151
|
Sleith RS, Karol KG. Global high-throughput genotyping of organellar genomes reveals insights into the origin and spread of invasive starry stonewort (Nitellopsis obtusa). Biol Invasions 2021. [DOI: 10.1007/s10530-021-02591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractAquatic invasive species are damaging to native ecosystems. Preventing their spread and achieving comprehensive control measures requires an understanding of the genetic structure of an invasive population. Organellar genomes (plastid and mitochondrial) are useful for population level analyses of invasive plant distributions. In this study we generate complete organellar reference genomes using PacBio sequencing, then use these reference sequences for SNP calling of high-throughput, multiplexed, Illumina based organellar sequencing of fresh and historical samples from across the native and invasive range of Nitellopsis obtusa (Desv. in Loisel.) J.Groves, an invasive macroalgae. The data generated by the analytical pipeline we develop indicate introduction to North America from Western Europe. A single nucleotide transversion in the plastid genome separates a group of five samples from Michigan and Wisconsin that either resulted from introductions of two closely related genotypes or a mutation that has arisen in the invasive range. This transversion will serve as a useful tool to understand how Nitellopsis obtusa moves across the landscape. The methods and analyses described here are broadly applicable to invasive and native plant and algae species, and allow efficient genotyping of variable quality samples, including 100-year-old herbarium specimens, to determine population structure and geographic distributions.
Collapse
|
152
|
Zhu S, Fu Q, Xu F, Zheng H, Yu F. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. THE NEW PHYTOLOGIST 2021; 232:1168-1183. [PMID: 34424552 DOI: 10.1111/nph.17683] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 05/15/2023]
Abstract
Receptor-like kinases (RLKs), which constitute the largest receptor family in plants, are essential for perceiving and relaying information about various environmental stimuli. Tremendous progress has been made in the past few decades towards elucidating the mechanisms of action of several RLKs, with emerging paradigms pointing to their roles in cell adaptations. Among these paradigms, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins and their rapid alkalinization factor (RALF) peptide ligands have attracted much interest. In particular, FERONIA (FER) is a CrRLK1L protein that participates in a wide array of physiological processes associated with RALF signalling, including cell growth and monitoring cell wall integrity, RNA and energy metabolism, and phytohormone and stress responses. Here, we analyse FER in the context of CrRLK1L members and their ligands in multiple species. The FER working model raises many questions about the role of CrRLK1L signalling networks during cell adaptation. For example, how do CrRLK1Ls recognize various RALF peptides from different organisms to initiate specific phosphorylation signal cascades? How do RALF-FER complexes achieve their specific, sometimes opposite, functions in different cell types? Here, we summarize recent major findings and highlight future perspectives in the field of CrRLK1L signalling networks.
Collapse
Affiliation(s)
- Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Heping Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China
| |
Collapse
|
153
|
Tanaka M, Takahashi R, Hamada A, Terai Y, Ogawa T, Sawa Y, Ishikawa T, Maruta T. Distribution and Functions of Monodehydroascorbate Reductases in Plants: Comprehensive Reverse Genetic Analysis of Arabidopsis thaliana Enzymes. Antioxidants (Basel) 2021; 10:antiox10111726. [PMID: 34829597 PMCID: PMC8615211 DOI: 10.3390/antiox10111726] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Monodehydroascorbate reductase (MDAR) is an enzyme involved in ascorbate recycling. Arabidopsis thaliana has five MDAR genes that encode two cytosolic, one cytosolic/peroxisomal, one peroxisomal membrane-attached, and one chloroplastic/mitochondrial isoform. In contrast, tomato plants possess only three enzymes, lacking the cytosol-specific enzymes. Thus, the number and distribution of MDAR isoforms differ according to plant species. Moreover, the physiological significance of MDARs remains poorly understood. In this study, we classify plant MDARs into three classes: class I, chloroplastic/mitochondrial enzymes; class II, peroxisomal membrane-attached enzymes; and class III, cytosolic/peroxisomal enzymes. The cytosol-specific isoforms form a subclass of class III and are conserved only in Brassicaceae plants. With some exceptions, all land plants and a charophyte algae, Klebsormidium flaccidum, contain all three classes. Using reverse genetic analysis of Arabidopsis thaliana mutants lacking one or more isoforms, we provide new insight into the roles of MDARs; for example, (1) the lack of two isoforms in a specific combination results in lethality, and (2) the role of MDARs in ascorbate redox regulation in leaves can be largely compensated by other systems. Based on these findings, we discuss the distribution and function of MDAR isoforms in land plants and their cooperation with other recycling systems.
