151
|
Wong ELS, Vuong KQ, Chow E. Nanozymes for Environmental Pollutant Monitoring and Remediation. SENSORS (BASEL, SWITZERLAND) 2021; 21:E408. [PMID: 33430087 PMCID: PMC7827938 DOI: 10.3390/s21020408] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
Nanozymes are advanced nanomaterials which mimic natural enzymes by exhibiting enzyme-like properties. As nanozymes offer better structural stability over their respective natural enzymes, they are ideal candidates for real-time and/or remote environmental pollutant monitoring and remediation. In this review, we classify nanozymes into four types depending on their enzyme-mimicking behaviour (active metal centre mimic, functional mimic, nanocomposite or 3D structural mimic) and offer mechanistic insights into the nature of their catalytic activity. Following this, we discuss the current environmental translation of nanozymes into a powerful sensing or remediation tool through inventive nano-architectural design of nanozymes and their transduction methodologies. Here, we focus on recent developments in nanozymes for the detection of heavy metal ions, pesticides and other organic pollutants, emphasising optical methods and a few electrochemical techniques. Strategies to remediate persistent organic pollutants such as pesticides, phenols, antibiotics and textile dyes are included. We conclude with a discussion on the practical deployment of these nanozymes in terms of their effectiveness, reusability, real-time in-field application, commercial production and regulatory considerations.
Collapse
Affiliation(s)
| | | | - Edith Chow
- Aperture, Ryde, NSW 2112, Australia; (E.L.S.W.); (K.Q.V.)
| |
Collapse
|
152
|
Abstract
Optical sensors are always fascinating for chemists due to their selectivity, sensitivity, robustness and cost-effective nature.
Collapse
Affiliation(s)
- Hafiz Muhammad Junaid
- Institute of Chemistry
- University of the Punjab
- Quaid-e-Azam Campus
- Lahore 54590
- Pakistan
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro
- Pakistan
| | - Madeeha Batool
- Institute of Chemistry
- University of the Punjab
- Quaid-e-Azam Campus
- Lahore 54590
- Pakistan
| |
Collapse
|
153
|
Kim J, Park J, Kim D, Di Serio M, Jung OS. Stepwise coordination isomerism of 2D networks: adsorption of diiodomethane into crystals and recognition in SCSC mode. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00540e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3CH2Cl2·2C2H5OH@[CdI2L] with a new 2D topology of {43·62·8} are isomerized into new single crystals of 4C4H8O@[CdI2L]. Interestingly, both crystals are integral to an efficient and tolerant matrix for recognition of diiodomethane in the SCSC mode.
Collapse
Affiliation(s)
- Junhee Kim
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Junmyeong Park
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Dongwon Kim
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Martino Di Serio
- Department of Chemical Sciences
- University of Naples Federico II
- Naples
- Italy
| | - Ok-Sang Jung
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
154
|
Kumar S, Singh S, Kumar A, Kumar P. Recognition, mechanistic investigation and applications for the detection of biorelevant Cu2+/Fe2+/Fe3+ ions by ruthenium(ii)-polypyridyl based fluorescent sensors. Dalton Trans 2021; 50:2705-2721. [DOI: 10.1039/d0dt03488f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective recognition of biorelevant Cu2+ and Fe2+/Fe3+ ions using fluorescent Ru(ii)-polypyridyl based sensors via both “turn-on” and “turn-off” emissive response is the main focus of present article.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Applied Sciences and Humanities
- School of Engineering
- University of Petroleum and Energy Studies
- Dehradun-248007
- India
| | - Siddhant Singh
- Department of Chemistry
- School of Physical Sciences (SoPS)
- Doon University
- Dehradun
- India
| | - Arun Kumar
- Department of Chemistry
- School of Physical Sciences (SoPS)
- Doon University
- Dehradun
- India
| | - Pramod Kumar
- Department of Chemistry
- Mahamana Malviya College Khekra (Baghpat)
- C.C.S. University Meerut
- India
| |
Collapse
|
155
|
|
156
|
Karakuş E. A rhodamine based fluorescent chemodosimeter for the selective and sensitive detection of copper (II) ions in aqueous media and living cells. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
157
|
Ghosh S, Baildya N, Ghosh K. A new 1,2,3-triazole-decorated imino-phenol: selective sensing of Zn 2+, Cu 2+ and picric acid under different experimental conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj01853a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new 1,2,3-triazole-based imino-phenol 1 is synthesized. It selectively senses Zn2+ in CH3CN–H2O with a detection limit of 1.8 × 10−6 M. Further, the selective sensing of Cu2+ and picric acid is achieved by the ensemble 1.Zn2+ in CH3CN–H2O.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | | | - Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|
158
|
Sousa RPCL, Figueira RB, Costa SPG, M. Raposo MM. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens 2020; 5:3678-3709. [PMID: 33226221 DOI: 10.1021/acssensors.0c01615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antifouling biocides are toxic to the marine environment impacting negatively on the aquatic ecosystems. These biocides, namely, tributyltin (TBT) and Cu(I) compounds, are used to avoid biofouling; however, their toxicity turns TBT and Cu(I) monitoring an important health issue. Current monitoring methods are expensive and time-consuming. This review provides an overview of the actual state of the art of antifouling paints' biocides, including their impact and toxicity, as well as the reported methods for TBT and Cu(I) detection over the past decade. The principles of optical fiber sensors (OFS) applications, with focus on environmental applications, and the use of organic chemosensors in this type of sensors are debated. The multiplexing ability of OFS and their application on aquatic environments are also discussed.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rita B. Figueira
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana P. G. Costa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Manuela M. Raposo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
159
|
Kathiravan A, Khamrang T, Dhenadhayalan N, Lin KC, Ramasubramanian K, Jaccob M, Velusamy M. Internet of Things-Enabled Aggregation-Induced Emission Probe for Cu 2+ Ions: Comprehensive Investigations and Three-Dimensional Printed Portable Device Design. ACS OMEGA 2020; 5:32761-32768. [PMID: 33376914 PMCID: PMC7759008 DOI: 10.1021/acsomega.0c05262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 05/05/2023]
Abstract
Herein, we have developed a novel aggregation-induced emission (AIE) probe and three-dimensional (3D) printed portable device for copper (Cu2+) sensing in an aqueous medium. A ubiquitous synthetic route has been employed to devise the anthracene-conjugated imidazo[1,5-a]pyridine (TL19) probe as a unique anchor for Cu2+ ions. The TL19 is meticulously characterized through pivotal spectroscopic techniques, and the satisfactory results were obtained. The solvatochromic analysis and density functional theory calculations cohesively reveal that the TL19 exhibits the intramolecular charge transfer transition upon photoexcitation. Intriguingly, the TL19 exhibits spherically shaped nanoaggregates and enhanced fluorescence in DMSO/water (10:90) mixtures. This fluorescent nanoaggregate instantaneously responded toward the detection of Cu2+ via a deaggregation mechanism. The detection limit is found to be 9 pM in an aqueous medium. Further, the detection of Cu2+ in the HeLa cells has also been achieved due to bright green fluorescence, photostability, and biocompatibility nature of TL19 aggregates. On the other hand, an internet of things (IoT)-embedded 3D printed portable device is constructed for the detection of Cu2+ ions in real water samples. The Cu2+ detection is achieved through an IoT device, and results were acknowledged through an android application in 3.32 s round-trip time. Thus, the IoT-enabled AIE probe could be a prospective device for Cu2+ detection in a constrained environment.
