151
|
Zhao Y, Zhang C, Yue X, Li X, Liu J, Yu H, Belyi VA, Yang Q, Feng Z, Hu W. Pontin, a new mutant p53-binding protein, promotes gain-of-function of mutant p53. Cell Death Differ 2015; 22:1824-36. [PMID: 25857266 PMCID: PMC4648328 DOI: 10.1038/cdd.2015.33] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/29/2015] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Tumor-suppressor p53 is frequently mutated in human cancers. Many tumor-associated mutant p53 (mutp53) proteins gain new functions in promoting tumorigenesis, defined as gain-of-function (GOF). The mechanisms for mutp53 GOF are not well understood. Here, we report Pontin, a highly conserved AAA+ ATPase important for various cellular functions, as a new mutp53-binding protein. This Pontin-mutp53 interaction promotes mutp53 GOF in invasion, migration and anchorage-independent growth of tumor cells. The ATPase domain of Pontin is crucial for its promoting effect on mutp53 GOF; blocking the ATPase activity of Pontin by a Pontin-specific ATPase inhibitor or an ATPase-deficient dominant-negative Pontin expression vector greatly diminished mutp53 GOF. Pontin promotes mutp53 GOF through regulation of mutp53 transcriptional activity; knockdown of Pontin abolished the transcriptional regulation of mutp53 toward a group of genes. Furthermore, overexpression of Pontin in tumors is associated with the poor survival in cancer patients, especially those containing mutp53. Our results highlight an important role and mechanism for Pontin, a new mutp53 partner, in promoting mutp53 GOF in tumorigenesis.
Collapse
Affiliation(s)
- Y Zhao
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - C Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - X Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - X Li
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - J Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - H Yu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - V A Belyi
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Q Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Z Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - W Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
152
|
Araki K, Ebata T, Guo AK, Tobiume K, Wolf SJ, Kawauchi K. p53 regulates cytoskeleton remodeling to suppress tumor progression. Cell Mol Life Sci 2015; 72:4077-94. [PMID: 26206378 PMCID: PMC11114009 DOI: 10.1007/s00018-015-1989-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Keigo Araki
- Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Takahiro Ebata
- Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Alvin Kunyao Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Kei Tobiume
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Steven John Wolf
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan.
| |
Collapse
|
153
|
Melino S, Bellomaria A, Nepravishta R, Paci M, Melino G. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch. Cell Cycle 2015; 13:3207-17. [PMID: 25485500 DOI: 10.4161/15384101.2014.951285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition.
Collapse
Key Words
- CXCR4, chemokine receptor
- E3 ubiquitin ligases
- HECT, Homologous E6-AP Carboxyl Terminus
- IPTG, isopropyl-β-D-thiogalactoside
- Itch
- Pin1
- Ppep63, phosphorylated pep63
- RHS, Rapp-Hodgkin syndrome
- RP-HPLC, reverse phase high performance chromatography
- TFE, 2, 2, 2-trifluoroethanol
- TNF, tumor necrosis factor
- TRAF6, TNF receptor-associated factor 6
- cPpep63, cyclic phosphorylated pep63
- p53 family
- p63
- pep63, p63(534–551) peptide
- proline isomerization
- ubiquitynation
Collapse
Affiliation(s)
- Sonia Melino
- a Dipartimento di Scienze e Tecnologie Chimiche ; University of Rome "Tor Vergata" ; Rome , Italy
| | | | | | | | | |
Collapse
|
154
|
Halasi M, Pandit B, Gartel AL. Proteasome inhibitors suppress the protein expression of mutant p53. Cell Cycle 2015; 13:3202-6. [PMID: 25485499 DOI: 10.4161/15384101.2014.950132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53.
Collapse
Affiliation(s)
- Marianna Halasi
- a Department of Medicine ; University of Illinois at Chicago ; Chicago , IL USA
| | | | | |
Collapse
|
155
|
Tan BS, Tiong KH, Choo HL, Chung FFL, Hii LW, Tan SH, Yap IKS, Pani S, Khor NTW, Wong SF, Rosli R, Cheong SK, Leong CO. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis 2015; 6:e1826. [PMID: 26181206 PMCID: PMC4650736 DOI: 10.1038/cddis.2015.191] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
Collapse
Affiliation(s)
- B S Tan
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - K H Tiong
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Oral Cancer Research and Co-ordinating Center (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [3] Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia
| | - H L Choo
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - F Fei-Lei Chung
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - L-W Hii
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - S H Tan
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - I K S Yap
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - S Pani
- ANU Medical School, Canberra Hospital Campus, The Canberra Hospital Building 4, Garran, Australia
| | - N T W Khor
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - S F Wong
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - R Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S-K Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia
| | - C-O Leong
- 1] School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [2] Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia [3] School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
156
|
Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T, Chauhan KM, Carrero ZI, Ramakrishnan G, Watabe K, Haupt Y, Haupt S, Pochampally R, Boss GR, Romero DG, Radu CG, Martinez LA. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat Commun 2015; 6:7389. [PMID: 26067754 PMCID: PMC4467467 DOI: 10.1038/ncomms8389] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/05/2015] [Indexed: 12/29/2022] Open
Abstract
Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP dependent protein (GTPase) activity and cell invasion. Addition of exogenous guanosine or GTP restores the invasiveness of mtp53 knockdown cells, suggesting that mtp53 promotes invasion by increasing GTP. Additionally, mtp53 creates a dependency on the nucleoside salvage pathway enzyme deoxycytidine kinase (dCK) for the maintenance of a proper balance in dNTP pools required for proliferation. These data indicate that mtp53 harboring cells have acquired a synthetic sick or lethal phenotype relationship with the nucleoside salvage pathway. Finally, elevated expression of NMG correlates with mutant p53 status and poor prognosis in breast cancer patients. Thus, mtp53’s control of nucleotide biosynthesis has both a driving and sustaining role in cancer development.
Collapse
Affiliation(s)
- Madhusudhan Kollareddy
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Elizabeth Dimitrova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Krishna C Vallabhaneni
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Thuc Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Krishna M Chauhan
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Zunamys I Carrero
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Gopalakrishnan Ramakrishnan
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Kounosuke Watabe
- Department of Microbiology and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Ygal Haupt
- 1] Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Locked Bag, East Melbourne, Victoria 3002, Australia [2] Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia [3] Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sue Haupt
- 1] Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Locked Bag, East Melbourne, Victoria 3002, Australia [2] Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Radhika Pochampally
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Gerard R Boss
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Damian G Romero
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Luis A Martinez
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| |
Collapse
|
157
|
Roles of Prolyl Isomerases in RNA-Mediated Gene Expression. Biomolecules 2015; 5:974-99. [PMID: 25992900 PMCID: PMC4496705 DOI: 10.3390/biom5020974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
The peptidyl-prolyl cis-trans isomerases (PPIases) that include immunophilins (cyclophilins and FKBPs) and parvulins (Pin1, Par14, Par17) participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.
Collapse
|
158
|
Said R, Ye Y, Hong DS, Janku F, Fu S, Naing A, Wheler JJ, Kurzrock R, Thomas C, Palmer GA, Hess KR, Aldape K, Tsimberidou AM. Characteristics and survival of patients with advanced cancer and p53 mutations. Oncotarget 2015; 5:3871-9. [PMID: 25003695 PMCID: PMC4116527 DOI: 10.18632/oncotarget.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
P53 mutations are associated with invasive tumors in mouse models. We assessed the p53mutations and survival in patients with advanced cancer treated in the Phase I Program. Of 691 tested patients, 273 (39.5%) had p53 mutations. Patients with p53 mutations were older (p<.0001) and had higher numbers of liver metastases (p=.005). P53 mutations were associated with higher numbers of other aberrations; PTEN (p=.0005) and HER2 (p=.003)aberrations were more common in the p53 mutation group. No survival difference was observed between patients with p53 mutations and those with wild-type p53. In patients with wild-type p53 and other aberrations, patients treated with matched-therapy against the additional aberrations had longer survival compared to those treated with non-matched-therapy or those who received no therapy (median survival, 26.0 vs. 11.8 vs. 9.8 months, respectively; p= .0007). Results were confirmed in a multivariate analysis (p= .0002). In the p53 mutation group with additional aberrations, those who received matched-therapy against the additional aberrations had survival similar to those treated with non-matched-therapy or those who received no therapy (p=.15). In conclusion, our results demonstrated resistance to matched-targeted therapy to the other aberrations in patients with p53 mutations and emphasize the need to overcome this resistance.
Collapse
Affiliation(s)
- Rabih Said
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Internal Medicine, Oncology Division, The University of Texas Health Sciences Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | | | | | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
159
|
Impairment of the Pin1/E2F1 axis in the anti-proliferative effect of bortezomib in hepatocellular carcinoma cells. Biochimie 2015; 112:85-95. [PMID: 25742740 DOI: 10.1016/j.biochi.2015.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The modest efficacy of available therapies for Hepatocellular carcinoma (HCC) indicates the need to develop novel therapeutic approaches. For the proteasome inhibitor Bortezomib (BZB), potentially attractive for HCC treatment, the mechanism of action is largely unknown. The BZB effect on E2Fs and the E2Fs control on the peptidylproline cis-trans isomerase (Pin1), prompted us to explore the BZB effect on the Pin1-E2F1 axis. METHODS The tumorigenic cell line HuH7 together with the non-tumorigenic cells IHH and the human pluripotent stem cell derived hepatocytes (hPSC-H), were used as cellular models of HCC and normal liver cells, respectively. RESULTS BZB reduces HuH7 growth as shown by cell counting, cell vitality test and cell cycle analysis; this is paralleled by the decrease of Pin1, E2F1, cyclin A2 and of the hyper-phosphorylated pRB. Pin1-E2F1 axis impairment justifies the anti-proliferative effect since Pin-E2F1 depletion decreases HuH7 growth while the over-expression rescues BZB-induced inhibition of proliferation. Moreover, Pin1-E2F1 promote HuH7 growth via the up-regulation of cyclin D1, cyclin E, cyclin A2, E2F2 and in part E2F3. Finally, in the control cells IHH and hPSC-H, BZB effect on cell vitality is not irrelevant, a fact correlated to the cellular proliferation rate. Thus, BZB effect on healthy liver tissue may not be entirely negligible hence caution should be exercised in its use in liver regeneration processes. CONCLUSION For the first time we prove the functional involvement of the Pin1-E2F1 axis in the anti-proliferative effect of BZB indicating Pin1-E2F as an attractive target to control HCC cell growth.
Collapse
|
160
|
Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage. Cell Death Dis 2015; 6:e1640. [PMID: 25675300 PMCID: PMC4669794 DOI: 10.1038/cddis.2015.3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 02/05/2023]
Abstract
Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development.
Collapse
|
161
|
Mantovani F, Zannini A, Rustighi A, Del Sal G. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochim Biophys Acta Gen Subj 2015; 1850:2048-60. [PMID: 25641576 DOI: 10.1016/j.bbagen.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. SCOPE OF REVIEW p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. MAJOR CONCLUSIONS The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. GENERAL SIGNIFICANCE The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
| |
Collapse
|
162
|
Chen CH, Li W, Sultana R, You MH, Kondo A, Shahpasand K, Kim BM, Luo ML, Nechama M, Lin YM, Yao Y, Lee TH, Zhou XZ, Swomley AM, Butterfield DA, Zhang Y, Lu KP. Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer's disease. Neurobiol Dis 2015; 76:13-23. [PMID: 25576397 DOI: 10.1016/j.nbd.2014.12.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/02/2014] [Accepted: 12/26/2014] [Indexed: 12/23/2022] Open
Abstract
The unique proline isomerase Pin1 is pivotal for protecting against age-dependent neurodegeneration in Alzheimer's disease (AD), with its inhibition providing a molecular link between tangle and plaque pathologies. Pin1 is oxidatively modified in human AD brains, but little is known about its regulatory mechanisms and pathological significance of such Pin1 modification. In this paper, our determination of crystal structures of oxidized Pin1 reveals a series of Pin1 oxidative modifications on Cys113 in a sequential fashion. Cys113 oxidization is further confirmed by generating antibodies specifically recognizing oxidized Cys113 of Pin1. Furthermore, Pin1 oxidation on Cys113 inactivates its catalytic activity in vitro, and Ala point substitution of Cys113 inactivates the ability of Pin1 to isomerize tau as well as to promote protein turnover of tau and APP. Moreover, redox regulation affects Pin1 subcellular localization and Pin1-mediated neuronal survival in response to hypoxia treatment. Importantly, Cys113-oxidized Pin1 is significantly increased in human AD brain comparing to age-matched controls. These results not only identify a novel Pin1 oxidation site to be the critical catalytic residue Cys113, but also provide a novel oxidative regulation mechanism for inhibiting Pin1 activity in AD. These results suggest that preventing Pin1 oxidization might help to reduce the risk of AD.
Collapse
Affiliation(s)
- Chun-Hau Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenzong Li
- Dept. of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Mi-Hyeon You
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Asami Kondo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Koorosh Shahpasand
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Byeong Mo Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Man-Li Luo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Morris Nechama
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Min Lin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yandan Yao
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tae Ho Lee
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiao Zhen Zhou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron M Swomley
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA; Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | - Yan Zhang
- Dept. of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | - Kun Ping Lu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Institute for Translational Medicine, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
163
|
Abstract
FBW7 (F-box and WD repeat domain-containing 7) or Fbxw7 is a tumor suppressor, which promotes the ubiquitination and subsequent degradation of numerous oncoproteins including Mcl-1, Cyclin E, Notch, c- Jun, and c-Myc. In turn, FBW7 is regulated by multiple upstream factors including p53, C/EBP-δ, EBP2, Pin1, Hes-5 and Numb4 as well as by microRNAs such as miR-223, miR-27a, miR-25, and miR-129-5p. Given that the Fbw7 tumor suppressor is frequently inactivated or deleted in various human cancers, targeting FBW7 regulators is a promising anti-cancer therapeutic strategy.
Collapse
|
164
|
Wang JZ, Liu BG, Zhang Y. Pin1-based diagnostic and therapeutic strategies for breast cancer. Pharmacol Res 2014; 93:28-35. [PMID: 25553719 DOI: 10.1016/j.phrs.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Pin1 is the only known cis-to-trans isomerase that recognizes the phosphorylated pThr/pSer-Pro motifs in many signaling molecules, playing unique roles in the pathogenesis of breast cancer. First, Pin1 is prevalently over-expressed in kinds of breast cancer cell lines and tissues, such as MDA-MB-231 cell, MCF-7 cell, Her2+, ERα+, and basal-like breast cancer subtypes. Second, Pin1 amplifies many oncogenic signaling pathways, inhibits multiple tumor suppressors, promotes the angiogenesis and metastasis of breast cancer cells, and enhances the resistance of breast cancer cells to anti-tumor medicines. Third, inhibiting Pin1 blocks most of these detrimental effects in a great number of breast cancer cell lines. These findings suggest Pin1 as a promising diagnostic biomarker as well as an efficient therapeutic target for breast cancer. It is strongly expected that a Pin1-positive subtype of breast cancers should be extremely concerned and that the therapeutic efficacy of Pin1 inhibitors on breast cancer patients should be evaluated as soon as possible. Nonetheless, Pin1-based therapeutic strategies for breast cancer still deserve some debates. Hence, we give the predictions of several important issues, such as application precondition, side effects, and personalized medication, when Pin1 inhibitors are used in the breast cancer therapy. These proposals are meaningful for the further development of Pin1-based diagnostic and therapeutic strategies in order to conquer breast cancer.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China.
| | - Bao-Guo Liu
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Yong Zhang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
165
|
Battle against cancer: an everlasting saga of p53. Int J Mol Sci 2014; 15:22109-27. [PMID: 25470027 PMCID: PMC4284697 DOI: 10.3390/ijms151222109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/23/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress—p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.
Collapse
|
166
|
Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 2014; 19 Pt A:88-96. [PMID: 25132079 DOI: 10.1016/j.mito.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general hallmark of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Anna Comel
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy.
| |
Collapse
|
167
|
Abstract
Proline-directed phosphorylation is a posttranslational modification that is instrumental in regulating signaling from the plasma membrane to the nucleus, and its dysregulation contributes to cancer development. Protein interacting with never in mitosis A1 (Pin1), which is overexpressed in many types of cancer, isomerizes specific phosphorylated Ser/Thr-Pro bonds in many substrate proteins, including glycolytic enzyme, protein kinases, protein phosphatases, methyltransferase, lipid kinase, ubiquitin E3 ligase, DNA endonuclease, RNA polymerase, and transcription activators and regulators. This Pin1-mediated isomerization alters the structures and activities of these proteins, thereby regulating cell metabolism, cell mobility, cell cycle progression, cell proliferation, cell survival, apoptosis and tumor development.
Collapse
Affiliation(s)
- Zhimin Lu
- 1] Brain Tumor Center and Department of Neuro-Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [3] Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
168
|
Tan EH, Morton JP, Timpson P, Tucci P, Melino G, Flores ER, Sansom OJ, Vousden KH, Muller PAJ. Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene 2014; 33:3325-33. [PMID: 23873029 PMCID: PMC4181588 DOI: 10.1038/onc.2013.287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/22/2013] [Accepted: 06/07/2013] [Indexed: 12/25/2022]
Abstract
Many tumours harbour mutations in the p53 tumour-suppressor gene that result in the expression of a mutant p53 protein. This mutant p53 protein has, in most cases, lost wild-type transcriptional activity and can also acquire novel functions in promoting invasion and metastasis. One of the mechanisms underlying these novel functions involves the ability of the mutant p53 to interfere with other transcription factors, including the p53 family protein TAp63. To investigate whether simultaneous depletion of both p53 and TAp63 can recapitulate the effect of mutant p53 expression in vivo, we used a mouse model of pancreatic cancer in which the expression of mutant p53 resulted in the rapid appearance of primary tumours and metastases. As shown previously, loss of one allele of wild-type (WT) p53 accelerated tumour development. A change of one WT p53 allele into mutant p53 did not further accelerate tumour development, but did promote the formation of metastasis. By contrast, loss of TAp63 did not significantly accelerate tumour development or metastasis. However, simultaneous depletion of p53 and TAp63 led to both rapid tumour development and metastatic potential, although the incidence of metastases remained lower than that seen in mutant p53-expressing tumours. TAp63/p53-null cells derived from these mice also showed an enhanced ability to scatter and invade in tissue culture as was observed in mutant p53 cells. These data suggest that depletion of TAp63 in a p53-null tumour can promote metastasis and recapitulate-to some extent-the consequences of mutant p53 expression.
Collapse
Affiliation(s)
- EH Tan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - JP Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - P Timpson
- Cancer Research UK Beatson Institute, Glasgow, UK
- The Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Cancer Program, Sydney, Australia
| | - P Tucci
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - G Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
- Biochemistry Laboratory, Istituto Dermopatico dell’Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico and University of Rome, “Tor Vergata,” Rome, Italy
| | - ER Flores
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - OJ Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - KH Vousden
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - PAJ Muller
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
169
|
Koutsaki M, Spandidos DA, Zaravinos A. Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 2014; 351:173-81. [PMID: 24952258 DOI: 10.1016/j.canlet.2014.05.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are a family of short ribonucleic acids found to play a pivotal role in cancer pathogenesis. MiRNAs are crucial in cellular differentiation, growth, stress response, cell death and other fundamental cellular processes, and their involvement in ovarian cancer has been recently shown. They can repress the expression of important cancer-related genes and they can also function both as oncogenes and tumour suppressor genes. During epithelial-mesenchymal transition (EMT), epithelial cells lose their cell polarity and cell-cell adhesion and gain migratory and invasive properties. In the ovarian surface epithelium, EMT is considered the key regulator of the post-ovulatory repair process and it can be triggered by a range of environmental stimuli. The aberrant expression of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) in ovarian carcinoma and its involvement in ovarian cancer initiation and progression has been well-demonstrated. The miR-200 family members seem to be strongly associated with a pathologic EMT and to have a metastasis suppressive role. MiRNA signatures can accurately distinguish ovarian cancer from the normal ovary and can be used as diagnostic tools to predict the clinical response to chemotherapy. Recent evidence suggests a growing list of new miRNAs (miR-187, miR-34a, miR-506, miRNA-138, miR-30c, miR-30d, miR-30e-3p, miR-370 and miR-106a, among others) that are also implicated in ovarian carcinoma-associated EMT, either enhancing or suppressing it. MiRNA-based gene therapy provides a prospective anti-tumour approach for integrated cancer therapy. The aim of nanotechnology-based delivery approach for miRNA therapy is to overcome challenges in miRNA delivery and to effectively encourage the reprogramming of miRNA networks in cancer cells, which may lead to a clinically translatable miRNA-based therapy to benefit ovarian cancer patients.
Collapse
Affiliation(s)
- Maria Koutsaki
- Pediatric Department, University Hospital of Heraklion, 1352 Heraklion, Crete, Greece; Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Apostolos Zaravinos
- Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece; Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
170
|
Polonio-Vallon T, Krüger D, Hofmann TG. ShaPINg Cell Fate Upon DNA Damage: Role of Pin1 Isomerase in DNA Damage-Induced Cell Death and Repair. Front Oncol 2014; 4:148. [PMID: 24982848 PMCID: PMC4058901 DOI: 10.3389/fonc.2014.00148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/28/2014] [Indexed: 01/04/2023] Open
Abstract
The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation, and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programed cell death or cellular senescence. In this review, we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA-damage response.
Collapse
Affiliation(s)
- Tilman Polonio-Vallon
- Research Group Cellular Senescence, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| | - Daniel Krüger
- Research Group Cellular Senescence, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| | - Thomas G Hofmann
- Research Group Cellular Senescence, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance , Heidelberg , Germany
| |
Collapse
|
171
|
Pegoraro S, Ros G, Piazza S, Sommaggio R, Ciani Y, Rosato A, Sgarra R, Del Sal G, Manfioletti G. HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness. Oncotarget 2014; 4:1293-308. [PMID: 23945276 PMCID: PMC3787158 DOI: 10.18632/oncotarget.1136] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a heterogeneous disease that progresses to the critical hallmark of metastasis. In the present study, we show that the High Mobility Group A1 (HMGA1) protein plays a fundamental role in this process in basal-like breast cancer subtype. HMGA1 knockdown induces the mesenchymal to epithelial transition and dramatically decreases stemness and self-renewal. Notably, HMGA1 depletion in basal-like breast cancer cell lines reduced migration and invasion in vitro and the formation of metastases in vivo. Mechanistically, HMGA1 activated stemness and key migration-associated genes which were linked to the Wnt/beta-catenin, Notch and Pin1/mutant p53 signalling pathways. Moreover, we identified a specific HMGA1 gene expression signature that was activated in a large subset of human primary breast tumours and was associated with poor prognosis. Taken together, these data provide new insights into the role of HMGA1 in the acquisition of aggressive features in breast cancer.
Collapse
Affiliation(s)
- Silvia Pegoraro
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Donzelli S, Strano S, Blandino G. microRNAs: short non-coding bullets of gain of function mutant p53 proteins. Oncoscience 2014; 1:427-33. [PMID: 25594041 PMCID: PMC4284623 DOI: 10.18632/oncoscience.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022] Open
Abstract
TP53 gene mutations are present in more than half of all human cancers. The resulting proteins are mostly full-length with a single aminoacid change and are abundantly present in cancer cells. Some of mutant p53 proteins gain oncogenic activities through which actively contribute to the aberrant cell proliferation, increased resistance to apoptotic stimuli and ability to metastatize of cancer cells. Gain of function mutant p53 proteins can transcriptionally regulate the expression of a large plethora of target genes. This mainly occurs through the formation of oncogenic transcriptional competent complexes that include mutant p53 protein, known transcription factors, posttranslational modifiers and scaffold proteins. Mutant p53 protein can also transcriptionally regulate the expression of microRNAs, small non-coding RNAs that regulate gene expression at the posttranscriptional level. Each microRNA can putatively target the expression of hundred mRNAs and consequently impact on many cellular functions. Thus, gain of function mutant p53 proteins can exert their oncogenic activities through the modulation of both non-coding and coding regions of human genome.
Collapse
Affiliation(s)
- Sara Donzelli
- Translational Oncogenomic Lab, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Sabrina Strano
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Giovanni Blandino
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| |
Collapse
|
173
|
Subramanian M, Francis P, Bilke S, Li XL, Hara T, Lu X, Jones MF, Walker RL, Zhu Y, Pineda M, Lee C, Varanasi L, Yang Y, Martinez LA, Luo J, Ambs S, Sharma S, Wakefield LM, Meltzer PS, Lal A. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene 2014; 34:1094-104. [PMID: 24662829 DOI: 10.1038/onc.2014.46] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/18/2013] [Accepted: 12/24/2013] [Indexed: 12/12/2022]
Abstract
Most p53 mutations in human cancers are missense mutations resulting in a full-length mutant p53 protein. Besides losing tumor suppressor activity, some hotspot p53 mutants gain oncogenic functions. This effect is mediated in part, through gene expression changes due to inhibition of p63 and p73 by mutant p53 at their target gene promoters. Here, we report that the tumor suppressor microRNA let-7i is downregulated by mutant p53 in multiple cell lines expressing endogenous mutant p53. In breast cancer patients, significantly decreased let-7i levels were associated with missense mutations in p53. Chromatin immunoprecipitation and promoter luciferase assays established let-7i as a transcriptional target of mutant p53 through p63. Introduction of let-7i to mutant p53 cells significantly inhibited migration, invasion and metastasis by repressing a network of oncogenes including E2F5, LIN28B, MYC and NRAS. Our findings demonstrate that repression of let-7i expression by mutant p53 has a key role in enhancing migration, invasion and metastasis.
Collapse
Affiliation(s)
- M Subramanian
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P Francis
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Bilke
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - X L Li
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Hara
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - X Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, USA
| | - M F Jones
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - R L Walker
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Y Zhu
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Pineda
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Lee
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - L Varanasi
- Department of Biochemistry, University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Y Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - L A Martinez
- Department of Biochemistry, University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - J Luo
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, USA
| | - L M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P S Meltzer
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Lal
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
174
|
Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 2014; 16:357-66. [PMID: 24658687 DOI: 10.1038/ncb2936] [Citation(s) in RCA: 581] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/14/2014] [Indexed: 02/07/2023]
Abstract
The YAP and TAZ mediators of the Hippo pathway (hereafter called YAP/TAZ) promote tissue proliferation and organ growth. However, how their biological properties intersect with cellular metabolism remains unexplained. Here, we show that YAP/TAZ activity is controlled by the SREBP/mevalonate pathway. Inhibition of the rate-limiting enzyme of this pathway (HMG-CoA reductase) by statins opposes YAP/TAZ nuclear localization and transcriptional responses. Mechanistically, the geranylgeranyl pyrophosphate produced by the mevalonate cascade is required for activation of Rho GTPases that, in turn, activate YAP/TAZ by inhibiting their phosphorylation and promoting their nuclear accumulation. The mevalonate-YAP/TAZ axis is required for proliferation and self-renewal of breast cancer cells. In Drosophila melanogaster, inhibition of mevalonate biosynthesis and geranylgeranylation blunts the eye overgrowth induced by Yorkie, the YAP/TAZ orthologue. In tumour cells, YAP/TAZ activation is promoted by increased levels of mevalonic acid produced by SREBP transcriptional activity, which is induced by its oncogenic cofactor mutant p53. These findings reveal an additional layer of YAP/TAZ regulation by metabolic cues.
Collapse
|
175
|
Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25:304-17. [PMID: 24651012 PMCID: PMC3970583 DOI: 10.1016/j.ccr.2014.01.021] [Citation(s) in RCA: 1131] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types.
Collapse
Affiliation(s)
- Patricia A J Muller
- Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.
| | - Karen H Vousden
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
176
|
Bisio A, Ciribilli Y, Fronza G, Inga A, Monti P. TP53 Mutants in the Tower of Babel of Cancer Progression. Hum Mutat 2014; 35:689-701. [DOI: 10.1002/humu.22514] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks; Centre for Integrative Biology (CIBIO); University of Trento; Trento Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks; Centre for Integrative Biology (CIBIO); University of Trento; Trento Italy
| | - Gilberto Fronza
- Mutagenesis Unit; IRCSS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro; Genoa Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks; Centre for Integrative Biology (CIBIO); University of Trento; Trento Italy
| | - Paola Monti
- Mutagenesis Unit; IRCSS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro; Genoa Italy
| |
Collapse
|
177
|
Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P, Virtakoivu R, Cao Y, Sansom OJ, Joensuu H, Ivaska J. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Invest 2014; 124:1069-82. [PMID: 24487586 PMCID: PMC3934176 DOI: 10.1172/jci67280] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 02/04/2023] Open
Abstract
Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.
Collapse
Affiliation(s)
- Antti Arjonen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Riina Kaukonen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Elina Mattila
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Pegah Rouhi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Gunilla Högnäs
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Harri Sihto
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Bryan W. Miller
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jennifer P. Morton
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Elmar Bucher
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Pekka Taimen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Reetta Virtakoivu
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Yihai Cao
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Owen J. Sansom
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heikki Joensuu
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
178
|
Liu J, Zhang C, Feng Z. Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai) 2014; 46:170-9. [PMID: 24374774 DOI: 10.1093/abbs/gmt144] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor suppressor p53 plays a pivotal role in tumor suppression. p53 is the most frequently mutated gene in cancer. As a transcription factor, p53 mainly exerts its role in tumor suppression through transcriptional regulation of its downstream target genes. Thus, p53 and its target genes form a complex p53 signaling pathway to regulate a wide variety of biological processes to prevent tumorigenesis. Recent studies have revealed that in addition to apoptosis, cell cycle arrest and senescence, p53's functions in the regulation of energy metabolism and anti-oxidant defense contribute significantly to its role in tumor suppression. Studies further show that many tumor-associated mutant p53 proteins not only lose tumor suppressive functions of wild-type p53, but also gain new oncogenic activities that are independent of wild-type p53, including promoting tumor cell proliferation, survival, metabolic changes, angiogenesis, and metastasis, which are defined as mutant p53 gain-of-function. The frequent loss of wild-type p53 function and the gain-of-function of mutant p53 in human tumors make p53 an extremely attractive target for cancer therapy. Different strategies and many small-molecule drugs are being developed for the p53-based tumor therapy. Here, we review the mechanisms of p53 in tumor suppression and gain-of-function mutant p53 in tumor development, as well as the recent advances in the development of the p53-based tumor therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
179
|
Restelli M, Lopardo T, Lo Iacono N, Garaffo G, Conte D, Rustighi A, Napoli M, Del Sal G, Perez-Morga D, Costanzo A, Merlo GR, Guerrini L. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations. Hum Mol Genet 2014; 23:3830-42. [PMID: 24569166 PMCID: PMC4065156 DOI: 10.1093/hmg/ddu096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations.
Collapse
Affiliation(s)
- Michela Restelli
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Teresa Lopardo
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Nadia Lo Iacono
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Giulia Garaffo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Daniele Conte
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | | | - Marco Napoli
- Department of Biochemistry and Molecular Biology, Center for Genetics & Genomics, and Center for Stem Cell & Developmental Biology, MD Anderson, Houston, TX, USA
| | - Giannino Del Sal
- Molecular Oncology Unit, LNCIB Area Science Park, Trieste I-34149, Italy
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM, Université Libre de Bruxelles, Gosselies B-6041, Belgium and
| | - Antonio Costanzo
- Department of Dermatology, University of Rome 'Tor Vergata', Rome I-00133, Italy
| | - Giorgio Roberto Merlo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Luisa Guerrini
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| |
Collapse
|
180
|
Ó hAinmhire E, Quartuccio SM, Cheng W, Ahmed RA, King SM, Burdette JE. Mutation or loss of p53 differentially modifies TGFβ action in ovarian cancer. PLoS One 2014; 9:e89553. [PMID: 24586866 PMCID: PMC3930740 DOI: 10.1371/journal.pone.0089553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological disease affecting women in the US. The Cancer Genome Atlas Network identified p53 mutations in 96% of high-grade serous ovarian carcinomas, demonstrating its critical role. Additionally, the Transforming Growth Factor Beta (TGFβ) pathway is dysfunctional in various malignancies, including ovarian cancer. This study investigated how expression of wild-type, mutant, or the absence of p53 alters ovarian cancer cell response to TGFβ signaling, as well as the response of the ovarian surface epithelium and the fallopian tube epithelium to TGFβ. Only ovarian cancer cells expressing wild-type p53 were growth inhibited by TGFβ, while ovarian cancer cells that were mutant or null p53 were not. TGFβ induced migration in p53 null SKOV3 cells, which was not observed in SKOV3 cells with stable expression of mutant p53 R273H. Knockdown of wild-type p53 in the OVCA 420 ovarian cancer cells enhanced cell migration in response to TGFβ. Increased protein expression of DKK1 and TMEPAI, two pro-invasive genes with enhanced expression in late stage metastatic ovarian cancer, was observed in p53 knockdown and null cells, while cells stably expressing mutant p53 demonstrated lower DKK1 and TMEPAI induction. Expression of mutant p53 or loss of p53 permit continued proliferation of ovarian cancer cell lines in the presence of TGFβ; however, cells expressing mutant p53 exhibit reduced migration and decreased protein levels of DKK1 and TMEPAI.
Collapse
Affiliation(s)
- Eoghainín Ó hAinmhire
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Suzanne M. Quartuccio
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Whay Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Roshan A. Ahmed
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shelby M. King
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
181
|
Buckley NE, D'Costa Z, Kaminska M, Mullan PB. S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability. Cell Death Dis 2014; 5:e1070. [PMID: 24556685 PMCID: PMC3944248 DOI: 10.1038/cddis.2014.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/23/2022]
Abstract
Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.
Collapse
Affiliation(s)
- N E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Z D'Costa
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - M Kaminska
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - P B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
182
|
Wei S, Wang H, Lu C, Malmut S, Zhang J, Ren S, Yu G, Wang W, Tang DD, Yan C. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. J Biol Chem 2014; 289:8947-59. [PMID: 24554706 DOI: 10.1074/jbc.m113.503755] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer.
Collapse
Affiliation(s)
- Saisai Wei
- From the Center for Cell Biology and Cancer Research and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Castiglioni V, De Maglie M, Queliti R, Rustighi A, Del Sal G, Radaelli E. Immunohistochemical Characterization of a Renal Nephroblastoma in a Trp53-mutant and Prolyl Isomerase 1-deficient Mouse. J Toxicol Pathol 2014; 26:423-7. [PMID: 24526816 PMCID: PMC3921926 DOI: 10.1293/tox.2013-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/08/2013] [Indexed: 01/09/2023] Open
Abstract
A nephroblastoma is a tumor arising from metanephric blastema occurring in childhood.
Among laboratory rodents, nephroblastoma has been frequently reported in rats, but it
remains exceedingly rare in mice. The present work describes a nephroblastoma in a young
mouse homozygous for the specific Trp53 R172H point mutation coupled with targeted
deletion of the Pin1 gene. The affected kidney was effaced by a biphasic
tumor with an epithelial component arranged in tubules surrounded by nests of blastemal
cells. Immunohistochemically, the neoplasm was diffusely positive for Wilms’ tumor
antigen. The epithelial component expressed markers of renal tubular differentiation
including wide-spectrum cytokeratin, E-cadherin and folate-binding protein. Furthermore,
the neoplasm exhibited a high proliferative index and diffuse nucleocytoplasmic β-catenin
expression. Based on histological and immunohistochemical features, a diagnosis of
nephroblastoma potentially associated with Trp53 loss and oncogenic
β-catenin activation has been proposed.
Collapse
Affiliation(s)
- Vittoria Castiglioni
- Dipartimento di Scienze Veterinarie e Sanità Pubblica Veterinaria (DIVET), Facolta di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy ; Mouse & Animal Pathology Lab, Fondazione Filarete, Viale Ortles, 22/4, 20139 Milano, Italy
| | - Marcella De Maglie
- Mouse & Animal Pathology Lab, Fondazione Filarete, Viale Ortles, 22/4, 20139 Milano, Italy
| | - Roberta Queliti
- Centro Ricerche Bracco, Bracco Imaging Spa, via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy ; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy ; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Enrico Radaelli
- Dipartimento di Scienze Veterinarie e Sanità Pubblica Veterinaria (DIVET), Facolta di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy ; Mouse & Animal Pathology Lab, Fondazione Filarete, Viale Ortles, 22/4, 20139 Milano, Italy
| |
Collapse
|
184
|
Meng G, Vingron M. Condition-specific target prediction from motifs and expression. ACTA ACUST UNITED AC 2014; 30:1643-50. [PMID: 24532727 DOI: 10.1093/bioinformatics/btu066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MOTIVATION It is commonplace to predict targets of transcription factors (TFs) by sequence matching with their binding motifs. However, this ignores the particular condition of the cells. Gene expression data can provide condition-specific information, as is, e.g. exploited in Motif Enrichment Analysis. RESULTS Here, we introduce a novel tool named condition-specific target prediction (CSTP) to predict condition-specific targets for TFs from expression data measured by either microarray or RNA-seq. Based on the philosophy of guilt by association, CSTP infers the regulators of each studied gene by recovering the regulators of its co-expressed genes. In contrast to the currently used methods, CSTP does not insist on binding sites of TFs in the promoter of the target genes. CSTP was applied to three independent biological processes for evaluation purposes. By analyzing the predictions for the same TF in three biological processes, we confirm that predictions with CSTP are condition-specific. Predictions were further compared with true TF binding sites as determined by ChIP-seq/chip. We find that CSTP predictions overlap with true binding sites to a degree comparable with motif-based predictions, although the two target sets do not coincide. AVAILABILITY AND IMPLEMENTATION CSTP is available via a web-based interface at http://cstp.molgen.mpg.de.
Collapse
Affiliation(s)
- Guofeng Meng
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| |
Collapse
|
185
|
Nguyen TA, Menendez D, Resnick MA, Anderson CW. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat 2014; 35:738-55. [PMID: 24395704 DOI: 10.1002/humu.22506] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
The wild-type (WT) human p53 (TP53) tumor suppressor can be posttranslationally modified at over 60 of its 393 residues. These modifications contribute to changes in TP53 stability and in its activity as a transcription factor in response to a wide variety of intrinsic and extrinsic stresses in part through regulation of protein-protein and protein-DNA interactions. The TP53 gene frequently is mutated in cancers, and in contrast to most other tumor suppressors, the mutations are mostly missense often resulting in the accumulation of mutant (MUT) protein, which may have novel or altered functions. Most MUT TP53s can be posttranslationally modified at the same residues as in WT TP53. Strikingly, however, codons for modified residues are rarely mutated in human tumors, suggesting that TP53 modifications are not essential for tumor suppression activity. Nevertheless, these modifications might alter MUT TP53 activity and contribute to a gain-of-function leading to increased metastasis and tumor progression. Furthermore, many of the signal transduction pathways that result in TP53 modifications are altered or disrupted in cancers. Understanding the signaling pathways that result in TP53 modification and the functions of these modifications in both WT TP53 and its many MUT forms may contribute to more effective cancer therapies.
Collapse
Affiliation(s)
- Thuy-Ai Nguyen
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | |
Collapse
|
186
|
Guarnaccia M, Gentile G, Alessi E, Schneider C, Petralia S, Cavallaro S. Is this the real time for genomics? Genomics 2014; 103:177-82. [DOI: 10.1016/j.ygeno.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 01/22/2023]
|
187
|
Krishnan N, Titus MA, Thapar R. The prolyl isomerase pin1 regulates mRNA levels of genes with short half-lives by targeting specific RNA binding proteins. PLoS One 2014; 9:e85427. [PMID: 24416409 PMCID: PMC3887067 DOI: 10.1371/journal.pone.0085427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/04/2013] [Indexed: 01/13/2023] Open
Abstract
The peptidyl-prolyl isomerase Pin1 is over-expressed in several cancer tissues is a potential prognostic marker in prostate cancer, and Pin1 ablation can suppress tumorigenesis in breast and prostate cancers. Pin1 can co-operate with activated ErbB2 or Ras to enhance tumorigenesis. It does so by regulating the activity of proteins that are essential for gene expression and cell proliferation. Several targets of Pin1 such as c-Myc, the Androgen Receptor, Estrogen Receptor-alpha, Cyclin D1, Cyclin E, p53, RAF kinase and NCOA3 are deregulated in cancer. At the posttranscriptional level, emerging evidence indicates that Pin1 also regulates mRNA decay of histone mRNAs, GM-CSF, Pth, and TGFβ mRNAs by interacting with the histone mRNA specific protein SLBP, and the ARE-binding proteins AUF1 and KSRP, respectively. To understand how Pin1 may affect mRNA abundance on a genome-wide scale in mammalian cells, we used RNAi along with DNA microarrays to identify genes whose abundance is significantly altered in response to a Pin1 knockdown. Functional scoring of differentially expressed genes showed that Pin1 gene targets control cell adhesion, leukocyte migration, the phosphatidylinositol signaling system and DNA replication. Several mRNAs whose abundance was significantly altered by Pin1 knockdown contained AU-rich element (ARE) sequences in their 3' untranslated regions. We identified HuR and AUF1 as Pin1 interacting ARE-binding proteins in vivo. Pin1 was also found to stabilize all core histone mRNAs in this study, thereby validating our results from a previously published study. Statistical analysis suggests that Pin1 may target the decay of essential mRNAs that are inherently unstable and have short to medium half-lives. Thus, this study shows that an important biological role of Pin1 is to regulate mRNA abundance and stability by interacting with specific RNA-binding proteins that may play a role in cancer progression.
Collapse
Affiliation(s)
- Nithya Krishnan
- Hauptman-Woodward Medical Research Institute, SUNY at Buffalo, New York, United States of America
| | - Mark A. Titus
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Roopa Thapar
- Hauptman-Woodward Medical Research Institute, SUNY at Buffalo, New York, United States of America
- Department of Structural Biology, SUNY at Buffalo, New York, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
188
|
Muller PAJ, Trinidad AG, Caswell PT, Norman JC, Vousden KH. Mutant p53 regulates Dicer through p63-dependent and -independent mechanisms to promote an invasive phenotype. J Biol Chem 2014; 289:122-32. [PMID: 24220032 PMCID: PMC3879536 DOI: 10.1074/jbc.m113.502138] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/27/2013] [Indexed: 12/13/2022] Open
Abstract
The control and processing of microRNAs (miRs) is critical in the regulation of all cellular responses. Previous studies have suggested that a reduction in the expression of certain miRs, or an overall decrease in miR processing through the partial depletion of Dicer, can promote enhanced metastatic potential. We show here that Dicer depletion can promote the invasive behavior of cells that is reflected in enhanced recycling and activation of the growth factor receptors Met and EGF receptor. These responses are also seen in response to the expression of tumor-derived mutant p53s, and we show that mutant p53 can down-regulate Dicer expression through both direct inhibition of the TAp63-mediated transcriptional activation of Dicer and a TAp63-independent control of Dicer protein expression. Our results delineate a clear relationship between mutant p53, TAp63, and Dicer that might contribute to the metastatic function of mutant p53 but, interestingly, also reveal TAp63-independent functions of mutant p53 in controlling Dicer activity.
Collapse
Affiliation(s)
- Patricia A. J. Muller
- From the Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland, United Kingdom and
| | - Antonio G. Trinidad
- From the Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland, United Kingdom and
| | - Patrick T. Caswell
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jim C. Norman
- From the Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland, United Kingdom and
| | - Karen H. Vousden
- From the Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland, United Kingdom and
| |
Collapse
|
189
|
Girardini JE, Walerych D, Del Sal G. Cooperation of p53 mutations with other oncogenic alterations in cancer. Subcell Biochem 2014; 85:41-70. [PMID: 25201188 DOI: 10.1007/978-94-017-9211-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Following the initial findings suggesting a pro-oncogenic role for p53 point mutants, more than 30 years of research have unveiled the critical role exerted by these mutants in human cancer. A growing body of evidence, including mouse models and clinical data, has clearly demonstrated a connection between mutant p53 and the development of aggressive and metastatic tumors. Even if the molecular mechanisms underlying mutant p53 activities are still the object of intense scrutiny, it seems evident that full activation of its oncogenic role requires the functional interaction with other oncogenic alterations. p53 point mutants, with their pleiotropic effects, simultaneously activating several mechanisms of aggressiveness, are engaged in multiple cross-talk with a variety of other cancer-related processes, thus depicting a complex molecular landscape for the mutant p53 network. In this chapter revealing evidence illustrating different ways through which this cooperation may be achieved will be discussed. Considering the proposed role for mutant p53 as a driver of cancer aggressiveness, disarming mutant p53 function by uncoupling the cooperation with other oncogenic alterations, stands out as an exciting possibility for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Javier E Girardini
- Molecular Oncology Group, Institute of Molecular and Cell Biology of Rosario, IBR-CONICET, Rosario, Argentina
| | | | | |
Collapse
|
190
|
Hernandez-Prieto MA, Kalathur RK, Futschik ME. Molecular Networks – Representation and Analysis. SPRINGER HANDBOOK OF BIO-/NEUROINFORMATICS 2014:399-418. [DOI: 10.1007/978-3-642-30574-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
191
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
192
|
Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G, Nuzzo S, Tuscano A, Eterno V, Benvenuti F, Santarpia L, Aifantis I, Rosato A, Bicciato S, Zambelli A, Del Sal G. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol Med 2013; 6:99-119. [PMID: 24357640 PMCID: PMC3936488 DOI: 10.1002/emmm.201302909] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mammary epithelial stem cells are fundamental to maintain tissue integrity. Cancer stem cells (CSCs) are implicated in both treatment resistance and disease relapse, and the molecular bases of their malignant properties are still poorly understood. Here we show that both normal stem cells and CSCs of the breast are controlled by the prolyl-isomerase Pin1. Mechanistically, following interaction with Pin1, Notch1 and Notch4, key regulators of cell fate, escape from proteasomal degradation by their major ubiquitin-ligase Fbxw7α. Functionally, we show that Fbxw7α acts as an essential negative regulator of breast CSCs' expansion by restraining Notch activity, but the establishment of a Notch/Pin1 active circuitry opposes this effect, thus promoting breast CSCs self-renewal, tumor growth and metastasis in vivo. In human breast cancers, despite Fbxw7α expression, high levels of Pin1 sustain Notch signaling, which correlates with poor prognosis. Suppression of Pin1 holds promise in reverting aggressive phenotypes, through CSC exhaustion as well as recovered drug sensitivity carrying relevant implications for therapy of breast cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- F-Box Proteins/genetics
- F-Box Proteins/metabolism
- F-Box-WD Repeat-Containing Protein 7
- Female
- Humans
- Mammary Glands, Human/cytology
- Mice
- Mice, Knockout
- Mice, SCID
- NIMA-Interacting Peptidylprolyl Isomerase
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Peptidylprolyl Isomerase/antagonists & inhibitors
- Peptidylprolyl Isomerase/genetics
- Peptidylprolyl Isomerase/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch4
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
- Stem Cells/cytology
- Stem Cells/metabolism
- Transplantation, Heterologous
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Luca Tiberi
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Roberta Sommaggio
- Dipartimento di Scienze Oncologiche e Chirurgiche, Università degli Studi di Padova e Istituto Oncologico Veneto IRCCSPadova, Italy
| | - Silvano Piazza
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
| | - Giovanni Sorrentino
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
| | - Simona Nuzzo
- Center for Genome Research, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio EmiliaModena, Italy
| | | | - Vincenzo Eterno
- Oncology Department IRCCS Fondazione Salvatore MaugeriPavia, Italy
| | - Federica Benvenuti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science ParkTrieste, Italy
| | - Libero Santarpia
- Translational Research Unit, Istituto Toscano TumoriPrato, Italy
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of MedicineNew York, NY, USA
| | - Antonio Rosato
- Dipartimento di Scienze Oncologiche e Chirurgiche, Università degli Studi di Padova e Istituto Oncologico Veneto IRCCSPadova, Italy
| | - Silvio Bicciato
- Center for Genome Research, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio EmiliaModena, Italy
| | - Alberto Zambelli
- Oncology Department IRCCS Fondazione Salvatore MaugeriPavia, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science ParkTrieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di TriesteTrieste, Italy
- Corresponding author: Tel: +39 040 3756801; Fax +39 040 398990; E-mail:
| |
Collapse
|
193
|
Li C, Chang DL, Yang Z, Qi J, Liu R, He H, Li D, Xiao ZX. Pin1 modulates p63α protein stability in regulation of cell survival, proliferation and tumor formation. Cell Death Dis 2013; 4:e943. [PMID: 24309930 PMCID: PMC3877541 DOI: 10.1038/cddis.2013.468] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/19/2013] [Accepted: 10/24/2013] [Indexed: 12/31/2022]
Abstract
The homolog of p53 gene, p63, encodes multiple p63 protein isoforms. TAp63 proteins contain an N-terminal transactivation domain similar to that of p53 and function as tumor suppressors; whereas ΔNp63 isoforms, which lack the intact N-terminal transactivation domain, are associated with human tumorigenesis. Accumulating evidence demonstrating the important roles of p63 in development and cancer development, the regulation of p63 proteins, however, is not fully understood. In this study, we show that peptidyl-prolyl isomerase Pin1 directly binds to and stabilizes TAp63α and ΔNp63α via inhibiting the proteasomal degradation mediated by E3 ligase WWP1. We further show that Pin1 specifically interacts with T538P which is adjacent to the P550PxY543 motif, and disrupts p63α–WWP1 interaction. In addition, while Pin1 enhances TAp63α-mediated apoptosis, it promotes ΔNp63α-induced cell proliferation. Furthermore, knockdown of Pin1 in FaDu cells inhibits tumor formation in nude mice, which is rescued by simultaneous knockdown of WWP1 or ectopic expression of ΔNp63α. Moreover, overexpression of Pin1 correlates with increased expression of ΔNp63α in human oral squamous cell carcinoma samples. Together, these results suggest that Pin1-mediated modulation of ΔNp63α may have a causative role in tumorigenesis.
Collapse
Affiliation(s)
- C Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Girardini JE, Marotta C, Del Sal G. Disarming mutant p53 oncogenic function. Pharmacol Res 2013; 79:75-87. [PMID: 24246451 DOI: 10.1016/j.phrs.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023]
Abstract
In the last decade intensive research has confirmed the long standing hypothesis that some p53 point mutants acquire novel activities able to cooperate with oncogenic mechanisms. Particular attention has attracted the ability of several such mutants to actively promote the development of aggressive and metastatic tumors in vivo. This knowledge opens a new dimension on rational therapy design, suggesting novel strategies based on pharmacological manipulation of those neomorphic activities. P53 point mutants have several characteristics that make them attractive targets for anti-cancer therapies. Remarkably, mutant p53 has been found predominantly in tumor cells and may act pleiotropically by interfering with a variety of cellular processes. Therefore, drugs targeting mutant p53 may selectively affect tumor cells, inactivating simultaneously several mechanisms of tumor promotion. Moreover, the high frequency of missense mutations on the p53 gene suggests that interfering with mutant p53 function may provide a valuable approach for the development of efficient therapies able to target a wide range of tumor types.
Collapse
Affiliation(s)
- Javier E Girardini
- Institute of Molecular and Cell Biology of Rosario, IBR-CONICET, Argentina
| | - Carolina Marotta
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy.
| |
Collapse
|
195
|
Jamiyandorj U, Bae JS, Noh SJ, Jachin S, Choi JE, Jang KY, Chung MJ, Kang MJ, Lee DG, Moon WS. Expression of peptidyl-prolyl isomerase PIN1 and its role in the pathogenesis of extrahepatic cholangiocarcinoma. Oncol Lett 2013; 6:1421-1426. [PMID: 24179535 PMCID: PMC3813802 DOI: 10.3892/ol.2013.1525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/07/2013] [Indexed: 01/11/2023] Open
Abstract
The phosphorylation of proteins on serine/threonine residues that immediately precede proline (pSer/Thr-Pro) is a key signaling mechanism by which cell cycle regulation and cell differentiation and proliferation occur. The peptidyl-prolyl isomerase PIN1-catalyzed conformational changes of the pSer/Thr-Pro motifs may have profound effects on the function of numerous oncogenic and cell signaling pathways. To date, no studies have examined the expression of PIN1 and its potential role in the pathogenesis of extrahepatic cholangiocarcinoma (ECC). Therefore, the present study performed an immunohistochemistry analysis of the expression of PIN1 in 67 cases of ECC and evaluated its association with clinicopathological factors. In addition, the role of PIN1 was examined using synthetic small interfering RNA (siRNA) to silence PIN1 gene expression in human CC RBE cells. Positive PIN1 expression was observed in 35 of the 67 (52.2%) ECC cases and was predominantly localized to the nucleus of the tumor cells. The immunoreactive score for PIN1 was significantly higher in the tumor cells (4.07±0.4) compared with the adjacent benign bile duct cells (1.19±0.4) (P<0.001). PIN1 expression was significantly correlated with tumor cell proliferation (Ki-67 labeling index; P=0.024). Silencing PIN1 expression using siRNA significantly decreased the proliferation, migration and invasion of the tumor cells. In conclusion, the results indicated that the expression of PIN1 may play a key role in the development and progression of ECC.
