151
|
Dresvyanina E, Grebennikov S, Elokhovskii V, Dobrovolskaya I, Ivan’kova E, Yudin V, Heppe K, Morganti P. Thermodynamics of interaction between water and the composite films based on chitosan and chitin nanofibrils. Carbohydr Polym 2020; 245:116552. [DOI: 10.1016/j.carbpol.2020.116552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
|
152
|
Lima DB, de Souza MAA, de Lima GG, Ferreira Souto EP, Oliveira HML, Fook MVL, de Sá MJC. Injectable bone substitute based on chitosan with polyethylene glycol polymeric solution and biphasic calcium phosphate microspheres. Carbohydr Polym 2020; 245:116575. [DOI: 10.1016/j.carbpol.2020.116575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
|
153
|
Aydemir T, Liverani L, Pastore JI, Ceré SM, Goldmann WH, Boccaccini AR, Ballarre J. Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111062. [DOI: 10.1016/j.msec.2020.111062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
|
154
|
Oliver JD, Jia S, Halpern LR, Graham EM, Turner EC, Colombo JS, Grainger DW, D'Souza RN. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:215-237. [PMID: 32873216 DOI: 10.1089/ten.teb.2020.0181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and/or palate are the most prevalent orofacial birth defects occurring in about 1:700 live human births worldwide. Early postnatal surgical interventions are extensive and staged to bring about optimal growth and fusion of palatal shelves. Severe cleft defects pose a challenge to correct with surgery alone, resulting in complications and sequelae requiring life-long, multidisciplinary care. Advances made in materials science innovation, including scaffold-based delivery systems for precision tissue engineering, now offer new avenues for stimulating bone formation at the site of surgical correction for palatal clefts. In this study, we review the present scientific literature on key developmental events that can go awry in palate development and the common surgical practices and challenges faced in correcting cleft defects. How key osteoinductive pathways implicated in palatogenesis inform the design and optimization of constructs for cleft palate correction is discussed within the context of translation to humans. Finally, we highlight new osteogenic agents and innovative delivery systems with the potential to be adopted in engineering-based therapeutic approaches for the correction of palatal defects. Impact statement Tissue-engineered scaffolds supplemented with osteogenic growth factors have attractive, largely unexplored possibilities to modulate molecular signaling networks relevant to driving palatogenesis in the context of congenital anomalies (e.g., cleft palate). Constructs that address this need may obviate current use of autologous bone grafts, thereby avoiding donor-site morbidity and other regenerative challenges in patients afflicted with palatal clefts. Combinations of biomaterials and drug delivery of diverse regenerative cues and biologics are currently transforming strategies exploited by engineers, scientists, and clinicians for palatal cleft repair.
Collapse
Affiliation(s)
- Jeremie D Oliver
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Shihai Jia
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Leslie R Halpern
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emily M Graham
- School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Emma C Turner
- University of Western Australia Dental School, Perth, Western Australia
| | - John S Colombo
- University of Las Vegas at Nevada School of Dental Medicine, Las Vegas, Nevada, USA
| | - David W Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah Health Sciences, Salt Lake City, Utah, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah Health Sciences, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,School of Medicine, University of Utah Health Sciences, Salt Lake City, Utah, USA
| |
Collapse
|
155
|
Ding H, Li B, Liu Z, Liu G, Pu S, Feng Y, Jia D, Zhou Y. Nonswelling injectable chitosan hydrogel via UV crosslinking induced hydrophobic effect for minimally invasive tissue engineering. Carbohydr Polym 2020; 252:117143. [PMID: 33183602 DOI: 10.1016/j.carbpol.2020.117143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
Abstract
Injectable chitosan hydrogels exhibit excellent biological properties for application in biomedical engineering, however most of these hydrogels have limited applicability because "Swelling" can induce volume expansion of conventional hydrogels implanted in the body damages the surrounding tissues. Here, we report a new "Nonswelling" pentenyl chitosan (PTL-CS) hydrogel via N‒acylation reaction to graft an UV crosslinkable short hydrophobic alkyl chain (n‒pentenyl groups). The incorporated pentenyl groups can be crosslinked by UV irradiation to form hydrophobic chains via combination termination, which generate strong hydrophobic effect to extrude the excess water in hydrogel, resulting in a "Nonswelling" state at biological temperature. Furthermore, the PTL-CS solution showed no cytotoxicity in vitro and minimally invasive treatment in vivo demonstrated the PTL-CS hydrogel no adverse effects in a rat model. The nonswelling injectable and UV crosslinkable chitosan hydrogel hold potential applications in smart biomaterials and biological engineering as well as providing a new natural hydrogel in minimally invasive tissue engineering..
Collapse
Affiliation(s)
- Haichang Ding
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Zonglin Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| |
Collapse
|
156
|
Preparation of PBS/PLLA/HAP Composites by the Solution Casting Method: Mechanical Properties and Biocompatibility. NANOMATERIALS 2020; 10:nano10091778. [PMID: 32911837 PMCID: PMC7559309 DOI: 10.3390/nano10091778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
The use of biodegradable polymeric scaffolds for tissue regeneration is becoming a common practice in the clinic. Therefore, an inclined trend is developing with regards to improving the mechanical properties of these scaffolds. Here, we aim to improve the mechanical properties of poly (butylene succinate) (PBS)/poly (l-lactic acid) (PLLA) blends by incorporating hydroxyapatite nanoparticles (HAP) in the blends to form composites. PBS/PLLA = 100/0, 95/5, 90/10, 85/15, and 0/100 wt% blends, along-with the loadings of a few mg of HAPs, were prepared using the solution casting method. A scanning electron microscope showed the voids and droplets, indicating the immiscibility of blends. Due to this immiscibility, the tensile strength values of the blends were found to be in between that of pure PBS (42.85 MPa) and pure PLLA (31.39 MPa). HAPs act as a compatibilizer by incorporating themselves in the voids and spaces caused by the immiscibility, thus increasing the overall tensile strength of the resulting composite to a certain extent, e.g., the tensile strength of PBS/PLLA = 95/5 loaded with 50 mg HAPs was found to be 51.16 MPa. The structural analysis employing the X-ray diffraction (XRD) patterns confirmed the formation of polymer blends and composites. The contact angle analysis showed that the addition of HAPs increased the hydrophilicity of the resulting composites. Selective samples were investigated based on mechanical properties to see if the blends and composites are biocompatible. The obtained results showed that all of the samples with better mechanical properties demonstrated good biocompatibility. This indicates the effectiveness of scaffolds for tissue regeneration.
Collapse
|
157
|
Lekshmi G, Sana SS, Nguyen VH, Nguyen THC, Nguyen CC, Le QV, Peng W. Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration. Int J Mol Sci 2020; 21:ijms21176440. [PMID: 32899409 PMCID: PMC7504165 DOI: 10.3390/ijms21176440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
Scaffolds are important to tissue regeneration and engineering because they can sustain the continuous release of various cell types and provide a location where new bone-forming cells can attach and propagate. Scaffolds produced from diverse processes have been studied and analyzed in recent decades. They are structurally efficient for improving cell affinity and synthetic and mechanical strength. Carbon nanotubes are spongy nanoparticles with high strength and thermal inertness, and they have been used as filler particles in the manufacturing industry to increase the performance of scaffold particles. The regeneration of tissue and organs requires a significant level of spatial and temporal control over physiological processes, as well as experiments in actual environments. This has led to an upsurge in the use of nanoparticle-based tissue scaffolds with numerous cell types for contrast imaging and managing scaffold characteristics. In this review, we emphasize the usage of carbon nanotubes (CNTs) and CNT–polymer composites in tissue engineering and regenerative medicine and also summarize challenges and prospects for their potential applications in different areas.