Collapse
Affiliation(s)
- Arunkumar Kathiravan
- Department
of Chemistry, Department of Computer Science, Vel Tech
Rangarajan Dr Sagunthala R & D Institute
of Science and Technology, Avadi, Chennai, Tamil Nadu 600 062, India
| | - Themmila Khamrang
- Department
of Chemistry, C. I. College, Bishnupur, Manipur 795126, India
| | - Namasivayam Dhenadhayalan
- Department
of Chemistry, National Taiwan University
and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department
of Chemistry, National Taiwan University
and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Kanagachidambaresan Ramasubramanian
- Department
of Chemistry, Department of Computer Science, Vel Tech
Rangarajan Dr Sagunthala R & D Institute
of Science and Technology, Avadi, Chennai, Tamil Nadu 600 062, India
| | - Madhavan Jaccob
- Department
of Chemistry & Computational Chemistry Laboratory, Loyola Institute
of Frontier Energy (LIFE), Loyola College, Chennai, Tamil Nadu 600 034, India
| | - Marappan Velusamy
- Department
of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793 022, India
| |
Collapse
|
160
|
Onça LO, de Souza JCP, Dos Santos IGN, Santos EDS, Soares SM, Diniz PHGD. A new highly selective colorimetric Schiff base chemosensor for determining the copper content in artisanal cachaças. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118783. [PMID: 32818693 DOI: 10.1016/j.saa.2020.118783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
This work demonstrated the feasibility of applying the Schiff base 5-bromo-2-salicyl-beta-alanine as a colorimetric chemosensor for the spectrophotometric quantification of the copper content in artisanal cachaças. For this, the experimental conditions were optimized to obtain an efficient, sensitive, reversible, and highly selective chemosensor to Cu2+ ions. The complex stoichiometry was 1:1, with a formation constant of 5.82 × 102 L mol-1 and molar absorptivity of 5.82 × 103 mol L-1 cm-1. Then, a spectrophotometric analytical method was developed and validated according to the Brazilian legislation. The linearity of the analytical curve was demonstrated by ANOVA, at a confidence level of 95%. The limits of detection and quantification were 0.0659 and 0.200 mg L-1, respectively. The coefficients of variation for both the intra- and inter-day precisions were lower than 3.83%, and the accuracy presented a mean recovery of 100.55 ± 2.87%. The absence of a matrix effect was confirmed by the standard addition method, and the copper content in three artisanal cachaças from different geographical origins was estimated as lower than 2.93 mg L-1. This result was in accordance with the Brazilian legislation but reinforces the need to carry out stricter quality control to achieve exportation standards. Therefore, the proposed method can be considered a simple, selective, linear, precise, and accurate tool that involves only a simple complexation reaction through the addition of the chemosensor solution in a buffered medium. As a consequence, the simplicity, practicality, rapidity, and low cost of synthesis of the proposed Schiff base chemosensor are highlighted.
Collapse
Affiliation(s)
- Larissa Oliveira Onça
- Programa de Pós-Graduação em Química Pura e Aplicada (POSQUIPA), Centro das Ciências Exatas e das Tecnologias (CCET), Universidade Federal do Oeste da Bahia (UFOB), 47.810-059 Barreiras, BA, Brazil
| | - Joseana Caroline Palmeira de Souza
- Undergraduate Course of Chemistry, Centro das Ciências Exatas e das Tecnologias (CCET), Universidade Federal do Oeste da Bahia (UFOB), 47.810-059 Barreiras, BA, Brazil
| | - Izabela Gessyane Nogueira Dos Santos
- Undergraduate Course of Chemistry, Centro das Ciências Exatas e das Tecnologias (CCET), Universidade Federal do Oeste da Bahia (UFOB), 47.810-059 Barreiras, BA, Brazil
| | - Emerson de Sousa Santos
- Undergraduate Course of Chemistry, Centro das Ciências Exatas e das Tecnologias (CCET), Universidade Federal do Oeste da Bahia (UFOB), 47.810-059 Barreiras, BA, Brazil
| | - Sérgio Macêdo Soares
- Programa de Pós-Graduação em Química Pura e Aplicada (POSQUIPA), Centro das Ciências Exatas e das Tecnologias (CCET), Universidade Federal do Oeste da Bahia (UFOB), 47.810-059 Barreiras, BA, Brazil
| | - Paulo Henrique Gonçalves Dias Diniz
- Programa de Pós-Graduação em Química Pura e Aplicada (POSQUIPA), Centro das Ciências Exatas e das Tecnologias (CCET), Universidade Federal do Oeste da Bahia (UFOB), 47.810-059 Barreiras, BA, Brazil.