Collapse
Affiliation(s)
- Mio Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Ryuki Takahashi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Akane Hamada
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Yusuke Terai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahisa Ogawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
- Correspondence: ; Tel.: +81-882-32-6585
| |
Collapse
|
154
|
Garnelo Gómez B, Holzwart E, Shi C, Lozano-Durán R, Wolf S. Phosphorylation-dependent routing of RLP44 towards brassinosteroid or phytosulfokine signalling. J Cell Sci 2021; 134:272537. [PMID: 34569597 PMCID: PMC8572011 DOI: 10.1242/jcs.259134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants rely on cell surface receptors to integrate developmental and environmental cues into behaviour adapted to the conditions. The largest group of these receptors, leucine-rich repeat receptor-like kinases, form a complex interaction network that is modulated and extended by receptor-like proteins. This raises the question of how specific outputs can be generated when receptor proteins are engaged in a plethora of promiscuous interactions. RECEPTOR-LIKE PROTEIN 44 (RLP44) acts to promote both brassinosteroid and phytosulfokine signalling, which orchestrate diverse cellular responses. However, it is unclear how these activities are coordinated. Here, we show that RLP44 is phosphorylated in its highly conserved cytosolic tail and that this post-translational modification governs its subcellular localization. Whereas phosphorylation is essential for brassinosteroid-associated functions of RLP44, its role in phytosulfokine signalling is not affected by phospho-status. Detailed mutational analysis suggests that phospho-charge, rather than modification of individual amino acids determines routing of RLP44 to its target receptor complexes, providing a framework to understand how a common component of different receptor complexes can get specifically engaged in a particular signalling pathway.
Collapse
Affiliation(s)
- Borja Garnelo Gómez
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Eleonore Holzwart
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
155
|
Abstract
There can be no doubt that early land plant evolution transformed the planet but, until recently, how and when this was achieved was unclear. Coincidence in the first appearance of land plant fossils and formative shifts in atmospheric oxygen and CO2 are an artefact of the paucity of earlier terrestrial rocks. Disentangling the timing of land plant bodyplan assembly and its impact on global biogeochemical cycles has been precluded by uncertainty concerning the relationships of bryophytes to one another and to the tracheophytes, as well as the timescale over which these events unfolded. New genome and transcriptome sequencing projects, combined with the application of sophisticated phylogenomic modelling methods, have yielded increasing support for the Setaphyta clade of liverworts and mosses, within monophyletic bryophytes. We consider the evolution of anatomy, genes, genomes and of development within this phylogenetic context, concluding that many vascular plant (tracheophytes) novelties were already present in a comparatively complex last common ancestor of living land plants (embryophytes). Molecular clock analyses indicate that embryophytes emerged in a mid-Cambrian to early Ordovician interval, compatible with hypotheses on their role as geoengineers, precipitating early Palaeozoic glaciations.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Harald Schneider
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| |
Collapse
|
156
|
Zhao D, Yao Z, Zhang J, Zhang R, Mou Z, Zhang X, Li Z, Feng X, Chen S, Reiter RJ. Melatonin synthesis genes N-acetylserotonin methyltransferases evolved into caffeic acid O-methyltransferases and both assisted in plant terrestrialization. J Pineal Res 2021; 71:e12737. [PMID: 33844336 DOI: 10.1111/jpi.12737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
Terrestrialization is one of the most momentous events in the history of plant life, which leads to the subsequent evolution of plant diversity. The transition species, in this process, had to acquire a range of adaptive mechanisms to cope with the harsh features of terrestrial environments compared to that of aquatic habitat. As an ancient antioxidant, a leading regulator of ROS signaling or homeostasis, and a presumed plant master regulator, melatonin likely assisted plants transition to land and their adaption to terrestrial ecosystems. N-acetylserotonin methyltransferases (ASMT) and caffeic acid O-methyltransferases (COMT), both in the O-methyltransferase (OMT) family, catalyze the core O-methylation reaction in melatonin biosynthesis. How these two enzymes with close relevance evolved in plant evolutionary history and whether they participated in plant terrestrialization remains unknown. Using combined phylogenetic evidence and protein structure analysis, it is revealed that COMT likely evolved from ASMT by gene duplication and subsequent divergence. Newly emergent COMT gained a significantly higher ASMT activity to produce greater amounts of melatonin for immobile plants to acclimate to the stressful land environments after evolving from the more environmentally-stable aquatic conditions. The COMT genes possess more conserved substrate-binding sites at the amino acid level and more open protein conformation compared to ASMT, and getting a new function to catalyze the lignin biosynthesis. This development directly contributed to the dominance of vascular plants among the Earth's flora and prompted plant colonization of land. Thus, ASMT, together with its descendant COMT, might play key roles in plant transition to land. The current study provides new insights into plant terrestrialization with gene duplication contributing to this process along with well-known horizontal gene transfer.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhengping Yao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Jiemei Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Renjun Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xue Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Zonghang Li
- School of Life Science, Yunnan University, Kunming, China
| | - Xiaoli Feng
- School of Life Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, USA
| |
Collapse
|
157
|
Katayose A, Kanda A, Kubo Y, Takahashi T, Motose H. Distinct Functions of Ethylene and ACC in the Basal Land Plant Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2021; 62:858-871. [PMID: 33768225 DOI: 10.1093/pcp/pcab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 05/16/2023]
Abstract
Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.
