151
|
Huskova H, Ardin M, Weninger A, Vargova K, Barrin S, Villar S, Olivier M, Stopka T, Herceg Z, Hollstein M, Zavadil J, Korenjak M. Modeling cancer driver events in vitro using barrier bypass-clonal expansion assays and massively parallel sequencing. Oncogene 2017; 36:6041-6048. [PMID: 28692054 PMCID: PMC5666318 DOI: 10.1038/onc.2017.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
The information on candidate cancer driver alterations available from public databases is often descriptive and of limited mechanistic insight, which poses difficulties for reliable distinction between true driver and passenger events. To address this challenge, we performed in-depth analysis of whole-exome sequencing data from cell lines generated by a barrier bypass-clonal expansion (BBCE) protocol. The employed strategy is based on carcinogen-driven immortalization of primary mouse embryonic fibroblasts and recapitulates early steps of cell transformation. Among the mutated genes were almost 200 COSMIC Cancer Gene Census genes, many of which were recurrently affected in the set of 25 immortalized cell lines. The alterations affected pathways regulating DNA damage response and repair, transcription and chromatin structure, cell cycle and cell death, as well as developmental pathways. The functional impact of the mutations was strongly supported by the manifestation of several known cancer hotspot mutations among the identified alterations. We identified a new set of genes encoding subunits of the BAF chromatin remodeling complex that exhibited Ras-mediated dependence on PRC2 histone methyltransferase activity, a finding that is similar to what has been observed for other BAF subunits in cancer cells. Among the affected BAF complex subunits, we determined Smarcd2 and Smarcc1 as putative driver candidates not yet fully identified by large-scale cancer genome sequencing projects. In addition, Ep400 displayed characteristics of a driver gene in that it showed a mutually exclusive mutation pattern when compared with mutations in the Trrap subunit of the TIP60 complex, both in the cell line panel and in a human tumor data set. We propose that the information generated by deep sequencing of the BBCE cell lines coupled with phenotypic analysis of the mutant cells can yield mechanistic insights into driver events relevant to human cancer development.
Collapse
Affiliation(s)
- H Huskova
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - A Weninger
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - K Vargova
- Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - S Barrin
- Dynamics of T cell Interactions Team, Institut Cochin, Inserm U1016, Paris, France
| | - S Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - M Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - T Stopka
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Z Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - M Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds, UK
| | - J Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - M Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
152
|
Ruess DA, Görgülü K, Wörmann SM, Algül H. Pharmacotherapeutic Management of Pancreatic Ductal Adenocarcinoma: Current and Emerging Concepts. Drugs Aging 2017; 34:331-357. [PMID: 28349415 DOI: 10.1007/s40266-017-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating malignancy, which is the result of late diagnosis, aggressive disease, and a lack of effective treatment options. Thus, pancreatic ductal adenocarcinoma is projected to become the second leading cause of cancer-related death by 2030. This review summarizes recent developments of oncological therapy in the palliative setting of metastatic pancreatic ductal adenocarcinoma. It further compiles novel targets and therapeutic approaches as well as promising treatment combinations, which are presently in preclinical evaluation, covering several aspects of the hallmarks of cancer. Finally, challenges to the implementation of an individualized therapy approach in the context of precision medicine are discussed.
Collapse
Affiliation(s)
- Dietrich A Ruess
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kivanc Görgülü
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sonja M Wörmann
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
153
|
Exome Sequencing Landscape Analysis in Ovarian Clear Cell Carcinoma Shed Light on Key Chromosomal Regions and Mutation Gene Networks. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2246-2258. [PMID: 28888422 DOI: 10.1016/j.ajpath.2017.06.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Previous studies have reported genome-wide mutation profile analyses in ovarian clear cell carcinomas (OCCCs). This study aims to identify specific novel molecular alterations by combined analyses of somatic mutation and copy number variation. We performed whole exome sequencing of 39 OCCC samples with 16 matching blood tissue samples. Four hundred twenty-six genes had recurrent somatic mutations. Among the 39 samples, ARID1A (62%) and PIK3CA (51%) were frequently mutated, as were genes such as KRAS (10%), PPP2R1A (10%), and PTEN (5%), that have been reported in previous OCCC studies. We also detected mutations in MLL3 (15%), ARID1B (10%), and PIK3R1 (8%), which are associations not previously reported. Gene interaction analysis and functional assessment revealed that mutated genes were clustered into groups pertaining to chromatin remodeling, cell proliferation, DNA repair and cell cycle checkpointing, and cytoskeletal organization. Copy number variation analysis identified frequent amplification in chr8q (64%), chr20q (54%), and chr17q (46%) loci as well as deletion in chr19p (41%), chr13q (28%), chr9q (21%), and chr18q (21%) loci. Integration of the analyses uncovered that frequently mutated or amplified/deleted genes were involved in the KRAS/phosphatidylinositol 3-kinase (82%) and MYC/retinoblastoma (75%) pathways as well as the critical chromatin remodeling complex switch/sucrose nonfermentable (85%). The individual and integrated analyses contribute details about the OCCC genomic landscape, which could lead to enhanced diagnostics and therapeutic options.
Collapse
|
154
|
Davidson J, Shen Z, Gong X, Pollack JR. SWI/SNF aberrations sensitize pancreatic cancer cells to DNA crosslinking agents. Oncotarget 2017. [PMID: 29515757 PMCID: PMC5839388 DOI: 10.18632/oncotarget.20033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
While gemcitabine has been the mainstay therapy for advanced pancreatic cancer, newer combination regimens (e.g. FOLFIRINOX) have extended patient survival, though carry greater toxicity. Biomarkers are needed to better stratify patients for appropriate therapy. Previously, we reported that one-third of pancreatic cancers harbor deletions or deleterious mutations in key subunits of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. The SWI/SNF complex mobilizes nucleosomes on DNA, and plays a key role in modulating DNA transcription and repair. Thus, we hypothesized that pancreatic cancers with SWI/SNF aberrations might exhibit compromised DNA repair, and show increased sensitivity to DNA damaging agents. Here, we studied human pancreatic cancer cell lines with deficient (or else exogenously reconstituted) SWI/SNF subunits, as well as normal pancreatic epithelial cells following SWI/SNF subunit knockdown. Cells were challenged with DNA damaging agents, including those used in current combination regimens, and then cell viability assayed. We found that pancreatic cells with SWI/SNF dysfunction showed markedly increased sensitivity to DNA damaging agents, and in particular DNA crosslinking agents (cisplatin and oxaliplatin). Assaying clearance of γH2AX confirmed that SWI/SNF dysfunction impaired DNA damage response/repair. Finally, by analyzing pancreatic cancer patient data from The Cancer Genome Atlas, we found that pancreatic cancers with SWI/SNF deficiency (subunit mutation and/or decreased expression) were associated with extended patient survival specifically when treated with platinum containing regimens. Thus, SWI/SNF dysfunction sensitizes pancreatic cancer cells to DNA crosslinking agents, and SWI/SNF mutation status may provide a useful biomarker to predict which patients are likely to benefit from platinum-containing chemotherapy regimens.
Collapse
Affiliation(s)
- Jean Davidson
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Current address: Department of Cardiovascular Research, Stanford University School of Medicine, Stanford, California, USA
| | - Zhewei Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Xue Gong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
155
|
Shestakova EA, Boutin M, Bourassa S, Bonneil E, Bijl JJ. Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification. Mol Biol 2017. [DOI: 10.1134/s002689331703013x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
156
|
Ibrahimpasic T, Xu B, Landa I, Dogan S, Middha S, Seshan V, Deraje S, Carlson DL, Migliacci J, Knauf JA, Untch B, Berger MF, Morris L, Tuttle RM, Chan T, Fagin JA, Ghossein R, Ganly I. Genomic Alterations in Fatal Forms of Non-Anaplastic Thyroid Cancer: Identification of MED12 and RBM10 as Novel Thyroid Cancer Genes Associated with Tumor Virulence. Clin Cancer Res 2017. [PMID: 28634282 DOI: 10.1158/1078-0432.ccr-17-1183] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: Patients with anaplastic thyroid cancer (ATC) have a very high death rate. In contrast, deaths from non-anaplastic thyroid (NAT) cancer are much less common. The genetic alterations in fatal NAT cancers have not been reported.Experimental Design: We performed next-generation sequencing of 410 cancer genes from 57 fatal NAT primary cancers. Results were compared with The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTCs) and to the genomic changes reported in ATC.Results: There was a very high prevalence of TERT promoter mutations, comparable with that of ATC, and these co-occurred with BRAF and RAS mutations. A high incidence of chromosome 1q gain was seen highlighting its importance in tumor aggressiveness. Two novel fusion genes DLG5-RET and OSBPL1A-BRAF were identified. There was a high frequency of mutations in MED12 and these were mutually exclusive to TERT promoter mutations and also to BRAF and RAS mutations. In addition, a high frequency of mutations in RBM10 was identified and these co-occurred with RAS mutations and PIK3CA mutations. Compared with the PTCs in TCGA, there were higher frequencies of mutations in TP53, POLE, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases.Conclusions: These data support a model, whereby fatal NAT cancers arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities. The high rate of TERT promoter mutations, MED12 mutations, RBM10 mutations, and chromosome 1q gain highlight their likely association with tumor virulence. Clin Cancer Res; 23(19); 5970-80. ©2017 AACR.
Collapse
Affiliation(s)
- Tihana Ibrahimpasic
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shyam Deraje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diane L Carlson
- Department of Pathology, Cleveland Clinic, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jocelyn Migliacci
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luc Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - R Michael Tuttle
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ian Ganly
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
157
|
Xia P, Liu J, Wang S, Ye B, Du Y, Xiong Z, Han ZG, Tong L, Fan Z. WASH maintains NKp46 + ILC3 cells by promoting AHR expression. Nat Commun 2017; 8:15685. [PMID: 28589939 PMCID: PMC5467242 DOI: 10.1038/ncomms15685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) communicate with other haematopoietic and non-haematopoietic cells to regulate immunity, inflammation and tissue homeostasis. How these ILC lineages develop and are maintained is not clear. Here we show that WASH is highly expressed in the nucleus of group 3 ILCs (ILC3s). WASH deletion impairs the cell pool of NKp46+ ILC3s. In NKp46+ ILC3s, WASH recruits Arid1a to the Ahr promoter thus activating AHR expression. WASH deletion in ILC3s decreases the number of NKp46+ ILC3s. Moreover, Arid1a deletion impedes AHR expression and impairs the maintenance of NKp46+ ILC3s. Therefore, WASH-mediated AHR expression has a critical function in the maintenance of NKp46+ ILC3s. Innate lymphoid cells (ILC) are thought to direct immune responses, but little is known about the development and maintenance of ILC subsets. Here the authors show that WASH maintains the pool of NKp46+ ILC3s by recruiting Arid1a to the aryl hydrocarbon receptor promoter and inducing its expression.
Collapse
Affiliation(s)
- Pengyan Xia
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Xiong
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
158
|
Zhang Z, Wang F, Du C, Guo H, Ma L, Liu X, Kornmann M, Tian X, Yang Y. BRM/SMARCA2 promotes the proliferation and chemoresistance of pancreatic cancer cells by targeting JAK2/STAT3 signaling. Cancer Lett 2017; 402:213-224. [PMID: 28602977 DOI: 10.1016/j.canlet.2017.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND BRM is one of two evolutionarily conserved catalytic ATPase subunits of SWI/SNF complexes and plays important role in cell proliferation, linage specification and development, cell adhesion, cytokine responses and DNA repair. BRM is often inactivated in various types of cancer indicating its indispensable roles in oncogenesis but the mechanisms remain poorly understood. METHODS BRM expression in clinical pancreatic cancer samples was examined by immunohistochemistry and the correlation with patient survival was analyzed. shRNAs targeting BRM were used to establish stable BRM knockdown BxPC-3 and T3M4 cell lines. Cell viability was assessed by CCK-8 assay. Cell proliferation was measured by EdU incorporation assay, colony formation assay and Ki67 staining. Cell cycle and apoptosis were examined by flow cytometry. Growth and chemosensitivity of xenografts initiating from BRM-deficient cells were evaluated, and in situ apoptosis was detected by TUNEL assay. The status of JAK-STAT3 signaling was examined by real-time PCR and Western blot analysis. RESULTS High BRM expression was correlated with worse survival of pancreatic cancer patients. BRM shRNA reduced the proliferation and increased the sensitivity of pancreatic cancer cells to gemcitabine in vivo and in vitro, and these effects are associated with the inhibition of STAT3 phosphorylation and reduced transcription of STAT3 target genes. CONCLUSION We reveal a novel mechanism by which BRM could activate JAK2/STAT3 pathway to promote pancreatic cancer growth and chemoresistance. These findings may offer potential therapeutic targets for pancreatic cancer patients with excessive BRM expression.
Collapse
Affiliation(s)
- Zhengkui Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Feng Wang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Chong Du
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Huahu Guo
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Ling Ma
- Department of Surgical Oncology, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing 100038, People's Republic of China
| | - Xiaoran Liu
- Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Marko Kornmann
- Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Ulm 89081, Germany
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China.
| |
Collapse
|
159
|
Chan-Penebre E, Armstrong K, Drew A, Grassian AR, Feldman I, Knutson SK, Kuplast-Barr K, Roche M, Campbell J, Ho P, Copeland RA, Chesworth R, Smith JJ, Keilhack H, Ribich SA. Selective Killing of SMARCA2- and SMARCA4-deficient Small Cell Carcinoma of the Ovary, Hypercalcemic Type Cells by Inhibition of EZH2: In Vitro and In Vivo Preclinical Models. Mol Cancer Ther 2017; 16:850-860. [PMID: 28292935 DOI: 10.1158/1535-7163.mct-16-0678] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/02/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022]
Abstract
The SWI/SNF complex is a major regulator of gene expression and is increasingly thought to play an important role in human cancer, as evidenced by the high frequency of subunit mutations across virtually all cancer types. We previously reported that in preclinical models, malignant rhabdoid tumors, which are deficient in the SWI/SNF core component INI1 (SMARCB1), are selectively killed by inhibitors of the H3K27 histone methyltransferase EZH2. Given the demonstrated antagonistic activities of the SWI/SNF complex and the EZH2-containing PRC2 complex, we investigated whether additional cancers with SWI/SNF mutations are sensitive to selective EZH2 inhibition. It has been recently reported that ovarian cancers with dual loss of the redundant SWI/SNF components SMARCA4 and SMARCA2 are characteristic of a rare rhabdoid-like subtype known as small-cell carcinoma of the ovary hypercalcemic type (SCCOHT). Here, we provide evidence that a subset of commonly used ovarian carcinoma cell lines were misdiagnosed and instead were derived from a SCCOHT tumor. We also demonstrate that tazemetostat, a potent and selective EZH2 inhibitor currently in phase II clinical trials, induces potent antiproliferative and antitumor effects in SCCOHT cell lines and xenografts deficient in both SMARCA2 and SMARCA4. These results exemplify an additional class of rhabdoid-like tumors that are dependent on EZH2 activity for survival. Mol Cancer Ther; 16(5); 850-60. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peter Ho
- Epizyme Inc., Cambridge, Massachusetts
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
In the past few years, it has become clear that mutations in epigenetic regulatory genes are common in human cancers. Therapeutic strategies are now being developed to target cancers with mutations in these genes using specific chemical inhibitors. In addition, a complementary approach based on the concept of synthetic lethality, which allows exploitation of loss-of-function mutations in cancers that are not targetable by conventional methods, has gained traction. Both of these approaches are now being tested in several clinical trials. In this Review, we present recent advances in epigenetic drug discovery and development, and suggest possible future avenues of investigation to drive progress in this area.
Collapse
|
161
|
Beijersbergen RL, Wessels LF, Bernards R. Synthetic Lethality in Cancer Therapeutics. ANNUAL REVIEW OF CANCER BIOLOGY 2017. [DOI: 10.1146/annurev-cancerbio-042016-073434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment with targeted drugs has primarily focused on the genes and pathways that are mutated in cancer, which severely limits the repertoire of drug targets. Synthetic lethality exploits the notion that the presence of a mutation in a cancer gene is often associated with a new vulnerability that can be targeted therapeutically, thus greatly expanding the arsenal of potential drug targets. Here we discuss both the experimental and the computational biology tools that can be used to identify synthetic lethal interactions. We also discuss strategies for using synthetic lethality to discover new drug targets and in the rational design of more potent drug combinations. We review the progress made and future opportunities offered by synthetic lethal approaches to treating cancer more effectively.
Collapse
Affiliation(s)
- Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lodewyk F.A. Wessels
- Division of Molecular Carcinogenesis and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
162
|
Dyer MA, Qadeer ZA, Valle-Garcia D, Bernstein E. ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026567. [PMID: 28062559 DOI: 10.1101/cshperspect.a026567] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent genome sequencing efforts in a variety of cancers have revealed mutations and/or structural alterations in ATRX and DAXX, which together encode a complex that deposits histone variant H3.3 into repetitive heterochromatin. These regions include retrotransposons, pericentric heterochromatin, and telomeres, the latter of which show deregulation in ATRX/DAXX-mutant tumors. Interestingly, ATRX and DAXX mutations are often found in pediatric tumors, suggesting a particular developmental context in which these mutations drive disease. Here we review the functions of ATRX and DAXX in chromatin regulation as well as their potential contributions to tumorigenesis. We place emphasis on the chromatin remodeler ATRX, which is mutated in the developmental disorder for which it is named, α-thalassemia, mental retardation, X-linked syndrome, and at high frequency in a number of adult and pediatric tumors.
Collapse
Affiliation(s)
- Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Zulekha A Qadeer
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - David Valle-Garcia
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Emily Bernstein
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
163
|
Dutta A, Sardiu M, Gogol M, Gilmore J, Zhang D, Florens L, Abmayr SM, Washburn MP, Workman JL. Composition and Function of Mutant Swi/Snf Complexes. Cell Rep 2017; 18:2124-2134. [PMID: 28249159 PMCID: PMC5837817 DOI: 10.1016/j.celrep.2017.01.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/09/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
The 12-subunit Swi/Snf chromatin remodeling complex is conserved from yeast to humans. It functions to alter nucleosome positions by either sliding nucleosomes on DNA or evicting histones. Interestingly, 20% of all human cancers carry mutations in subunits of the Swi/Snf complex. Many of these mutations cause protein instability and loss, resulting in partial Swi/Snf complexes. Although several studies have shown that histone acetylation and activator-dependent recruitment of Swi/Snf regulate its function, it is less well understood how subunits regulate stability and function of the complex. Using functional proteomic and genomic approaches, we have assembled the network architecture of yeast Swi/Snf. In addition, we find that subunits of the Swi/Snf complex regulate occupancy of the catalytic subunit Snf2, thereby modulating gene transcription. Our findings have direct bearing on how cancer-causing mutations in orthologous subunits of human Swi/Snf may lead to aberrant regulation of gene expression by this complex.
Collapse
Affiliation(s)
- Arnob Dutta
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA.
| | - Mihaela Sardiu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Joshua Gilmore
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Daoyong Zhang
- Institute of Cancer Biological Therapy, Xuzhou Medical University, Jiangsu 221002, China
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
164
|
Liao S, Davoli T, Leng Y, Li MZ, Xu Q, Elledge SJ. A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. Genes Dev 2017; 31:184-196. [PMID: 28167502 PMCID: PMC5322732 DOI: 10.1101/gad.291948.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
In this study, Liao et al. comprehensively investigated how cancer drivers genetically interact. They searched for modifiers of EGFR dependency by performing CRISPR, shRNA, and expression screens in a NSCLC model, and their data provide strong support for the hypothesis that many cancer drivers can substitute for each other in certain contexts. A large number of cancer drivers have been identified through tumor sequencing efforts, but how they interact and the degree to which they can substitute for each other have not been systematically explored. To comprehensively investigate how cancer drivers genetically interact, we searched for modifiers of epidermal growth factor receptor (EGFR) dependency by performing CRISPR, shRNA, and expression screens in a non-small cell lung cancer (NSCLC) model. We elucidated a broad spectrum of tumor suppressor genes (TSGs) and oncogenes (OGs) that can genetically modify proliferation and survival of cancer cells when EGFR signaling is altered. These include genes already known to mediate EGFR inhibitor resistance as well as many TSGs not previously connected to EGFR and whose biological functions in tumorigenesis are not well understood. We show that mutation of PBRM1, a subunit of the SWI/SNF complex, attenuates the effects of EGFR inhibition in part by sustaining AKT signaling. We also show that mutation of Capicua (CIC), a transcriptional repressor, suppresses the effects of EGFR inhibition by partially restoring the EGFR-promoted gene expression program, including the sustained expression of Ets transcription factors such as ETV1. Together, our data provide strong support for the hypothesis that many cancer drivers can substitute for each other in certain contexts and broaden our understanding of EGFR regulation.
Collapse
Affiliation(s)
- Sida Liao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | - Teresa Davoli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | - Mamie Z Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | - Qikai Xu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard University Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
165
|
Chen J, Herlong FH, Stroehlein JR, Mishra L. Mutations of Chromatin Structure Regulating Genes in Human Malignancies. Curr Protein Pept Sci 2017; 17:411-37. [PMID: 26796307 PMCID: PMC5403969 DOI: 10.2174/1389203717666160122120008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 02/08/2023]
Abstract
Chromatin structure regulating processes mediated by the adenosine triphosphate (ATP) –dependent chromatin remodeling complex and the covalent histone-modifying complexes are critical to gene transcriptional control and normal cellular processes, including cell stemness, differentiation, and proliferation. Gene mutations, structural abnormalities, and epigenetic modifications that lead to aberrant expression of chromatin structure regulating members have been observed in most of human malignancies. Advances in next-generation sequencing (NGS) technologies in recent years have allowed in-depth study of somatic mutations in human cancer samples. The Cancer Genome Atlas (TCGA) is the largest effort to date to characterize cancer genome using NGS technology. In this review, we summarize somatic mutations of chromatin-structure regulating genes from TCGA publications and other cancer genome studies, providing an overview of genomic alterations of chromatin regulating genes in human malignancies.
Collapse
Affiliation(s)
- Jian Chen
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
166
|
Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X, Agoston AT, Park PJ, Shivdasani RA, Roberts CWM. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet 2017; 49:296-302. [PMID: 27941798 PMCID: PMC5285448 DOI: 10.1038/ng.3744] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/17/2016] [Indexed: 12/30/2022]
Abstract
Genes encoding subunits of SWI/SNF (BAF) chromatin-remodeling complexes are collectively mutated in ∼20% of all human cancers. Although ARID1A is the most frequent target of mutations, the mechanism by which its inactivation promotes tumorigenesis is unclear. Here we demonstrate that Arid1a functions as a tumor suppressor in the mouse colon, but not the small intestine, and that invasive ARID1A-deficient adenocarcinomas resemble human colorectal cancer (CRC). These tumors lack deregulation of APC/β-catenin signaling components, which are crucial gatekeepers in common forms of intestinal cancer. We find that ARID1A normally targets SWI/SNF complexes to enhancers, where they function in coordination with transcription factors to facilitate gene activation. ARID1B preserves SWI/SNF function in ARID1A-deficient cells, but defects in SWI/SNF targeting and control of enhancer activity cause extensive dysregulation of gene expression. These findings represent an advance in colon cancer modeling and implicate enhancer-mediated gene regulation as a principal tumor-suppressor function of ARID1A.
Collapse
Affiliation(s)
- Radhika Mathur
- Program in Biological & Biomedical Sciences, Harvard Medical School, Boston MA, 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Burak Han Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Adrianna K. San Roman
- Program in Biological & Biomedical Sciences, Harvard Medical School, Boston MA, 02215, USA
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Boris G. Wilson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Agoston T. Agoston
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ramesh A. Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles W. M. Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
167
|
Harati S, Cooper LAD, Moran JD, Giuste FO, Du Y, Ivanov AA, Johns MA, Khuri FR, Fu H, Moreno CS. MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development. PLoS One 2017; 12:e0170339. [PMID: 28118365 PMCID: PMC5261804 DOI: 10.1371/journal.pone.0170339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology. Here we introduce a computational method (MEDICI) to predict PPI essentiality by combining gene knockdown studies with network models of protein interaction pathways in an analytic framework. Our method uses network topology to model how gene silencing can disrupt PPIs, relating the unknown essentialities of individual PPIs to experimentally observed protein essentialities. This model is then deconvolved to recover the unknown essentialities of individual PPIs. We demonstrate the validity of our approach via prediction of sensitivities to compounds based on PPI essentiality and differences in essentiality based on genetic mutations. We further show that lung cancer patients have improved overall survival when specific PPIs are no longer present, suggesting that these PPIs may be potentially new targets for therapeutic development. Software is freely available at https://github.com/cooperlab/MEDICI. Datasets are available at https://ctd2.nci.nih.gov/dataPortal.
Collapse
Affiliation(s)
- Sahar Harati
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Lee A. D. Cooper
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- Department of Biomedical Engineering, Emory University, Atlanta, Georgia, United States of America
| | - Josue D. Moran
- Graduate Program in Cancer Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Felipe O. Giuste
- Medical Scientist Training Program, Emory University, Atlanta, Georgia, United States of America
| | - Yuhong Du
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- Department of Pharmacology, Emory University, Atlanta, Georgia, United States of America
| | - Andrei A. Ivanov
- Department of Pharmacology, Emory University, Atlanta, Georgia, United States of America
| | - Margaret A. Johns
- Department of Pharmacology, Emory University, Atlanta, Georgia, United States of America
| | - Fadlo R. Khuri
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- Department of Hematology & Medical Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Haian Fu
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- Department of Pharmacology, Emory University, Atlanta, Georgia, United States of America
| | - Carlos S. Moreno
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
168
|
Affiliation(s)
- Paul H Huang
- a Division of Cancer Biology , The Institute of Cancer Research , London , UK
| |
Collapse
|
169
|
LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun 2016; 7:13608. [PMID: 27905400 PMCID: PMC5146280 DOI: 10.1038/ncomms13608] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence and heterogeneity of hepatocellular carcinoma (HCC). However, the biology of hepatic CSCs remains largely undefined. Through analysis of transcriptome microarray data, we identify a long noncoding RNA (lncRNA) called lncBRM, which is highly expressed in liver CSCs and HCC tumours. LncBRM is required for the self-renewal maintenance of liver CSCs and tumour initiation. In liver CSCs, lncBRM associates with BRM to initiate the BRG1/BRM switch and the BRG1-embedded BAF complex triggers activation of YAP1 signalling. Moreover, expression levels of lncBRM together with YAP1 signalling targets are positively correlated with tumour severity of HCC patients. Therefore, lncBRM and YAP1 signalling may serve as biomarkers for diagnosis and potential drug targets for HCC. Liver cancer stem cells (CSCs) may contribute to the high rate of recurrence of hepatocellular carcinoma. Here, the authors show that the long coding RNA, LcnBRM, regulates the self-renewal of liver CSCs and tumour initiation through binding to BAF complex thereby activating YAP1.
Collapse
|
170
|
Bano D, Jewell SA, Nicotera P. Calcium signaling then and now, via Stockholm. Biochem Biophys Res Commun 2016; 482:384-387. [PMID: 27908727 DOI: 10.1016/j.bbrc.2016.11.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sarah A Jewell
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
171
|
Kasai K. GLI1, a master regulator of the hallmark of pancreatic cancer. Pathol Int 2016; 66:653-660. [PMID: 27862693 DOI: 10.1111/pin.12476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
Abstract
Hedgehog signaling is highly conserved across species and governs proper embryonic development. Germline gene mutations that reduce this signaling activity cause a variety of developmental abnormalities such as holoprosencephaly, while those that enhance Hedgehog signaling activity induce a tumor-predisposition condition Nevoid basal cell carcinoma syndrome. Furthermore, dysregulated activation of Hedgehog signaling has been recognized in various sporadic malignancies, including pancreatic adenocarcinoma. Pancreatic adenocarcinoma develops through a multistep carcinogenesis starting with oncogenic mutation of the KRAS gene. During this process, precancerous or cancer cells secrete Hedgehog ligand proteins to promote characteristic desmoplastic stroma around the cells, which in turn activates the expression of the downstream transcription factor GLI1 inside the cells. The quantitative and spatiotemporal dysregulation of GLI1 subsequently leads to the expression of transcriptional target genes of GLI1 that govern the hallmark of malignant properties. Here, after a brief introductory outline, a perspective is offered of Hedgehog signaling with a special focus on the role of GLI1 in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
172
|
Howard TP, Vazquez F, Tsherniak A, Hong AL, Rinne M, Aguirre AJ, Boehm JS, Hahn WC. Functional Genomic Characterization of Cancer Genomes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:237-246. [PMID: 27815544 DOI: 10.1101/sqb.2016.81.031070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
International efforts to sequence cancer genomes now provide an overview of the major genetic alterations that occur in most human cancers. These studies have identified many highly recurrent alterations in specific cancer subtypes but have also identified mutations that occur at lower frequency and unstudied variants of known cancer-associated genes. To elucidate the function of such cancer alleles, we have developed several approaches to systematically interrogate genomic changes found in human tumors. In general, we have taken two complementary approaches. In the first approach, we focus on perturbing genes identified as mutated, amplified, or deleted by cancer genome annotation efforts, whereas in the second, we have taken an unbiased approach to identify genes that are essential for cancer cell proliferation or survival in cell lines that are extensively annotated to identify context-specific essential genes. These studies begin to allow us to define a cancer dependencies map.
Collapse
Affiliation(s)
- Thomas P Howard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Francisca Vazquez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Aviad Tsherniak
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Andrew L Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142.,Boston Children's Hospital, Boston, Massachusetts 02115
| | - Mik Rinne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Jesse S Boehm
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
173
|
Tordella L, Khan S, Hohmeyer A, Banito A, Klotz S, Raguz S, Martin N, Dhamarlingam G, Carroll T, González Meljem JM, Deswal S, Martínez-Barbera JP, García-Escudero R, Zuber J, Zender L, Gil J. SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev 2016; 30:2187-2198. [PMID: 27737960 PMCID: PMC5088567 DOI: 10.1101/gad.286112.116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Abstract
Here, Tordella et. al identified senescence regulators relevant to cancer by screening an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). They show that knockdown of the SWI/SNF component ARID1B prevents oncogene-induced senescence and cooperates with RAS to induce liver tumors, and their results provide new insights into the mechanisms by which epigenetic regulators can affect tumor progression. Oncogene-induced senescence (OIS) is a potent tumor suppressor mechanism. To identify senescence regulators relevant to cancer, we screened an shRNA library targeting genes deleted in hepatocellular carcinoma (HCC). Here, we describe how knockdown of the SWI/SNF component ARID1B prevents OIS and cooperates with RAS to induce liver tumors. ARID1B controls p16INK4a and p21CIP1a transcription but also regulates DNA damage, oxidative stress, and p53 induction, suggesting that SWI/SNF uses additional mechanisms to regulate senescence. To systematically identify SWI/SNF targets regulating senescence, we carried out a focused shRNA screen. We discovered several new senescence regulators, including ENTPD7, an enzyme that hydrolyses nucleotides. ENTPD7 affects oxidative stress, DNA damage, and senescence. Importantly, expression of ENTPD7 or inhibition of nucleotide synthesis in ARID1B-depleted cells results in re-establishment of senescence. Our results identify novel mechanisms by which epigenetic regulators can affect tumor progression and suggest that prosenescence therapies could be employed against SWI/SNF-mutated cancers.
Collapse
Affiliation(s)
- Luca Tordella
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Sadaf Khan
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Anja Hohmeyer
- Division of Molecular Oncology of Solid Tumours, Department of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ana Banito
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Sabrina Klotz
- Division of Molecular Oncology of Solid Tumours, Department of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Selina Raguz
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Nadine Martin
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Gopuraja Dhamarlingam
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Thomas Carroll
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - José Mario González Meljem
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Sumit Deswal
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Juan Pedro Martínez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Ramón García-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Lars Zender
- Division of Molecular Oncology of Solid Tumours, Department of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Jesús Gil
- MRC Clinical Sciences Centre (CSC), London W12 0NN, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
174
|
Yao X, Xing M, Ooi WF, Tan P, Teh BT. Epigenomic Consequences of Coding and Noncoding Driver Mutations. Trends Cancer 2016; 2:585-605. [PMID: 28741489 DOI: 10.1016/j.trecan.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022]
Abstract
Chromatin alterations are integral to the pathogenic process of cancer, as demonstrated by recent discoveries of frequent mutations in chromatin-modifier genes and aberrant DNA methylation states in different cancer types. Progress is being made on elucidating how chromatin alterations, and how proteins catalyzing these alterations, mechanistically contribute to tissue-specific tumorigenesis. In parallel, technologies enabling the genome-wide profiling of histone modifications have revealed the existence of noncoding driver genetic alterations in cancer. In this review, we survey the current knowledge of coding and noncoding cancer drivers, and discuss their impact on the chromatin landscape. Translational implications of these findings for novel cancer therapies are also presented.
Collapse
Affiliation(s)
- Xiaosai Yao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Manjie Xing
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Fong Ooi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Patrick Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; SingHealth/Duke-NUS Precision Medicine Institute, Singapore 168752, Singapore.
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore; SingHealth/Duke-NUS Precision Medicine Institute, Singapore 168752, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673.
| |
Collapse
|
175
|
Goldman AR, Bitler BG, Schug Z, Conejo-Garcia JR, Zhang R, Speicher DW. The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level. Mol Cell Proteomics 2016; 15:3348-3360. [PMID: 27654507 PMCID: PMC5098034 DOI: 10.1074/mcp.m116.062539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
Inactivating mutations in ARID1A, which encodes a subunit of the SWI/SNF chromatin-remodeling complex, are found in over half of ovarian clear cell carcinoma cases and more broadly across most types of cancers. To identify ARID1A-dependent changes in intracellular signaling pathways, we performed proteome analyses of isogenic ovarian clear cell carcinoma cell lines with or without ARID1A expression. Knockout of ARID1A in an ovarian clear cell carcinoma cell line with wild-type ARID1A, OVCA429, primarily resulted in downregulation of the mevalonate pathway, an important metabolic pathway involved in isoprenoid synthesis, cholesterol synthesis, and other downstream pathways. In a complementary experiment, expression of wild-type ARID1A in an ovarian clear cell carcinoma cell line containing mutated ARID1A, OVISE, affected the mevalonate pathway in a reciprocal manner. A striking aspect of these analyses was that, although only 5% of the detected proteome showed significant abundance changes, most proteins in the mevalonate pathway were coordinately affected by ARID1A status. There were generally corresponding changes when comparing the proteomics data to our previously published microarray data for ectopic expression of ARID1A in the OVISE cell line. However, ARID1A-dependent changes were not detected for genes within the mevalonate pathway. This discrepancy suggests that the mevalonate pathway is not regulated directly by ARID1A-mediated transcription and may be regulated post-transcriptionally. We conclude that ARID1A status indirectly influences the mevalonate pathway and probably influences other processes including glycogen metabolism and 14-3-3-mediated signaling. Further, our findings demonstrate that changes in mRNA levels are sometimes poor indicators of signaling pathways affected by gene manipulations in cancer cells.
Collapse
Affiliation(s)
- Aaron R Goldman
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Benjamin G Bitler
- §Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Zachary Schug
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Jose R Conejo-Garcia
- ¶Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - Rugang Zhang
- §Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| | - David W Speicher
- From the ‡Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104; .,‖The Center for Systems and Computational Biology, The Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104
| |
Collapse
|
176
|
INO80 is required for oncogenic transcription and tumor growth in non-small cell lung cancer. Oncogene 2016; 36:1430-1439. [PMID: 27641337 DOI: 10.1038/onc.2016.311] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/20/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
Epigenetic regulators are attractive targets for the development of new cancer therapies. Among them, the ATP-dependent chromatin remodeling complexes control the chromatin architecture and have important roles in gene regulation. They are often found to be mutated and de-regulated in cancers, but how they influence the cancer gene expression program during cancer initiation and progression is not fully understood. Here we show that the INO80 chromatin remodeling complex is required for oncogenic transcription and tumor growth in non-small-cell lung cancer (NSCLC). Ino80, the SWI/SNF ATPase in the complex, is highly expressed in NSCLC cells compared with normal lung epithelia cells. Further, its expression, as well as that of another subunit Ino80B, negatively correlates with disease prognosis in lung cancer patients. Functionally, INO80 silencing inhibits NSCLC cell proliferation and anchorage-independent growth in vitro and tumor formation in mouse xenografts. It occupies enhancer regions near lung cancer-associated genes, and its occupancy correlates with increased genome accessibility and enhanced expression of downstream genes. Together, our study defines a critical role of INO80 in promoting oncogenic transcription and NSCLC tumorigenesis, and reveals a potential treatment strategy for inhibiting the cancer transcription network by targeting the INO80 chromatin remodeling complex.
Collapse
|
177
|
Gong F, Chiu LY, Miller KM. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet 2016; 12:e1006272. [PMID: 27631103 PMCID: PMC5025232 DOI: 10.1371/journal.pgen.1006272] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
178
|
Abstract
Mutations in enhancer-associated chromatin-modifying components and genomic alterations in non-coding regions of the genome occur frequently in cancer, and other diseases pointing to the importance of enhancer fidelity to ensure proper tissue homeostasis. In this review, I will use specific examples to discuss how mutations in chromatin-modifying factors might affect enhancer activity of disease-relevant genes. I will then consider direct evidence from single nucleotide polymorphisms, small insertions, or deletions but also larger genomic rearrangements such as duplications, deletions, translocations, and inversions of specific enhancers to demonstrate how they have the ability to impact enhancer activity of disease genes including oncogenes and tumor suppressor genes. Considering that the scientific community only fairly recently has begun to focus its attention on "enhancer malfunction" in disease, I propose that multiple new enhancer-regulated and disease-relevant processes will be uncovered in the near future that will constitute the mechanistic basis for novel therapeutic avenues.
Collapse
Affiliation(s)
- Hans-Martin Herz
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
179
|
Giaccia AJ. A New Chromatin-Cytoskeleton Link in Cancer. Mol Cancer Res 2016; 14:1173-1175. [PMID: 27528705 DOI: 10.1158/1541-7786.mcr-16-0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 01/15/2023]
Abstract
The set domain containing 2 (SETD2) histone methyltransferase, located at 3p2, specifically trimethylates lysine 36 of histone H3 (H3K36me3). H3K36me3 is an active mark involved in transcriptional elongation and RNA processing and a key regulator of DNA repair. In fact, SETD2 is the only methyltransferase that "writes" the H3K36me3 mark. Recent results from Park and colleagues have found a new role for SETD2 in the methylation of K40 of α-tubulin. Loss of SETD2 abolishes methylation of K40 of α-tubulin and results in a dysfunctional mitotic spindle and abnormalities in cytokinesis. Thus, SETD2 links chromatin and cytoskeleton homeostasis through its methyltransferase activity. These studies have important implications on the role of SETD2 mutations in promoting genomic instability and tumor progression. Mol Cancer Res; 14(12); 1173-5. ©2016 AACR.
Collapse
Affiliation(s)
- Amato J Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, California.
| |
Collapse
|
180
|
Takada Y, Fukuda A, Chiba T, Seno H. Brg1 plays an essential role in development and homeostasis of the duodenum through regulation of Notch signaling. Development 2016; 143:3532-3539. [PMID: 27510977 DOI: 10.1242/dev.141549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022]
Abstract
Brg1, a core subunit of the SWI/SNF chromatin remodeling complex, is essential for development and homeostasis of various organs. However, the functional role of Brg1 in intestinal development and homeostasis, and the underlying molecular mechanism, remain unknown. We found that deletion of Brg1 in the mouse intestine resulted in growth impairment and early death associated with abnormal crypt-villous formation, skewed differentiation into secretory lineage cells, markedly increased apoptosis, and stem cell loss in the duodenum. Furthermore, we found that the Notch signaling pathway was dramatically downregulated in Brg1-deficient duodenum. Remarkably, overexpression of the Notch1 intercellular domain (ICD) partially reversed the prognosis of intestinal Brg1 mutant mice. Notch1 ICD overexpression rescued morphogenesis, prevented over-differentiation into secretory lineage cells, and restored apoptosis to normal levels in Brg1-deficient duodenum, although stem cell loss was not rescued. Our data demonstrate that Brg1 plays an essential role in development and homeostasis, including morphogenesis, stem cell differentiation and cell survival in the duodenum. Mechanistically, the rescue of the intestinal Brg1 mutant phenotype by overexpression of the Notch1 ICD indicates that Notch signaling is a key downstream target that mediates the effects of Brg1.
Collapse
Affiliation(s)
- Yutaka Takada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| |
Collapse
|
181
|
Dubey R, Lebensohn AM, Bahrami-Nejad Z, Marceau C, Champion M, Gevaert O, Sikic BI, Carette JE, Rohatgi R. Chromatin-Remodeling Complex SWI/SNF Controls Multidrug Resistance by Transcriptionally Regulating the Drug Efflux Pump ABCB1. Cancer Res 2016; 76:5810-5821. [PMID: 27503929 DOI: 10.1158/0008-5472.can-16-0716] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
Anthracyclines are among the most effective yet most toxic drugs used in the oncology clinic. The nucleosome-remodeling SWI/SNF complex, a potent tumor suppressor, is thought to promote sensitivity to anthracyclines by recruiting topoisomerase IIa (TOP2A) to DNA and increasing double-strand breaks. In this study, we discovered a novel mechanism through which SWI/SNF influences resistance to the widely used anthracycline doxorubicin based on the use of a forward genetic screen in haploid human cells, followed by a rigorous single and double-mutant epistasis analysis using CRISPR/Cas9-mediated engineering. Doxorubicin resistance conferred by loss of the SMARCB1 subunit of the SWI/SNF complex was caused by transcriptional upregulation of a single gene, encoding the multidrug resistance pump ABCB1. Remarkably, both ABCB1 upregulation and doxorubicin resistance caused by SMARCB1 loss were dependent on the function of SMARCA4, a catalytic subunit of the SWI/SNF complex. We propose that residual SWI/SNF complexes lacking SMARCB1 are vital determinants of drug sensitivity, not just to TOP2A-targeted agents, but to the much broader range of cancer drugs effluxed by ABCB1. Cancer Res; 76(19); 5810-21. ©2016 AACR.
Collapse
Affiliation(s)
- Ramin Dubey
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California. Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Andres M Lebensohn
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California. Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Zahra Bahrami-Nejad
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Caleb Marceau
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Magali Champion
- Stanford Center for Biomedical Informatics Research, Dept. of Medicine, Stanford, California
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Dept. of Medicine, Stanford, California
| | - Branimir I Sikic
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California. Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
182
|
Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2016; 30:355-85. [PMID: 26883357 PMCID: PMC4762423 DOI: 10.1101/gad.275776.115] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ying et al. review pancreatic ductal adenocarcinoma (PDAC) genetics and biology, particularly altered cancer cell metabolism, the complexity of immune regulation in the tumor microenvironment, and impaired DNA repair processes. With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wantong Yao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
183
|
Pereira B, Chin SF, Rueda OM, Vollan HKM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DWY, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Børresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 2016; 7:11479. [PMID: 27161491 PMCID: PMC4866047 DOI: 10.1038/ncomms11479] [Citation(s) in RCA: 1072] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies.
