoretical principles and their prospective in tailoring appropriate micro-nanostructures for tissue regeneration applications. This review also includes discussion on recent works done in the field of tissue engineering.
Collapse
Affiliation(s)
- Vahideh Raeisdasteh Hokmabad
- a Department of Chemistry , University of Zanjan , Zanjan , Iran.,b Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Soodabeh Davaran
- b Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Ramazani
- a Department of Chemistry , University of Zanjan , Zanjan , Iran
| | - Roya Salehi
- c Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Faculty of Advanced Medical Sciences, Department of Medical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
162
|
3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. J Mech Behav Biomed Mater 2017; 75:147-159. [PMID: 28734256 DOI: 10.1016/j.jmbbm.2017.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
The fabrication of biomaterials for interaction with muscle cells has attracted significant interest in the last decades. However, 3D porous scaffolds featured by a relatively low stiffness (almost matching the natural muscle one) and highly stable in response to cyclic loadings are not available at present, in this context. This work describes 3D polyurethane-based porous scaffolds featured by different mechanical properties. Biomaterial stiffness was finely tuned by varying the cross-linking degree of the starting foam. Compression tests revealed, for the softest material formulation, stiffness values close to the ones possessed by natural skeletal muscles. The materials were also characterized in terms of local nanoindenting, rheometric properties and long-term stability through cyclic compressions, in a strain range reflecting the contraction extent of natural muscles. Preliminary in vitro tests revealed a preferential adhesion of C2C12 skeletal muscle cells over the softer, rougher and more porous structures. All the material formulations showed low cytotoxicity.
Collapse
|
163
|
Shin YC, Kang SH, Lee JH, Kim B, Hong SW, Han DW. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:762-774. [PMID: 28657493 DOI: 10.1080/09205063.2017.1348738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of three dimensional (3D) scaffolds for promoting and stimulating cell growth is one of the greatest concerns in biomedical and tissue engineering. In the present study, novel biomimetic 3D scaffolds composed of polyurethane (PU) foam and graphene oxide (GO) nanosheets were designed, and their potential as 3D scaffolds for skeletal tissue regeneration was explored. The GO-coated PU foams (GO-PU foams) were characterized by scanning electron microscopy and Raman spectroscopy. It was revealed that the 3D GO-PU foams consisted of an interconnected foam-like network structure with an approximate 300 μm pore size, and the GO was uniformly distributed in the PU foams. On the other hand, the myogenic stimulatory effects of GO on skeletal myoblasts were also investigated. Moreover, the cellular behaviors of the skeletal myoblasts within the 3D GO-PU foams were evaluated by immunofluorescence analysis. Our findings showed that GO can significantly promote spontaneous myogenic differentiation without any myogenic factors, and the 3D GO-PU foams can provide a suitable 3D microenvironment for cell growth. Furthermore, the 3D GO-PU foams stimulated spontaneous myogenic differentiation via the myogenic stimulatory effects of GO. Therefore, this study suggests that the 3D GO-PU foams are beneficial to myogenesis, and can be used as biomimetic 3D scaffolds for skeletal tissue engineering.
Collapse
Affiliation(s)
- Yong Cheol Shin
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Seok Hee Kang
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Jong Ho Lee
- b Center for Biomaterials, Biomedical Research Institute , Korea Institute of Science and Technology , Seoul , Korea
| | - Bongju Kim
- c Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science , Seoul National University Dental Hospital , Seoul , Korea
| | - Suck Won Hong
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Dong-Wook Han
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| |
Collapse
|
164
|
Abstract
Researchers face many challenges, both scientific and societal, in the field of tissue engineering. Herein we discuss the challenges in material design, selection of therapeutic cell source, the in vitro culturing of cells and materials, and finally the integration of the cultured construct into the body. We focus special attention on a new approach to the design of a biomaterial that would bridge synthetic and biologic materials seamlessly. The scaffolds we have developed serve as a transitional material between biotic and abiotic systems.
Collapse
Affiliation(s)
- Sara L Wargo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
165
|
Mi HY, Jing X, Napiwocki BN, Hagerty BS, Chen G, Turng LS. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B 2017; 5:4137-4151. [PMID: 29170715 PMCID: PMC5695921 DOI: 10.1039/c7tb00419b] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biodegradable synthetic polymers have been widely used as tissue engineering scaffold materials. Even though they have shown excellent biocompatibility, they have failed to resemble the low stiffness and high elasticity of soft tissues because of the presence of massive rigid ester bonds. Herein, we synthesized a new thermoplastic polyurethane elastomer (CTC-PU(BET)) using poly ester ether triblock copolymer (polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone triblock copolymer, PCTC) as the soft segment, aliphatic diisocyanate (hexamethylene diisocyanate, HDI) as the hard segment, and degradable diol (bis(2-hydroxyethyl) terephthalate, BET) as the chain extender. PCTC inhibited crystallization and reduced the melting temperature of CTC-PU(BET), and BET dramatically enhanced the thermal decomposition and hydrolytic degradation rate when compared with conventional polyester-based biodegradable TPUs. The CTC-PU(BET) synthesized in this study possessed a low tensile modulus and tensile strength of 2.2 MPa and 1.3 MPa, respectively, and an elongation-at-break over 700%. Meanwhile, it maintained a 95.3% recovery rate and 90% resilience over ten cycles of loading and unloading. In addition, the TPU could be electrospun into both random and aligned fibrous scaffolds consisting of major microfibers and nanobranches. 3T3 fibroblast cell culture confirmed that these scaffolds outperformed the conventional biodegradable TPU scaffolds in terms of substrate-cellular interactions and cell proliferation. Considering the advantages of this TPU, such as ease of synthesis, low cost, low stiffness, high elasticity, controllable degradation rate, ease of processability, and excellent biocompatibility, it has great prospects to be used as a tissue engineering scaffold material for soft tissue regeneration.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Department of Mechanical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
- Department of Industrial Equipment and Control Engineering, South
China University of Technology, Guangzhou, 510640, China
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Xin Jing
- Department of Industrial Equipment and Control Engineering, South
China University of Technology, Guangzhou, 510640, China
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Brett N. Napiwocki
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
- Department of Biomedical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
| | - Breanna S. Hagerty
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Guojun Chen
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| |
Collapse
|
166
|
Shoaib M, Bahadur A, Rahman MSU, Iqbal S, Arshad MI, Tahir MA, Mahmood T. Sustained drug delivery of doxorubicin as a function of pH, releasing media, and NCO contents in polyurethane urea elastomers. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
167
|
Chen M, Hu N, Zhou C, Lin X, Xie H, He Q. The hierarchical structure and mechanical performance of a natural nanocomposite material: The turtle shell. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
168
|
Laube T, Weisser J, Berger S, Börner S, Bischoff S, Schubert H, Gajda M, Bräuer R, Schnabelrauch M. In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:163-174. [PMID: 28575970 DOI: 10.1016/j.msec.2017.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Degradable foams which can be inserted endoscopically as liquid or pasty mixtures into soft tissue defects possess a promising potential for the surgical treatment of such defects. The defects can be sealed under in situ foaming and simultaneous material expansion. We developed an in situ foamable (l-lactide-co-ε-caprolactone)-based, star-shaped prepolymer by ring opening polymerization of l-lactide and ε-caprolactone in the presence of meso-erythritol as starter. By conversion of the terminal hydroxyl groups of the formed oligoester with lysine diisocyanate ethyl ester (LDI) an isocyanate-endcapped, reactive prepolymer has been received. Foaming can be initiated by addition of 1,4-diazabicyclo[2,2,2]octane (DABCO), water, LDI and DMSO. By varying the composition of these additives, the foaming and curing time could be varied within a clinically acceptable range. A porosity of approximately 90%, and an average tensile strength of 0.3MPa with elongations of 90% were determined for the foams. In vitro cytotoxicity on cured foams was assayed on 3T3 fibroblasts and demonstrated an excellent cytocompatibility. This was also confirmed in an in vivo study using an established rat model, where prefabricated foams and in situ hardening material were inserted into subdermal skin incisions in parallel. The feature of chronic inflammation was only weakly developed in both groups and slightly more pronounced and persisted for longer time in the group of in situ foamed material. In both groups the foreign materials were vascularized, degraded and substituted by connective tissue. The results encourage to proceed with trials where the materials are used to fill more heavily loaded defects.
Collapse
Affiliation(s)
| | | | - Stefan Berger
- INNOVENT e.V., Biomaterials Department, Jena, Germany
| | - Stefan Börner
- Institute of Materials Science and Technology, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Bischoff
- Institute of Animal Research and Protection, University Hospital Jena, Jena, Germany
| | - Harald Schubert
- Institute of Animal Research and Protection, University Hospital Jena, Jena, Germany
| | | | - Rolf Bräuer
- Institute of Pathology, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
169
|
Balavigneswaran CK, Mahto SK, Subia B, Prabhakar A, Mitra K, Rao V, Ganguli M, Ray B, Maiti P, Misra N. Tailored Chemical Properties of 4-Arm Star Shaped Poly(d,l-lactide) as Cell Adhesive Three-Dimensional Scaffolds. Bioconjug Chem 2017; 28:1236-1250. [DOI: 10.1021/acs.bioconjchem.7b00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Bano Subia
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
| | - Arumugam Prabhakar
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi-110001, India
| | - Kheyanath Mitra
- Department
of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vivek Rao
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi-110001, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura road, New Delhi-110025, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi-110001, India
| | - Biswajit Ray
- Department
of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | | | | |
Collapse
|
170
|
Demir P, Akman F. Molecular structure, spectroscopic characterization, HOMO and LUMO analysis of PU and PCL grafted onto PEMA-co-PHEMA with DFT quantum chemical calculations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
171
|
Li J, Wu X, Wu Y, Tang Z, Sun X, Pan M, Chen Y, Li J, Xiao R, Wang Z, Liu H. Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:411-419. [PMID: 28532047 DOI: 10.1016/j.msec.2017.03.276] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/27/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022]
Abstract
Controlling massive hemorrhage is of great importance to lower transfusional medical cost, and to reduce death and mobility rate in battlefield and civilian accidents. We reported the fabrication of porous chitosan microspheres (CSMS) with tunable surface pore size by microemulsion combined with thermally induced phase separation technique, and its application as a quick hemostat. Their hemostatic property was characterized by blood clotting kinetics, adherence interaction between red blood cells/platelets and CSMS, in vitro and in vivo hemostasis by rat tail amputation and liver laceration models, and histological analysis. Their density, surface area, porosity, water absorption ratio were 0.04-0.06g/cm3, 28.2-31.5m2/g, 98%, and 15.5-23.2g/g, respectively. The surface pore was controlled to be smaller than 2.0μm. The porous CSMS showed increasing hemostatic efficacy with decreasing surface pore size. Compared to the conventional compact chitosan particles (CCSP), the porous CSMS had much improved in vitro and in vivo hemostatic potential with respect to formation of blood clot, hemostatic time, and blood loss. For instance, the hemostatic time and blood loss of CSMS in the rat liver laceration model were down to respectively 70s and 0.026g from 175s and 0.28g of CCSP. Histological examination showed that application of porous CSMS to liver laceration caused no destruction of underlying hepatocytes, inflammatory reaction, and thermal injury to liver tissue. The porous CSMS is a biodegradable, quick and safe hemostat, which can be used in various wounds including complex and non-compressive ones.
Collapse
Affiliation(s)
- Jixiang Li
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Xiaowei Wu
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Yanqing Wu
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Zonghao Tang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Xun Sun
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Meng Pan
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Yufeng Chen
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Juanjuan Li
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Rongdong Xiao
- Department of Cardiovascular Surgery, Provincial Clinical College, Fujian Medical University, Fujian 350001, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China.
| | - Haiqing Liu
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
172
|
|
173
|
Vaquette C, Sudheesh Kumar PT, Petcu EB, Ivanovski S. Combining electrospinning and cell sheet technology for the development of a multiscale tissue engineered ligament construct (TELC). J Biomed Mater Res B Appl Biomater 2017; 106:399-409. [PMID: 28170157 DOI: 10.1002/jbm.b.33828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 12/20/2022]
Abstract
Ligament tissue rupture is a common sport injury. Although current treatment modalities can achieve appropriate reconstruction of the damaged ligament, they present significant drawbacks, mostly related to reduced tissue availability and pain associated with tissue harvesting. Stem cell based tissue regeneration combined with electrospun scaffolds represents a novel treatment method for torn ligaments. In this study, a low fiber density polycaprolactone (PCL) electrospun mesh and sheep mesenchymal stem cells (sMSCs) were used to develop tissue engineered ligament construct (TELC) in vitro. The assembly of the TELC was based on the spontaneous capacity of the cells to organize themselves into a cell sheet once seeded onto the electrospun mesh. The cell sheet matured over 4 weeks and strongly integrated with the low fiber density electrospun mesh which was subsequently processed into a ligament-like bundle and braided with two other bundles to develop the final construct. Live/dead assay revealed that the handling of the construct through the various phases of assembly did not cause significant difference in viability compared to the control. Mechanical evaluation demonstrated that the incorporation of the cell sheet into the braided construct resulted in significantly modifying the mechanical behavior. A stress/displacement J-curve was observed for the TELC that was similar to native ligament, whereas this particular feature was not observed in the non-cellularized specimens. The regenerative potential of the TELC was evaluated ectopically in immunocompromized rats, compared to non cellularized electrospun fiber mesh and this demonstrated that the TELC was well colonized by host cells and that a significant remodelling of the implanted construct was observed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 399-409, 2018.
Collapse
Affiliation(s)
| | - P T Sudheesh Kumar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Eugen Bogdan Petcu
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Saso Ivanovski
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| |
Collapse
|
174
|
Xu C, Huang Y, Tang L, Hong Y. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2169-2180. [PMID: 28036169 PMCID: PMC7479969 DOI: 10.1021/acsami.6b15009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mechanical match between synthetic scaffold and host tissue remains challenging in tissue regeneration. The elastic soft tissues exhibit low initial moduli with a J-shaped tensile curve. Suitable synthetic polymer scaffolds require low initial modulus and elasticity. To achieve these requirements, random copolymers poly(δ-valerolactone-co-ε-caprolactone) (PVCL) and hydrophilic poly(ethylene glycol) (PEG) were combined into a triblock copolymer, PVCL-PEG-PVCL, which was used as a soft segment to synthesize a family of biodegradable elastomeric polyurethanes (PU) with low initial moduli. The triblock copolymers were varied in chemical components, molecular weights, and hydrophilicities. The mechanical properties of polyurethanes in dry and wet states can be tuned by altering the molecular weights and hydrophilicities of the soft segments. Increasing the length of either PVCL or PEG in the soft segments reduced initial moduli of the polyurethane films and scaffolds in dry and wet states. The polymer films are found to have good cell compatibility and to support fibroblast growth in vitro. Selected polyurethanes were processed into porous scaffolds by a thermally induced phase-separation technique. The scaffold from PU-PEG1K-PVCL6K had an initial modulus of 0.60 ± 0.14 MPa, which is comparable with the initial modulus of human myocardium (0.02-0.50 MPa). In vivo mouse subcutaneous implantation of the porous scaffolds showed minimal chronic inflammatory response and intensive cell infiltration, which indicated good tissue compatibility of the scaffolds. Biodegradable polyurethane elastomers with low initial modulus and good biocompatibility and processability would be an attractive alternative scaffold material for soft tissue regeneration, especially for heart muscle.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
- Corresponding author: Yi Hong, , Tel: +1-817-272-0562; Fax: +1-817-272-2251
| |
Collapse
|
175
|
Tan EYS, Agarwala S, Yap YL, Tan CSH, Laude A, Yeong WY. Novel method for the fabrication of ultrathin, free-standing and porous polymer membranes for retinal tissue engineering. J Mater Chem B 2017. [DOI: 10.1039/c7tb00376e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal degeneration causes permanent visual loss and affects millions of people worldwide.
Collapse
Affiliation(s)
- Edgar Yong Sheng Tan
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Shweta Agarwala
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Yee Ling Yap
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Colin Siang Hui Tan
- Department of Ophthalmology
- National Healthcare Group Eye Institute
- Tan Tock Seng Hospital
- Singapore
| | - Augustinus Laude
- Department of Ophthalmology
- National Healthcare Group Eye Institute
- Tan Tock Seng Hospital
- Singapore
| | - Wai Yee Yeong
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
176
|
Rezayan AH, Firoozi N, Kheirjou S, Tabatabaei Rezaei SJ, Nabid MR. Synthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:63-73. [PMID: 28496462 PMCID: PMC5423234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which is derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). These experiments show that the polymers with the right composition and the expected molecular weight were achieved. Also, the in-vitro degradation of polymer network was examined in phosphate buffer solutions (pH 7.4) at 37 °C. Moreover, cell viability and adhesion tests were carried out with fibroblast cells by the MTT assay, which confirmed biocompatibility. Polyurethane materials have superior mechanical properties, so these biodegradable and biocompatible films demonstrate potential for future application as cell scaffolds in soft tissue engineering applications.
Collapse
Affiliation(s)
- Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Fax +982188617087,Tehran, Iran. ,Corresponding author: E-mail: ,
| | - Negar Firoozi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Fax +982188617087,Tehran, Iran.
| | - Somayyeh Kheirjou
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Fax +982188617087,Tehran, Iran.
| | | | - Mohammad Reza Nabid
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran, Iran.
| |
Collapse
|
177
|
Kucinska-Lipka J, Janik H, Gubanska I. Ascorbic Acid in Polyurethane Systems for Tissue Engineering. CHEMISTRY & CHEMICAL TECHNOLOGY 2016. [DOI: 10.23939/chcht10.04si.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for TE was described. L-AA has been applied in this area due to its suitable biological characteristics and antioxidative properties. Moreover, L-AA influences tissue regeneration due to improving collagen synthesis, which is a primary component of the extracellular matrix (ECM). Modification of PUR with L-AA leads to the materials with higher biocompatibility and such system is promising for TE applications.
Collapse
|
178
|
Namdari M, Eatemadi A. Nanofibrous bioengineered heart valve—Application in paediatric medicine. Biomed Pharmacother 2016; 84:1179-1188. [DOI: 10.1016/j.biopha.2016.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
|
179
|
Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J Biomater Appl 2016; 31:708-720. [PMID: 27789793 DOI: 10.1177/0885328216664448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues.
Collapse
Affiliation(s)
- Fabian Arévalo
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Yomaira L Uscategui
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Luis Diaz
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Martha Cobo
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Manuel F Valero
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
180
|
Hua D, Liu Z, Wang F, Gao B, Chen F, Zhang Q, Xiong R, Han J, Samal SK, De Smedt SC, Huang C. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydr Polym 2016; 151:1240-1244. [DOI: 10.1016/j.carbpol.2016.06.066] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 02/09/2023]
|
181
|
Formulation and evaluation of anise-based bioadhesive vaginal gels. Biomed Pharmacother 2016; 83:485-495. [DOI: 10.1016/j.biopha.2016.06.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/21/2022] Open
|
182
|
Blakney AK, Simonovsky FI, Suydam IT, Ratner BD, Woodrow KA. Rapidly Biodegrading PLGA-Polyurethane Fibers for Sustained Release of Physicochemically Diverse Drugs. ACS Biomater Sci Eng 2016; 2:1595-1607. [PMID: 28989956 PMCID: PMC5630182 DOI: 10.1021/acsbiomaterials.6b00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sustained release of physicochemically diverse drugs from electrospun fibers remains a challenge and precludes the use of fibers in many medical applications. Here, we synthesize a new class of polyurethanes with poly(lactic-co-glycolic acid) (PLGA) moieties that degrade faster than polyurethanes based on polycaprolactone. The new polymers, with varying hard to soft segment ratios and fluorobenzene pendant group content, were electrospun into nanofibers and loaded with four physicochemically diverse small molecule drugs. Polymers were characterized using GPC, XPS, and 19F NMR. The size and morphology of electrospun fibers were visualized using SEM, and drug/polymer compatibility and drug crystallinity were evaluated using DSC. We measured in vitro drug release, polymer degradation and cell-culture cytotoxicity of biodegradation products. We show that these newly synthesized PLGA-based polyurethanes degrade up to 65-80% within 4 weeks and are cytocompatible in vitro. The drug-loaded electrospun fibers were amorphous solid dispersions. We found that increasing the hard to soft segment ratio of the polymer enhances the sustained release of positively charged drugs, whereas increasing the fluorobenzene pendant content caused more rapid release of some drugs. In summary, increasing the hard segment or fluorobenzene pendant content of segmented polyurethanes containing PLGA moieties allows for modulation of physicochemically diverse drug release from electrospun fibers while maintaining a biologically relevant biodegradation rate.
Collapse
Affiliation(s)
- Anna K. Blakney
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Felix I. Simonovsky
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Ian T. Suydam
- Department of Chemistry, Seattle University, 901 12th Ave., Seattle, Washington 98122, United States
| | - Buddy D. Ratner
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| |
Collapse
|
183
|
Xu C, Yepez G, Wei Z, Liu F, Bugarin A, Hong Y. Synthesis and characterization of conductive, biodegradable, elastomeric polyurethanes for biomedical applications. J Biomed Mater Res A 2016; 104:2305-14. [PMID: 27124702 PMCID: PMC10947274 DOI: 10.1002/jbm.a.35765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 11/11/2022]
Abstract
Biodegradable conductive polymers are currently of significant interest in tissue repair and regeneration, drug delivery, and bioelectronics. However, biodegradable materials exhibiting both conductive and elastic properties have rarely been reported to date. To that end, an electrically conductive polyurethane (CPU) was synthesized from polycaprolactone diol, hexadiisocyanate, and aniline trimer and subsequently doped with (1S)-(+)-10-camphorsulfonic acid (CSA). All CPU films showed good elasticity within a 30% strain range. The electrical conductivity of the CPU films, as enhanced with increasing amounts of CSA, ranged from 2.7 ± 0.9 × 10(-10) to 4.4 ± 0.6 × 10(-7) S/cm in a dry state and 4.2 ± 0.5 × 10(-8) to 7.3 ± 1.5 × 10(-5) S/cm in a wet state. The redox peaks of a CPU1.5 film (molar ratio CSA:aniline trimer = 1.5:1) in the cyclic voltammogram confirmed the desired good electroactivity. The doped CPU film exhibited good electrical stability (87% of initial conductivity after 150 hours charge) as measured in a cell culture medium. The degradation rates of CPU films increased with increasing CSA content in both phosphate-buffered solution (PBS) and lipase/PBS solutions. After 7 days of enzymatic degradation, the conductivity of all CSA-doped CPU films had decreased to that of the undoped CPU film. Mouse 3T3 fibroblasts proliferated and spread on all CPU films. This developed biodegradable CPU with good elasticity, electrical stability, and biocompatibility may find potential applications in tissue engineering, smart drug release, and electronics. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2305-2314, 2016.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Gerardo Yepez
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Zi Wei
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Fuqiang Liu
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Alejandro Bugarin
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| |
Collapse
|
184
|
Broekema FI, van Oeveren W, Boerendonk A, Sharma PK, Bos RR. Hemostatic action of polyurethane foam with 55% polyethylene glycol compared to collagen and gelatin. Biomed Mater Eng 2016; 27:149-59. [DOI: 10.3233/bme-161578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ferdinand I. Broekema
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim van Oeveren
- Department of Cardiothoracic Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Haemoscan, Stavangerweg 23-23, 9723 JC Groningen, The Netherlands
| | - Andrea Boerendonk
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Prashant K. Sharma
- Department of Biomedical Engineering (FB 40), W.J. Kolff Institute, University Medical Center Groningen, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Rudolf R.M. Bos
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
185
|
Lin HH, Tang YH, Liu TY, Matsuyama H, Wang XL. Understanding the thermally induced phase separation process via a Maxwell–Stefan model. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
186
|
Mi HY, Jing X, Salick MR, Cordie TM, Turng LS. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. J Mech Behav Biomed Mater 2016; 62:417-427. [PMID: 27266475 DOI: 10.1016/j.jmbbm.2016.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou 510640, China; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xin Jing
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Max R Salick
- Department of Engineering Physics, University of Wisconsin-Madison, WI 53706, USA
| | - Travis M Cordie
- Department of Biomedical, University of Wisconsin-Madison, WI 53706, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
187
|
Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, Lauterboeck L, Iarmolenko D, Glasmacher B. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:143-152. [PMID: 27524006 DOI: 10.1016/j.msec.2016.05.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/18/2016] [Accepted: 05/24/2016] [Indexed: 02/03/2023]
Abstract
Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.
Collapse
Affiliation(s)
- Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover, Germany.
| | - Nickolai I Klyui
- College of Physics, Jilin University, 130012 Changchun, PR China; V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv, Ukraine.
| | - Volodymyr P Temchenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv, Ukraine.
| | - Vitalii S Kyselov
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv, Ukraine.
| | - Anamika Chatterjee
- Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover, Germany.
| | - Alexander E Belyaev
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv, Ukraine.
| | - Lothar Lauterboeck
- Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover, Germany.
| | - Dmytro Iarmolenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv, Ukraine.
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover, Germany.
| |
Collapse
|
188
|
Krawiec JT, Weinbaum JS, Liao HT, Ramaswamy AK, Pezzone DJ, Josowitz AD, D'Amore A, Rubin JP, Wagner WR, Vorp DA. In Vivo Functional Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human Adipose-Derived Stem Cells from High Cardiovascular Risk Populations. Tissue Eng Part A 2016; 22:765-75. [PMID: 27079751 PMCID: PMC4876541 DOI: 10.1089/ten.tea.2015.0379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
Many preclinical evaluations of autologous small-diameter tissue-engineered vascular grafts (TEVGs) utilize cells from healthy humans or animals. However, these models hold minimal relevance for clinical translation, as the main targeted demographic is patients at high cardiovascular risk such as individuals with diabetes mellitus or the elderly. Stem cells such as adipose-derived mesenchymal stem cells (AD-MSCs) represent a clinically ideal cell type for TEVGs, as these can be easily and plentifully harvested and offer regenerative potential. To understand whether AD-MSCs sourced from diabetic and elderly donors are as effective as those from young nondiabetics (i.e., healthy) in the context of TEVG therapy, we implanted TEVGs constructed with human AD-MSCs from each donor type as an aortic interposition graft in a rat model. The key failure mechanism observed was thrombosis, and this was most prevalent in grafts using cells from diabetic patients. The remainder of the TEVGs was able to generate robust vascular-like tissue consisting of smooth muscle cells, endothelial cells, collagen, and elastin. We further investigated a potential mechanism for the thrombotic failure of AD-MSCs from diabetic donors; we found that these cells have a diminished potential to promote fibrinolysis compared to those from healthy donors. Together, this study served as proof of concept for the development of a TEVG based on human AD-MSCs, illustrated the importance of testing cells from realistic patient populations, and highlighted one possible mechanistic explanation as to the observed thrombotic failure of our diabetic AD-MSC-based TEVGs.
Collapse
Affiliation(s)
- Jeffrey T. Krawiec
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Han-Tsung Liao
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dominic J. Pezzone
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- RiMED Foundation and DICGIM, University of Palermo, Italy
| | - J. Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
189
|
|
190
|
Mehrasa M, Anarkoli AO, Rafienia M, Ghasemi N, Davary N, Bonakdar S, Naeimi M, Agheb M, Salamat MR. Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: The influence on the physical, chemical properties and cell behavior. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1129958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
191
|
Nakhoda HM, Dahman Y. Mechanical properties and biodegradability of porous polyurethanes reinforced with green nanofibers for applications in tissue engineering. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-015-1592-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
192
|
Singh BK, Dutta PK. Chitin, Chitosan, and Silk Fibroin Electrospun Nanofibrous Scaffolds: A Prospective Approach for Regenerative Medicine. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2016. [DOI: 10.1007/978-81-322-2511-9_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
193
|
Kumari S, Chauhan GS, Monga S, Kaushik A, Ahn JH. New lignin-based polyurethane foam for wastewater treatment. RSC Adv 2016. [DOI: 10.1039/c6ra13308h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilization of renewable feedstock for the development of alternative materials is rapidly increasing due to the depletion of petroleum resources and related environmental issues.
Collapse
Affiliation(s)
- Sapana Kumari
- Department of Chemistry
- Himachal Pradesh University
- Shimla
- India-171005
| | | | - Sheetal Monga
- Dr. SS Bhatnagar University Institute of Chemical Engineering and Technology
- Panjab University
- Chandigarh-160014
- India
| | - Anupama Kaushik
- Dr. SS Bhatnagar University Institute of Chemical Engineering and Technology
- Panjab University
- Chandigarh-160014
- India
| | - Jou-Hyeon Ahn
- Department of Materials Engineering and Convergence Technology and RIGET
- Gyeongsang National University
- Jinju 52828
- Republic of Korea
| |
Collapse
|
194
|
Leonida MD, Kumar I. Nanomaterials, Scaffolds, and Skin Tissue Regeneration. SPRINGERBRIEFS IN BIOENGINEERING 2016. [DOI: 10.1007/978-3-319-39168-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
195
|
Horner CB, Ico G, Johnson J, Zhao Y, Nam J. Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels. J Mech Behav Biomed Mater 2016; 59:207-219. [PMID: 26774618 DOI: 10.1016/j.jmbbm.2015.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
Abstract
Mechanical factors among many physiochemical properties of scaffolds for stem cell-based tissue engineering significantly affect tissue morphogenesis by controlling stem cell behaviors including proliferation and phenotype-specific differentiation. Core-shell electrospinning provides a unique opportunity to control mechanical properties of scaffolds independent of surface chemistry, rendering a greater freedom to tailor design for specific applications. In this study, we synthesized electrospun core-shell scaffolds having different core composition and/or core-to-shell dimensional ratios. Two independent biocompatible polymer systems, polyetherketoneketone (PEKK) and gelatin as the core materials while maintaining the shell polymer with polycaprolactone (PCL), were utilized. The mechanics of such scaffolds was analyzed at the microscale and macroscales to determine the potential implications it may hold for cell-material and tissue-material interactions. The mechanical properties of individual core-shell fibers were controlled by core-shell composition and structure. The individual fiber modulus correlated with the increase in percent core size ranging from 0.55±0.10GPa to 1.74±0.22GPa and 0.48±0.12GPa to 1.53±0.12GPa for the PEKK-PCL and gelatin-PCL fibers, respectively. More importantly, it was demonstrated that mechanical properties of the scaffolds at the macroscale were dominantly determined by porosity under compression. The increase of scaffold porosity from 70.2%±1.0% to 93.2%±0.5% by increasing the core size in the PEKK-PCL scaffold resulted in the decrease of the compressive elastic modulus from 227.67±20.39kPa to 14.55±1.43kPa while a greater changes in the porosity of gelatin-PCL scaffold from 54.5%±4.2% to 89.6%±0.4% resulted in the compressive elastic modulus change from 484.01±30.18kPa to 17.57±1.40kPa. On the other hand, the biphasic behaviors under tensile mechanical loading result in a range from a minimum of 5.42±1.05MPa to a maximum of 12.00±1.96MPa for the PEKK-PCL scaffolds, and 10.19±4.49MPa to 22.60±2.44MPa for the gelatin-PCL scaffolds. These results suggest a feasible approach for precisely controlling the local and global mechanical characteristics, in addition to independent control over surface chemistry, to achieve a desired tissue morphogenesis using the core-shell electrospinning.
Collapse
Affiliation(s)
- Christopher B Horner
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, United States
| | - Gerardo Ico
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, United States
| | - Jed Johnson
- Nanofiber Solutions, Inc., Columbus, OH 43212, United States
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jin Nam
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, United States.
| |
Collapse
|
196
|
Dey SK, de Sousa Amadeu N, Janiak C. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction. Chem Commun (Camb) 2016; 52:7834-7. [DOI: 10.1039/c6cc02578a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, a microporous polyurethane (MPU) is prepared – it acts as an organocatalyst for aldol-type C–C bond forming reactions with high yields and under mild conditions.
Collapse
Affiliation(s)
- Sandeep Kumar Dey
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Nader de Sousa Amadeu
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| |
Collapse
|
197
|
Patel DK, Singh RK, Singh SK, Aswal VK, Rana D, Ray B, Maiti P. Graphene as a chain extender of polyurethanes for biomedical applications. RSC Adv 2016. [DOI: 10.1039/c6ra12792d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chemically tagged graphene nanohybrid for a controlled drug delivery vehicle.
Collapse
Affiliation(s)
- Dinesh K. Patel
- School of Material Science and Technology
- Indian Institute of Technology (BHU)
- Varanasi 221005
- India
| | - Rajesh K. Singh
- Department of Dravyaguna
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Santosh K. Singh
- Centre of Experimental Medicine & Surgery
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi 221005
- India
| | - Vinod K. Aswal
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Dipak Rana
- Industrial Membrane Research Institute
- Department of Chemical and Biological Engineering
- University of Ottawa
- Ottawa
- Canada
| | - Biswajit Ray
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Pralay Maiti
- School of Material Science and Technology
- Indian Institute of Technology (BHU)
- Varanasi 221005
- India
| |
Collapse
|
198
|
Hao H, Shao J, Deng Y, He S, Luo F, Wu Y, Li J, Tan H, Li J, Fu Q. Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. Biomater Sci 2016; 4:1682-1690. [DOI: 10.1039/c6bm00588h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light-crosslinking waterborne polyurethanes (LWPUs) based on lysine possess appropriate elasticity for soft tissue repair, and can induce macrophages into a wound healing phenotype.
Collapse
|
199
|
Nieto-Suárez M, López-Quintela MA, Lazzari M. Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 2015; 141:175-83. [PMID: 26877010 DOI: 10.1016/j.carbpol.2015.12.064] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 01/15/2023]
Abstract
Chitosan and gelatin are biodegradable and biocompatible polymers which may be used in the preparation of 3D scaffolds with applications in biomedicine. Chitosan/gelatin scaffolds crosslinked with glutaraldehyde were prepared by ice segregation induced self-assembly (ISISA); a unidirectional freezing at -196°C followed freeze-drying to produce macroporous materials with a well-patterned structure. This process may be included within the green chemistry by the preparation of the porous structures without using organic solvents, moreover is a versatile, non-difficult and cheap process. The scaffolds prepared by ISISA were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, and their stability was evaluated by degree swelling and degradation tests. The scaffolds present properties as high porosity, high degree swelling and good stability which make them suitable of applications as biomaterials.
Collapse
Affiliation(s)
- Marina Nieto-Suárez
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Physical Chemistry, Faculty of Chemistry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.
| | - M Arturo López-Quintela
- Department of Physical Chemistry, Faculty of Chemistry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Massimo Lazzari
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
200
|
Aram E, Mehdipour-Ataei S. A review on the micro- and nanoporous polymeric foams: Preparation and properties. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1129948] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|