Collapse
Affiliation(s)
- Asuka Katayose
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Asaka Kanda
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | | |
Collapse
|
158
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
159
|
Abstract
The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
160
|
Ross IL, Shah S, Hankamer B, Amiralian N. Microalgal nanocellulose - opportunities for a circular bioeconomy. TRENDS IN PLANT SCIENCE 2021; 26:924-939. [PMID: 34144878 DOI: 10.1016/j.tplants.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Over 3 billion years, photosynthetic algae have evolved complex uses for cellulose, the most abundant polymer worldwide. A major cell-wall component of lignocellulosic plants, seaweeds, microalgae, and bacteria, cellulose can be processed to nanocellulose, a promising nanomaterial with novel properties. The structural diversity of macro- and microalgal nanocelluloses opens opportunities to couple low-impact biomass production with novel, green-chemistry processing to yield valuable, sustainable nanomaterials for a multitude of applications ranging from novel wound dressings to organic solar cells. We review the origins of algal cellulose and the applications and uses of nanocellulose, and highlight the potential for microalgae as a nanocellulose source. Given the limited state of current knowledge, we identify research challenges and strategies to help to realise this potential.
Collapse
Affiliation(s)
- Ian L Ross
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Sarah Shah
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
161
|
Mizuno Y, Komatsu A, Shimazaki S, Naramoto S, Inoue K, Xie X, Ishizaki K, Kohchi T, Kyozuka J. Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha. THE PLANT CELL 2021; 33:2395-2411. [PMID: 33839776 PMCID: PMC8364241 DOI: 10.1093/plcell/koab106] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 05/04/2023]
Abstract
KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.
Collapse
Affiliation(s)
- Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Shota Shimazaki
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
- Author for correspondence:
| |
Collapse
|
162
|
Pan L, Fonseca De Lima CF, Vu LD, De Smet I. A Comprehensive Phylogenetic Analysis of the MAP4K Family in the Green Lineage. FRONTIERS IN PLANT SCIENCE 2021; 12:650171. [PMID: 34484252 PMCID: PMC8415026 DOI: 10.3389/fpls.2021.650171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The kinase-mediated phosphorylation impacts every basic cellular process. While mitogen-activated protein kinase technology kinase kinases (MAP4Ks) are evolutionarily conserved, there is no comprehensive overview of the MAP4K family in the green lineage (Viridiplantae). In this study, we identified putative MAP4K members from representative species of the two core groups in the green lineage: Chlorophyta, which is a diverse group of green algae, and Streptophyta, which is mostly freshwater green algae and land plants. From that, we inferred the evolutionary relationships of MAP4K proteins through a phylogenetic reconstruction. Furthermore, we provided a classification of the MAP4Ks in the green lineage into three distinct.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
163
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
164
|
de Vries S, Fürst-Jansen JMR, Irisarri I, Dhabalia Ashok A, Ischebeck T, Feussner K, Abreu IN, Petersen M, Feussner I, de Vries J. The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:975-1002. [PMID: 34165823 DOI: 10.1111/tpj.15387] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land-plant-specific adaptation shaped by selective forces in the terrestrial habitat. Recent data have, however, revealed that streptophyte algae, the algal relatives of land plants, have candidates for the genetic toolkit for phenylpropanoid biosynthesis and produce phenylpropanoid-derived metabolites. Using phylogenetic and sequence analyses, we here show that the enzyme families that orchestrate pivotal steps in phenylpropanoid biosynthesis have independently undergone pronounced radiations and divergence in multiple lineages of major groups of land plants; sister to many of these radiated gene families are streptophyte algal candidates for these enzymes. These radiations suggest a high evolutionary versatility in the enzyme families involved in the phenylpropanoid-derived metabolism across embryophytes. We suggest that this versatility likely translates into functional divergence, and may explain the key to one of the defining traits of embryophytes: a rich specialized metabolism.