| |
Collapse
|
161
|
Nikolaeva OG, Karlutova OY, Dubonosov AD, Bren VA, Minkin VI. Polyfunctional Ionochromic 1,3-Dihydroxy-6-oxo-6H-benzo[c]chromene-2,4-dicarbaldehyde Aroylhydrazones. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220120014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
162
|
Mattison RL, Bowyer AA, New EJ. Small molecule optical sensors for nickel: The quest for a universal nickel receptor. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
163
|
Liu J, Wang S, Li W, Dong Y, Wang J, Song Q, Zhang C. A novel imidazole-based tri-nitrogen metal cations probe with better-selectivity in ionic radius and acting as a Zn2+ fluorescence turn-on sensor. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
164
|
Tian L, Feng H, Dai Z, Zhang R. Resorufin-based responsive probes for fluorescence and colorimetric analysis. J Mater Chem B 2020; 9:53-79. [PMID: 33226060 DOI: 10.1039/d0tb01628d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fluorescence imaging technique has attracted increasing attention in the detection of various biological molecules in situ and in real-time owing to its inherent advantages including high selectivity and sensitivity, outstanding spatiotemporal resolution and fast feedback. In the past few decades, a number of fluorescent probes have been developed for bioassays and imaging by exploiting different fluorophores. Among various fluorophores, resorufin exhibits a high fluorescence quantum yield, long excitation/emission wavelength and pronounced ability in both fluorescence and colorimetric analysis. This fluorophore has been widely utilized in the design of responsive probes specific for various bioactive species. In this review, we summarize the advances in the development of resorufin-based fluorescent probes for detecting various analytes, such as cations, anions, reactive (redox-active) sulfur species, small molecules and biological macromolecules. The chemical structures of probes, response mechanisms, detection limits and practical applications are investigated, which is followed by the discussion of recent challenges and future research perspectives. This review article is expected to promote the further development of resorufin-based responsive fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
165
|
Hu JP, Yang HH, Lin Q, Yao H, Zhang YM, Wei TB, Qu WJ. A rhodamine-based dual chemosensor for the naked-eye detection of Hg 2+ and enhancement of the fluorescence emission for Fe 3. Photochem Photobiol Sci 2020; 19:1690-1696. [PMID: 33206102 DOI: 10.1039/d0pp00302f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel fluorescent chemosensor based on trimesoyl chloride-rhodamine (TR) was successfully synthesized. Rising chromogenic and fluorogenic spectral enhancements could be observed in trimesoyl chloride-rhodamine (TR) probes when Hg2+ and Fe3+ were added, respectively. TR has shown selectivity for Hg2+ and Fe3+ with high sensitivity due to metal ion complexation induced photophysical "turn-on" signaling responses. The detection limit towards Hg2+ was 2.46 × 10-8 M as determined by the 3σ method. At the same time, fluorogenic spectral enhancements were observed in TR, which exhibits a superior sensitive and selective recognition towards Fe3+ with 4.11 × 10-8 M of the detection limit. The test strips were used for colorimetric and simple detection towards Hg2+, which might finally enable the advancement of the Hg2+ sensor in the field of on-site detection.
Collapse
Affiliation(s)
- Jian-Peng Hu
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
166
|
Peewasan K, Merkel MP, Fuhr O, Anson CE, Powell AK. A multifunctional use of bis(methylene)bis(5-bromo-2-hydroxyl salicyloylhydrazone): from metal sensing to ambient catalysis of A3 coupling reactions. RSC Adv 2020; 10:40739-40744. [PMID: 35519231 PMCID: PMC9057725 DOI: 10.1039/d0ra07687b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
The potential use of bis(methylene)bis(5-bromo-2-hydroxylsalicyloylhydrazone) as a multifunctional fluorescence sensor for Cu2+, Ni2+, Co2+ and Fe2+ ions was investigated. The optical behaviour shows an increase in an absorption band at 408 nm which can be ascribed to the d-d transition (UV-vis) of the metal ions and a concomitant decrease in fluorescence intensity at 507 nm. The crystallographic analysis shows the binding site of the sensor to two Cu2+ ions and confirms the stoichiometry of 1 : 2 (ligand to metal) which is in good agreement with a Job plot analysis. Furthermore the Cu2+-complex catalyses A3 coupling reactions at 1 mol% catalytic loading; chiral propargylamine derivatives were obtained in high yield after 24 h reaction time under ambient conditions.
Collapse
Affiliation(s)
- Krisana Peewasan
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| | - Marcel P Merkel
- Institute of Nanotechnology, Karlsruhe Institute of Technology Campus North Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Karlsruhe Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology Campus North Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Karlsruhe Germany.,Karlsruhe Nano Micro Facility Karlsruhe Institute of Technolog Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Christopher E Anson
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany .,Institute of Nanotechnology, Karlsruhe Institute of Technology Campus North Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Karlsruhe Germany
| |
Collapse
|
167
|
Zhengfeng Xie, Hao Y, Li Z, Sun F, Ma J, Chen X, Shi W, Feng S. A Novel 2-Phenyl-1,2,3-Triazole Derived Fluorescent Probe for Recyclable Detection of Al3+ in Aqueous Medium and Its Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
168
|
Farahmand Kateshali A, Gholizadeh Dogaheh S, Soleimannejad J, Blake AJ. Structural diversity and applications of Ce(III)-based coordination polymers. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
169
|
Fluorescent and electrochemical detection of Cu (II) ions in aqueous environment by a novel, simple and readily available AIE probe. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
170
|
Zhou W, Gao Q, Liu D, Li C, Liu S, Xia K, Han B, Zhou C. A single molecular sensor for selective and differential colorimetric/ratiometric detection of Cu 2+ and Pd 2+ in 100% aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118365. [PMID: 32330808 DOI: 10.1016/j.saa.2020.118365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
A novel salicylaldehyde bis-Schiff-base probe decorated with imidazolium ionic liquid moieties at both ends (SAS-IMIs) was designed and facilely synthesized as a colorimetric/ratiometric sensor to visually detect Cu2+ and Pd2+ in pure aqueous media. Due to the positively charged characters of its head and tail, the SAS-IMIs exhibited high water solubility with a potential advantage in minimizing the self-aggregation. More importantly, simply by varying the solution pH, colorimetric/ratiometric sensing detection of individual metal ion (Cu2+ or Pd2+) was realized without any mutual interference. Subsequently, sensitive, selective, and differential detections for Cu2+ (LOD: 0.080 μM) and Pd2+ (LOD: 0.076 μM) in 100% aqueous solutions were achieved, which proved to be applicable for real water samples. Results from density functional theory (DFT) calculations unveiled the Cu2+/Pd2+-binding properties of SAS-IMIs, which were in accordance with the experimental observations. Furthermore, a SAS-IMIs-based solid phase sensor was fabricated, which manifested satisfactory detection abilities for Cu2+ and Pd2+.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Qiang Gao
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Darui Liu
- Shenhua Zhungeer Energy Resource Comprehensive Development Co., Ltd, Erdos 017100, PR China
| | - Chen Li
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, PR China
| | - Shu Liu
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200135, PR China
| | - Kaisheng Xia
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Bo Han
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Chenggang Zhou
- Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
171
|
Treto-Suárez MA, Tapia J, Hidalgo-Rosa Y, Páez-Hernández D, Molins E, Zarate X, Schott E. New Sensitive and Selective Chemical Sensors for Ni 2+ and Cu 2+ Ions: Insights into the Sensing Mechanism through DFT Methods. J Phys Chem A 2020; 124:6493-6503. [PMID: 32635732 DOI: 10.1021/acs.jpca.0c03834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques. The interaction of sensors with these metal ions induced a new absorption band with a hypsochromic shift to the characteristic signal of the free sensors. A theoretical study via time-dependent density functional theory (TD-DFT) was performed. This method has enabled us to reproduce the hypsochromic shift in the maximum UV-vis absorption band and explain the selective sensing of the ions. For all of the systems studied, the absorption band is characterized by a π → π* transition centered in the ligand. Instead of Ni2+ and Cu2+ ions, the transition is set toward the σ* molecular orbital with a strong contribution of the 3dx2-y2 transition (π → 3dx2-y2). These absorptions imply a ligand-to-metal charge transfer (LMCT) mechanism that results in the hypsochromic shift in the absorption band of these systems.
Collapse
Affiliation(s)
- Manuel A Treto-Suárez
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República #275, 8320000, Santiago de Chile, Chile
| | - Jorge Tapia
- Universidad Bernardo OHiggins, Facultad de Salud, Departamento de Ciencias Quı́micas y Biológicas, General Gana 1702, Santiago, Chile.,Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago, Chile
| | - Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República #275, 8320000, Santiago de Chile, Chile.,Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago, Chile
| | - Dayan Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República #275, 8320000, Santiago de Chile, Chile.,Center of Applied Nanosciences (CANS), Chile República #275, 8320000, Santiago de Chile, Chile
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, 7500912, Santiago, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Quı́mica y Farmacia, Centro de Energı́a UC, Centro de Investigación en Nanotecnologı́a y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, 7820244, Santiago, Chile.,Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago, Chile
| |
Collapse
|
172
|
Udhayakumari D, Inbaraj V. A Review on Schiff Base Fluorescent Chemosensors for Cell Imaging Applications. J Fluoresc 2020; 30:1203-1223. [PMID: 32737660 DOI: 10.1007/s10895-020-02570-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
Fluorescent determinations of analytes have proven to be a powerful method due to their simplicity, low cost, detection limit, rapid photoluminescence response, and applicability to bioimaging. Fluorescence imaging as a powerful tool for monitoring biomolecules within the living systems. Schiff base has been extensively used as strongly absorbing and colorful chromophores in the design of chemosensors. In recent years, Schiff base based fluorescent probes have been developed for the detection of various toxic analytes and imaging of various analytes in biological systems. This review gives an overview of the important fluorescent sensors which are based on Schiff base, their approaches for molecular recognition, and their potential application in bioimaging studies.
Collapse
Affiliation(s)
| | - V Inbaraj
- Department of Chemistry, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
173
|
Balagurusamy B, Ilayaperumal P, Zorlu Y, Chellaiah R. Selective Turn‐On Aluminium Ions Detection of NBD
(+)
Appended Schiff‐Base Fluorophore. ChemistrySelect 2020. [DOI: 10.1002/slct.202001867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Balajothi Balagurusamy
- Department of Chemistry Bishop Heber College Trichy 620 017 India
- School of Chemistry Bharathidasan University Trichy 620 024 India
| | - Pradeep Ilayaperumal
- Analytical chemistry Laboratory Department of Chemistry, Gebze Technical University Gebze/Kocaeli Turkey
| | - Yunus Zorlu
- Analytical chemistry Laboratory Department of Chemistry, Gebze Technical University Gebze/Kocaeli Turkey
| | - Raja Chellaiah
- Department of Chemistry Bishop Heber College Trichy 620 017 India
| |
Collapse
|
174
|
Alberti G, Zanoni C, Magnaghi LR, Biesuz R. Low-cost, disposable colourimetric sensors for metal ions detection. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00221-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractIn this work, two colourimetric sensors for metal ions detection are presented. The devices are obtained by fixing two classical dyes, Eriochrome Black T (EBT) and 1-(2-pyridylazo)-2-naphthol (PAN), on the commercial paper sheet “Colour Catcher®” (here named under the acronym CC) generally used in the washing machine to prevent colour run problems. The devices are optical sensors, since the indicator dye, fixed on the solid material, changes its spectral properties (colour and hence UV-vis spectrum) upon contact with the metal ion solution. We used the partial least squares (PLS) regression for obtaining the relationship between the metal ion content and the UV-vis spectrum change of each sensor.
Collapse
|
175
|
Development of a colorimetric and fluorescent Cu2+ ion probe based on 2′-hydroxy-2,4-diaminoazobenzene and its application in real water sample and living cells. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
176
|
Miguez FB, Menzonatto TG, Netto JFZ, Silva IM, Verano-Braga T, Lopes JF, De Sousa FB. Photo-dynamic and fluorescent zinc complex based on spiropyran ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
177
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
178
|
Ngororabanga JMV, Tshentu ZR, Mama N. A New Highly Selective Colorimetric and Fluorometric Coumarin-based Chemosensor for Hg 2. J Fluoresc 2020; 30:985-997. [PMID: 32583123 DOI: 10.1007/s10895-020-02542-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022]
Abstract
A novel colorimetric and fluorometric method based on coumarin as signalling unit was developed for Hg2+ recognition and quantification. Initially, the alkyne functionality was incorporated into a coumarin system and the resulting molecule showed higher specificity and sensitivity for Hg2+ over other cations in both absorption and emission sensing assays. The Hg2+ recognition was detected as visible colour change from colourless to yellow and as fluorescence quenching. The colour change was assigned to the increased intramolecular charge transfer (ICT) in the signalling unit upon Hg2+ binding whereas a decline in the fluorescence intensity was ascribed to the heavy atom effect from Hg2+. In order to generate a material with high sensing performance level, alkyne-functionalized molecule was hosted into a polymeric material. The resulting functionalized polymer showed higher sensitivity and selectivity for Hg2+ over its corresponding coumarin molecule. The investigation of the possible binding modes for Hg2+ suggested both alkyne and triazole functionalities as potential binding sites for Hg2+. The limit of detection (LOD) and limit of quantification (LOQ) of the proposed method were evaluated and values less than a recommended maximum level of Hg2+contaminant in drinking water (2.00 μg/L) were obtained (LOD = 0.44 μg/L and LOQ = 1.33μg/L). The real-life application of the method was investigated using natural water samples containing Hg2+ levels equivalent to the maximum tolerable concentration of Hg2+ in drinking water. The outcomes suggested that the method could be used in the sensing and determination of Hg2+ level of contaminant in the environment.