Collapse
Affiliation(s)
- Bernard Pereira
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Hans-Kristian Moen Vollan
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello, Oslo 0310, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
| | - Elena Provenzano
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Helen A. Bardwell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Michelle Pugh
- Inivata, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Linda Jones
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephen-John Sammut
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Dana W. Y. Tsui
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Bin Liu
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Sarah-Jane Dawson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Jean Abraham
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Helen Northen
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - John F. Peden
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - Abhik Mukherjee
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham NG5 1PB, UK
| | - Gulisa Turashvili
- Department of Pathology and Molecular Medicine, Queen's University/Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7
| | - Andrew R. Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham NG5 1PB, UK
| | - Steve McKinney
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Arusha Oloumi
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Sohrab Shah
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Leigh Murphy
- Research Institute in Oncology and Hematology, 675 McDermot Avenue, Winnipeg, Mannitoba, Canada R3E 0V9
| | - David R. Bentley
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - Ian O. Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham NG5 1PB, UK
| | - Arnie Purushotham
- NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and Research Oncology, Cancer Division, King's College London, London SE1 9RT, UK
| | - Sarah E. Pinder
- NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and Research Oncology, Cancer Division, King's College London, London SE1 9RT, UK
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello, Oslo 0310, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
| | - Helena M. Earl
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul D. Pharoah
- Strangeways Research Laboratory, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Mark T. Ross
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
184
|
Gerstenberger BS, Trzupek JD, Tallant C, Fedorov O, Filippakopoulos P, Brennan PE, Fedele V, Martin S, Picaud S, Rogers C, Parikh M, Taylor A, Samas B, O'Mahony A, Berg E, Pallares G, Torrey AD, Treiber DK, Samardjiev IJ, Nasipak BT, Padilla-Benavides T, Wu Q, Imbalzano AN, Nickerson JA, Bunnage ME, Müller S, Knapp S, Owen DR. Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit. J Med Chem 2016; 59:4800-11. [PMID: 27115555 DOI: 10.1021/acs.jmedchem.6b00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acetyl post-translational modification of chromatin at selected histone lysine residues is interpreted by an acetyl-lysine specific interaction with bromodomain reader modules. Here we report the discovery of the potent, acetyl-lysine-competitive, and cell active inhibitor PFI-3 that binds to certain family VIII bromodomains while displaying significant, broader bromodomain family selectivity. The high specificity of PFI-3 for family VIII was achieved through a novel bromodomain binding mode of a phenolic headgroup that led to the unusual displacement of water molecules that are generally retained by most other bromodomain inhibitors reported to date. The medicinal chemistry program that led to PFI-3 from an initial fragment screening hit is described in detail, and additional analogues with differing family VIII bromodomain selectivity profiles are also reported. We also describe the full pharmacological characterization of PFI-3 as a chemical probe, along with phenotypic data on adipocyte and myoblast cell differentiation assays.
Collapse
Affiliation(s)
- Brian S Gerstenberger
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - John D Trzupek
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Cynthia Tallant
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Oleg Fedorov
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Panagis Filippakopoulos
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Ludwig Institute for Cancer Research, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Paul E Brennan
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Vita Fedele
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sarah Martin
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sarah Picaud
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Catherine Rogers
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Mihir Parikh
- Pfizer Pharmaceutical Sciences , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alexandria Taylor
- Pfizer Pharmaceutical Sciences , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brian Samas
- Pfizer Worldwide Medicinal Chemistry , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alison O'Mahony
- Bioseek Inc., Division of DiscoveRx , 310 Utah Avenue, South San Francisco, California 94080, United States
| | - Ellen Berg
- Bioseek Inc., Division of DiscoveRx , 310 Utah Avenue, South San Francisco, California 94080, United States
| | - Gabriel Pallares
- KinomeScan, Division of DiscoveRx , 11180 Roselle Street, Suite D, San Diego, California 92121, United States
| | - Adam D Torrey
- KinomeScan, Division of DiscoveRx , 11180 Roselle Street, Suite D, San Diego, California 92121, United States
| | - Daniel K Treiber
- KinomeScan, Division of DiscoveRx , 11180 Roselle Street, Suite D, San Diego, California 92121, United States
| | - Ivan J Samardjiev
- Eurofins Lancaster PPS , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | - Mark E Bunnage
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Susanne Müller
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Stefan Knapp
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences (BMLS), Johann Wolfgang Goethe University , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Dafydd R Owen
- Pfizer Worldwide Medicinal Chemistry , 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
185
|
Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, Masica DL, Karchin R. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure. Cancer Res 2016; 76:3719-31. [PMID: 27197156 DOI: 10.1158/0008-5472.can-15-3190] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
Abstract
The impact of somatic missense mutation on cancer etiology and progression is often difficult to interpret. One common approach for assessing the contribution of missense mutations in carcinogenesis is to identify genes mutated with statistically nonrandom frequencies. Even given the large number of sequenced cancer samples currently available, this approach remains underpowered to detect drivers, particularly in less studied cancer types. Alternative statistical and bioinformatic approaches are needed. One approach to increase power is to focus on localized regions of increased missense mutation density or hotspot regions, rather than a whole gene or protein domain. Detecting missense mutation hotspot regions in three-dimensional (3D) protein structure may also be beneficial because linear sequence alone does not fully describe the biologically relevant organization of codons. Here, we present a novel and statistically rigorous algorithm for detecting missense mutation hotspot regions in 3D protein structures. We analyzed approximately 3 × 10(5) mutations from The Cancer Genome Atlas (TCGA) and identified 216 tumor-type-specific hotspot regions. In addition to experimentally determined protein structures, we considered high-quality structural models, which increase genomic coverage from approximately 5,000 to more than 15,000 genes. We provide new evidence that 3D mutation analysis has unique advantages. It enables discovery of hotspot regions in many more genes than previously shown and increases sensitivity to hotspot regions in tumor suppressor genes (TSG). Although hotspot regions have long been known to exist in both TSGs and oncogenes, we provide the first report that they have different characteristic properties in the two types of driver genes. We show how cancer researchers can use our results to link 3D protein structure and the biologic functions of missense mutations in cancer, and to generate testable hypotheses about driver mechanisms. Our results are included in a new interactive website for visualizing protein structures with TCGA mutations and associated hotspot regions. Users can submit new sequence data, facilitating the visualization of mutations in a biologically relevant context. Cancer Res; 76(13); 3719-31. ©2016 AACR.
Collapse
Affiliation(s)
- Collin Tokheim
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rohit Bhattacharya
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Noushin Niknafs
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Rick Kim
- In Silico Solutions, Fairfax, Virginia
| | | | - David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
186
|
Al-Hebshi NN, Li S, Nasher AT, El-Setouhy M, Alsanosi R, Blancato J, Loffredo C. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes. Int J Cancer 2016; 139:363-72. [PMID: 26934577 DOI: 10.1002/ijc.30068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes.
Collapse
Affiliation(s)
- Nezar Noor Al-Hebshi
- Department of Preventive Dentistry, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Shiyong Li
- Department of Oncology and Pharmacogenomics, Beijing Genome Institute (BGI), Shenzhen, Republic of China
| | - Akram Thabet Nasher
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Sana'a University, Yemen
| | - Maged El-Setouhy
- Substance Abuse Research Center (SARC), Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Rashad Alsanosi
- Substance Abuse Research Center (SARC), Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Jan Blancato
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Christopher Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
187
|
Nguyen H, Sokpor G, Pham L, Rosenbusch J, Stoykova A, Staiger JF, Tuoc T. Epigenetic regulation by BAF (mSWI/SNF) chromatin remodeling complexes is indispensable for embryonic development. Cell Cycle 2016; 15:1317-24. [PMID: 26986003 DOI: 10.1080/15384101.2016.1160984] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The multi-subunit chromatin-remodeling SWI/SNF (known as BAF for Brg/Brm-associated factor) complexes play essential roles in development. Studies have shown that the loss of individual BAF subunits often affects local chromatin structure and specific transcriptional programs. However, we do not fully understand how BAF complexes function in development because no animal mutant had been engineered to lack entire multi-subunit BAF complexes. Importantly, we recently reported that double conditional knock-out (dcKO) of the BAF155 and BAF170 core subunits in mice abolished the presence of the other BAF subunits in the developing cortex. The generated dcKO mutant provides a novel and powerful tool for investigating how entire BAF complexes affect cortical development. Using this model, we found that BAF complexes globally control the key heterochromatin marks, H3K27me2 and -3, by directly modulating the enzymatic activity of the H3K27 demethylases, Utx and Jmjd3. Here, we present further insights into how the scaffolding ability of the BAF155 and BAF170 core subunits maintains the stability of BAF complexes in the forebrain and throughout the embryo during development. Furthermore, we show that the loss of BAF complexes in the above-described model up-regulates H3K27me3 and impairs forebrain development and embryogenesis. These findings improve our understanding of epigenetic mechanisms and their modulation by the chromatin-remodeling SWI/SNF complexes that control embryonic development.
Collapse
Affiliation(s)
- Huong Nguyen
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Godwin Sokpor
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Linh Pham
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Joachim Rosenbusch
- a University Medical Center , Georg-August-University Goettingen , Germany
| | - Anastassia Stoykova
- b Max-Planck-Institute for Biophysical Chemistry , Goettingen ; Germany.,c DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB) , Goettingen , Germany
| | - Jochen F Staiger
- a University Medical Center , Georg-August-University Goettingen , Germany.,c DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB) , Goettingen , Germany
| | - Tran Tuoc
- a University Medical Center , Georg-August-University Goettingen , Germany.,c DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB) , Goettingen , Germany
| |
Collapse
|
188
|
Ertl I, Porta-de-la-Riva M, Gómez-Orte E, Rubio-Peña K, Aristizábal-Corrales D, Cornes E, Fontrodona L, Osteikoetxea X, Ayuso C, Askjaer P, Cabello J, Cerón J. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development. Genetics 2016; 202:961-75. [PMID: 26739451 PMCID: PMC4788132 DOI: 10.1534/genetics.115.183533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Abstract
SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery.
Collapse
Affiliation(s)
- Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Karinna Rubio-Peña
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xabier Osteikoetxea
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
189
|
Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, Schultz N, Berger MF, Sander C, Taylor BS, Ghossein R, Ganly I, Fagin JA. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 2016; 126:1052-66. [PMID: 26878173 DOI: 10.1172/jci85271] [Citation(s) in RCA: 783] [Impact Index Per Article: 97.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are rare and frequently lethal tumors that so far have not been subjected to comprehensive genetic characterization. METHODS We performed next-generation sequencing of 341 cancer genes from 117 patient-derived PDTCs and ATCs and analyzed the transcriptome of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC). RESULTS Compared to PDTCs, ATCs had a greater mutation burden, including a higher frequency of mutations in TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. BRAF and RAS were the predominant drivers and dictated distinct tropism for nodal versus distant metastases in PDTC. RAS and BRAF sharply distinguished between PDTCs defined by the Turin (PDTC-Turin) versus MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, were markedly enriched in PDTCs and ATCs and had a striking pattern of co-occurrence with RAS mutations. While TERT promoter mutations were rare and subclonal in PTCs, they were clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) revealed a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs were BRAF-like irrespective of driver mutation. CONCLUSIONS These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared with PDTC underscore their greater virulence and higher mortality. FUNDING This work was supported in part by NIH grants CA50706, CA72597, P50-CA72012, P30-CA008748, and 5T32-CA160001; the Lefkovsky Family Foundation; the Society of Memorial Sloan Kettering; the Byrne fund; and Cycle for Survival.
Collapse
|
190
|
Zinzalla G. A New Way Forward in Cancer Drug Discovery: Inhibiting the SWI/SNF Chromatin Remodelling Complex. Chembiochem 2016; 17:677-82. [PMID: 26684344 DOI: 10.1002/cbic.201500565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/24/2022]
Abstract
Mutations in subunits of the SWI/SNF chromatin remodelling complex are found in 20 % of human cancers. At face value, this would appear to indicate that this multiprotein complex is a potent tumour suppressor. However, it has recently emerged that some mutations in the SWI/SNF complex can have a gain-of-function effect and that in other tumours, such as pancreatic cancer, leukaemia, and breast cancer, the wild-type complex is used to drive cancer. Thus, paradoxically, this "tumour suppressor" has become an attractive target for developing anticancer agents. The SWI/SNF complex makes several protein-protein interactions both within the complex and with a wide range of transcription factors, and targeting these protein-protein interactions is emerging as the best approach to modulating the activity of the complex selectively.
Collapse
Affiliation(s)
- Giovanna Zinzalla
- Microbiology, Tumour and Cell Biology (MTC), and Science for Life Laboratory (SciLifeLab), Karolinska Institutet, Tomtebodavägen 23A, Stockholm, 171 65, Sweden.
| |
Collapse
|
191
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
192
|
Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, Yan X, Ye B, Li C, Xia P, Zhang G, Tian Y, Chen R, Fan Z. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 2016; 16:413-25. [PMID: 25842979 DOI: 10.1016/j.stem.2015.03.003] [Citation(s) in RCA: 481] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/15/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer, and it is characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanisms underlying their self-renewal and maintenance are poorly understood. Here, using transcriptome microarray analysis, we identified a long noncoding RNA (lncRNA) termed lncTCF7 that is highly expressed in HCC tumors and liver CSCs. LncTCF7 is required for liver CSC self-renewal and tumor propagation. Mechanistically, lncTCF7 recruits the SWI/SNF complex to the promoter of TCF7 to regulate its expression, leading to activation of Wnt signaling. Our data suggest that lncTCF7-mediated Wnt signaling primes liver CSC self-renewal and tumor propagation. In sum, therefore, we have identified an lncRNA-based Wnt signaling regulatory circuit that promotes tumorigenic activity in liver cancer stem cells, highlighting the role that lncRNAs can play in tumor growth and propagation.
Collapse
Affiliation(s)
- Yanying Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanling Huang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlong Yan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyan Xia
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Geng Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tian
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
193
|
Frühwald MC, Biegel JA, Bourdeaut F, Roberts CWM, Chi SN. Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro Oncol 2016; 18:764-78. [PMID: 26755072 DOI: 10.1093/neuonc/nov264] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/27/2015] [Indexed: 01/05/2023] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is the most common malignant CNS tumor of children below 6 months of age. The majority of AT/RTs demonstrate genomic alterations in SMARCB1 (INI1, SNF5, BAF47) or, to a lesser extent, SMARCA4 (BRG1) of the SWItch/sucrose nonfermentable chromatin remodeling complex. Recent transcription and methylation profiling studies suggest the existence of molecular subgroups. Thus, at the root of these seemingly enigmatic tumors lies a network of factors related to epigenetic regulation, which is not yet completely understood. While conventional-type chemotherapy may have significant survival benefit for certain patients, it remains to be determined which patients will eventually prove resistant to chemotherapy and thus need novel therapeutic strategies. Elucidation of the molecular consequences of a disturbed epigenome has led to the identification of a series of transduction cascades, which may be targeted for therapy. Among these are the pathways of cyclin D1/cyclin-dependent kinases 4 and 6, Hedgehog/GLI1, Wnt/ß-catenin, enhancer of zeste homolog 2, and aurora kinase A, among others. Compounds specifically targeting these pathways or agents that alter the epigenetic state of the cell are currently being evaluated in preclinical settings and in experimental clinical trials for AT/RT.
Collapse
Affiliation(s)
- Michael C Frühwald
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Jaclyn A Biegel
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Franck Bourdeaut
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Charles W M Roberts
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Susan N Chi
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| |
Collapse
|
194
|
Karnezis AN, Wang Y, Ramos P, Hendricks WP, Oliva E, D'Angelo E, Prat J, Nucci MR, Nielsen TO, Chow C, Leung S, Kommoss F, Kommoss S, Silva A, Ronnett BM, Rabban JT, Bowtell DD, Weissman BE, Trent JM, Gilks CB, Huntsman DG. Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type. J Pathol 2015; 238:389-400. [PMID: 26356327 PMCID: PMC4832362 DOI: 10.1002/path.4633] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022]
Abstract
Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT) is a lethal and sometimes familial ovarian tumour of young women and children. We and others recently discovered that over 90% of SCCOHTs harbour inactivating mutations in the chromatin remodelling gene SMARCA4 with concomitant loss of its encoded protein SMARCA4 (BRG1), one of two mutually exclusive ATPases of the SWI/SNF chromatin remodelling complex. To determine the specificity of SMARCA4 loss for SCCOHT, we examined the expression of SMARCA4 by immunohistochemistry in more than 3000 primary gynaecological tumours. Among ovarian tumours, it was only absent in clear cell carcinoma (15 of 360, 4%). In the uterus, it was absent in endometrial stromal sarcomas (4 of 52, 8%) and high‐grade endometrioid carcinomas (2 of 338, 1%). Recent studies have shown that SMARCA2 (BRM), the other mutually exclusive ATPase of the SWI/SNF complex, is necessary for survival of tumour cells lacking SMARCA4. Therefore, we examined SMARCA2 expression and discovered that all SMARCA4‐negative SCCOHTs also lacked SMARCA2 protein by IHC, including the SCCOHT cell lines BIN67 and SCCOHT1. Among ovarian tumours, the SMARCA4/SMARCA2 dual loss phenotype appears completely specific for SCCOHT. SMARCA2 loss was not due to mutation but rather from an absence of mRNA expression, which was restored by treatment with the histone deacetylase inhibitor trichostatin A. Re‐expression of SMARCA4 or SMARCA2 inhibited the growth of BIN67 and SCCOHT1 cell lines. Our results indicate that SMARCA4 loss, either alone or with SMARCA2, is highly sensitive and specific for SCCOHT and that restoration of either SWI/SNF ATPase can inhibit the growth of SCCOHT cell lines. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pilar Ramos
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - William Pd Hendricks
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuela D'Angelo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Prat
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Marisa R Nucci
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | | | - Stefan Kommoss
- Department of Obstetrics and Gynecology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Annacarolina Silva
- The James Homer Wright Pathology Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joseph T Rabban
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David D Bowtell
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey M Trent
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
195
|
Bell EH, Chakraborty AR, Mo X, Liu Z, Shilo K, Kirste S, Stegmaier P, McNulty M, Karachaliou N, Rosell R, Bepler G, Carbone DP, Chakravarti A. SMARCA4/BRG1 Is a Novel Prognostic Biomarker Predictive of Cisplatin-Based Chemotherapy Outcomes in Resected Non-Small Cell Lung Cancer. Clin Cancer Res 2015; 22:2396-404. [PMID: 26671993 DOI: 10.1158/1078-0432.ccr-15-1468] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/06/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE Identification of predictive biomarkers is critically needed to improve selection of patients who derive the most benefit from platinum-based chemotherapy. We hypothesized that decreased expression of SMARCA4/BRG1, a known regulator of transcription and DNA repair, is a novel predictive biomarker of increased sensitivity to adjuvant platinum-based therapies in non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN The prognostic value was tested using a gene-expression microarray from the Director's Challenge Lung Study (n = 440). The predictive significance of SMARCA4 was determined using a gene-expression microarray (n = 133) from control and treatment arms of the JBR.10 trial of adjuvant cisplatin/vinorelbine. Kaplan-Meier method and log-rank tests were used to estimate and test the differences of probabilities in overall survival (OS) and disease-specific survival (DSS) between expression groups and treatment arms. Multivariate Cox regression models were used while adjusting for other clinical covariates. RESULTS In the Director's Challenge Study, reduced expression of SMARCA4 was associated with poor OS compared with high and intermediate expression (P < 0.001 and P = 0.009, respectively). In multivariate analysis, compared with low, high SMARCA4 expression predicted a decrease in risk of death [HR, 0.6; 95% confidence interval (CI), 0.4-0.8; P = 0.002]. In the JBR.10 trial, improved 5-year DSS was noted only in patients with low SMARCA4 expression when treated with adjuvant cisplatin/vinorelbine [HR, 0.1; 95% CI, 0.0-0.5, P = 0.002 (low); HR, 1.0; 95% CI, 0.5-2.3, P = 0.92 (high)]. An interaction test was highly significant (P = 0.01). CONCLUSIONS Low expression of SMARCA4/BRG1 is significantly associated with worse prognosis; however, it is a novel significant predictive biomarker for increased sensitivity to platinum-based chemotherapy in NSCLC. Clin Cancer Res; 22(10); 2396-404. ©2015 AACR.
Collapse
Affiliation(s)
- Erica Hlavin Bell
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio.
| | - Arup R Chakraborty
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ziyan Liu
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Simon Kirste
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio. Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Petra Stegmaier
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio. Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Maureen McNulty
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Niki Karachaliou
- Translational Research Unit, Dr. Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Rafael Rosell
- Translational Research Unit, Dr. Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain. Catalan Institute of Oncology, Badalona, Barcelona, Spain
| | - Gerold Bepler
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
196
|
Yeh JE, Frank DA. STAT3-Interacting Proteins as Modulators of Transcription Factor Function: Implications to Targeted Cancer Therapy. ChemMedChem 2015; 11:795-801. [DOI: 10.1002/cmdc.201500482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Jennifer E. Yeh
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| | - David A. Frank
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| |
Collapse
|
197
|
Lauss M, Ringnér M, Karlsson A, Harbst K, Busch C, Geisler J, Lønning PE, Staaf J, Jönsson G. DNA methylation subgroups in melanoma are associated with proliferative and immunological processes. BMC Med Genomics 2015; 8:73. [PMID: 26545983 PMCID: PMC4636848 DOI: 10.1186/s12920-015-0147-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA methylation at CpG dinucleotides is modified in tumorigenesis with potential impact on transcriptional activity. METHODS We used the Illumina 450 K platform to evaluate DNA methylation patterns of 50 metastatic melanoma tumors, with matched gene expression data. RESULTS We identified three different methylation groups and validated the groups in independent data from The Cancer Genome Atlas. One group displayed hypermethylation of a developmental promoter set, genome-wide demethylation, increased proliferation and activity of the SWI/SNF complex. A second group had a methylation pattern resembling stromal and leukocyte cells, over-expressed an immune signature and had improved survival rates in metastatic tumors (p < 0.05). A third group had intermediate methylation levels and expressed both proliferative and immune signatures. The methylation groups corresponded to some degree with previously identified gene expression phenotypes. CONCLUSIONS Melanoma consists of divergent methylation groups that are distinguished by promoter methylation, proliferation and content of immunological cells.
Collapse
Affiliation(s)
- Martin Lauss
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Markus Ringnér
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Anna Karlsson
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Katja Harbst
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Christian Busch
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway.
| | - Jürgen Geisler
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway. .,Present Address: Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway.
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Johan Staaf
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Göran Jönsson
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| |
Collapse
|
198
|
Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, Browne G, Colby JL, Winter GE, Bradner JE, Pratap J, Sluder G, Bhargava R, Chiosea SI, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Nickerson JA, Imbalzano AN. The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. J Cell Physiol 2015; 230:2683-94. [PMID: 25808524 PMCID: PMC4516601 DOI: 10.1002/jcp.24991] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022]
Abstract
The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pasil Madany
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jacqueline Akech
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jason R Dobson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
- Department of Computer Science, Brown University, Providence, Rhode Island
| | - Stephen Douthwright
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gillian Browne
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jennifer L Colby
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Georg E Winter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jitesh Pratap
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Anatomy and Cell Biology, Rush University, Chicago, Illinois
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rohit Bhargava
- Department of Pathology, Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | - Simion I Chiosea
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andre J van Wijnen
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Janet L Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jane B Lian
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
199
|
Koelsche C, Renner M, Johann P, Leiss I, Sahm F, Schimmack S, Wardelmann E, Renker EK, Schirmacher P, Korshunov A, von Deimling A, Mechtersheimer G. Differential nuclear ATRX expression in sarcomas. Histopathology 2015; 68:738-45. [PMID: 26291601 DOI: 10.1111/his.12812] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/15/2015] [Indexed: 12/21/2022]
Abstract
AIM Nuclear α-thalassemia/mental retardation X-linked (ATRX) loss and alternative lengthening of telomeres (ALT) are linked in distinct malignancies. We therefore aimed to determine the nuclear ATRX expression correlated with ALT in a comprehensive series of sarcomas. METHODS AND RESULTS A total of 573 formalin-fixed paraffin-embedded sarcomas comprising 28 entities were investigated for nuclear ATRX expression by immunohistochemistry. Telomere-specific fluorescence in-situ hybridization (FISH) was used to determine the ALT phenotype in 50 sarcomas with complete or heterogeneous ATRX loss. Complete nuclear ATRX loss was detected in 58 of 573 sarcomas, all high-grade, with the highest prevalence in undifferentiated pleomorphic sarcomas (38%) and pleomorphic liposarcomas (38%), followed by dedifferentiated liposarcomas (24%), osteosarcomas (21%), leiomyosarcomas (17%), myxofibrosarcomas (11%) and malignant peripheral nerve sheath tumours (4%). Interestingly, a further 20 sarcomas, all belonging to the aforementioned entities with complete ATRX loss, presented with a heterogeneous ATRX expression pattern. ALT was observed in 41 of 42 sarcomas with complete ATRX loss, but only in two of eight sarcomas with heterogeneous expression. CONCLUSION Nuclear ATRX loss, either complete or heterogeneous, is encountered in a considerable number of high-grade sarcomas with non-specific genetic alterations. A causal relationship with ALT might be indicated at least in cases with a complete nuclear ATRX loss.
Collapse
Affiliation(s)
- Christian Koelsche
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Renner
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pascal Johann
- German Cancer Consortium (DKTK), Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Medical Center, Heidelberg, Germany
| | - Irina Leiss
- German Cancer Consortium (DKTK), CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Schimmack
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, University Hospital, Muenster, Germany
| | - Eva-Kristin Renker
- Department of Orthopedics and Traumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunhild Mechtersheimer
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
200
|
Roy N, Malik S, Villanueva KE, Urano A, Lu X, Von Figura G, Seeley ES, Dawson DW, Collisson EA, Hebrok M. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev 2015; 29:658-71. [PMID: 25792600 PMCID: PMC4378197 DOI: 10.1101/gad.256628.114] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Roy et al. identify critical antagonistic roles for Brg1, a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells Brg1 inhibits the dedifferentiation that precedes neoplastic transformation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. JQ1 impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. Pancreatic ductal adenocarcinoma (PDA) develops predominantly through pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) precursor lesions. Pancreatic acinar cells are reprogrammed to a “ductal-like” state during PanIN-PDA formation. Here, we demonstrate a parallel mechanism operative in mature duct cells during which functional cells undergo “ductal retrogression” to form IPMN-PDA. We further identify critical antagonistic roles for Brahma-related gene 1 (Brg1), a catalytic subunit of the SWI/SNF complexes, during IPMN-PDA development. In mature duct cells, Brg1 inhibits the dedifferentiation that precedes neoplastic transformation, thus attenuating tumor initiation. In contrast, Brg1 promotes tumorigenesis in full-blown PDA by supporting a mesenchymal-like transcriptional landscape. We further show that JQ1, a drug that is currently being tested in clinical trials for hematological malignancies, impairs PDA tumorigenesis by both mimicking some and inhibiting other Brg1-mediated functions. In summary, our study demonstrates the context-dependent roles of Brg1 and points to potential therapeutic treatment options based on epigenetic regulation in PDA.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Shivani Malik
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Karina E Villanueva
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Atsushi Urano
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Xinyuan Lu
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Guido Von Figura
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - E Scott Seeley
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Eric A Collisson
- Department of Medicine/Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA;
| |
Collapse
|