Collapse
Affiliation(s)
- Sophie de Vries
- Population Genetics, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Ilka N Abreu
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtsr. 1, 37077, Goettingen, Germany
| |
Collapse
|
165
|
Nayar S, Thangavel G. CsubMADS1, a lag phase transcription factor, controls development of polar eukaryotic microalga Coccomyxa subellipsoidea C-169. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1228-1242. [PMID: 34160095 DOI: 10.1111/tpj.15380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
MADS-box transcription factors (TFs) have not been functionally delineated in microalgae. In this study, the role of CsubMADS1 from microalga Coccomyxa subellipsoidea C-169 has been explored. Unlike Type II MADS-box proteins of seed plants with MADS, Intervening, K-box, and C domains, CsubMADS1 only has MADS and Intervening domains. It forms a group with MADS TFs from algae in the phylogenetic tree within the Type II MIKCC clade. CsubMADS1 is expressed strongly in the lag phase of growth. The CsubMADS1 monomer does not have a specific localization in the nucleus, and it forms homodimers to localize exclusively in the nucleus. The monomer has two nuclear localization signals (NLSs): an N-terminal NLS and an internal NLS. The internal NLS is functional, and the homodimer requires two NLSs for specific nuclear localization. Overexpression (OX) of CsubMADS1 slows down the growth of the culture and leads to the creation of giant polyploid multinucleate cells, resembling autospore mother cells. This implies that the release of autospores from autospore mother cells may be delayed. Thus, in wild-type (WT) cells, CsubMADS1 may play a crucial role in slowing down growth during the lag phase. Due to starvation in 2-month-old colonies on solid media, the WT colonies produce mucilage, whereas OX colonies produce significantly less mucilage. Thus, CsubMADS1 also negatively regulates stress-induced mucilage production and probably plays a role in stress tolerance during the lag phase. Taken together, our results reveal that CsubMADS1 is a key TF involved in the development and stress tolerance of this polar microalga.
Collapse
Affiliation(s)
- Saraswati Nayar
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Gokilavani Thangavel
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| |
Collapse
|
166
|
Hirakawa Y. CLAVATA3, a plant peptide controlling stem cell fate in the meristem. Peptides 2021; 142:170579. [PMID: 34033873 DOI: 10.1016/j.peptides.2021.170579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
CLAVATA3 (CLV3) is a peptide signal initially identified in the analysis of clv mutants in the model plant Arabidopsis thaliana, as a regulator of meristem homeostasis and floral organ numbers. CLV3 homologs are widely conserved in land plants, collectively called CLV3/ESR-related (CLE) genes. A 12-amino acid CLE peptide with hydroxyproline residues was identified in Zinnia elegans cell culture system, in which cells secrete a CLE peptide called tracheary element differentiation factor (TDIF) into the culture medium. Mature CLV3 peptide is also a post-translationally modified short peptide containing additional triarabinosylation on a hydroxyproline residue. Genetic studies have revealed the involvement of leucin-rich repeat receptor-like kinases (LRR-RLKs) in CLV3 signaling, including CLV1/BAM-CIK, CLV2-CRN and RPK2, although the mechanisms of signal transduction and integration via crosstalk is still largely unknown. Recent studies on bryophyte model species provided a clue to understand evolution and ancestral function of CLV signaling in land plants. Fundamental understanding on CLV signaling provided an opportunity to optimize the crop yield traits using a novel breeding technology with CRISPR/Cas genome editing.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan.
| |
Collapse
|
167
|
Krönauer C, Radutoiu S. Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102026. [PMID: 33684882 DOI: 10.1016/j.pbi.2021.102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 05/06/2023]
Abstract
Legumes evolved LysM receptors for recognition of rhizobial Nod factors and initiation of signalling pathways for nodule organogenesis and infection. Intracellularly hosted bacteria are supplied with carbon resources in exchange for fixed nitrogen. Nod factor recognition is crucial for initial signalling, but is reiterated in growing roots initiating novel symbiotic events, and in developing primordia until symbiosis is well-established. Understanding how this signalling coordinates the entire process from cellular to plant level is key for de novo engineering in non-legumes and for improved efficiency in legumes. Here we discuss how recent studies bring new insights into molecular determinants of specificity and sensitivity in Nod factor signalling in legumes, and present some of the unknowns and challenges for engineering.