Collapse
Affiliation(s)
- Urangoo Jamiyandorj
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences, Jeonju, Chonbuk 561-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Khanal P, Kim G, Lim SC, Yun HJ, Lee KY, Choi HK, Choi HS. Prolyl isomerase Pin1 negatively regulates the stability of SUV39H1 to promote tumorigenesis in breast cancer. FASEB J 2013; 27:4606-18. [PMID: 23934277 DOI: 10.1096/fj.13-236851] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pin1, a conserved eukaryotic peptidyl-prolyl cis/trans isomerase, has profound effects on numerous key-signaling molecules, and its deregulation contributes to disease, particularly cancer. Although Pin1-mediated prolyl isomerization of protein servers as a regulatory switch in signaling pathways, the significance of proline isomerase activity in chromatin modifying complex remains unclear. Here, we identify Pin1 as a key negative regulator for suppressor of variegation 3-9 homologue 1 (SUV39H1) stability, a major methyltransferase responsible for histone H3 trimethylation on Lys9 (H3K9me3). Pin1 interacts with SUV39H1 in a phosphorylation-dependent manner and promotes ubiquitination-mediated degradation of SUV39H1. Consequently, Pin1 reduces SUV39H1 abundance and suppresses SUV39H1 ability to induce H3K9me3. In contrast, depletion of Pin1 in cancer cells leads to elevated SUV39H1 expression, which subsequently increases H3K9me3, inhibiting tumorigenecity of cancer cells. In a xenograft model with 4T1 metastatic mouse breast carcinoma cells, Pin1 overexpression increases tumor growth, whereas SUV39H1 overexpression abrogates it. In human breast cancer patients, immunohistochemical staining shows that Pin1 levels are negatively correlated with SUV39H1 as well as H3K9me3 levels. Thus, Pin1-mediated reduction of SUV39H1 stability contributes to convey oncogenic signals for aggressiveness of human breast cancer, suggesting that Pin1 may be a promising drug target for anticancer therapy.
Collapse
Affiliation(s)
- Prem Khanal
- 2College of Pharmacy, Chosun University, Gwangju 501-759, South Korea.
| | | | | | | | | | | | | |
Collapse
|
197
|
Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death. Proc Natl Acad Sci U S A 2013; 110:E4203-12. [PMID: 24145406 DOI: 10.1073/pnas.1310001110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Excessive genome damage activates the apoptosis response. Protein kinase HIPK2 is a key regulator of DNA damage-induced apoptosis. Here, we deciphered the molecular mechanism of HIPK2 activation and show its relevance for DNA damage-induced apoptosis in cellulo and in vivo. HIPK2 autointeracts and site-specifically autophosphorylates upon DNA damage at Thr880/Ser882. Autophosphorylation regulates HIPK2 activity and mutation of the phosphorylation-acceptor sites deregulates p53 Ser46 phosphorylation and apoptosis in cellulo. Moreover, HIPK2 autophosphorylation is conserved between human and zebrafish and is important for DNA damage-induced apoptosis in vivo. Mechanistically, autophosphorylation creates a binding signal for the phospho-specific isomerase Pin1. Pin1 links HIPK2 activation to its stabilization by inhibiting HIPK2 polyubiquitination and modulating Siah-1-HIPK2 interaction. Concordantly, Pin1 is required for DNA damage-induced HIPK2 stabilization and p53 Ser46 phosphorylation and is essential for induction of apotosis both in cellulo and in zebrafish. Our results identify an evolutionary conserved mechanism regulating DNA damage-induced apoptosis.
Collapse
|
198
|
Zhang X, Zhang B, Gao J, Wang X, Liu Z. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis. J Biol Chem 2013; 288:32742-32752. [PMID: 24072701 DOI: 10.1074/jbc.m113.478016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (miRNA) 200s regulate E-cadherin by directly targeting ZEB1/ZEB2, which are transcriptional repressors of E-cadherin. Decreased expression of E-cadherin results in cancer cells losing interaction with the extracellular matrix and detaching from the primary tumor. Normally, cells will undergo anoikis after losing interaction with the extracellular matrix. Cancer cells must, therefore, possess the ability to resist anoikis during the process of metastasis. Here we show that miRNA-200b regulates anoikis by directly targeting the 3' UTR of Pin1 mRNA and regulating Pin1 expression at the translational level. We found that down-regulation of miRNA-200b promotes cancer cells survival during metastasis, and the homeless state of these cells resulted in decreased expression of miRNA-200b in the MCF-7 cell line. We also found that expression of miRNA-200b is down-regulated in human breast cancer during lymph node metastasis, which has a significant negative correlation with Pin1 expression. Two members of the ETS (E-26) family (PEA3 and ELK-1) regulate the expression of miRNA-200b. PEA3 promotes the expression of miRNA-200b, and ELK-1 is a transcriptional repressor of miRNA-200b. In addition, miRNA-200b regulates the activity of PEA3 and ELK-1 via the Pin1-pERK pathway and forms self-regulated feedback loops. This study characterizes the role of miRNA-200b in the regulation of anoikis and demonstrates the regulation of its own expression in the process of metastasis.
Collapse
Affiliation(s)
- Xusen Zhang
- From the State Key Laboratory of Molecular Oncology
| | - Bailin Zhang
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jidong Gao
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiang Wang
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- From the State Key Laboratory of Molecular Oncology.
| |
Collapse
|
199
|
The consequence of oncomorphic TP53 mutations in ovarian cancer. Int J Mol Sci 2013; 14:19257-75. [PMID: 24065105 PMCID: PMC3794832 DOI: 10.3390/ijms140919257] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy, with an alarmingly poor prognosis attributed to late detection and chemoresistance. Initially, most tumors respond to chemotherapy but eventually relapse due to the development of drug resistance. Currently, there are no biological markers that can be used to predict patient response to chemotherapy. However, it is clear that mutations in the tumor suppressor gene TP53, which occur in 96% of serous ovarian tumors, alter the core molecular pathways involved in drug response. One subtype of TP53 mutations, widely termed gain-of-function (GOF) mutations, surprisingly converts this protein from a tumor suppressor to an oncogene. We term the resulting change an oncomorphism. In this review, we discuss particular TP53 mutations, including known oncomorphic properties of the resulting mutant p53 proteins. For example, several different oncomorphic mutations have been reported, but each mutation acts in a distinct manner and has a different effect on tumor progression and chemoresistance. An understanding of the pathological pathways altered by each mutation is necessary in order to design appropriate drug interventions for patients suffering from this deadly disease.
Collapse
|
200
|
Piccolo S, Enzo E, Montagner M. p63, Sharp1, and HIFs: master regulators of metastasis in triple-negative breast cancer. Cancer Res 2013; 73:4978-81. [PMID: 23913939 DOI: 10.1158/0008-5472.can-13-0962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastasis is the most significant cause of cancer-associated morbidity and mortality but remains poorly understood. Recent work revealed that metastasis of aggressive triple-negative breast cancers is suppressed by Sharp1, a factor that promotes degradation of hypoxia-inducible factors (HIF) and blunts HIF-induced malignant cell behavior.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, School of Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|