Collapse
Affiliation(s)
| | - Zenixole R Tshentu
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Neliswa Mama
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| |
Collapse
|
179
|
Dehydroacetic acid derived Schiff base as selective and sensitive colorimetric chemosensor for the detection of Cu(II) ions in aqueous medium. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
180
|
Popov LD, Karlutova OY, Shepelenko EN, Dubonosov AD, Shcherbakov IN, Bren VA, Minkin VI. Selective Naked-Eye Fluorescein-Based Chemosensor for the Detection of Pd2+ Cations. DOKLADY CHEMISTRY 2020. [DOI: 10.1134/s0012500820020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
181
|
Casanueva-Marenco MJ, Díaz-de-Alba M, Herrera-Armario A, Galindo-Riaño MD, Granado-Castro MD. Design and optimization of a single-use optical sensor based on a polymer inclusion membrane for zinc determination in drinks, food supplement and foot health care products. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110680. [PMID: 32204108 DOI: 10.1016/j.msec.2020.110680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/21/2019] [Accepted: 01/19/2020] [Indexed: 12/29/2022]
Abstract
A single-use optical sensor was designed for Zn(II) determination based on the immobilisation of the colorimetric reagent 2-acetylpyridine benzoylhydrazone (2-APBH) in a polymer inclusion membrane (PIM) adhered on the surface of an inert rectangular strip of polyester (Mylar). Different components for the membrane preparation were tested and those resulting in membrane with good appearance, proper physical and optical properties and ease of preparation were selected. Factorial design 23 with three replicates of the central point was applied for the optimisation of the membrane composition. The optimal composition consisted of 2.5 g of poly(vinyl chloride) (PVC), 4 mL of tributyl phosphate (TBP) and 0.04 g of 2-APBH. The optode showed a linear dynamic range from 0.03 (detection limit) to 1 mg L-1 of Zn(II) ions with a response time of 30 min in aqueous solution at pH 6 and a relative standard deviation of 3.90% for 0.4 mg L-1 of Zn(II). The sensor exhibited good selectivity to Zn(II) over other commonly ions. It was successfully applied to the determination of Zn(II) in a water certified reference material, spiked tap water, vitamin-mineral drink, food supplement and foot health care products, as contribution to the concern about this heavy metal due to its significant role in many biological and physiological processes although toxicant at high doses.
Collapse
Affiliation(s)
- M J Casanueva-Marenco
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - M Díaz-de-Alba
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - A Herrera-Armario
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - M D Galindo-Riaño
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain.
| | - M D Granado-Castro
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
182
|
Senthilkumaran G, Senthil S. Synthesis and Characterization of 1,2,3-Triazole Containing Fe(II) Sensor. ACTA ACUST UNITED AC 2020. [DOI: 10.14233/ajchem.2020.22494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new bis(1,2,3-triazolyl) imine based probe was designed and synthesized. Chemical structure of the probe was confirmed by IR, 1H and 13C NMR spectroscopy. The probe was investigated for its recognition abilities in aqueous-organic mixture against various cations and anions. It shows a highly selective colorimetric response to Fe(II) ion by changing the colour from colourless to brownish pink. Chemo-sensitivity of the probe was investigated by absorption spectrometric titration with the Fe(II) ions. 1H NMR titration studies indicated imine nitrogen and one of the nitrogen in triazole ring was involved in complex formation with Fe2+ ion. Energy optimization studies by DFT method exhibits a marginal energy gap between ligand and Fe(II) complex (0.1166 eV) confirms the formation of metal
ligand complex.
Collapse
Affiliation(s)
- G. Senthilkumaran
- Department of Chemistry, Government Arts College (Autonomous), Salem-636007, India
| | - S. Senthil
- Department of Chemistry, Government Arts College (Autonomous), Salem-636007, India
| |
Collapse
|
183
|
Vongnam K, Chansaenpak K, Sukwattanasinitt M, Rashatasakhon P. Aryl Ethynylpyrene as Fluorescent Sensors for Cyanide Ions in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202000821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kunnigar Vongnam
- Department of Chemistry, Faculty of ScienceChulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10300 Thailand
| | - Kantapat Chansaenpak
- Nanotec-CU Center of Excellence on Food and AgricultureDepartment of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang Pathum Thani 12120 Thailand
| | - Mongkol Sukwattanasinitt
- Department of Chemistry, Faculty of ScienceChulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10300 Thailand
- Nanotec-CU Center of Excellence on Food and AgricultureDepartment of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Paitoon Rashatasakhon
- Department of Chemistry, Faculty of ScienceChulalongkorn University, Phayathai Rd. Pathumwan Bangkok 10300 Thailand
- Nanotec-CU Center of Excellence on Food and AgricultureDepartment of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
184
|
Vyas G, Bhatt S, Si MK, Jindani S, Suresh E, Ganguly B, Paul P. Colorimetric dual sensor for Cu(II) and tyrosine and its application as paper strips for detection in water and human saliva as real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118052. [PMID: 31955120 DOI: 10.1016/j.saa.2020.118052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
A calix[4]arene based compound incorporating amide and morpholine moieties has been synthesized and its ion recognition property towards metal ions and application of its metal complex towards sensing of amino acids has been investigated. The synthesized compound interacts with Cu2+ with high selectivity and sensitivity (LOD, 0.1 ppb) in aqueous media with instant color change from colorless to yellow without interference from any other metal ions used in this study. The molecular structure of the calix compound (1) has been determined by single crystal X-ray study and the structure of its Cu2+ complex has been established by DFT calculation. The Cu2+ complex of 1 selectively detects tyrosine (LOD, 1.2 ppm) in water with distinct color change and without any interference from other 22 amino acids used in this study. The mechanism for detection of tyrosine with color change is also presented. For easy field application, paper based sensor strips have been prepared by coating compound 1 and its Cu2+ complex on filter paper, which have been used for semi-quantitative measurement of Cu2+ and tyrosine. Compound 1 and its Cu2+ complex have also been used for detection of Cu2+ and tyrosine, respectively in water and human saliva as real samples and satisfactory results are obtained.
Collapse
Affiliation(s)
- Gaurav Vyas
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shreya Bhatt
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinal K Si
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sana Jindani
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eringathodi Suresh
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bishwajit Ganguly
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parimal Paul
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
185
|
Amourizi F, Dashtian K, Ghaedi M. Electrostatically controlled plasmonic effects of gold nanoparticles with indigo-carmine functionation for rapid and straightforward colorimetric detection of Cu 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118026. [PMID: 31931355 DOI: 10.1016/j.saa.2020.118026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
A colorimetric sensor is fabricated for effective on-site monitoring of Cu2+ ions content based on the distance-dependent optical properties of gold nanoparticles-polyvinyl alcohol-citrate (Au-NPs-PVA-Cy) which plasmonic effect electrostatically was controlled by PVA-Cy stabilizing indigo-carmine (IC) functionalizing. The surface-modified gold nanoparticles were extremely stable with a strong affinity toward Cu2+ ions. Citrate ion was employed as a cross-linking agent for pairs of Au-NPs-PVA-Cy and IC for stabilizing coordination between Cu2+ ion and IC. The active materials were characterized by UV-Vis, SEM, DLS, XRD, FT-IR, and EDS analyses. The sensor response toward Cu2+ ion was found to be linear in the range of 0.0974 to 3.27 μM with the limit of detection and quantification values of 0.021 and 0.07 μM, respectively. The sensor represents good sensitivity and stability, promisingly suggesting this device for the accurate and repeatable determination of Cu2+ in real water samples. The effect of different foreign ions on the selectivity of the sensor was checked. The sensor has a long shelf life in comparison to other similar colorimetric sensors. Also, it shows a repeatable response with RSD% of 2.02%. Thus, the sensing of Cu2+ ions based on the electrostatically control plasmonic of Au-NPs-PVA-Cy was developed with proper signaling based on the color change from dark blue to light blue as readily seen by the naked eye. Furthermore, the efficient environmental applicability of this simple and rapid determination of the Cu2+ sensor is proved.
Collapse
Affiliation(s)
| | - Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| |
Collapse
|
186
|
Zhang Y, Li L, Wang J, Jia L, Yang R, Guo X. A 4,5-quinolimide-based fluorescent sensor for sequential detection of Cu 2+ and cysteine in water and living cells with application in a memorized device. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118030. [PMID: 31951867 DOI: 10.1016/j.saa.2020.118030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, a new 4,5-quinolimide-based fluorescent sensor BNC was synthesized and characterized. BNC showed single selectivity for Cu2+via the "turn-off" fluorescence among various common metal ions. After forming a 1:1 stoichiometric complex with Cu2+, the detection limit (LOD) of BNC for Cu2+ was measured to be 0.44 μM. Subsequently, the in situ generated BNC-Cu2+ complex had been used for sensing Cys with the LOD of 1.5 μM through the displacement strategy, resulting in the revivable emission of BNC. According to the "off-on-off" fluorescence cycle of BNC generated by the alternate addition of Cu2+ and Cys, a reversible memorized device with "read-write-read-erase" behavior was constructed at the molecular level. Furthermore, the recoveries of Cu2+ in lake water with BNC were in the range of 95.0-105%. And sequential fluorescence imagings of BNC for Cu2+ and Cys were successfully applied in living yeast cells.
Collapse
Affiliation(s)
- Yu Zhang
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Lan Li
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Jinping Wang
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Lihua Jia
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| | - Rui Yang
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Xiangfeng Guo
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
187
|
Conti L, Giorgi C, Valtancoli B, Paoli P, Rossi P, Marchionni A, Faggi E, Bencini A. Switching on the Fluorescence Emission of Polypyridine Ligands by Simultaneous Zinc(II) Binding and Protonation. Chempluschem 2020; 85:659-671. [PMID: 32237220 DOI: 10.1002/cplu.201900752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Indexed: 11/07/2022]
Abstract
The synthesis and characterization of the two new open-chain ligands 1,15-bis-[6-(2,2'-bipyridyl)]-2,5,8,11,14-pentaaza-octadecane (L1) and 1,15-bis-[2-(1,10-phenanthroline)-9-methyl]-2,5,8,11,14-pentaazaoctadecane (L2), both featuring a tetraethylenpentaamine chain linking via methylene bridges the 6 and 2 positions of two identical 2,2'-bipyridyl (bpy) and 9-methyl-1,10-phenanthroline (9-methyl-phen) moieties respectively, are reported. Their protonation and binding ability for Cu2+ , Zn2+ , Cd2+ and Pb2+ have been studied by coupling potentiometric titrations with UV-vis absorption and fluorescence emission measurements in water. L1 and L2 afford stable mono- and dinuclear complexes, in which the metal ion is bound by a single bpy or 9-methyl-phen unit and the amine groups on the aliphatic chain. However, L1 displays a greater binding ability for Cu2+ and Zn2+ with respect to L2, the stability constants of the [ML1]2+ complexes being 21.8 (Cu2+ ) and 19.4 (Zn2+ ) log units vs 20.34 and 16.8 log. units for the corresponding L2 species. Among all the metal ions tested, only the Zn2+ complex with L2 features an enhanced fluorescence emission at neutral pH, thanks to the simultaneous binding of one Zn2+ ion and H+ ion(s), that inhibits any possible photoinduced electron transfer (PET) process from the amine donors to the excited phen moiety. Binding of a second metal switches off the emission again.
Collapse
Affiliation(s)
- Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, Via S. Marta 3, Florence, 50139, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, Via S. Marta 3, Florence, 50139, Italy
| | - Andrea Marchionni
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM_CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Enrico Faggi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Andrea Bencini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
188
|
Dhaka G, Jindal G, Kaur R, Rana S, Gupta A, Kaur N. Multianalyte azo dye as an on-site assay kit for colorimetric detection of Hg 2+ions and electrochemical sensing of Zn 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117869. [PMID: 31813729 DOI: 10.1016/j.saa.2019.117869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
A new tailor-made colorimetric chemosensor, (E)-1-(benzo[d]thiazol-2-yl)-3-(pyridin-3-yldiazenyl)naphthalen-2-ol (1), containing benzothiazole and pyridine moieties connected through an azo (-N=N-) linkage has been designed and synthesized. The synthesized chemosensor displayed an eye-catching color change upon binding to acetate [AcO-;colorless to russet] and mercury (II) [Hg2+;colorless to greenish blue] ions in 9:1 (v/v) aqueous CH3CN (pH 7.0 HEPES buffer).The mechanism of interaction between the chemosensor and the Hg2+/AcO- ions has been confirmed by 1H NMR titration experiments. Moreover, the colorimetric chemosensor 1 displayed potential in-field applications as on-site assay kit and detection of Hg2+ ions in real water samples. Importantly chemosensor 1 gave selective electrochemical response towards Zn2+ ions, enabling simple azo-dye 1 as multichannel chemosensor for colorimetric detection of Hg2+ ions and electrochemical detection of Zn2+ ions.