Collapse
Affiliation(s)
- Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
168
|
Craig RJ, Yushenova IA, Rodriguez F, Arkhipova IR. An ancient clade of Penelope-like retroelements with permuted domains is present in the green lineage and protists, and dominates many invertebrate genomes. Mol Biol Evol 2021; 38:5005-5020. [PMID: 34320655 PMCID: PMC8557442 DOI: 10.1093/molbev/msab225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Penelope-like elements (PLEs) are an enigmatic clade of retrotransposons whose reverse transcriptases (RTs) share a most recent common ancestor with telomerase RTs. The single ORF of canonical endonuclease (EN)+ PLEs encodes RT and a C-terminal GIY–YIG EN that enables intrachromosomal integration, whereas EN− PLEs lack EN and are generally restricted to chromosome termini. EN+ PLEs have only been found in animals, except for one case of horizontal transfer to conifers, whereas EN− PLEs occur in several kingdoms. Here, we report a new, deep-branching PLE clade with a permuted domain order, whereby an N-terminal GIY–YIG EN is linked to a C-terminal RT by a short domain with a characteristic CxC motif. These N-terminal EN+ PLEs share a structural organization, including pseudo-LTRs and complex tandem/inverted insertions, with canonical EN+ PLEs from Penelope/Poseidon, Neptune, and Nematis clades, and show insertion bias for microsatellites, but lack canonical hammerhead ribozyme motifs. However, their phylogenetic distribution is much broader. The Naiads, found in numerous invertebrate phyla, can reach tens of thousands of copies per genome. In spiders and clams, Naiads independently evolved to encode selenoproteins containing multiple selenocysteines. Chlamys, which lack the CCHH motif universal to PLE ENs, occur in green algae, spike mosses (targeting ribosomal DNA), and slime molds. Unlike canonical PLEs, RTs of N-terminal EN+ PLEs contain the insertion-in-fingers domain (IFD), strengthening the link between PLEs and telomerases. Additionally, we describe Hydra, a novel metazoan C-terminal EN+ clade. Overall, we conclude that PLE diversity, taxonomic distribution, and abundance are comparable with non-LTR and LTR-retrotransposons.
Collapse
Affiliation(s)
- Rory J Craig
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
169
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
170
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
171
|
Petroll R, Schreiber M, Finke H, Cock JM, Gould SB, Rensing SA. Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity. Genes (Basel) 2021; 12:1055. [PMID: 34356071 PMCID: PMC8304369 DOI: 10.3390/genes12071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Red algae (Rhodophyta) belong to the superphylum Archaeplastida, and are a species-rich group exhibiting diverse morphologies. Theory has it that the unicellular red algal ancestor went through a phase of genome contraction caused by adaptation to extreme environments. More recently, the classes Porphyridiophyceae, Bangiophyceae, and Florideophyceae experienced genome expansions, coinciding with an increase in morphological complexity. Transcription-associated proteins (TAPs) regulate transcription, show lineage-specific patterns, and are related to organismal complexity. To better understand red algal TAP complexity and evolution, we investigated the TAP family complement of uni- and multi-cellular red algae. We found that the TAP family complement correlates with gain of morphological complexity in the multicellular Bangiophyceae and Florideophyceae, and that abundance of the C2H2 zinc finger transcription factor family may be associated with the acquisition of morphological complexity. An expansion of heat shock transcription factors (HSF) occurred within the unicellular Cyanidiales, potentially as an adaption to extreme environmental conditions.
Collapse
Affiliation(s)
- Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
| | - Mona Schreiber
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Hermann Finke
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
| | - J. Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, CNRS, UPMC University Paris 06, CS 90074, 29688 Roscoff, France;
| | - Sven B. Gould
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan A. Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
172
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
173
|
Furumizu C, Krabberød AK, Hammerstad M, Alling RM, Wildhagen M, