151
|
lncRNAs MALAT1 and LINC00657 upstream to miR-214-3p/BMP2 regulate osteogenic differentiation of human mesenchymal stem cells. Mol Biol Rep 2022; 49:6847-6857. [DOI: 10.1007/s11033-022-07136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
152
|
Qin D, He Z, Li P, Zhang S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front Chem 2022; 10:834503. [PMID: 35186885 PMCID: PMC8854647 DOI: 10.3389/fchem.2022.834503] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Biomineralization is a typical interdisciplinary subject attracting biologists, chemists, and geologists to figure out its potential mechanism. A mounting number of studies have revealed that the classical nucleation theory is not suitable for all nucleation process of biominerals, and phase-separated structures such as polymer-induced liquid precursors (PILPs) play essential roles in the non-classical nucleation processes. These structures are able to play diverse roles biologically or pathologically, and could also give inspiring clues to bionic applications. However, a lot of confusion and dispute occurred due to the intricacy and interdisciplinary nature of liquid precursors. Researchers in different fields may have different opinions because the terminology and current state of understanding is not common knowledge. As a result, our team reviewed the most recent articles focusing on the nucleation processes of various biominerals to clarify the state-of-the-art understanding of some essential concepts and guide the newcomers to enter this intricate but charming field.
Collapse
Affiliation(s)
| | | | - Peng Li
- *Correspondence: Peng Li, ; Shutian Zhang,
| | | |
Collapse
|
153
|
Phenotypic effect of a single nucleotide polymorphism on SSC7 on fetal outcomes in PRRSV-2 infected gilts. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
154
|
Lu CL, Ortmeier S, Brudvig J, Moretti T, Cain J, Boyadjiev SA, Weimer JM, Kim J. Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. Traffic 2022; 23:81-93. [PMID: 34761479 PMCID: PMC8692420 DOI: 10.1111/tra.12826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
SEC24 is mainly involved in cargo sorting during COPII vesicle assembly. There are four SEC24 paralogs (A-D) in vertebrates, which are classified into two subgroups (SEC24A/B and SEC24C/D). Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans. sec24d mutant fish also recapitulate the phenotypes. Consistent with the skeletal phenotypes, the secretion of collagen was severely defective in mutant fish, emphasizing the importance of SEC24D in collagen secretion. However, SEC24D patient-derived fibroblasts show only a mild secretion phenotype, suggesting tissue-specificity in the secretion process. Using Sec24d KO mice and cultured cells, we show that SEC24A and SEC24B also contribute to endoplasmic reticulum (ER) export of procollagen. In contrast, fibronectin 1 requires either SEC24C or SEC24D for ER export. On the basis of our results, we propose that procollagen interacts with multiple SEC24 paralogs for efficient export from the ER, and that this is the basis for tissue-specific phenotypes resulting from SEC24 paralog deficiency.
Collapse
Affiliation(s)
- Chung-Ling Lu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Steven Ortmeier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jon Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Tamara Moretti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Jacob Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA,To who correspondence should be addressed: Jinoh Kim, 2086 Vet Med, 1800 Christensen Drive, Iowa State University, Ames, IA 50011, , Tel: 515-294-3401
| |
Collapse
|
155
|
Widholz B, Westhauser F. Biomaterials for angiogenesis applications in an orthopedic context. BIOMATERIALS FOR VASCULOGENESIS AND ANGIOGENESIS 2022:415-438. [DOI: 10.1016/b978-0-12-821867-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
156
|
Nagano K, Yamana K, Saito H, Kiviranta R, Pedroni AC, Raval D, Niehrs C, Gori F, Baron R. R-spondin 3 deletion induces Erk phosphorylation to enhance Wnt signaling and promote bone formation in the appendicular skeleton. eLife 2022; 11:84171. [PMID: 36321691 PMCID: PMC9681208 DOI: 10.7554/elife.84171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Activation of Wnt signaling leads to high bone density. The R-spondin family of four secreted glycoproteins (Rspo1-4) amplifies Wnt signaling. In humans, RSPO3 variants are strongly associated with bone density. Here, we investigated the role of Rspo3 in skeletal homeostasis in mice. Using a comprehensive set of mouse genetic and mechanistic studies, we show that in the appendicular skeleton, Rspo3 haplo-insufficiency and Rspo3 targeted deletion in Runx2+ osteoprogenitors lead to an increase in trabecular bone mass, with increased number of osteoblasts and bone formation. In contrast and highlighting the complexity of Wnt signaling in the regulation of skeletal homeostasis, we show that Rspo3 deletion in osteoprogenitors results in the opposite phenotype in the axial skeleton, i.e., low vertebral trabecular bone mass. Mechanistically, Rspo3 deficiency impairs the inhibitory effect of Dkk1 on Wnt signaling activation and bone mass. We demonstrate that Rspo3 deficiency leads to activation of Erk signaling which in turn, stabilizes β-catenin and Wnt signaling activation. Our data demonstrate that Rspo3 haplo-insufficiency/deficiency boosts canonical Wnt signaling by activating Erk signaling, to favor osteoblastogenesis, bone formation, and bone mass.
Collapse
Affiliation(s)
- Kenichi Nagano
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Kei Yamana
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Hiroaki Saito
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Riku Kiviranta
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | | | - Dhairya Raval
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Christof Niehrs
- German Cancer Research Center, DKFZ-ZMBH AllianceHeidelbergGermany,Institute of Molecular Biology (IMB)MainzGermany
| | - Francesca Gori
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Roland Baron
- School of Dental Medicine, Harvard UniversityBostonUnited States,Department of Medicine, Harvard Medical SchoolBostonUnited States,Endocrine Unit, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
157
|
Paradise CR, Galvan ML, Pichurin O, Jerez S, Kubrova E, Dehghani SS, Carrasco ME, Thaler R, Larson AN, van Wijnen AJ, Dudakovic A. Brd4 is required for chondrocyte differentiation and endochondral ossification. Bone 2022; 154:116234. [PMID: 34700039 PMCID: PMC9014208 DOI: 10.1016/j.bone.2021.116234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery. Our previous studies have shown that Brd4 is required for osteoblast differentiation in vitro. Here, we investigated the role of Brd4 on endochondral ossification in C57BL/6 mice and chondrogenic differentiation in cell culture models. Conditional loss of Brd4 in the mesenchyme (Brd4 cKO, Brd4fl/fl: Prrx1-Cre) yields smaller mice that exhibit alteration in endochondral ossification. Importantly, abnormal growth plate morphology and delayed long bone formation is observed in juvenile Brd4 cKO mice. One week old Brd4 cKO mice have reduced proliferative and hypertrophic zones within the physis and exhibit a delay in the formation of the secondary ossification center. At the cellular level, Brd4 function is required for chondrogenic differentiation and maturation of both ATDC5 cells and immature mouse articular chondrocytes. Mechanistically, Brd4 loss suppresses Sox9 levels and reduces expression of Sox9 and Runx2 responsive endochondral genes (e.g., Col2a1, Acan, Mmp13 and Sp7/Osx). Collectively, our results indicate that Brd4 is a key epigenetic regulator required for normal chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
158
|
Wu X, Qu M, Gong W, Zhou C, Lai Y, Xiao G. Kindlin-2 deletion in osteoprogenitors causes severe chondrodysplasia and low-turnover osteopenia in mice. J Orthop Translat 2022; 32:41-48. [PMID: 34934625 PMCID: PMC8639803 DOI: 10.1016/j.jot.2021.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our recent studies demonstrate that the focal adhesion protein Kindlin-2 exerts crucial functions in the mesenchymal stem cells, mature osteoblasts and osteocytes in control of early skeletal development and bone homeostasis in mice. However, whether Kindlin-2 plays a role in osteoprogenitors remains unclear. MATERIALS AND METHODS Mice lacking Kindlin-2 expression in osterix (Osx)-expressing cells (i.e., osteoprogenitors) were generated. Micro-computerized tomography (μCT) analyses, histology, bone histomorphometry and immunohistochemistry were performed to determine the effects of Kindlin-2 deletion on skeletal development and bone mass accrual and homeostasis. Bone marrow stromal cells (BMSCs) from mutant mice (Kindlin-2 fl/fl ; Osx Cre ) and control littermates were isolated and determined for their osteoblastic differentiation capacity. RESULTS Kindlin-2 was highly expressed in osteoprogenitors during endochondral ossification. Deleting Kindlin-2 expression in osteoprogenitors impaired both intramembranous and endochondral ossifications. Mutant mice displayed multiple severe skeletal abnormalities, including unmineralized fontanel, limb shortening and growth retardation. Deletion of Kindlin-2 in osteoprogenitors impaired the growth plate development and largely delayed formation of the secondary ossification center in the long bones. Furthermore, adult mutant mice displayed a severe low-turnover osteopenia with a dramatic decrease in bone formation which exceeded that in bone resorption. Primary BMSCs isolated from mutant mice exhibited decreased osteoblastic differentiation capacity. CONCLUSIONS Our study demonstrates an essential role of Kinlind-2 expression in osteoprogenitors in regulating skeletogenesis and bone mass accrual and homeostasis in mice. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study reveals that Kindlin-2 through its expression in osteoprogenitor cells controls chondrogenesis and bone mass. We may define a novel therapeutic target for treatment of skeletal diseases, such as chondrodysplasia and osteoporosis.
Collapse
Affiliation(s)
- Xiaohao Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Center Hospital, Tianjin Medical, 17 University, Tianjin, 300192, China
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
159
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
160
|
Sidharthan DS, Abhinandan R, Balagangadharan K, Selvamurugan N. Advancements in nucleic acids-based techniques for bone regeneration. Biotechnol J 2021; 17:e2100570. [PMID: 34882984 DOI: 10.1002/biot.202100570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
Abstract
The dynamic biology of bone involving an enormous magnitude of cellular interactions and signaling transduction provides ample biomolecular targets, which can be enhanced or repressed to mediate a rapid regeneration of the impaired bone tissue. The delivery of nucleic acids such as DNA and RNA can enhance the expression of osteogenic proteins. Members of the RNA interference pathway such as miRNA and siRNA can repress negative osteoblast differentiation regulators. Advances in nanomaterials have provided researchers with a plethora of delivery modules that can ensure proper transfection. Combining the nucleic acid carrying vectors with bone scaffolds has met with tremendous success in accomplishing bone formation. Recent years have witnessed the advent of CRISPR and DNA nanostructures in regenerative medicine. This review focuses on the delivery of nucleic acids and touches upon the prospect of CRISPR and DNA nanostructures for bone tissue engineering, emphasizing their potential in treating bone defects.
Collapse
Affiliation(s)
- Dharmaraj Saleth Sidharthan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ranganathan Abhinandan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
161
|
Nakamura M, Yang MC, Ashida K, Mayanagi M, Sasano Y. Calcification and resorption of mouse Meckel's cartilage analyzed by von Kossa and tartrate-resistant acid phosphatase histochemistry and scanning electron microscopy/energy-dispersive X-ray spectrometry. Anat Sci Int 2021; 97:213-220. [PMID: 34859366 DOI: 10.1007/s12565-021-00643-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Meckel's cartilage is essential for the normal development of the mandible. The fate of the intermediate portion of Meckel's cartilage is unique as most of it disappears soon after birth except for the part that forms the sphenomandibular ligament. The mechanism of the disappearance of Meckel's cartilage is unknown; therefore, this study was designed to investigate the process of Meckel's cartilage degradation, focusing on cartilage matrix calcification and the appearance of chondroclasts. Developing mouse mandibles at embryonic days 15, 16, 17, and 18, and postnatal day 2 were processed for whole-mount staining with alcian blue and alizarin red. The mandibles on embryonic days 15, 16, 17, and 18 were fixed and embedded in paraffin. Adjacent sections were processed for von Kossa and tartrate-resistant acid phosphatase (TRAP) histochemistry and scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM/EDS). Calcification and the element concentrations of calcium, phosphorus, and carbon were examined with von Kossa histochemistry and SEM/EDS. The involvement of chondroclasts was investigated using TRAP histochemistry. The results demonstrated that the intermediate portion of Meckel's cartilage is resorbed by chondroclasts after chondrocyte hypertrophy and cartilage matrix calcification and that the mineral concentration of calcified Meckel's cartilage is comparable to that of the surrounding bone. This study contributes to the understanding of the mechanism of Meckel's cartilage resorption and provides useful insights into the development of the mandible.
Collapse
Affiliation(s)
- Megumi Nakamura
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Mu-Chen Yang
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keijyu Ashida
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Miyuki Mayanagi
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
162
|
Vesela B, Svandova E, Ramesova A, Kratochvilova A, Tucker AS, Matalova E. Caspase Inhibition Affects the Expression of Autophagy-Related Molecules in Chondrocytes. Cartilage 2021; 13:956S-968S. [PMID: 32627581 PMCID: PMC8804809 DOI: 10.1177/1947603520938444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective. Caspases, cysteine proteases traditionally associated with apoptosis and inflammation, have recently been identified as important regulators of autophagy and reported within the growth plate, a cartilaginous part of the developing bone. The aim of this research was to identify novel autophagy-related molecules affected by inhibition of pro-apoptotic caspases in chondrocytes. Design. Chondrocyte micromasses derived from mouse limb buds were treated with pharmacological inhibitors of caspases. Autophagy-related gene expression was examined and possible novel molecules were confirmed by real-time polymerase chain reaction and immunocytofluorescence. Individual caspases inhibitors were used to identify the effect of specific caspases. Results. Chondrogenesis accompanied by caspase activation and autophagy progression was confirmed in micromass cultures. Expression of several autophagy-associated genes was significantly altered in the caspases inhibitors treated groups with the most prominent decrease for Pik3cg and increase of Tnfsf10. The results showed the specific pro-apoptotic caspases that play a role in these effects. Importantly, use of caspase inhibitors mimicked changes triggered by an autophagy stimulator, rapamycin, linking loss of caspase activity to an increase in autophagy. Conclusion. Caspase inhibition significantly affects regulation of autophagy-related genes in chondrocytes cultures. Detected markers are of importance in diagnostics and thus the data presented here open new perspectives in the field of cartilage development and degradation.
Collapse
Affiliation(s)
- Barbora Vesela
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic,Barbora Vesela, Institute of Animal
Physiology and Genetics, Czech Academy of Sciences, v.v.i., Veveri 97, Brno
60200, Czech Republic.
| | - Eva Svandova
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramesova
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Adela Kratochvilova
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative
Biology, King’s College London, London, UK
| | - Eva Matalova
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
163
|
Bone morphogenetic protein 9 enhances osteogenic and angiogenic responses of human amniotic mesenchymal stem cells cocultured with umbilical vein endothelial cells through the PI3K/AKT/m-TOR signaling pathway. Aging (Albany NY) 2021; 13:24829-24849. [PMID: 34837694 PMCID: PMC8660623 DOI: 10.18632/aging.203718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
Background: Neovascularization plays an essential part in bone fracture and defect healing, constructing tissue engineered bone that targets bone regeneration. Bone morphogenetic protein 9 (BMP9) is a regular indicator that potentiates osteogenic and angiogenic differentiation of MSCs. Objectives: To investigate the effects of BMP9 on osteogenesis and angiogenesis of human amniotic mesenchymal stem cells (hAMSCs) cocultured with human umbilical vein endothelial cells (HUVECs) and determine the possible underlying molecular mechanism. Results: The isolated hAMSCs expressed surface markers of MSCs. hAMSCs cocultured with HUVECs enhance osteogenic differentiation and upregulate the expression of angiogenic factors. BMP9 not only potentiates angiogenic signaling of hAMSCs cocultured with HUVECs also increases ectopic bone formation and subcutaneous vessel invasion. Mechanically, the coupling effect between osteogenesis and angiogenesis induced by BMP9 was activated by the BMP/Smad and PI3K/AKT/m-TOR signaling pathways. Conclusions: BMP9-enhanced osteoblastic and angiogenic differentiation in cocultivation with hAMSCs and HUVECs in vitro and in vivo also provide a chance to harness the BMP9-regulated coordinated effect between osteogenic and angiogenic pathways through BMP/Smad and PI3K/AKT/m-TOR signalings. Materials and Methods: The ALP and Alizarin Red S staining assay to determine the effects of osteoblastic differentiation. RT-qPCR and western blot was measured the expression of angiogenesis-related factors. Ectopic bone formation was established and retrieved bony masses were subjected to histochemical staining. The angiogenesis ability and vessel invasion were subsequently determined by immunofluorescence staining. Molecular mechanisms such as the BMP/Smad and PI3K/AKT/m-TOR signaling pathways were detected by ELISA and western blot analysis.
Collapse
|
164
|
Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 2021; 13:1696-1713. [PMID: 34909118 PMCID: PMC8641017 DOI: 10.4252/wjsc.v13.i11.1696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and resorption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demonstrating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration.