Collapse
Affiliation(s)
- Gargi Dhaka
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gitanjali Jindal
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Ranjeet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Shweta Rana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Akhil Gupta
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
189
|
Hu Y, Yang Z, Lu X, Guo J, Cheng R, Zhu L, Wang CF, Chen S. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. NANOSCALE 2020; 12:5494-5500. [PMID: 32090221 DOI: 10.1039/d0nr00381f] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, widespread attention has been paid to red emissive carbon dots (CDs) which have desirable optical properties, low toxicity, and biocompatibility. Despite great efforts, the facile preparation of red dual-emissive CDs useful for ratiometric detection and bioimaging remains challenging. Here, we report a facile synthesis of red dual-emissive CDs and their potential for ratiometric fluorescence sensing and cellular imaging. Derived from the hydrothermal treatment of dicyandiamide and o-phenylenediamine in dilute sulfuric acid, the CDs are surface-tailored with nitrogen-, oxygen-, and sulfur-containing functional groups. The as-prepared CDs show various good features, including good water solubility, biocompatibility, excitation-independent dual-emission with two photoluminescence (PL) peaks centered at 630 and 680 nm, and an absolute quantum yield (QY) of 30.2% in water. The CDs exhibit a selective, sensitive, rapid, and stable ratiometric fluorescence response toward methyl blue, giving a linear relationship in the range of 0.5-300 μM with a correlation coefficient (R2) of 0.997. We also study ratiometric fluorescence sensing for the accurate detection of pH. Moreover, the CDs possess good cellular imaging ability, indicating their promising applicability for biomedical applications. These results pave a way toward the fabrication of red dual-emissive carbon-based nanomaterials useful for both ratiometric sensing and bioimaging.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Zhengbiao Yang
- Nanjing Environmental Monitoring Center, Nanjing 210013, China
| | - Xuan Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Jiazhuang Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
190
|
Wang J, Jiang H, Liu HB, Liang L, Tao J. Pyrene-imidazole conjugate as a fluorescent sensor for the sequential detection of iron(III) and histidine in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117725. [PMID: 31718975 DOI: 10.1016/j.saa.2019.117725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
We developed PIM, a pyrene-based fluorescence sensor bearing an imidazole moiety and a carbonyl group as the binding sites for Fe3+ ions. The pyrene-based control compounds 1 and 2 were synthesized to demonstrate the structure-activity relationships. Compound 1, which contained a thiazoline moiety and a carbonyl group, displayed high selectivity for Cu2+ ions. This property indicated that heterocycles play an important role in the metal ion selectivity modulation. Compound 2, which lacked a carbonyl group, did not display metal ion selectivity. This characteristic demonstrated that introducing an additional recognition unit (cooperative recognition strategy) should be an effective way to improve metal ion selectivity. Furthermore, the PIM-Fe3+ ensemble can serve as a fluorescent sensor for histidine (His) detection via the removal of Fe3+ from the ensemble by His and the release of PIM. The sequential detection of Fe3+ and His exhibited on-off-on phenomenon, and the Fe3+ and His detection limits were 0.11 and 3.06 μM, respectively. These results will help in the further enhancement or modulation of metal ion selectivity in the development of fluorescent sensor systems. Moreover, the organic-metal ensemble provides an effective platform for detecting amino acids through the displacement strategy.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Huihui Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Hai-Bo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Lebao Liang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Junrong Tao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
191
|
Mukherjee S, Betal S, Chattopadhyay AP. Dual sensing and synchronous fluorescence spectroscopic monitoring of Cr 3+and Al 3+ using a luminescent Schiff base: Extraction and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117837. [PMID: 31784221 DOI: 10.1016/j.saa.2019.117837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/27/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
A well designed, new pyrene based small molecule (L) was synthesized from 1:1 condensation reaction of 1-aminopyrene and 6-(1,3-benzodioxal-5-yl)-2-pyridine carboxaldehyde which was characterized by absorption, emission spectrometry, FTIR, NMR and mass studies. Interestingly the UV-vis and fluorescence spectroscopic studies revealed that the ligand (L) works as a dual turn-on luminescent chemosensor for chromium(III) (Cr3+) and aluminium(III) (Al3+) in aqueous environment which were further supported by DFT and TDDFT studies. L shows a significant colour change from pale yellow to reddish yellow with a detection limit of ~10-9 M in the presence of Cr3+ and Al3+ whereas there were no noteworthy changes in the presence of other monovalent and divalent metal ions. The molecular signaling in the presence of Cr3+, Al3+, Fe3+ and EDTA was compared with advanced level combinational INHIBIT gate based on 4 input logic gates. Herein, first derivative constant wavelength synchronous fluorescence spectroscopy (1st DCWSFS) was applied for the determination of Cr3+, Al3+ ion concentrations in a mixture via increment of spectral resolution of the respective overlapping peaks. 1st DCWSFS is reported to be used in pharmaceuticals but very few works have been done for determination of metal ion concentration in environmental sample without prior separation. The individual Cr3+and Al3+ ion concentrations in a mixture were determined through liquid-liquid extraction process and the efficiencies were compared with 1st derivative SFS method. It was observed that 1st derivative SFS process is more efficient than conventional liquid-liquid extraction process. Therefore, 1st DCWSFS method using sensor L might be useful as a diagnostic tool for detection of individual metal ion concentrations (Cr3+ and Al3+) from a mixture which will be cost-effective, time saving and more precise.
Collapse
Affiliation(s)
- Soma Mukherjee
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India.
| | - Soumi Betal
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | | |
Collapse
|
192
|
Udhayakumari D. Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015-2019. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117817. [PMID: 31780310 DOI: 10.1016/j.saa.2019.117817] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 05/28/2023]
Abstract
Fluoride ion (F-) contamination can be accumulated along the water and the food chain and cause serious risk to public health. It is of the greatest importance that selects the suitable chromophores and fluorophores for the design and synthesis of outstanding selective, sensitive chromogenic and fluorogenic probes for detection of fluoride ion. In this review is mainly focused on the current progress of fluoride ion detection according to their receptors into several categories like anthracene, azo, benzothiazole, BODIPY, calixarene, coumarin, imidazole, diketopyrrolopyrrole, hydrazone, imidazole, naphthalene, naphthalimide, quantum dots, Schiff base and urea group sensing in the year 2015-2019.
Collapse
|
193
|
Wang ZG, Wang Y, Ding XJ, Sun YX, Liu HB, Xie CZ, Qian J, Li QZ, Xu JY. A highly selective colorimetric and fluorescent probe for quantitative detection of Cu 2+/Co 2+: The unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117763. [PMID: 31718979 DOI: 10.1016/j.saa.2019.117763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Identifying and detecting similar target cations through combining "turn on" and "turn off" fluorescence mechanism is effective and challenging. Now a new colorimetric and ON-OFF-ON fluorescent probe N'-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)-3-hydroxy-2-naphthohydrazide (L) was reported, which could detect Cu2+ and Co2+ in phosphate buffered CH3CH2OH-H2O solvent system. With the assistance of glutathione and pH adjustment, a unique ON-OFF-ON fluorescence detection strategy could be achieved for distinguishing Cu2+ and Co2+. The emission of probe could recover from the L-Cu2+ and L-Co2+ system by addition of GSH or adjusting pH value to 4, respectively, which is due to the abolishment of paramagnetic Cu2+/Co2+. Based on fluorescence titration experiments, the limit of detection was determined as 3.84 × 10-9 M and 4.55 × 10-9 M for Cu2+ and Co2+, respectively. Meanwhile, the detection limit reached 6.21 × 10-8 M for Cu2+ and 6.96 × 10-8 M for Co2+ according to absorbance signal output. Fast recognition of Cu2+/Co2+ can be achieved by obvious color changes from green to colorless under UV light, as well as from yellow to orange-red in room light. The binding mode of L toward Cu2+ and Co2+ have been systematically studied by Job's plot analysis, ESI-MS, IR and density functional theory calculations. Most strikingly, further practical applications of the probe L in fluorescence imaging were investigated in MCF-7 cells and zebrafish due to its low cytotoxicity and good optical properties, suggesting that L could serve as a fluorescent sensor for tracking Cu2+ and Co2+in vivo.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Xiao-Jing Ding
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yu-Xuan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China.
| | - Jing Qian
- College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
194
|
A novel, anthracene-based naked eye probe for detecting Hg2+ ions in aqueous as well as solid state media. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
195
|
Huang J, Wang YL, Yu XD, Zhou YN, Chu LQ. Enhanced fluorescence of carboxymethyl chitosan via metal ion complexation in both solution and hydrogel states. Int J Biol Macromol 2020; 152:50-56. [PMID: 32105697 DOI: 10.1016/j.ijbiomac.2020.02.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/23/2020] [Indexed: 01/02/2023]
Abstract
Recently, biopolymer-based non-traditional luminogens had attracted a great deal of interest because of their potential applications in biomedical field. Herein, we report for the first time that carboxymethyl chitosan (CMCh) can exhibit strong blue fluorescence at λ = 436.8 nm when brought in contact with zinc ion (Zn2+) in both solution and hydrogel states. The resultant CMCh-Zn sample exhibits a typical fluorescence lifetime of 3.68 ns and a quantum yield of 6.8%. The fluorescence behaviors of CMCh-Zn samples at different excitation wavelengths, CMCh concentrations, temperature, and pH values, are also investigated. The results clearly indicate clustering-triggered emission characteristic of the CMCh-Zn. In order to further elucidate the chemical nature of this new fluorescence system, a series of CMCh-Zn samples are characterized by using ultraviolet-visible spectrometer, Fourier-transform infrared spectrometer and X-ray diffractometer. The data suggest that the metal-ligand complexation of CMCh with Zn2+ account for the generation of such an enhanced fluorescence.
Collapse
Affiliation(s)
- Ju Huang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yu-Long Wang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xu-Dong Yu
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ya-Ning Zhou
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
196
|
Men D, Liu G, Xing C, Zhang H, Xiang J, Sun Y, Hang L. Dynamically Tunable Plasmonic Band for Reversible Colorimetric Sensors and Surface-Enhanced Raman Scattering Effect with Good Sensitivity and Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7494-7503. [PMID: 31944661 DOI: 10.1021/acsami.9b23172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A colorimetric sensor based on plasmonic nanoparticles (NPs) is a promising and convenient detection tool, but its reproducibility and adjustability remain a challenge because the NPs are mainly random and uncontrollable. Herein, a colorimetric sensor with good reversibility and reproducibility was prepared by embedding the two-dimensional (2D) Au NP arrays on the surface of the polyacrylamide hydrogel film to form 2D Au NP arrays attached a hydrogel composite. For this composite, with the change of the interspacing distance of Au NPs driven by the swelling-shrinking behavior of the hydrogel carrier, the diffraction peaks faded away and plasmonic coupling peaks appeared, accompanied by a series of obvious color changes (iridescence ↔ violet ↔ golden yellow ↔ red), which can be correlated to the applied water content. Importantly, the composite had good reproducibility as a result of a highly ordered array structure. Additionally, this colorimetric sensor with a dynamically tunable plasmonic band can be used as a high-quality surface-enhanced Raman scattering (SERS) substrate because the gap distance of the Au NPs can be uniformly controlled. We demonstrated that, as the active gap distance decreased, the SERS signals can be significantly intensified. When the water content reached 40%, this SERS substrate exhibited high sensitivity (10-10 M for 4-aminothiophenol and 10-9 M for thiram) and good reproducibility (relative standard deviation of <20%) using the excitation laser of 785 nm because of the small gap between two adjacent Au NPs and the highly ordered periodic structure. Such 2D Au NP arrays attached to a hydrogel composite could be a new strategy to obtain a high-quality colorimetric sensor and dynamic SERS substrate.
Collapse
Affiliation(s)
- Dandan Men
- Jiangxi Key Laboratory of Surface Engineering , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi 330013 , People's Republic of China
| | - Guangqiang Liu
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering , Qufu Normal University , Qufu , Shandong 273165 , People's Republic of China
| | - Changchang Xing
- University of Science and Technology of China , Hefei , Anhui 230027 , People's Republic of China
| | - Honghua Zhang
- Jiangxi Key Laboratory of Surface Engineering , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi 330013 , People's Republic of China
| | - Junhuai Xiang
- Jiangxi Key Laboratory of Surface Engineering , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi 330013 , People's Republic of China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Lifeng Hang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital , Southern Medical University , Guangzhou , Guangdong 518037 , People's Republic of China
| |
Collapse
|
197
|
Root HD, Thiabaud G, Sessler JL. Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution. Front Chem Sci Eng 2020; 14:19-27. [PMID: 37786429 PMCID: PMC10544843 DOI: 10.1007/s11705-019-1888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/21/2019] [Indexed: 10/25/2022]
Abstract
We report here a water-soluble metal cation sensor system based on the as-prepared or reduced form of an expanded porphyrin, texaphyrin. Upon metal complexation, a change in the redox state of the ligand occurs that is accompanied by a color change from red to green. Although long employed for synthesis in organic media, we have now found that this complexation-driven redox behavior may be used to achieve the naked eye detectable colorimetric sensing of several number of less-common metal ions in aqueous media. Exposure to In(III), Hg(II), Cd(II), Mn(II), Bi(III), Co(II), and Pb(II) cations leads to a colorimetric response within 10 min. This process is selective for Hg(II) under conditions of competitive analysis. Furthermore, among the subset of response-producing cations, In(III) proved unique in giving rise to a ratiometric change in the ligand-based fluorescence features, including an overall increase in intensity. The cation selectivity observed in aqueous media stands in contrast to what is seen in organic solvents, where a wide range of texaphyrin metal complexes may be prepared. The formation of metal cation complexes under the present aqueous conditions was confirmed by reversed phase high-performance liquid chromatography, ultra-violet-visible absorption and fluorescence spectroscopies, and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Harrison D Root
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Gregory Thiabaud
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| |
Collapse
|
198
|
Kumar P, Kumar S. Copper ion luminescence on/off sensing by a quinoline-appended ruthenium(II)-polypyridyl complex in aqueous media. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
199
|
Kaur B, Gupta A, Kaur N. A simple schiff base as a multi responsive and sequential sensor towards Al3+, F− and Cu2+ ions. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
200
|
Nikolaeva OG, Karlutova OY, Dubonosov AD, Bren VA, Minkin VI. Synthesis and Luminescence and Ionochromic Properties of 9-Hydroxy-1-methyl-3-oxo-3H-benzo[f]chromene8-carbaldehyde Imines and Hydrazones. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s107036322002005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|