Collapse
Affiliation(s)
- Gangadhar Lekshmi
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Thucklay, Kanyakumari, Tamilnadu 629180, India;
| | - Siva Sankar Sana
- Department of Material Science and Nanotechnology, Yogivemana University, Kadapa 516005, India
- Correspondence: (S.S.S.); (Q.V.L.); (W.P.)
| | - Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Thi Hong Chuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; (T.H.C.N.); (C.C.N.)
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; (T.H.C.N.); (C.C.N.)
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; (T.H.C.N.); (C.C.N.)
- Correspondence: (S.S.S.); (Q.V.L.); (W.P.)
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (S.S.S.); (Q.V.L.); (W.P.)
| |
Collapse
|
158
|
Buamard N, Aluko RE, Benjakul S. Stability of tuna trypsin-loaded alginate-chitosan beads in acidic stomach fluid and the release of active enzyme in a simulated intestinal tract environment. J Food Biochem 2020; 44:e13455. [PMID: 32869864 DOI: 10.1111/jfbc.13455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/04/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022]
Abstract
Encapsulation properties of trypsin from tonggol tuna (Thunnus tonggol) spleen using different materials including alginate (AG), low and high molecular weight chitosan (LC and HC, respectively), and soy lecithin (SL) were studied. The highest encapsulation efficiency and greatest relative activity were found in AG/LC beads after simulated gastric phase (p < .05). AG/LC encapsulated trypsin was used in simulated in vitro gastrointestinal tract for hydrolysis of sodium caseinate, soy protein isolate and fish mince, in which all protein samples were hydrolyzed as indicated by the increased α-amino group content (p < .05). Higher degradation was attained when beads containing trypsin were added. When AG/LC beads packed in blister pack were stored for 8 weeks at refrigerated temperature, a 26% decrease in activity occurred. Therefore, encapsulated tonggol tuna spleen trypsin can be prepared using AG/LC to withstand structural breakdown in stomach, but be released as an active protease within intestinal tract. PRACTICAL APPLICATION: Spleen from tonggol tuna is a by-product, which can be used as a source of trypsin, a proteolytic enzyme. The trypsin that was encapsulated within alginate and low molecular weight chitosan beads was released in the intestinal phase and was retained proteolytic activity. Therefore, this encapsulated trypsin can be packaged in capsules and taken as a supplement to aid protein digestion in the gastrointestinal tract, especially for people that need such digestive aids.
Collapse
Affiliation(s)
- Natchaphol Buamard
- International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, 90110, Thailand
| |
Collapse
|
159
|
Garcia BB, Mertins O, Silva ERD, Mathews PD, Han SW. Arginine-modified chitosan complexed with liposome systems for plasmid DNA delivery. Colloids Surf B Biointerfaces 2020; 193:111131. [DOI: 10.1016/j.colsurfb.2020.111131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
|
160
|
Lü X, Huang Y, Qu Y, Zhang Y, Zhang Z. Integrated transcriptomic and proteomic study on the different molecular mechanisms of PC12 cell growth on chitosan and collagen/chitosan films. Regen Biomater 2020; 7:553-565. [PMID: 33365141 PMCID: PMC7748450 DOI: 10.1093/rb/rbaa030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this article is to integrate the transcriptomic analysis and the proteomic profiles and to reveal and compare the different molecular mechanisms of PC12 cell growth on the surface of chitosan films and collagen/chitosan films. First, the chitosan films and the collagen/chitosan films were prepared. Subsequently, the cell viability assay was performed; the cell viability of the PC12 cells cultured on the collagen/chitosan films for 24 h was significantly higher than that on the chitosan films. Then, with cDNA microarray, the numbers of differentially expressed genes of PC12 cells on the surface of chitosan and collagen/chitosan films were 13349 and 5165, respectively. Next, the biological pathway analysis indicated that the differentially expressed genes were involved in 40 pathways directly related to cell adhesion and growth. The integrated transcriptomic and our previous proteomic analysis revealed that three biological pathways-extracellular matrix-receptor interaction, focal adhesion and regulation of actin cytoskeleton-were regulated in the processes of protein adsorption, cell adhesion and growth. The adsorbed proteins on the material surfaces further influenced the expression of important downstream genes by regulating the expression of related receptor genes in these three pathways. In comparison, chitosan films had a strong inhibitory effect on PC12 cell adhesion and growth, resulting in the significantly lower cell viability on its surface; on the contrary, collagen/chitosan films were more conducive to promoting PC12 cell adhesion and growth, resulting in higher cell viability.
Collapse
Affiliation(s)
- Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yayun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yiwen Zhang
- SQ Medical Device Co., Ltd, Nanjing 210008, China
| | - Zequn Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
161
|
Huang Y, Seitz D, Chevalier Y, Müller PE, Jansson V, Klar RM. Synergistic interaction of hTGF-β 3 with hBMP-6 promotes articular cartilage formation in chitosan scaffolds with hADSCs: implications for regenerative medicine. BMC Biotechnol 2020; 20:48. [PMID: 32854680 PMCID: PMC7457281 DOI: 10.1186/s12896-020-00641-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background Human TGF-β3 has been used in many studies to induce genes coding for typical cartilage matrix components and accelerate chondrogenic differentiation, making it the standard constituent in most cultivation media used for the assessment of chondrogenesis associated with various stem cell types on carrier matrices. However, in vivo data suggests that TGF-β3 and its other isoforms also induce endochondral and intramembranous osteogenesis in non-primate species to other mammals. Based on previously demonstrated improved articular cartilage induction by a using hTGF-β3 and hBMP-6 together on hADSC cultures and the interaction of TGF- β with matrix in vivo, the present study investigates the interaction of a chitosan scaffold as polyanionic polysaccharide with both growth factors. The study analyzes the difference between chondrogenic differentiation that leads to stable hyaline cartilage and the endochondral ossification route that ends in hypertrophy by extending the usual panel of investigated gene expression and stringent employment of quantitative PCR. Results By assessing the viability, proliferation, matrix formation and gene expression patterns it is shown that hTGF-β3 + hBMP-6 promotes improved hyaline articular cartilage formation in a chitosan scaffold in which ACAN with Col2A1 and not Col1A1 nor Col10A1 where highly expressed both at a transcriptional and translational level. Inversely, hTGF-β3 alone tended towards endochondral bone formation showing according protein and gene expression patterns. Conclusion These findings demonstrate that clinical therapies should consider using hTGF-β3 + hBMP-6 in articular cartilage regeneration therapies as the synergistic interaction of these morphogens seems to ensure and maintain proper hyaline articular cartilage matrix formation counteracting degeneration to fibrous tissue or ossification. These effects are produced by interaction of the growth factors with the polysaccharide matrix.
Collapse
Affiliation(s)
- Yijiang Huang
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Daniel Seitz
- BioMed Center Innovation gGmbh, 95448, Bayreuth, Germany
| | - Yan Chevalier
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Peter E Müller
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Volkmar Jansson
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Roland M Klar
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany.
| |
Collapse
|
162
|
Liu R, Zhang S, Chen X. Injectable hydrogels for tendon and ligament tissue engineering. J Tissue Eng Regen Med 2020; 14:1333-1348. [PMID: 32495524 DOI: 10.1002/term.3078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 01/14/2023]
Abstract
The problem of tendon and ligament (T/L) regeneration in musculoskeletal diseases has long constituted a major challenge. In situ injection of formable biodegradable hydrogels, however, has been demonstrated to treat T/L injury and reduce patient suffering in a minimally invasive manner. An injectable hydrogel is more suitable than other biological materials due to the special physiological structure of T/L. Most other materials utilized to repair T/L are cell-based, growth factor-based materials, with few material properties. In addition, the mechanical property of the gel cannot reach the normal T/L level. This review summarizes advances in natural and synthetic polymeric injectable hydrogels for tissue engineering in T/L and presents prospects for injectable and biodegradable hydrogels for its treatment. In future T/L applications, it is necessary develop an injectable hydrogel with mechanics, tissue damage-specific binding, and disease response. Simultaneously, the advantages of various biological materials must be combined in order to achieve personalized precision therapy.
Collapse
Affiliation(s)
- Richun Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Chen
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
163
|
Liu Y, Zhu Z, Pei X, Zhang X, Cheng X, Hu S, Gao X, Wang J, Chen J, Wan Q. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36978-36995. [PMID: 32814397 DOI: 10.1021/acsami.0c12090] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Designing bone adhesives with adhesiveness, antideformation, biocompatibility, and biofunctional effects has great practical significance for bone defect reconstructive treatment, especially for bone graft repair surgery. Here, we designed zeolitic imidazolate framework-8 nanoparticle (ZIF-8 NP)-modified catechol-chitosan (CA-CS) multifunctional hydrogels (CA-CS/Z) to stabilize the bone graft environment, ensure blood supply, promote osteogenic differentiation, and accelerate bone reconstruction. Characterizations confirmed the successful synthesis of CA-CS/Z hydrogels. Hydrogels exhibited advanced rheological properties, reliable mechanical strength, and excellent adhesion for clinical applications. Based on excellent biocompatibility, it could enhance paracrine of the vascular endothelial growth factor (VEGF) in rat bone marrow mesenchymal stem cells (rBMSCs) to ensure blood supply reconstruction in bone defect areas. Furthermore, the ZIF-8 NPs released from the hydrogels could also up-regulate the production and secretion of alkaline phosphatase, collagen 1, and osteocalcin, promoting the osteogenic differentiation of rBMSCs. In addition, the antibacterial properties of CA-CS/Z could also be observed. In vivo experiments further provided a powerful proof that CA-CS/Z promoted vascularized osteogenesis in wound areas by stabilizing bone graft materials and greatly accelerated the speed and healing of bone reconstruction. These results indicate the promising potential of CA-CS/Z hydrogels with promoting implantation stability, angiogenesis, and osteogenesis for bone regeneration applications.
Collapse
Affiliation(s)
- Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaomeng Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
164
|
Grabska-Zielińska S, Sionkowska A, Coelho CC, Monteiro FJ. Silk Fibroin/Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials toward Bone Tissue Regeneration. MATERIALS 2020; 13:ma13153433. [PMID: 32759746 PMCID: PMC7436058 DOI: 10.3390/ma13153433] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022]
Abstract
In this study, three-dimensional materials based on blends of silk fibroin (SF), collagen (Coll), and chitosan (CTS) cross-linked by glyoxal solution were prepared and the properties of the new materials were studied. The structure of the composites and the interactions between scaffold components were studied using FTIR spectroscopy. The microstructure was observed using a scanning electron microscope. The following properties of the materials were measured: density and porosity, moisture content, and swelling degree. Mechanical properties of the 3D materials under compression were studied. Additionally, the metabolic activity of MG-63 osteoblast-like cells on materials was examined. It was found that the materials were characterized by a high swelling degree (up to 3000% after 1 h of immersion) and good porosity (in the range of 80–90%), which can be suitable for tissue engineering applications. None of the materials showed cytotoxicity toward MG-63 cells.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-56-611-2210
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Catarina C. Coelho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-180 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- FLUIDINOVA, S.A., 4470-605 Moreira da Maia, Portugal
| | - Fernando J. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-180 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
165
|
The 3D-Printed Bilayer's Bioactive-Biomaterials Scaffold for Full-Thickness Articular Cartilage Defects Treatment. MATERIALS 2020; 13:ma13153417. [PMID: 32756370 PMCID: PMC7436011 DOI: 10.3390/ma13153417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
The full-thickness articular cartilage defect (FTAC) is an abnormally severe grade of articular cartilage (AC) injury. An osteochondral autograft transfer (OAT) is the recommended treatment, but the increasing morbidity rate from osteochondral plug harvesting is a limitation. Thus, the 3D-printed bilayer’s bioactive-biomaterials scaffold is of major interest. Polylactic acid (PLA) and polycaprolactone (PCL) were blended with hydroxyapatite (HA) for the 3D-printed bone layer of the bilayer’s bioactive-biomaterials scaffold (B-BBBS). Meanwhile, the blended PLA/PCL filament was 3D printed and combined with a chitosan (CS)/silk firoin (SF) using a lyophilization technique to fabricate the AC layer of the bilayer’s bioactive-biomaterials scaffold (AC-BBBS). Material characterization and mechanical and biological tests were performed. The fabrication process consists of combining the 3D-printed structure (AC-BBBS and B-BBBS) and a lyophilized porous AC-BBBS. The morphology and printing abilities were investigated, and biological tests were performed. Finite element analysis (FEA) was performed to predict the maximum load that the bilayer’s bioactive-biomaterials scaffold (BBBS) could carry. The presence of HA and CS/SF in the PLA/PCL structure increased cell proliferation. The FEA predicted the load carrying capacity to be up to 663.2 N. All tests indicated that it is possible for BBBS to be used in tissue engineering for AC and bone regeneration in FTAC treatment.
Collapse
|
166
|
Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, Lu T. Exquisite design of injectable Hydrogels in Cartilage Repair. Theranostics 2020; 10:9843-9864. [PMID: 32863963 PMCID: PMC7449920 DOI: 10.7150/thno.46450] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cartilage damage is still a threat to human beings, yet there is currently no treatment available to fully restore the function of cartilage. Recently, due to their unique structures and properties, injectable hydrogels have been widely studied and have exhibited high potential for applications in therapeutic areas, especially in cartilage repair. In this review, we briefly introduce the properties of cartilage, some articular cartilage injuries, and now available treatment strategies. Afterwards, we propose the functional and fundamental requirements of injectable hydrogels in cartilage tissue engineering, as well as the main advantages of injectable hydrogels as a therapy for cartilage damage, including strong plasticity and excellent biocompatibility. Moreover, we comprehensively summarize the polymers, cells, and bioactive molecules regularly used in the fabrication of injectable hydrogels, with two kinds of gelation, i.e., physical and chemical crosslinking, which ensure the excellent design of injectable hydrogels for cartilage repair. We also include novel hybrid injectable hydrogels combined with nanoparticles. Finally, we conclude with the advances of this clinical application and the challenges of injectable hydrogels used in cartilage repair.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zeiyan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
| |
Collapse
|
167
|
Chen J, Huang D, Wang L, Hou J, Zhang H, Li Y, Zhong S, Wang Y, Wu Y, Huang W. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. J Colloid Interface Sci 2020; 574:162-173. [DOI: 10.1016/j.jcis.2020.04.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
|
168
|
Patel A, Zaky SH, Schoedel K, Li H, Sant V, Beniash E, Sfeir C, Stolz DB, Sant S. Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomater 2020; 112:262-273. [PMID: 32497742 DOI: 10.1016/j.actbio.2020.05.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts lack bone regeneration potential when used without growth factors. When used along with the added growth factors, they lead to unwanted side effects such as uncontrolled bone growth. Collagen-based hydrogel grafts available on the market fail to provide structural guidance to native cells due to high water-solubility and faster degradation. To overcome these limitations, we employed bioinspired material design and fabricated three different hydrogels with structural features similar to native collagen at multiple length-scales. These hydrogels fabricated using polyionic complexation of oppositely charged natural polysaccharides exhibited multi-scale architecture mimicking nanoscale banding pattern, and microscale fibrous structure of native collagen. All three hydrogels promoted biomimetic apatite-like mineral deposition in vitro elucidating crystalline structure on the surface while amorphous calcium phosphate inside the hydrogels resulting in mineral-hydrogel nanocomposites. When evaluated in a non-load bearing critical size mouse calvaria defect model, chitosan - kappa carrageenan mineral-hydrogel nanocomposites enhanced bone regeneration without added growth factors compared to empty defect as well as widely used marketed collagen scaffolds. Histological assessment of the regenerated bone revealed improved healing and tissue remodeling with mineral-hydrogel nanocomposites. Overall, these collagen-inspired mineral-hydrogel nanocomposites showed multi-scale hierarchical structure and can potentially serve as promising bioactive hydrogel to promote bone regeneration. STATEMENT OF SIGNIFICANCE: Hydrogels, especially collagen, are widely used in bone tissue engineering. Collagen fibrils play arguably the most important role during natural bone development. Its multi-scale hierarchical structure to form fibers from fibrils and electrostatic charges enable mineral sequestration, nucleation, and growth. However, bulk collagen hydrogels exhibit limited bone regeneration and are mostly used as carriers for highly potent growth factors such as bone morphogenic protein-2, which increase the risk of uncontrolled bone growth. Thus, there is an unmet clinical need for a collagen-inspired biomaterial that can recreate structural hierarchy, mineral sequestration ability, and stimulate recruitment of host progenitor cells to facilitate bone regeneration. Here, we propose collagen-inspired bioactive mineral-hydrogel nanocomposites as a growth factor-free approach to guide and enhance bone regeneration.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261
| | - Samer H Zaky
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Karen Schoedel
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hongshuai Li
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261
| | - Elia Beniash
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260
| | - Charles Sfeir
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260
| | - Donna B Stolz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15260; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260.
| |
Collapse
|
169
|
Bannerman AD, Davenport Huyer L, Montgomery M, Zhao N, Velikonja C, Bender TP, Radisic M. Elastic Biomaterial Scaffold with Spatially Varying Adhesive Design. ADVANCED BIOSYSTEMS 2020; 4:e2000046. [PMID: 32567253 PMCID: PMC7665997 DOI: 10.1002/adbi.202000046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Indexed: 12/20/2022]
Abstract
In order to secure biomaterials to tissue surfaces, sutures or glues are commonly used. Of interest is the development of a biomaterial patch for applications in tissue engineering and regeneration that incorporates an adhesive component to simplify patch application and ensure sufficient adhesion. A separate region dedicated to fulfilling the specific requirements of an application such as mechanical support or tissue delivery is also desirable. Here, the design and fabrication of a unique patch are presented with distinct regions for adhesion and function, resulting in a biomaterial patch resembling the Band-Aid. The adhesive region contains a novel polymer, synthesized to incorporate a molecule capable of adhesion to tissue, dopamine. The desired polymer composition for patch development is selected based on chemical assessment and evaluation of key physical properties such as swelling and elastic modulus, which are tailored for use in soft tissue applications. The selected polymer formulation, referred to as the adhesive patch (AP) polymer, demonstrates negligible cytotoxicity and improves adhesive capability to rat cardiac tissue compared to currently used patch materials. Finally, the AP polymer is used in the patch, designed to possess distinct adhesive and nonadhesive domains, presenting a novel design for the next generation of biomaterials.
Collapse
Affiliation(s)
- A Dawn Bannerman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Locke Davenport Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Nicholas Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Claire Velikonja
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Timothy P Bender
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| |
Collapse
|
170
|
Preliminary In Vitro Evaluation of Chitosan-Graphene Oxide Scaffolds on Osteoblastic Adhesion, Proliferation, and Early Differentiation. Int J Mol Sci 2020; 21:ijms21155202. [PMID: 32708043 PMCID: PMC7432284 DOI: 10.3390/ijms21155202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
An ideal scaffold should be biocompatible, having appropriate microstructure, excellent mechanical strength yet degrades. Chitosan exhibits most of these exceptional properties, but it is always associated with sub-optimal cytocompatibility. This study aimed to incorporate graphene oxide at wt % of 0, 2, 4, and 6 into chitosan matrix via direct blending of chitosan solution and graphene oxide, freezing, and freeze drying. Cell fixation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, alkaline phosphatase colorimetric assays were conducted to assess cell adhesion, proliferation, and early differentiation of MG63 on chitosan–graphene oxide scaffolds respectively. The presence of alkaline phosphatase, an early osteoblast differentiation marker, was further detected in chitosan–graphene oxide scaffolds using western blot. These results strongly supported that chitosan scaffolds loaded with graphene oxide at 2 wt % mediated cell adhesion, proliferation, and early differentiation due to the presence of oxygen-containing functional groups of graphene oxide. Therefore, chitosan scaffolds loaded with graphene oxide at 2 wt % showed the potential to be developed into functional bone scaffolds.
Collapse
|
171
|
In vitro and in vivo investigation of osteogenic properties of self-contained phosphate-releasing injectable purine-crosslinked chitosan-hydroxyapatite constructs. Sci Rep 2020; 10:11603. [PMID: 32665560 PMCID: PMC7360623 DOI: 10.1038/s41598-020-67886-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Abstract
Bone fracture repair is a multifaceted, coordinated physiological process that requires new bone formation and resorption, eventually returning the fractured bone to its original state. Currently, a variety of different approaches are pursued to accelerate the repair of defective bones, which include the use of 'gold standard' autologous bone grafts. However, such grafts may not be readily available, and procedural complications may result in undesired outcomes. Considering the ease of use and tremendous customization potentials, synthetic materials may become a more suitable alternative of bone grafts. In this study, we examined the osteogenic potential of guanosine 5′-diphosphate-crosslinked chitosan scaffolds with the incorporation of hydroxyapatite, with or without pyrophosphatase activity, both in vitro and in vivo. First, scaffolds embedded with cells were characterized for cell morphology, viability, and attachment. The cell-laden scaffolds were found to significantly enhance proliferation for up to threefold, double alkaline phosphatase activity and osterix expression, and increase calcium phosphate deposits in vitro. Next, chitosan scaffolds were implanted at the fracture site in a mouse model of intramedullary rod-fixed tibial fracture. Our results showed increased callus formation at the fracture site with the scaffold carrying both hydroxyapatite and pyrophosphatase in comparison to the control scaffolds lacking both pyrophosphatase and hydroxyapatite, or pyrophosphatase alone. These results indicate that the pyrophosphatase-hydroxyapatite composite scaffold has a promising capacity to facilitate bone fracture healing.
Collapse
|
172
|
Zong H, Wang B, Li G, Yan S, Zhang K, Shou Y, Yin J. Biodegradable High-Strength Hydrogels with Injectable Performance Based on Poly(l-Glutamic Acid) and Gellan Gum. ACS Biomater Sci Eng 2020; 6:4702-4713. [DOI: 10.1021/acsbiomaterials.0c00915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongjie Zong
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yufeng Shou
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
173
|
Oudadesse H, Najem S, Mosbahi S, Rocton N, Refifi J, El Feki H, Lefeuvre B. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. J Biomed Mater Res A 2020; 109:590-599. [PMID: 32588539 DOI: 10.1002/jbm.a.37043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023]
Abstract
Bone tissue engineering is gaining popularity as an alternative method for the treatment of osseous defects. A number of biodegradable polymers have been explored for tissue engineering purposes. A new family of biodegradable polymer/bioactive glass composite materials has been designed to be used in bone regeneration approaches. In this work, a hybrid scaffold of chitosan (CH) and bioactive glass nanoparticles (BGN) was prepared by the freeze-gelation method. This method has been studied by adjusting the concentration of acetic acid; this process can influence the structure properties of the scaffold. In this work, several BGN/CH composites have been prepared by varying the proportion of BGN in the hybrid scaffold (20, 40, 60, and 80%). Brunauer-Emmett-Teller results showed the increased surface area and porosity volume of our composite with decreasing BGN proportion. BGN/CH hybrid scaffold was characterized by using physicochemical techniques. Obtained results showed a macroporous morphology of the scaffold with a pore size of about 200 μm, and a homogeneous distribution of the BGN in the CH matrix. X-ray diffraction study confirmed the amorphous state of the BGN/CH hybrid scaffold. Interaction between CH and BGNs in the composite was confirmed. The in vitro assays showed adequate degradation properties, which is essential for the potential replacement by the new tissue. The in vitro bioactivity studies confirmed the formation of an apatite layer on the surface of the hybrid scaffold, which results in a direct bone bonding of the implant. These results indicate that BGN/CH hybrid scaffold developed is a potential candidate for bone tissue engineering.
Collapse
Affiliation(s)
| | - Sanaa Najem
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Siwar Mosbahi
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Nicolas Rocton
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Jihen Refifi
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France.,Faculty of Science, University of Sfax, Sfax, Tunisia
| | | | | |
Collapse
|
174
|
Wu T, Li B, Wang W, Chen L, Li Z, Wang M, Zha Z, Lin Z, Xia H, Zhang T. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomater Sci 2020; 8:4603-4615. [PMID: 32627770 DOI: 10.1039/d0bm00523a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The strontium-substituted hydroxyapatite (SrHA) is a commonly used material in bone regeneration for its good osteoconductivity and high alkaline phosphatase (ALP) activity. Scaffolds used in bone defects require a high compressive modulus. However, the SrHA nanoparticle-doped scaffold cannot properly fit the required mechanical properties. Therefore, a lot of effort has been used to fabricate synthetic bone scaffolds with biocompatibility, suitable mechanical properties, antibacterial ability and osteoconductivity. Here, we used a facile hydrothermal method to synthesize graphene oxide (GO)-reinforced SrHA nanoparticles. The incorporation of GO can be used as nucleation and growth active sites of hydroxyapatite. In addition, GO is easy to self-assemble into a layered structure in the dispersion, which can effectively regulate the deposition of hydroxyapatite on the surface of GO. The scaffold was fabricated using a freeze-drying method by incorporating SrHA/GO nanoparticles into chitosan (CS) and quaternized chitosan (QCS) mixed solutions. The compressive modulus of the CS/QCS/SrHA/GO scaffold reached 438.5 kPa, which was 4-fold higher than that of the CS/QCS scaffold. The CS/QCS/SrHA/GO scaffold exhibited significantly higher in vitro mineralization levels and ALP activity. In vivo rat skull repair indicated that the CS/QCS/SrHA/GO scaffold had a significant role in promoting bone regeneration. This study provides a new strategy for modifying hydroxyapatite to satisfy the biomedical demand of bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Fauzi NIM, Fen YW, Omar NAS, Saleviter S, Daniyal WMEMM, Hashim HS, Nasrullah M. Nanostructured Chitosan/Maghemite Composites Thin Film for Potential Optical Detection of Mercury Ion by Surface Plasmon Resonance Investigation. Polymers (Basel) 2020; 12:E1497. [PMID: 32635555 PMCID: PMC7407496 DOI: 10.3390/polym12071497] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, synthesis and characterization of chitosan/maghemite (Cs/Fe2O3) composites thin film has been described. Its properties were characterized using Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy (UV-Vis). FTIR confirmed the existence of Fe-O bond, C-N bond, C-C bond, C-O bond, O=C=O bond and O-H bond in Cs/Fe2O3 thin film. The surface morphology of the thin film indicated the relatively smooth and homogenous thin film, and also confirmed the interaction of Fe2O3 with the chitosan. Next, the UV-Vis result showed high absorbance value with an optical band gap of 4.013 eV. The incorporation of this Cs/Fe2O3 thin film with an optical-based method, i.e., surface plasmon resonance spectroscopy showed positive response where mercury ion (Hg2+) can be detected down to 0.01 ppm (49.9 nM). These results validate the potential of Cs/Fe2O3 thin film for optical sensing applications in Hg2+ detection.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (H.S.H.)
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (H.S.H.)
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Silvan Saleviter
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Wan Mohd Ebtisyam Mustaqim Mohd Daniyal
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (H.S.H.)
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang 26300, Kuantan, Pahang, Malaysia;
| |
Collapse
|
176
|
Verma ML, Dhanya B, Sukriti, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int J Biol Macromol 2020; 154:390-412. [DOI: 10.1016/j.ijbiomac.2020.03.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
|
177
|
Folic acid–conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy. Int J Biol Macromol 2020; 155:961-971. [DOI: 10.1016/j.ijbiomac.2019.11.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
|
178
|
Tang G, Zhou B, Li F, Wang W, Liu Y, Wang X, Liu C, Ye X. Advances of Naturally Derived and Synthetic Hydrogels for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2020; 8:745. [PMID: 32714917 PMCID: PMC7344321 DOI: 10.3389/fbioe.2020.00745] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is associated with most cases of cervical and lumbar spine pathologies, amongst which chronic low back pain has become the primary cause for loss of quality-adjusted life years. Biomaterials science and tissue engineering have made significant progress in the replacement, repair and regeneration of IVD tissue, wherein hydrogel has been recognized as an ideal biomaterial to promote IVD regeneration in recent years. Aspects such as ease of use, mechanical properties, regenerative capacity, and their applicability as carriers for regenerative and anti-degenerative factors determine their suitability for IVD regeneration. This current review provides an overview of naturally derived and synthetic hydrogels that are related to their clinical applications for IVD regeneration. Although each type has its own unique advantages, it rarely becomes a standard product in truly clinical practice, and a more rational design is proposed for future use of biomaterials for IVD regeneration. This review aims to provide a starting point and inspiration for future research work on development of novel biomaterials and biotechnology.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Bingyan Zhou
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Feng Li
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Weiheng Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
179
|
Amiryaghoubi N, Noroozi Pesyan N, Fathi M, Omidi Y. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int J Biol Macromol 2020; 162:1338-1357. [PMID: 32561280 DOI: 10.1016/j.ijbiomac.2020.06.138] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
Abstract
Here, we fabricated thermosensitive injectable hydrogel containing poly (N-isopropylacrylamide) (PNIPAAm)-based copolymer/graphene oxide (GO) composite with different feed ratio to chitosan (CS) as a natural polymer through physical and chemical crosslinking for the proliferation and differentiation of the human dental pulp stem cells (hDPSCs) to the osteoblasts. The PNIPAAm copolymer/GO composite was synthesized by free-radical copolymerization of (N-isopropylacrylamide) (NIPAAm), itaconic acid (IA) and maleic anhydride-modified poly(ethylene glycol) (PEG) in the presence of GO and used for the preparation of the hydrogels. The formulated hydrogels were evaluated for the porous architecture, rheological behavior, compressive strength, swelling property, in vitro degradation, hemocompatibility, biocompatibility, and differentiation. The hydrogel could enhance the deposition of minerals and the activity of alkaline phosphatase (ALP), in large part attributable to the oxygen and amine-containing functional groups of GO and CS. The engineered hydrogel could also upregulate the expression of the Runt-related transcription factor 2 and osteocalcin in the hDPSCs cultivated in both the normal and osteogenic media. It seems to promote the absorption of osteogenic inducer too. Based on our findings, the engineered hydrogel demonstrated the osteogenic potential, upon which it is proposed as a constructing scaffold in bone tissue engineering for the transplantation of hDPSCs.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, 57159 Urmia, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, 57159 Urmia, Iran.
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
180
|
Zhang W, Qi X, Zhao Y, Liu Y, Xu L, Song X, Xiao C, Yuan X, Zhang J, Hou M. Study of injectable Blueberry anthocyanins-loaded hydrogel for promoting full-thickness wound healing. Int J Pharm 2020; 586:119543. [PMID: 32561307 DOI: 10.1016/j.ijpharm.2020.119543] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Injectable hydrogels with high anti-inflammatory and wound-healing properties are highly desirable for clinical application. In the present study, injectable hydrogels were prepared based on carboxymethyl chitosan and oxidized hyaluronic acid. Blueberry anthocyanins (BA), which are known for their antioxidant and antiinflammatory properties, were successfully loaded into the hydrogels. The gelation kinetics and mechanical properties of the hydrogels were investigated. Oxidized hyaluronic acid with an oxidation degree of 38.1% conferred a suitable gelation time (~70 s) and mechanical properties (76.0 kPa compression stress at strain of 80%) of the hydrogel. The injectable BA-loaded hydrogel significantly accelerated the wound healing process in a full-thickness skin wound model in rats, promoted epithelial and tissue regeneration, exerted antiinflammatory effects, and promoted collagen deposition and angiogenesis. Besides, the hydrogel could upregulate the expression of VEGF and IL-10 proteins, downregulate the NF-κB level, and promote macrophage transformation from M1 phenotype to M2. The promotion of the BA-loaded hydrogel on wound healing were mainly realized by its biological effects, including antioxidant and anti-inflammatory effects, and regulation of various wound healing related factors. The results suggested that BA and the hydrogels exert synergistic effects in promoting wound healing. Injectable BA-loaded hydrogels appear to be promising candidates for wound healing application.
Collapse
Affiliation(s)
- Wenchang Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaomin Qi
- The People's Hospital of Liaoning Province, Shenyang 110016, PR China
| | - Yan Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Yunen Liu
- Emergency Medicine, Department of General Hospital of Northern Theater Command, Shenyang 110016, PR China.
| | - Lei Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Xiaoqiang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chenjuan Xiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaoxue Yuan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jinsong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Mingxiao Hou
- Emergency Medicine, Department of General Hospital of Northern Theater Command, Shenyang 110016, PR China
| |
Collapse
|
181
|
Dresvyanina EN, Grebennikov SF, Dobrovol’skaya IP, Maslennikova TP, Ivan’kova EM, Yudin VE. Effect of Chitin Nanofibrils on the Sorption Behavior of Chitosan-Based Composite Films. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20030050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
182
|
Ramesh N, Ratnayake JTB, Moratti SC, Dias GJ. Effect of chitosan infiltration on hydroxyapatite scaffolds derived from New Zealand bovine cancellous bones for bone regeneration. Int J Biol Macromol 2020; 160:1009-1020. [PMID: 32504711 DOI: 10.1016/j.ijbiomac.2020.05.269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
Hydroxyapatite (HA) derived from bovine bones garnered wider interest as a bone substitute due to their abundant availability as meat wastes and similarities in morphology and mineral composition to human bone. In our previous work, we developed an easy and reproducible method to prepare xenograft HA scaffolds from NZ bovine cancellous bones (BHA). However, the processing methodology rendered the material mechanically weak. The present study investigated the infiltration of chitosan (CS) into the bovine HA scaffolds (CSHA) to improve the mechanical properties of BHA. The presence of characteristic functional groups of HA and CS as detected by infrared spectroscopy confirmed the infiltration of CS into the BHA scaffolds. X-ray Diffraction study confirmed the presence of the hydroxyapatite phase in both BHA and CSHA scaffolds. SEM and μCT analyses showed the CSHA scaffolds presented adequate porosity and an interconnected porous architecture required for cell migration and attachment. CSHA scaffolds presented good thermal, chemical and structural stability while demonstrating sustained biodegradability in simulated body fluid. CSHA scaffolds presented mechanical properties significantly higher than the BHA scaffolds. CSHA scaffolds were biocompatible with Saos-2 osteoblast cells and supported cell proliferation significantly better than the BHA scaffolds indicating their potential in bone tissue engineering.
Collapse
Affiliation(s)
- Niranjan Ramesh
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Jithendra T B Ratnayake
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Stephen C Moratti
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin 9054, New Zealand
| | - George J Dias
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
183
|
Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills D. Bioinks and bioprinting: A focused review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00080] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
184
|
Chitosan-calcium phosphate composite scaffolds for control of post-operative osteomyelitis: Fabrication, characterization, and in vitro-in vivo evaluation. Carbohydr Polym 2020; 244:116482. [PMID: 32536391 DOI: 10.1016/j.carbpol.2020.116482] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Osteomyelitis is a progressive inflammatory disease requiring prolonged systemic treatment with high antibiotic doses, and is very challenging to be treated. The use of locally applied antibiotics loaded on a biodegradable carrier at surgery sites is hypothesized to prevent post-operative osteomyelitis, while providing site-specific drug release. In this work, chitosan-based calcium phosphate composites were prepared and loaded with moxifloxacin hydrochloride. The in-situ formation of calcium phosphates within the composite was experimentally confirmed by Fourier transform infra-red spectroscopy, X-ray powder diffraction, and scanning electron microscopy. Results showed that the composites provided complete drug release over three days, and the selected composite formulation induced differentiation and proliferation of osteoblasts, while reducing bacterial count, inflammation and intra-medullary fibrosis in bone tissue specimens of osteomyelitis-induced animal model. Hence, we can conclude that the in situ prepared antibiotic-loaded calcium phosphate chitosan composite is promising in preventing post-operative osteomyelitis, and is worthy of clinical experimentation.
Collapse
|
185
|
Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020; 8:474. [PMID: 32509754 PMCID: PMC7253672 DOI: 10.3389/fbioe.2020.00474] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Despite considerable advances in microsurgical techniques over the past decades, bone tissue remains a challenging arena to obtain a satisfying functional and structural restoration after damage. Through the production of substituting materials mimicking the physical and biological properties of the healthy tissue, tissue engineering strategies address an urgent clinical need for therapeutic alternatives to bone autografts. By virtue of their structural versatility, polymers have a predominant role in generating the biodegradable matrices that hold the cells in situ to sustain the growth of new tissue until integration into the transplantation area (i.e., scaffolds). As compared to synthetic ones, polymers of natural origin generally present superior biocompatibility and bioactivity. Their assembly and further engineering give rise to a wide plethora of advanced supporting materials, accounting for systems based on hydrogels or scaffolds with either fibrous or porous architecture. The present review offers an overview of the various types of natural polymers currently adopted in bone tissue engineering, describing their manufacturing techniques and procedures of functionalization with active biomolecules, and listing the advantages and disadvantages in their respective use in order to critically compare their actual applicability potential. Their combination to other classes of materials (such as micro and nanomaterials) and other innovative strategies to reproduce physiological bone microenvironments in a more faithful way are also illustrated. The regeneration outcomes achieved in vitro and in vivo when the scaffolds are enriched with different cell types, as well as the preliminary clinical applications are presented, before the prospects in this research field are finally discussed. The collection of studies herein considered confirms that advances in natural polymer research will be determinant in designing translatable materials for efficient tissue regeneration with forthcoming impact expected in the treatment of bone defects.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
186
|
Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies. Molecules 2020; 25:molecules25102308. [PMID: 32423061 PMCID: PMC7287625 DOI: 10.3390/molecules25102308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Scaffold development for cell regeneration has increased in recent years due to the high demand for more efficient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four different chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an efficient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads in Wistar rat′s tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson′s trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications.
Collapse
|
187
|
Yan K, Xu F, Ni Y, Yao K, Zhong W, Chen Y, Wang D. Electrodeposition of poly (vinyl alcohol-co-ethylene) nanofiber reinforced chitosan nanocomposite film for electrochemically programmed release of protein. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
188
|
Potentials of sandwich-like chitosan/polycaprolactone/gelatin scaffolds for guided tissue regeneration membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110618. [DOI: 10.1016/j.msec.2019.110618] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
|
189
|
Grabska-Zielińska S, Sionkowska A, Reczyńska K, Pamuła E. Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch. Polymers (Basel) 2020; 12:polym12020372. [PMID: 32046018 PMCID: PMC7077405 DOI: 10.3390/polym12020372] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, three-dimensional (3D) biopolymeric scaffolds made from collagen, silk fibroin and chitosan were successfully prepared by the freeze drying method. Dialdehyde starch (DAS) was used as a cross-linking agent for the materials. The properties of the materials were studied using density and porosity measurements, scanning electron microscope (SEM) imaging, swelling and moisture content measurements. Additionally, cytocompatibility of the materials in contact with MG-63 osteoblast-like cells was tested by live/dead staining and resazurin reduction assay on days 1, 3 and 7. It was found that new 3D materials made from collagen/silk fibroin/chitosan binary or ternary mixtures are hydrophilic with a high swelling ability (swelling rate in the range of 1680–1900%). Cross-linking of such biopolymeric materials with DAS increased swelling rate up to about 2100%, reduced porosity from 96–97% to 91–93%, and also decreased density and moisture content of the materials. Interestingly, presence of DAS did not influence the microstructure of the scaffolds as compared to non-cross-linked samples as shown by SEM. All the tested samples were found to be cytocompatible and supported adhesion and growth of MG-63 cells as shown by live–dead staining and metabolic activity test.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Department of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: or
| | - Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland; (K.R.); (E.P.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland; (K.R.); (E.P.)
| |
Collapse
|
190
|
Kaliva M, Georgopoulou A, Dragatogiannis DA, Charitidis CA, Chatzinikolaidou M, Vamvakaki M. Biodegradable Chitosan- graft-Poly(l-lactide) Copolymers For Bone Tissue Engineering. Polymers (Basel) 2020; 12:E316. [PMID: 32033024 PMCID: PMC7077469 DOI: 10.3390/polym12020316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
The design and synthesis of new biomaterials with adjustable physicochemical and biological properties for tissue engineering applications have attracted great interest. In this work, chitosan-graft-poly(l-lactide) (CS-g-PLLA) copolymers were prepared by chemically binding poly(l-lactide) (PLLA) chains along chitosan (CS) via the "grafting to" approach to obtain hybrid biomaterials that present enhanced mechanical stability, due to the presence of PLLA, and high bioactivity, conferred by CS. Two graft copolymers were prepared, CS-g-PLLA(80/20) and CS-g-PLLA(50/50), containing 82 wt % and 55 wt % CS, respectively. Degradation studies of compressed discs of the copolymers showed that the degradation rate increased with the CS content of the copolymer. Nanomechanical studies in the dry state indicated that the copolymer with the higher CS content had larger Young modulus, reduced modulus and hardness values, whereas the moduli and hardness decreased rapidly following immersion of the copolymer discs in alpha-MEM cell culture medium for 24 h. Finally, the bioactivity of the hybrid copolymers was evaluated in the adhesion and growth of MC3T3-E1 pre-osteoblastic cells. In vitro studies showed that MC3T3-E1 cells exhibited strong adhesion on both CS-g-PLLA graft copolymer films from the first day in cell culture, whereas the copolymer with the higher PLLA content, CS-g-PLLA(50/50), supported higher cell growth.
Collapse
Affiliation(s)
- Maria Kaliva
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Anthie Georgopoulou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Dimitrios A. Dragatogiannis
- Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographou, 15780 Athens, Greece; (D.A.D.); (C.A.C.)
| | - Costas A. Charitidis
- Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographou, 15780 Athens, Greece; (D.A.D.); (C.A.C.)
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
191
|
Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110257. [DOI: 10.1016/j.msec.2019.110257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022]
|
192
|
Christy PN, Basha SK, Kumari VS, Bashir A, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101452] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
193
|
Wang C, Liu J, Liu Y, Qin B, He D. Study on osteogenesis of zinc-loaded carbon nanotubes/chitosan composite biomaterials in rat skull defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:15. [PMID: 31965348 DOI: 10.1007/s10856-019-6338-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Chitosan with hydroxyapatite composition, a natural polymer, may be a biomaterial of importance for bone regeneration. Carbon nanotube, a nanoscale material, has been another focus for bone restoration. Zinc, an essential trace element, contributes to the development and growth of skeletal system. The purpose of the current research was to investigate the effects of Zinc-loaded Carbon Nanotubes/Chitosan composite biomaterials in the restoration of rat skull defects, and to verify the hypothesis that these zinc ions of appropriate concentration would strengthen the osteogenesis of rat defects. Four different groups of composite biomaterials were fabricated from no Zinc Carbon nanotubes/Chitosan (GN), 0.2% Zinc-Carbon nanotubes/Chitosan (GL), 1% Zinc-Carbon nanotubes/Chitosan (GM) and 2% Zinc-Carbon nanotubes/Chitosan (GH). After characterizations, these composite biomaterials were then transplanted into rat skull defects. The experimental animals were executed at 12 weeks after transplanted surgeries, and the rat skull defects were removed for related analyses. The results of characterizations suggested the Zinc-loaded composite biomaterials possessed good mechanical and osteoinductive properties. An important finding was that the optimal osteogenic effect appeared in rat skull defects transplanted with 1% Zinc-Carbon nanotubes/Chitosan. Overall, these composite biomaterials revealed satisfactory osteogenesis, nevertheless, there was a requirement to further perfect the zinc ion concentrations to achieve the better bone regeneration.
Collapse
Affiliation(s)
- Chenbing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Jinlong Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Yanbo Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Boheng Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Dongning He
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
194
|
Huang X, Chen M, Wu H, Jiao Y, Zhou C. Macrophage Polarization Mediated by Chitooligosaccharide (COS) and Associated Osteogenic and Angiogenic Activities. ACS Biomater Sci Eng 2020; 6:1614-1629. [DOI: 10.1021/acsbiomaterials.9b01550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiuhong Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Meng Chen
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Haoming Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
195
|
Olive M, Boyer C, Lesoeur J, Thorin C, Weiss P, Fusellier M, Gauthier O. Preliminary evaluation of an osteochondral autograft, a prosthetic implant, and a biphasic absorbable implant for osteochondral reconstruction in a sheep model. Vet Surg 2020; 49:570-581. [PMID: 31916628 PMCID: PMC7154554 DOI: 10.1111/vsu.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the ability of three implants to enhance the healing of osteochondral defects: (1) a biphasic construct composed of calcium phosphate (CaP) and chitosan/cellulosic polymer, (2) a titanium-polyurethane implant, and (3) an osteochondral autograft. STUDY DESIGN Experimental study. ANIMALS Ten adult female sheep. METHODS In five sheep, an 8-mm diameter osteochondral defect was created on the medial femoral condyle of a stifle and filled with a synthetic titanium-polyurethane implant. In five sheep, a similar defect was filled with an osteochondral autograft, and the donor site was filled with a biphasic construct combining CaP granules and a chitosan/cellulosic polymer. Sheep were monitored daily for lameness. Stifle radiographs and MRI were evaluated at 20 weeks, prior to animals being humanely killed. Surgical sites were evaluated with histology, microcomputed tomography, and scanning electron microscopy. RESULTS Clinical outcomes were satisfactory regardless of the tested biomaterials. All implants appeared in place on imaging studies. Osteointegration of prosthetic implants varied between sites, with limited ingrowth of new bone into the titanium structure. Autografts and biphasic constructs were consistently well integrated in subchondral bone. All autografts except one contained a cartilage surface, and all biphasic constructs except one partially restored hyaline cartilage surface. CONCLUSION Biphasic constructs supported hyaline cartilage and subchondral bone regeneration, although restoration of the articular cartilage was incomplete. CLINICAL IMPACT Biphasic constructs may provide an alternative treatment for osteochondral defects, offering a less invasive approach compared with autologous grafts and eliminating the requirement for a prosthetic implant.
Collapse
Affiliation(s)
- Mélanie Olive
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Cécile Boyer
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Julie Lesoeur
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Chantal Thorin
- Department of Management and Statistics, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Pierre Weiss
- University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Marion Fusellier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| | - Olivier Gauthier
- Department of Small Animal Surgery, Oniris Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France.,University of Nantes, INSERM UMR 1229, RMeS, Nantes, France
| |
Collapse
|
196
|
Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Int J Biol Macromol 2020; 142:643-657. [DOI: 10.1016/j.ijbiomac.2019.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
197
|
Saleem M, Rasheed S, Yougen C. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:242-266. [PMID: 32489483 PMCID: PMC7241470 DOI: 10.1080/14686996.2020.1748520] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/06/2023]
Abstract
In recent years remarkable efforts have been made to produce artificial bone through tissue engineering techniques. Silk fibroin (SF) and hydroxyapatite (HA) have been used in bone tissue regeneration as biomaterials due to mechanical properties of SF and biocompatibility of HA. There has been growing interest in developing SF/HA composites to reduce bone defects. In this regard, several attempts have been made to study the biocompatibility and osteoconductive properties of this material. This article overviews the recent advance from last few decades in terms of the preparative methods and application of SF/HA in bone regeneration. Its first part is related to SF that presents the most common sources, preparation methods and comparison of SF with other biomaterials. The second part illustrates the importance of HA by providing information about its production and properties. The third part presents comparative studies of SF/HA composites with different concentrations of HA along with methods of preparation of composites and their applications.
Collapse
Affiliation(s)
- Muhammad Saleem
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong, 518060, China
- Department of Optoelectronic Science and Technology, 518060, Shenzhen University, P.R China
- Department of Chemistry, University of Kotli, AzadJammu and Kashmir
| | - Sidra Rasheed
- Department of Chemistry, University of Kotli, AzadJammu and Kashmir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Off. Raiwind Road, Lahore, 54000, Pakistan
| | - Chen Yougen
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong, 518060, China
- Department of Optoelectronic Science and Technology, 518060, Shenzhen University, P.R China
- CONTACT Chen Yougen Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong518060, China
| |
Collapse
|
198
|
Sun MT, O’Connor AJ, Milne I, Biswas D, Casson R, Wood J, Selva D. Development of Macroporous Chitosan Scaffolds for Eyelid Tarsus Tissue Engineering. Tissue Eng Regen Med 2019; 16:595-604. [PMID: 31824822 PMCID: PMC6879684 DOI: 10.1007/s13770-019-00201-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022] Open
Abstract
Background Reconstruction of large eyelid defects remains challenging due to the lack of suitable eyelid tarsus tissue substitutes. We aimed to evaluate a novel bioengineered chitosan scaffold for use as an eyelid tarsus substitute. Methods Three-dimensional macroporous chitosan hydrogel scaffold were produced via cryogelation with specific biomechanical properties designed to directly match characteristics of native eyelid tarsus tissue. Scaffolds were characterized by confocal microscopy and tensile mechanical testing. To optimise biocompatibility, human eyelid skin fibroblasts were cultured from biopsy-sized samples of fresh eyelid skin. Immunological and gene expression analysis including specific fibroblast-specific markers were used to determine the rate of fibroblast de-differentiation in vitro and characterize cells cultured. Eyelid skin fibroblasts were then cultured over the chitosan scaffolds and the resultant adhesion and growth of cells were characterized using immunocytochemical staining. Results The chitosan scaffolds were shown to support the attachment and proliferation of NIH 3T3 mouse fibroblasts and human orbital skin fibroblasts in vitro. Our novel bioengineered chitosan scaffold has demonstrated biomechanical compatibility and has the ability to support human eyelid skin fibroblast growth and proliferation. Conclusions This bioengineered tissue has the potential to be used as a tarsus substitute during eyelid reconstruction, offering the opportunity to pre-seed the patient's own cells and represents a truly personalised approach to tissue engineering.
Collapse
Affiliation(s)
- Michelle T. Sun
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - Andrea J. O’Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Imogen Milne
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Dhee Biswas
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Robert Casson
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - John Wood
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - Dinesh Selva
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| |
Collapse
|
199
|
Zhang Y, Miyamoto Y, Ihara S, Yang JZ, Zuill DE, Angsantikul P, Zhang Q, Gao W, Zhang L, Eckmann L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. ADVANCED THERAPEUTICS 2019; 2:1900157. [PMID: 32377561 PMCID: PMC7202563 DOI: 10.1002/adtp.201900157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Trichomonas vaginalis is responsible for the most common non-viral sexually-transmitted disease worldwide. Standard treatment is with oral nitro-heterocyclic compounds, metronidazole or tinidazole, but resistance to these drugs is emerging and adverse effects can be problematic. Topical treatment offers potential benefits for increasing local drug concentrations and efficacy, while reducing systemic drug exposure, but no topical strategies are currently approved for trichomoniasis. The anti-rheumatic drug, auranofin (AF), was recently discovered to have significant trichomonacidal activity, but has a long plasma half-life and significant adverse effects. Here, we used this drug as a model to develop a novel topical formulation composed of AF-loaded nanoparticles (NP) embedded in a thermoresponsive hydrogel for intravaginal administration. The AF-NP composite gel showed sustained drug release for at least 12 h, and underwent sol-gel transition with increased viscoelasticity within a minute. Intravaginal administration in mice showed excellent NP retention for >6 h and markedly increased local AF levels, but reduced plasma and liver levels compared to oral treatment with a much higher dose. Furthermore, intravaginal AF-NP gel greatly outperformed oral AF in eliminating vaginal trichomonad infection in mice, while causing no systemic or local toxicity. These results show the potential of the AF-NP hydrogel formulation for effective topical therapy of vaginal infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Justin Z Yang
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Douglas E Zuill
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
200
|
Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2019; 6:134-166. [DOI: 10.1021/acsbiomaterials.9b00802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|