Collapse
Affiliation(s)
- Jelena Krstić
- Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11129, Serbia
| | - Sonja S Mojsilović
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, Belgrade 11129, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Chile 8370993, Chile
| |
Collapse
|
165
|
Rashid H, Chen H, Javed A. Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification. Matrix Biol Plus 2021; 12:100088. [PMID: 34805821 PMCID: PMC8586806 DOI: 10.1016/j.mbplus.2021.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 10/25/2022] Open
Abstract
The RUNX2 transcription factor is a key regulator for the development of cartilage and bone. Global or resting chondrocyte-specific deletion of the Runx2 gene results in failure of chondrocyte hypertrophy, endochondral ossification, and perinatal lethality. The terminally mature hypertrophic chondrocyte regulates critical steps of endochondral ossification. Importantly, expression of the Runx2 gene starts in the resting chondrocyte and increases progressively, reaching the maximum level in hypertrophic chondrocytes. However, the RUNX2 role after chondrocyte hypertrophy remains unknown. To answer this question, we deleted the Runx2 gene specifically in hypertrophic chondrocytes using the Col10-Cre line. Mice lacking the Runx2 gene in hypertrophic chondrocytes (Runx2HC/HC ) survive but exhibit limb dwarfism. Interestingly, the length of the hypertrophic chondrocyte zone is doubled in the growth plate of Runx2HC/HC mice. Expression of pro-apoptotic Bax decreased significantly while anti-apoptotic Bcl2 remains unchanged leading to a four-fold increase in the Bcl2/Bax ratio in mutant mice. In line with this, a significant reduction in apoptosis of Runx2HC/HC hypertrophic chondrocyte is noted. A large amount of cartilage matrix is present in the long bones that extend toward the diaphyseal region of Runx2HC/HC mice. This is not due to enhanced synthesis of the cartilage matrix as the expression of both collagen type 2 and aggrecan were comparable among Runx2HC/HC and WT littermates. Our qPCR analysis demonstrates the increased amount of cartilage matrix is due to impaired expression of cartilage degrading enzymes such as metalloproteinase and aggrecanase as well as tissue inhibitor of metalloproteinases. Moreover, a significant decrease of TRAP positive chondroclasts was noted along the cartilage islands in Runx2HC/HC mice. Consistently, qPCR data showed an 81% reduction in the Rankl/Opg ratio in Runx2HC/HC littermates, which is inhibitory for chondroclast differentiation. Finally, we assess if increase cartilage matrix in Runx2HC/HC mice serves as a template for bone and mineral deposition using micro-CT and Von Kossa. The mutant mice exhibit a significant increase in trabecular bone mass compared to littermates. In summary, our findings have uncovered a novel role of Runx2 in apoptosis of hypertrophic chondrocytes and degradation of cartilage matrix during endochondral ossification.
Collapse
Key Words
- ACAN, Aggrecan
- Aggrecanase
- Apoptosis
- BAC, Bacterial artificial chromosome
- CCND1, Cyclin D1
- CDK1, Cyclin-dependent kinase 1
- COL10, Collagen type X
- COL2, Collagen type II
- Chondroclast/osteoclast
- Dwarfism
- IHH, Indian hedgehog
- MMP, Matrix metalloproteinase
- Matrix-metalloproteinase
- OPG, Osteoprotegerin
- PCNA, Proliferating cell nuclear antigen
- PTHRP, Parathyroid hormone-related peptide
- RANKL, Receptor activator of nuclear factor Kappa B ligand
- RUNX2, Runt related transcription factor 2
- SOX9, SRY box transcription factor
- TNAP, Tissue-nonspecific alkaline phosphatase
- TRAP, Tartrate-resistant acid phosphatase
- VEGFA, Vascular endothelial growth factor a
- Wnt/PCP, Wnt/planar cell polarity
Collapse
Affiliation(s)
- Harunur Rashid
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haiyan Chen
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
166
|
Nakamura-Utsunomiya A. Bone Biomarkers in Mucopolysaccharidoses. Int J Mol Sci 2021; 22:ijms222312651. [PMID: 34884458 PMCID: PMC8658023 DOI: 10.3390/ijms222312651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023] Open
Abstract
The accumulation of glycosaminoglycans (GAGs) in bone and cartilage leads to progressive damage in cartilage that, in turn, reduces bone growth by the destruction of the growth plate, incomplete ossification, and growth imbalance. The mechanisms of pathophysiology related to bone metabolism in mucopolysaccharidoses (MPS) include impaired chondrocyte function and the failure of endochondral ossification, which leads to the release of inflammatory cytokines via the activation of Toll-like receptors by GAGs. Although improvements in the daily living of patients with MPS have been achieved with enzyme replacement, treatment for the bone disorder is limited. There is an increasing need to identify biomarkers related to bone and cartilage to evaluate the progressive status and to monitor the treatment of MPS. Recently, new analysis methods, such as proteomic analysis, have identified new biomarkers in MPS. This review summarizes advances in clinical bone metabolism and bone biomarkers.
Collapse
Affiliation(s)
- Akari Nakamura-Utsunomiya
- Department of Pediatrics, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-254-1818; Fax: +81-82-253-8274
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
167
|
Pan X, Cen X, Zhang B, Pei F, Huang W, Huang X, Zhao Z. Circular RNAs as potential regulators in bone remodeling: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1505. [PMID: 34805367 PMCID: PMC8573438 DOI: 10.21037/atm-21-2114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
Objective In this review, we focus on the recent progress of circular ribonucleic acids (circRNAs)-related molecular mechanisms in the processes of osteogenesis and osteoclastogenesis, and explore their roles in the development of bone-remodeling disorders. Background The well-coupled bone-formation and bone-resorption processes are vital in bone remodeling. Once the balance is disrupted, bone-remodeling disorders (e.g., osteoporosis and osteopetrosis) occur, severely affecting patients’ quality of life. CircRNAs, the newly discovered members of the non-coding RNA family, have been reported to act as key checkpoints of various signaling pathways that influence osteoblasts and osteoclasts functions, thus regulating the physiological and pathological processes of bone homeostasis. Methods Three English and three Chinese databases [i.e., PubMed, Embase, MEDLINE (via Ovid), Chinese Biomedical Literature, China National Knowledge Infrastructure, and VIP databases] were searched to June 2021 without language restrictions. Studies exploring the roles of circRNAs in key bone remodeling mediators, such as Smad-dependent bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β), Wnts, runt-related transcription factor (RUNX), forkhead boxes (FOXs), colony-stimulating factor 1 (CSF-1), receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG), and circRNA-related bone-remodeling disorders, were included. Conclusions Many circRNAs have been shown to promote osteogenesis and facilitate osteoclast differentiation via diverse mechanisms, and thus modulate the process of bone homeostasis. The imbalance or impairment of these two parts causes diseases, such as osteoporosis, and osteonecrosis of the femoral head, which are also closely correlated to the aberrant presence of circRNAs. Current evidence provides us with promising diagnosis and treatment methods for some bone homeostasis disorders.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
168
|
Osteoblast-specific inactivation of p53 results in locally increased bone formation. PLoS One 2021; 16:e0249894. [PMID: 34793446 PMCID: PMC8601510 DOI: 10.1371/journal.pone.0249894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/28/2021] [Indexed: 12/27/2022] Open
Abstract
Inactivation of the tumor suppressor p53 (encoded by the Trp53 gene) is relevant for development and growth of different cancers, including osteosarcoma, a primary bone tumor mostly affecting children and young adolescents. We have previously shown that deficiency of the ribosomal S6 kinase 2 (Rsk2) limits osteosarcoma growth in a transgenic mouse model overexpressing the proto-oncogene c-Fos. Our initial aim for the present study was to address the question, if Rsk2 deficiency would also influence osteosarcoma growth in another mouse model. For that purpose, we took advantage of Trp53fl/fl mice, which were crossed with Runx2Cre transgenic mice in order to inactivate p53 specifically in osteoblast lineage cells. However, since we unexpectedly identified Runx2Cre-mediated recombination also in the thymus, the majority of 6-month-old Trp53fl/fl;Runx2-Cre (thereafter termed Trp53Cre) animals displayed thymic lymphomas, similar to what has been described for Trp53-deficient mice. Since we did not detect osteosarcoma formation at that age, we could not follow our initial aim, but we studied the skeletal phenotype of Trp53Cre mice, with or without additional Rsk2 deficiency. Here we unexpectedly observed that Trp53Cre mice display a unique accumulation of trabecular bone in the midshaft region of the femur and the humerus, consistent with its previously established role as a negative regulator of osteoblastogenesis. Since this local bone mass increase in Trp53Cre mice was significantly reduced by Rsk2 deficiency, we isolated bone marrow cells from the different groups of mice and analyzed their behavior ex vivo. Here we observed a remarkable increase of colony formation, osteogenic differentiation and proliferation in Trp53Cre cultures, which was unaffected by Rsk2 deficiency. Our data thereby confirm a critical and tumorigenesis-independent function of p53 as a key regulator of mesenchymal cell differentiation.
Collapse
|
169
|
A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie 2021; 193:137-147. [PMID: 34742858 DOI: 10.1016/j.biochi.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteoblast differentiation is an important process in skeletal development and bone remodelling. Serious bone diseases occur from any delay, defect, or imbalance in osteoblastic differentiation. Non-coding RNAs (ncRNAs) play a regulatory role in controlling the expression of proteins under physiological and pathological conditions via inhibiting mRNA translation or degrading mRNA. Circular RNAs (circRNAs) and microRNAs (miRNAs) are the long and small ncRNAs, respectively, which have been reported to regulate the expression of osteoblast marker genes directly or indirectly. Also, recent studies identified the regulatory mechanisms involving the crosstalk among circRNAs, miRNAs, and mRNAs during osteoblast differentiation. Understanding these regulatory mechanisms behind osteoblastic differentiation would help to diagnose or treat bone and bone-related disorders. Hence, the current review comprehensively discussed the regulatory relationship of circRNAs, miRNAs and mRNAs, and their functional role as circRNA-miRNA-mRNA axis in osteoblast differentiation.
Collapse
|
170
|
Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci 2021; 11:187. [PMID: 34727974 PMCID: PMC8561357 DOI: 10.1186/s13578-021-00698-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapeutics is already available for treatment of a range of diseases or medical conditions. Autologous or allogeneic MSCs obtained from self or donors have their own advantages and disadvantages in their medical practice. Therapeutic benefits of using autologous vs. allogeneic MSCs are inconclusive. Transplanted MSCs within the body interact with their physical microenvironment or niche, physiologically or pathologically, and such cells in a newly established tissue microenvironment may be impacted by the pathological harmful environmental factors to alter their unique biological behaviors. Meanwhile, a temporary microenvironment/niche may be also altered by the resident or niche-surrounding MSCs. Therefore, the functional plasticity and heterogeneity of MSCs caused by different donors and subpopulations of MSCs may result in potential uncertainty in their safe and efficacious medical practice. Acknowledging a connection between MSCs' biology and their existing microenvironment, donor-controlled clinical practice for the long-term therapeutic benefit is suggested to further consider minimizing MSCs potential harm for MSC-based individual therapies. In this review, we summarize the advantages and disadvantages of autologous vs. allogeneic MSCs in their therapeutic applications. Among other issues, we highlight the importance of better understanding of the various microenvironments that may affect the properties of niche-surrounding MSCs and discuss the clinical applications of MSCs within different contexts for treatment of different diseases including cardiomyopathy, lupus and lupus nephritis, diabetes and diabetic complications, bone and cartilage repair, cancer and tissue fibrosis.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China.
| | - Hua Zhao
- Institute of Reproductive Medicine, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China
| | - Linna Cheng
- Institute of Hematology, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China
| | - Bin Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China.
| |
Collapse
|
171
|
Chai M, Jiang M, Gu C, Lu Q, Zhou Y, Jin Z, Zhou Y, Tan W. Osteogenically differentiated mesenchymal stem cells promote the apoptosis of human umbilical vein endothelial cells in vitro. Biotechnol Appl Biochem 2021; 69:2138-2150. [PMID: 34694656 DOI: 10.1002/bab.2274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
The absence of blood vessels in tissue engineered bone often leads to necrosis of internal cells after implantation, ultimately affecting the process of bone repair. Herein, mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to induce osteogenesis and angiogenesis. Based on the findings, the number of HUVECs in the coculture system increased in the growth medium group, but decreased in the osteogenic induction medium (OIM) group. Considering that the paracrine effects of MSCs had changed, we tested the genes expression of osteogenically differentiated MSCs. The expression of osteogenic genes in MSCs increased during osteogenesis. Further, the expression levels of pigment epithelial-derived factor (PEDF) gene and protein, an antivascular factor, were also increased. To verify whether MSCs promote HUVECs apoptosis via PEDF, PEDF was silenced via siRNA. The conditioned medium of differentiated MSCs with PEDF silencing significantly improved the proliferation and apoptosis of HUVECs. Based on further experiments, PEDF mediated the apoptosis and proliferation of HUVECs through p53, BAX/BCL-2, FAS, and c-Caspase-3. However, when PEDF was silenced with siRNA, the osteogenic potential of MSCs was affected. The results of this study provide a theoretical basis for the construction of prevascularized bone tissues in vitro.
Collapse
Affiliation(s)
- Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mingli Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ce Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
172
|
Role of K + and Ca 2+-Permeable Channels in Osteoblast Functions. Int J Mol Sci 2021; 22:ijms221910459. [PMID: 34638799 PMCID: PMC8509041 DOI: 10.3390/ijms221910459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Bone-forming cells or osteoblasts play an important role in bone modeling and remodeling processes. Osteoblast differentiation or osteoblastogenesis is orchestrated by multiple intracellular signaling pathways (e.g., bone morphogenetic proteins (BMP) and Wnt signaling pathways) and is modulated by the extracellular environment (e.g., parathyroid hormone (PTH), vitamin D, transforming growth factor β (TGF-β), and integrins). The regulation of bone homeostasis depends on the proper differentiation and function of osteoblast lineage cells from osteogenic precursors to osteocytes. Intracellular Ca2+ signaling relies on the control of numerous processes in osteoblast lineage cells, including cell growth, differentiation, migration, and gene expression. In addition, hyperpolarization via the activation of K+ channels indirectly promotes Ca2+ signaling in osteoblast lineage cells. An improved understanding of the fundamental physiological and pathophysiological processes in bone homeostasis requires detailed investigations of osteoblast lineage cells. This review summarizes the current knowledge on the functional impacts of K+ channels and Ca2+-permeable channels, which critically regulate Ca2+ signaling in osteoblast lineage cells to maintain bone homeostasis.
Collapse
|
173
|
Suchacki KJ, Alcaide-Corral CJ, Nimale S, Macaskill MG, Stimson RH, Farquharson C, Freeman TC, Tavares AAS. A Systems-Level Analysis of Total-Body PET Data Reveals Complex Skeletal Metabolism Networks in vivo. Front Med (Lausanne) 2021; 8:740615. [PMID: 34616758 PMCID: PMC8488174 DOI: 10.3389/fmed.2021.740615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Bone is now regarded to be a key regulator of a number of metabolic processes, in addition to the regulation of mineral metabolism. However, our understanding of complex bone metabolic interactions at a systems level remains rudimentary. in vitro molecular biology and bioinformatics approaches have frequently been used to understand the mechanistic changes underlying disease at the cell level, however, these approaches lack the capability to interrogate dynamic multi-bone metabolic interactions in vivo. Here we present a novel and integrative approach to understand complex bone metabolic interactions in vivo using total-body positron emission tomography (PET) network analysis of murine 18F-FDG scans, as a biomarker of glucose metabolism in bones. In this report we show that different bones within the skeleton have a unique glucose metabolism and form a complex metabolic network, which could not be identified using single tissue simplistic PET standard uptake values analysis. The application of our approach could reveal new physiological and pathological tissue interactions beyond skeletal metabolism, due to PET radiotracers diversity and the advent of clinical total-body PET systems.
Collapse
Affiliation(s)
- Karla J. Suchacki
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos J. Alcaide-Corral
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Samah Nimale
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G. Macaskill
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Roland H. Stimson
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies (RDSVS), Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies (RDSVS), Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
174
|
Primary cilia in hard tissue development and diseases. Front Med 2021; 15:657-678. [PMID: 34515939 DOI: 10.1007/s11684-021-0829-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/13/2020] [Indexed: 10/20/2022]
Abstract
Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.
Collapse
|
175
|
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22179576. [PMID: 34502478 PMCID: PMC8431148 DOI: 10.3390/ijms22179576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.
Collapse
Affiliation(s)
- Alice Ramesova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
| | - Barbora Vesela
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
- Correspondence:
| | - Eva Svandova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| |
Collapse
|
176
|
Ichimura A. Elucidation of the Physiological Functions of Membrane Proteins as Novel Drug Target Candidate Molecules. Biol Pharm Bull 2021; 44:1167-1173. [PMID: 34471043 DOI: 10.1248/bpb.b21-00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For pharmaceutical research focused on identifying novel drug target candidate molecules, it is essential to explore unknown biological phenomena, elucidate underlying molecular mechanisms and regulate biological processes based on these findings. Proteins expressed on the plasma membrane and endoplasmic reticulum (ER) membrane play important roles in linking extracellular environmental information to intracellular processes. Stimulating membranous proteins induces various kinds of changes in cells, such as alterations in gene expression levels and enzymatic activities. However, the physiological functions and endogenous ligands of many G-protein-coupled receptors (GPCRs) have not been determined, although GPCRs already constitute a large class of drug-target membrane proteins. Furthermore, the precise physiological roles played by many ER membrane proteins have not been elucidated to date. In this review article, I summarize the results of our recent studies, including the observations that the lipid sensor FFAR4/GPR120 controlled systemic energy homeostasis and that the ER membrane monovalent cation channel trimeric intracellular cation (TRIC)-B and the plasma membrane divalent cation channel transient receptor potential melastatin 7 (TRPM7) regulated bone formation. I further describe the therapeutic significance of these membranous protein-related biological processes.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
177
|
Vahedi P, Moghaddamshahabi R, Webster TJ, Calikoglu Koyuncu AC, Ahmadian E, Khan WS, Jimale Mohamed A, Eftekhari A. The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. Int J Mol Sci 2021; 22:ijms22179215. [PMID: 34502123 PMCID: PMC8431575 DOI: 10.3390/ijms22179215] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration. MSCs that are used to treat articular cartilage defects must not only present a robust cartilaginous production capacity, but they also must not cause morbidity at the harvest site. In addition, they should be easy to isolate from the tissue and expand in culture without terminal differentiation. The source of MSCs is one of the most important factors that may affect treatment. The infrapatellar fat pad (IPFP) acts as an important reservoir for MSC and is located in the anterior compartment of the knee joint in the extra-synovial area. The IPFP is a rich source of MSCs, and in this review, we discuss studies that demonstrate that these cells have shown many advantages over other tissues in terms of ease of isolation, expansion, and chondrogenic differentiation. Future studies in articular cartilage repair strategies and suitable extraction as well as cell culture methods will extend the therapeutical application of IPFP-derived MSCs into additional orthopedic fields, such as osteoarthritis. This review provides the latest research concerning the use of IPFP-derived MSCs in the treatment of articular cartilage damage, providing critical information for the field to grow.
Collapse
Affiliation(s)
- Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran;
| | - Rana Moghaddamshahabi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, North Cyprus, Turkey;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Ayse Ceren Calikoglu Koyuncu
- Materials and Metallurgical Engineering Department, Faculty of Technology, Marmara University, Istanbul 34722, Turkey;
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 51666-15731, Iran;
| | - Wasim S. Khan
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: (W.S.K.); (A.E.)
| | - Ali Jimale Mohamed
- Department of Pharmacology, Faculty of Medicine, Somali National University, Mogadishu 801, Somalia;
| | - Aziz Eftekhari
- Department of Toxicology and Pharmacology, Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences (SAS), Dúbravská cesta, 9, 845 41 Bratislava, Slovakia
- Correspondence: (W.S.K.); (A.E.)
| |
Collapse
|
178
|
Zhang X, Wang D, Mak KLK, Tuan RS, Ker DFE. Engineering Musculoskeletal Grafts for Multi-Tissue Unit Repair: Lessons From Developmental Biology and Wound Healing. Front Physiol 2021; 12:691954. [PMID: 34504435 PMCID: PMC8421786 DOI: 10.3389/fphys.2021.691954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
In the musculoskeletal system, bone, tendon, and skeletal muscle integrate and act coordinately as a single multi-tissue unit to facilitate body movement. The development, integration, and maturation of these essential components and their response to injury are vital for conferring efficient locomotion. The highly integrated nature of these components is evident under disease conditions, where rotator cuff tears at the bone-tendon interface have been reported to be associated with distal pathological alterations such as skeletal muscle degeneration and bone loss. To successfully treat musculoskeletal injuries and diseases, it is important to gain deep understanding of the development, integration and maturation of these musculoskeletal tissues along with their interfaces as well as the impact of inflammation on musculoskeletal healing and graft integration. This review highlights the current knowledge of developmental biology and wound healing in the bone-tendon-muscle multi-tissue unit and perspectives of what can be learnt from these biological and pathological processes within the context of musculoskeletal tissue engineering and regenerative medicine. Integrating these knowledge and perspectives can serve as guiding principles to inform the development and engineering of musculoskeletal grafts and other tissue engineering strategies to address challenging musculoskeletal injuries and diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - King-Lun Kingston Mak
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
179
|
Wang X, He T, He L, Yang B, Liu Z, Pang M, Xie P, Zhang L, Rong L. Melatonin contributes to the hypertrophic differentiation of mesenchymal stem cell-derived chondrocytes via activation of the Wnt/β-catenin signaling pathway : Melatonin promotes MSC-derived chondrocytes hypertrophy. Stem Cell Res Ther 2021; 12:467. [PMID: 34419165 PMCID: PMC8379782 DOI: 10.1186/s13287-021-02536-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypertrophy is a critical process for chondrocyte differentiation and maturation during endochondral ossification, which is responsible for the formation of long bone and postnatal longitudinal growth. Increasing evidence suggests that melatonin, an indole hormone, plays a pivotal role in chondrogenesis. However, little is known about the effects of melatonin on the terminal differentiation of chondrocytes. METHODS Mesenchymal stem cell (MSC)-derived chondrocytes generated by a high-density micromass culture system were induced to undergo hypertrophic differentiation. Melatonin-mediated hypertrophic differentiation was examined by reverse transcription polymerase chain reaction analysis (RT-PCR) analysis, histological staining and immunohistochemistry. Activation of the Wnt signaling pathway was evaluated by PCR array, RT-PCR, western blotting and immunofluorescence. XAV-939, a Wnt signaling pathway antagonist, was further used to determine whether the effect of melatonin on chondrocyte hypertrophic differentiation was mediated occurred by activation of Wnt signaling pathway. RESULTS Histological staining showed melatonin increased chondrocyte cell volume and the expression of type X collagen but decreased the expression of type II collagen compared with the control group. RT-PCR showed that melatonin significantly up-regulated the gene expressions of biomarkers of hypertrophic chondrocytes, including type X collagen, alkaline phosphatase, runt-related transcription factor 2, Indian hedgehog and parathyroid hormone-related protein receptor, and melatonin down-regulated the mRNA expression of hallmarks of chondrocytes, including parathyroid hormone-related protein. PCR array showed that the effect of melatonin on chondrocyte hypertrophic differentiation was accompanied by the up-regulation of multiple target genes of the canonical Wnt signaling pathway, and this effect was blocked by XAV-939. CONCLUSIONS The current findings demonstrate that melatonin enhances the hypertrophic differentiation of MSC-derived chondrocytes through the Wnt signaling pathway. Our findings add evidence to the role of melatonin in promoting bone development and highlight the positive effects of melatonin on terminal differentiation of chondrocytes.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Bu Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Zhongyu Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| |
Collapse
|
180
|
Jiang Z, Long X, Ke J, Cai H, Fang W, Meng Q. The Regrowth of Mandibular Coronoid Process After Coronoidectomy: A Retrospective Analysis of 57 Cases. J Oral Maxillofac Surg 2021; 80:151-161. [PMID: 34496291 DOI: 10.1016/j.joms.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Coronoidectomy is carried out frequently as a part of the cranial-maxillofacial surgery procedure. There are few articles on the fate of coronoid process after coronoidectomy, except that several case reports mentioned that coronoid process had regenerated. This study aimed to radiographically access the anatomic outcomes of coronoid process and investigate which factors were associated with the outcomes after coronoidectomy. MATERIALS AND METHODS A retrospective cohort study included patients undergoing coronoidectomy over a 7-year period. The primary outcome variable was the new coronoid process occurrence (yes/no). Secondary outcome variable was the type of the new coronoid process by evaluating its size, shape and position. Radiograph at 1-year postoperative visit was used to determine the outcomes. The predictor variables included age, sex, surgical purpose, surgical side, surgical approach and the maximal interincisal opening. Appropriate statistics were analyzed by SPSS version 22. χ2 test and binary logistic regression were used to assess the association between predictor factors and anatomic outcomes (P <.05). RESULTS The study sample included 57 patients. In total, 96 coronoidectomies were performed. Seventy-four coronoid processes (77.1%) showed complete (n = 44, 45.8%), nonunion (n = 19, 19.8%) or partial (n = 11, 11.5%) regrowth, whereas no evidence of regeneration in 22 sites was observed radiographically at 1-year postoperative visit. Binary logistic regression showed that a young age (odds ratio 0.704; 95% confidence interval 0.562-0.882; P = .002) was significantly associated with regeneration of coronoid process. CONCLUSIONS Coronoid process can mostly regenerate after coronoidectomy. A young age may contribute to regrowth of coronoid process.
Collapse
Affiliation(s)
- Ziyan Jiang
- Resident, Professor, Associate Professor and Head, Associate Professor, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Resident, Professor, Associate Professor and Head, Associate Professor, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- Resident, Professor, Associate Professor and Head, Associate Professor, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Resident, Professor, Associate Professor and Head, Associate Professor, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- Resident, Professor, Associate Professor and Head, Associate Professor, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Resident, Professor, Associate Professor and Head, Associate Professor, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hengxing Cai
- Resident, Professor, Associate Professor and Head, Associate Professor, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Resident, Professor, Associate Professor and Head, Associate Professor, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- Resident, Professor, Associate Professor and Head, Associate Professor, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Resident, Professor, Associate Professor and Head, Associate Professor, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qinggong Meng
- Resident, Professor, Associate Professor and Head, Associate Professor, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Resident, Professor, Associate Professor and Head, Associate Professor, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
181
|
Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Rev Dis Primers 2021; 7:57. [PMID: 34354083 DOI: 10.1038/s41572-021-00289-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
The human skeleton has remarkable regenerative properties, being one of the few structures in the body that can heal by recreating its normal cellular composition, orientation and mechanical strength. When the healing process of a fractured bone fails owing to inadequate immobilization, failed surgical intervention, insufficient biological response or infection, the outcome after a prolonged period of no healing is defined as non-union. Non-union represents a chronic medical condition not only affecting function but also potentially impacting the individual's psychosocial and economic well-being. This Primer provides the reader with an in-depth understanding of our contemporary knowledge regarding the important features to be considered when faced with non-union. The normal mechanisms involved in bone healing and the factors that disrupt the normal signalling mechanisms are addressed. Epidemiological considerations and advances in the diagnosis and surgical therapy of non-union are highlighted and the need for greater efforts in basic, translational and clinical research are identified.
Collapse
Affiliation(s)
- Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany. .,Julius Wolff Institute and BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Ulm, Baden Württemberg, Germany
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, the University of Hong Kong, Hong Kong, Hong Kong
| | - Lisa A Taitsman
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - R Malcolm Smith
- Orthopedic trauma service, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rodrigo Pesántez
- Departamento de Ortopedia Y Traumatología Fundación Santa Fé de Bogotá - Universidad de los Andes, Bogotá, Colombia
| | | | | | - Jesse B Jupiter
- Department of Orthopaedic surgery, Massachussets General Hospital, Boston, MA, USA.
| |
Collapse
|
182
|
Yamada D, Nakamura M, Takao T, Takihira S, Yoshida A, Kawai S, Miura A, Ming L, Yoshitomi H, Gozu M, Okamoto K, Hojo H, Kusaka N, Iwai R, Nakata E, Ozaki T, Toguchida J, Takarada T. Induction and expansion of human PRRX1 + limb-bud-like mesenchymal cells from pluripotent stem cells. Nat Biomed Eng 2021; 5:926-940. [PMID: 34373601 DOI: 10.1038/s41551-021-00778-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Current protocols for the differentiation of human pluripotent stem cells (hPSCs) into chondrocytes do not allow for the expansion of intermediate progenitors so as to prospectively assess their chondrogenic potential. Here we report a protocol that leverages PRRX1-tdTomato reporter hPSCs for the selective induction of expandable and ontogenetically defined PRRX1+ limb-bud-like mesenchymal cells under defined xeno-free conditions, and the prospective assessment of the cells' chondrogenic potential via the cell-surface markers CD90, CD140B and CD82. The cells, which proliferated stably and exhibited the potential to undergo chondrogenic differentiation, formed hyaline cartilaginous-like tissue commensurate to their PRRX1-expression levels. Moreover, we show that limb-bud-like mesenchymal cells derived from patient-derived induced hPSCs can be used to identify therapeutic candidates for type II collagenopathy and we developed a method to generate uniformly sized hyaline cartilaginous-like particles by plating the cells on culture dishes coated with spots of a zwitterionic polymer. PRRX1+ limb-bud-like mesenchymal cells could facilitate the mass production of chondrocytes and cartilaginous tissues for applications in drug screening and tissue engineering.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kawai
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akihiro Miura
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Lu Ming
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Yoshitomi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mai Gozu
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kumi Okamoto
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kusaka
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Eiji Nakata
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
183
|
Almubarak A, Lavy R, Srnic N, Hu Y, Maripuri DP, Kume T, Berry FB. Loss of Foxc1 and Foxc2 function in chondroprogenitor cells disrupts endochondral ossification. J Biol Chem 2021; 297:101020. [PMID: 34331943 PMCID: PMC8383119 DOI: 10.1016/j.jbc.2021.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Endochondral ossification initiates the growth of the majority of the mammalian skeleton and is tightly controlled through gene regulatory networks. The forkhead box transcription factors Foxc1 and Foxc2 regulate aspects of osteoblast function in the formation of the skeleton, but their roles in chondrocytes to control endochondral ossification are less clear. Here, we demonstrate that Foxc1 expression is directly regulated by the activity of SRY (sex-determining region Y)-box 9, one of the earliest transcription factors to specify the chondrocyte lineage. Moreover, we demonstrate that elevated expression of Foxc1 promotes chondrocyte differentiation in mouse embryonic stem cells and loss of Foxc1 function inhibits chondrogenesis in vitro. Using chondrocyte-targeted deletion of Foxc1 and Foxc2 in mice, we reveal a role for these factors in chondrocyte differentiation in vivo. Loss of both Foxc1 and Foxc2 caused a general skeletal dysplasia predominantly affecting the vertebral column. The long bones of the limbs were smaller, mineralization was reduced, and organization of the growth plate was disrupted; in particular, the stacked columnar organization of the proliferative chondrocyte layer was reduced in size and cell proliferation was decreased. Differential gene expression analysis indicated disrupted expression patterns of chondrogenesis and ossification genes throughout the entire process of endochondral ossification in chondrocyte-specific Foxc1/Foxc2 KO embryos. Our results suggest that Foxc1 and Foxc2 are required for normal chondrocyte differentiation and function, as loss of both genes results in disorganization of the growth plate, reduced chondrocyte proliferation, and delays in chondrocyte hypertrophy that prevents ossification of the skeleton.
Collapse
Affiliation(s)
- Asra Almubarak
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Rotem Lavy
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Nikola Srnic
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Yawen Hu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | | - Tsutomo Kume
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
184
|
Park S, Bello A, Arai Y, Ahn J, Kim D, Cha KY, Baek I, Park H, Lee SH. Functional Duality of Chondrocyte Hypertrophy and Biomedical Application Trends in Osteoarthritis. Pharmaceutics 2021; 13:pharmaceutics13081139. [PMID: 34452101 PMCID: PMC8400409 DOI: 10.3390/pharmaceutics13081139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chondrocyte hypertrophy is one of the key indicators in the progression of osteoarthritis (OA). However, compared with other OA indications, such as cartilage collapse, sclerosis, inflammation, and protease activation, the mechanisms by which chondrocyte hypertrophy contributes to OA remain elusive. As the pathological processes in the OA cartilage microenvironment, such as the alterations in the extracellular matrix, are initiated and dictated by the physiological state of the chondrocytes, in-depth knowledge of chondrocyte hypertrophy is necessary to enhance our understanding of the disease pathology and develop therapeutic agents. Chondrocyte hypertrophy is a factor that induces OA progression; it is also a crucial factor in the endochondral ossification. This review elaborates on this dual functionality of chondrocyte hypertrophy in OA progression and endochondral ossification through a description of the characteristics of various genes and signaling, their mechanism, and their distinguishable physiological effects. Chondrocyte hypertrophy in OA progression leads to a decrease in chondrogenic genes and destruction of cartilage tissue. However, in endochondral ossification, it represents an intermediate stage at the process of differentiation of chondrocytes into osteogenic cells. In addition, this review describes the current therapeutic strategies and their mechanisms, involving genes, proteins, cytokines, small molecules, three-dimensional environments, or exosomes, against the OA induced by chondrocyte hypertrophy. Finally, this review proposes that the contrasting roles of chondrocyte hypertrophy are essential for both OA progression and endochondral ossification, and that this cellular process may be targeted to develop OA therapeutics.
Collapse
Affiliation(s)
- Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Alvin Bello
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Jinsung Ahn
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Kyung-Yup Cha
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Hansoo Park
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Correspondence: ; Tel.: +82-31-961-5153; Fax: +82-31-961-5108
| |
Collapse
|
185
|
Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int J Mol Sci 2021; 22:7724. [PMID: 34299344 PMCID: PMC8306037 DOI: 10.3390/ijms22147724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.
Collapse
Affiliation(s)
- Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
- University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| |
Collapse
|
186
|
Vascularization Strategies in Bone Tissue Engineering. Cells 2021; 10:cells10071749. [PMID: 34359919 PMCID: PMC8306064 DOI: 10.3390/cells10071749] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a highly vascularized tissue, and its development, maturation, remodeling, and regeneration are dependent on a tight regulation of blood vessel supply. This condition also has to be taken into consideration in the context of the development of artificial tissue substitutes. In classic tissue engineering, bone-forming cells such as primary osteoblasts or mesenchymal stem cells are introduced into suitable scaffolds and implanted in order to treat critical-size bone defects. However, such tissue substitutes are initially avascular. Because of the occurrence of hypoxic conditions, especially in larger tissue substitutes, this leads to the death of the implanted cells. Therefore, it is necessary to devise vascularization strategies aiming at fast and efficient vascularization of implanted artificial tissues. In this review article, we present and discuss the current vascularization strategies in bone tissue engineering. These are based on the use of angiogenic growth factors, the co-implantation of blood vessel forming cells, the ex vivo microfabrication of blood vessels by means of bioprinting, and surgical methods for creating surgically transferable composite tissues.
Collapse
|
187
|
da Silva Sasso GR, Florencio-Silva R, Sasso-Cerri E, Gil CD, de Jesus Simões M, Cerri PS. Spatio-temporal immunolocalization of VEGF-A, Runx2, and osterix during the early steps of intramembranous ossification of the alveolar process in rat embryos. Dev Biol 2021; 478:133-143. [PMID: 34245724 DOI: 10.1016/j.ydbio.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/10/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) is expressed by several cell types and is a crucial factor for angiogenic-osteogenic coupling. However, the immunolocalization of VEGF-A during the early stages of the alveolar process formation remains underexplored. Thus, we analyzed the spatio-temporal immunolocalization of VEGF-A and its relationship with Runt-related transcription factor 2 (Runx2) and osterix (Osx) during the early steps of intramembranous ossification of the alveolar process in rat embryos. Embryo heads (E) of 16, 18 and 20-day-old rats were processed for paraffin embedding. Histomorphometry and immunohistochemistry to detect VEGF-A, Runx2, and Osx (osteoblast differentiation markers) were performed. The volume density of bone tissue including bone cells and blood vessels increased significantly in E18 and E20. Cells showing high VEGF-A immunoreactivity were initially observed within a perivascular niche in the ectomesenchyme; afterwards, these cells were diffusely located near bone formation sites. Runx2-and Osx-immunopositive cells were observed in corresponded regions of cells showing strong VEGF-A immunoreactivity. Although these immunostained cells were observed in all specimens, this immunolocalization pattern was more evident in E16 specimens and gradually decreased in E18 and E20 specimens. Double immunofluorescence labelling showed intracellular co-localization of Osx and VEGF-A in cells surrounding the developing alveolar process, indicating a crucial role of VEGF-A in osteoblast differentiation. Our results showed VEGF-A immunoexpression in osteoblasts and its precursors during the maxillary alveolar process formation of rat embryos. Moreover, the VEGF-A-positive cells located within a perivascular niche at the early stages of the alveolar process development suggest a crosstalk between endothelium and ectomesenchymal cells, reinforcing the angiogenic-osteogenic coupling in this process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil
| | - Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil.
| |
Collapse
|
188
|
The Cellular Choreography of Osteoblast Angiotropism in Bone Development and Homeostasis. Int J Mol Sci 2021; 22:ijms22147253. [PMID: 34298886 PMCID: PMC8305002 DOI: 10.3390/ijms22147253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form "type H" capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.
Collapse
|
189
|
Hendrickx G, Danyukova T, Baranowsky A, Rolvien T, Angermann A, Schweizer M, Keller J, Schröder J, Meyer-Schwesinger C, Muschol N, Paganini C, Rossi A, Amling M, Pohl S, Schinke T. Enzyme replacement therapy in mice lacking arylsulfatase B targets bone-remodeling cells, but not chondrocytes. Hum Mol Genet 2021; 29:803-816. [PMID: 31943020 PMCID: PMC7104678 DOI: 10.1093/hmg/ddaa006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS-VI), caused by mutational inactivation of the glycosaminoglycan-degrading enzyme arylsulfatase B (Arsb), is a lysosomal storage disorder primarily affecting the skeleton. We have previously reported that Arsb-deficient mice display high trabecular bone mass and impaired skeletal growth. In the present study, we treated them by weekly injection of recombinant human ARSB (rhARSB) to analyze the impact of enzyme replacement therapy (ERT) on skeletal growth and bone remodeling. We found that all bone-remodeling abnormalities of Arsb-deficient mice were prevented by ERT, whereas chondrocyte defects were not. Likewise, histologic analysis of the surgically removed femoral head from an ERT-treated MPS-VI patient revealed that only chondrocytes were pathologically affected. Remarkably, a side-by-side comparison with other cell types demonstrated that chondrocytes have substantially reduced capacity to endocytose rhARSB, together with low expression of the mannose receptor. We finally took advantage of Arsb-deficient mice to establish quantification of chondroitin sulfation for treatment monitoring. Our data demonstrate that bone-remodeling cell types are accessible to systemically delivered rhARSB, whereas the uptake into chondrocytes is inefficient.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Angermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Department of Electron Microscopy, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Keller
- Center for Musculoskeletal Surgery, Charité University Medicine, 10117 Berlin, Germany
| | - Jörg Schröder
- Center for Musculoskeletal Surgery, Charité University Medicine, 10117 Berlin, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Muschol
- International Center for Lysosomal Diseases, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chiara Paganini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
190
|
Fu J, Wang Y, Jiang Y, Du J, Xu J, Liu Y. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:377. [PMID: 34215342 PMCID: PMC8254211 DOI: 10.1186/s13287-021-02456-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of MSCs for bone regeneration in pre-clinical studies. Methods The article search was conducted in PubMed and Embase databases. Original research articles that assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of injection, and bone diseases. Results Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV). Conclusion This study concluded that systemic therapy of MSCs promotes bone regeneration in preclinical experiments. These results provided important information for the systemic application of MSCs as a potential application of bone formation in further animal experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02456-w.
Collapse
Affiliation(s)
- Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
191
|
Jiang G, Li S, Yu K, He B, Hong J, Xu T, Meng J, Ye C, Chen Y, Shi Z, Feng G, Chen W, Yan S, He Y, Yan R. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater 2021; 128:150-162. [PMID: 33894346 DOI: 10.1016/j.actbio.2021.04.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
Osteochondral regeneration is an orchestrated process of inflammatory immunity, host cell response, and implant degradation in tissue engineering. Here, the effects of a platelet-rich plasma (PRP)-gelatin methacryloyl (GelMA) hydrogel scaffold fabricated using the digital micro-mirror device (DMD) technique for osteochondral repair were investigated in a rabbit model. GelMA hydrogels with different PRP concentrations were fabricated, and their roles in bone marrow mesenchymal stem cells (BMSCs) and macrophage polarization in vitro were investigated. The incorporation of 20% PRP into the hydrogel showed optimal effects on the proliferation, migration, and osteogenic and chondrogenic differentiation of BMSCs. The 20% PRP-GelMA (v/v) hydrogel also promoted M2 polarization with high expression of Arg1 and CD206. Compared to the 20% PRP group, the 50% PRP group showed similar biological roles in BMSCs but less extent of osteogenesis. In the vivo study, the 20% PRP-GelMA composite was used for osteochondral reconstruction and showed more cartilage and subchondral bone regeneration than that observed using the pure GelMA hydrogel. The PRP-GelMA group exhibited more M2 macrophage infiltration and less M1 macrophage presentation at three time points as compared to the nontreatment group. The expression of Arg1 in the PRP-GelMA group increased significantly at 6 weeks but decreased to a lower level at 12 weeks, while CD163 showed sustained high expression until 18 weeks. Our findings demonstrated that the 3D-printed PRP-GelMA composite could promote osteochondral repair through immune regulation by M2 polarization and could be a potential candidate for osteochondral tissue engineering. STATEMENT OF SIGNIFICANCE: PRP-GelMA hydrogels promoted the migration and osteogenic and chondrogenic differentiation of BMSCs. PRP-GelMA hydrogels participated in immune regulation and M1-to-M2 transition of macrophages. PRP-GelMA hydrogels coordinated and promoted several overlapping osteochondral repair events, including dynamic immune regulation, chemotaxis of MSCs, and osteochondral differentiation. PRP-GelMA hydrogels showed superior cartilage and subchondral bone repair properties.
Collapse
|
192
|
Zhang Z, Gan Y, Guo Y, Lu X, Li X. Animal models of vertical bone augmentation (Review). Exp Ther Med 2021; 22:919. [PMID: 34335880 PMCID: PMC8290405 DOI: 10.3892/etm.2021.10351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Vertical bone augmentation is an important challenge in dental implantology. Existing vertical bone augmentation techniques, along with bone grafting materials, have achieved certain clinical progress but continue to have numerous limitations. In order to evaluate the possibility of using biomaterials to develop bone substitutes, medical devices and/or new bone grafting techniques for vertical bone augmentation, it is essential to establish clinically relevant animal models to investigate their biocompatibility, mechanical properties, applicability and safety. The present review discusses recent animal experiments related to vertical bone augmentation. In addition, surgical protocols for establishing relevant preclinical models with various animal species were reviewed. The present study aims to provide guidance for selecting experimental animal models of vertical bone augmentation.
Collapse
Affiliation(s)
- Zepeng Zhang
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yaxin Gan
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yarong Guo
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xuguang Lu
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
193
|
Liu X, Chen W, Shao B, Zhang X, Wang Y, Zhang S, Wu W. Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone. Biomaterials 2021; 276:120998. [PMID: 34237507 DOI: 10.1016/j.biomaterials.2021.120998] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Crosstalk between bone marrow mesenchymal stem cells (BMSCs) and macrophages plays vital role in bone healing. By investigating the mechanism of collagen membrane-guided bone regeneration, we found compact structure and rapid membrane degradation compromised the duration of M2 macrophages influx, which restricts the recruitment of BMSCs that is essential for bone healing. To tackle this issue, a biodegrading elastomeric compound consisting of poly(glycerol sebacate) (PGS) and polycaprolactone (PCL) was fabricated into hierarchically porous membrane. The rational design of 3D microstructure enabled sufficient polydopamine (PDA) coating. Without any addition of growth factors, the 3D-patterned PDA membrane enables early and durable influx of M2 macrophages, which in turn promotes BMSCs recruitment and osteogenic differentiation. Furthermore, 4D-morphing of the membrane fully regenerates the dome shaped calvarial bone as well as arc-shape bone in peri-implant alveolar defect without filling xenogenous substitute. This study revealed the superiority of 3D printed microstructures in immunomodulatory materials. The availability of 4D-morphing for PGS/PCL construct expanded their advantages in reconstructing craniofacial bone.
Collapse
Affiliation(s)
- Xuzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China; Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Bo Shao
- Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yinggang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
194
|
Leek CC, Soulas JM, Bhattacharya I, Ganji E, Locke RC, Smith MC, Bhavsar JD, Polson SW, Ornitz DM, Killian ML. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev Dyn 2021; 250:1778-1795. [PMID: 34091985 PMCID: PMC8639753 DOI: 10.1002/dvdy.383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jaclyn M Soulas
- College of Engineering, University of Delaware, Newark, Delaware, USA.,College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware, USA
| | - Iman Bhattacharya
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Elahe Ganji
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ryan C Locke
- College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Megan C Smith
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Megan L Killian
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
195
|
Kovacs CS, Chaussain C, Osdoby P, Brandi ML, Clarke B, Thakker RV. The role of biomineralization in disorders of skeletal development and tooth formation. Nat Rev Endocrinol 2021; 17:336-349. [PMID: 33948016 DOI: 10.1038/s41574-021-00488-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 02/03/2023]
Abstract
The major mineralized tissues are bone and teeth, which share several mechanisms governing their development and mineralization. This crossover includes the hormones that regulate circulating calcium and phosphate concentrations, and the genes that regulate the differentiation and transdifferentiation of cells. In developing endochondral bone and in developing teeth, parathyroid hormone-related protein (PTHrP) acts in chondrocytes to delay terminal differentiation, thereby increasing the pool of precursor cells. Chondrocytes and (in specific circumstances) pre-odontoblasts can also transdifferentiate into osteoblasts. Moreover, bone and teeth share outcomes when affected by systemic disorders of mineral homeostasis or of the extracellular matrix, and by adverse effects of treatments such as bisphosphonates and fluoride. Unlike bone, teeth have more permanent effects from systemic disorders because they are not remodelled after they are formed. This Review discusses the normal processes of bone and tooth development, followed by disorders that have effects on both bone and teeth, versus disorders that have effects in one without affecting the other. The takeaway message is that bone specialists should know when to screen for dental disorders, just as dental specialists should recognize when a tooth disorder should raise suspicions about a possible underlying bone disorder.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | - Philip Osdoby
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
196
|
Camal Ruggieri IN, Ramallo M, Grenón HG, MARDEGAN ISSA JP, Feldman S. DESARROLLO Y CRECIMIENTO FEMORAL DE CONEJAS DE LA LÍNEA NEW ZEALAND. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.87221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En este proyecto se investigan los cambios que acontecen en el desarrollo y crecimiento de conejos hembras de la línea New Zealand (CoNZ) en sus huesos femorales. Los animales fueron mantenidas en jaulas individuales desde las 2 semanas de edad, con comida y agua ad libitum y se sacrificaron en tiempos mensualmente consecutivos: 1, 2, 3, 4, 5, y 6 meses. Tras la obtención de las piezas femorales, y a partir de estudios imagenológicos se determinaron los ángulos del cuello femoral (Af), la longitud total (L), la densidad mineral ósea total, del centro óseo y de la metáfisis femoral (DMOt, DMOco y DMOmf respectivamente), analizándose las variaciones intergrupales por el test Wilcoxon, y corrección de Bonferroni. Se realizaron estudios histológicos de los cortes descalcificados de las piezas femorales. Los análisis sobre los Af mostraron un incremento significativo durante el primer mes mientras que L se estabilizó a partir del 4to mes. Los valores de DMOt mostraron un plateau a partir del cuarto mes, si bien las DMOco y DMOmf ya a partir del tercer mes no mostraron incrementos significativos. Histológicamente se observó para el cuarto mes ausencia de las diferentes zonas características del cartílago de crecimiento metafisiario, con presencia únicamente de un pequeño remanente de células condrales. Desde el quinto mes se observa ausencia total de cartílago, con presencia únicamente de tejido osteoide (TO). La interpretación integrada de los resultados nos permite afirmar, que a partir del cuarto mes de desarrollo, el fémur de CoNZ adquiere características compatibles con un periodo de adultez.
Collapse
|
197
|
Construction and Validation of an Autophagy-Related Prognostic Model for Osteosarcoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:9943465. [PMID: 34194501 PMCID: PMC8181090 DOI: 10.1155/2021/9943465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
While the prognostic value of autophagy-related genes (ARGs) in OS patients remains scarcely known, increasing evidence is indicating that autophagy is closely associated with the development and progression of osteosarcoma (OS). Therefore, we explored the prognostic value of ARGs in OS patients and illuminate associated mechanisms in this study. When the OS patients in the training/validation cohort were stratified into high- and low-risk groups according to the risk model established using least absolute shrinkage and selection operator (LASSO) regression analysis, we observed that patients in the low-risk group possessed better prognosis (P < 0.0001). Univariate/Multivariate COX regression and subgroup analysis demonstrated that the ARGs-based risk model was an independent survival indicator for OS patients. The nomogram incorporating the risk model and clinical features exhibited excellent prognostic accuracy. GO, KEGG, and GSVA analyses collectively indicated that bone development-associated pathway mediated the contribution of ARGs to the malignance of OS. Immune infiltration analysis suggested the potential pivotal role of macrophage in OS. In summary, the risk model based on 12 ARGs possessed potent capacity in predicting the prognosis of OS patients. Our work may assist clinicians to map out more reasonable treatment strategies and facilitate individual-targeted therapy in osteosarcoma.
Collapse
|
198
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
199
|
Tay SH, Yeo JG, Leong JY, Albani S, Arkachaisri T. Juvenile Spondyloarthritis: What More Do We Know About HLA-B27, Enthesitis, and New Bone Formation? Front Med (Lausanne) 2021; 8:666772. [PMID: 34095174 PMCID: PMC8174582 DOI: 10.3389/fmed.2021.666772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Juvenile spondyloarthritis (JSpA) refers to a diverse spectrum of immune-mediated inflammatory arthritides whose onset occurs in late childhood and adolescence. Like its adult counterpart, JSpA is typified by a strong association with human leukocyte antigen-B27 (HLA-B27) and potential axial involvement, while lacking rheumatoid factor (RF) and distinguishing autoantibodies. A characteristic manifestation of JSpA is enthesitis (inflammation of insertion sites of tendons, ligaments, joint capsules or fascia to bone), which is commonly accompanied by bone resorption and new bone formation at affected sites. In this Review, advances in the role of HLA-B27, enthesitis and its associated osteoproliferation in JSpA pathophysiology and treatment options will be discussed. A deeper appreciation of how these elements contribute to the JSpA disease mechanism will better inform diagnosis, prognosis and therapy, which in turn translates to an improved quality of life for patients.
Collapse
Affiliation(s)
- Shi Huan Tay
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Joo Guan Yeo
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jing Yao Leong
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Salvatore Albani
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
200
|
Yu H, Wang K, Liu P, Luo P, Zhu D, Yin J, Yang Q, Huang Y, Gao J, Ai Z, Chen Y, Gao Y. miR-4286 functions in osteogenesis and angiogenesis via targeting histone deacetylase 3 and alleviates alcohol-induced bone loss in mice. Cell Prolif 2021; 54:e13054. [PMID: 33973278 PMCID: PMC8168416 DOI: 10.1111/cpr.13054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Alcohol consumption is one of the leading factors contributing to premature osteopenia. MicroRNA (miRNA) coordinates a cascade of anabolic and catabolic processes in bone homeostasis and dynamic vascularization. The aim was to investigate the protective role of miR‐4286 in alcohol‐induced bone loss and its mechanism. Materials and Methods The effect of miR‐4286 and alcohol on bone mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) was explored via multiple in vitro assays, including cell proliferation, QPCR, Western blot, osteogenesis, angiogenesis etc miR‐4286 directly regulated HDAC3 was investigated by luciferase reporter assay, and the function of HDAC3 was also explored in vitro. Moreover, alcohol‐induced bone loss in mice was established to reveal the preventive effect of miR‐4286 by radiographical and histopathological assays. Results In vitro, ethanol dramatically inhibited the proliferation and osteogenesis of BMSCs, and substantially impaired the proliferation and vasculogenesis of HUVECs. However, a forced overexpression of miR‐4286 within BMSCs and HUVECs could largely abolish inhibitory effects by alcohol. Furthermore, alcohol‐induced inhibition on osteogenic and vasculogenic functions was mediated by histone deacetylase 3 (HDAC3), and dual‐luciferase reporter assay showed that HDAC3 was the direct binding target of miR‐4286. In vivo, micro‐CT scanning and histology assessment revealed that miR‐4286 could prevent alcohol‐induced bone loss. Conclusions We firstly demonstrated that miR‐4286 might function via intimate osteogenesis‐angiogenesis pathway to alleviate alcohol‐induced osteopenia via targeting HDAC3.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kaiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pengbo Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junhui Yin
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yigang Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zisheng Ai
- Department of Medical Statistics, Tongji University School of Medicine, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|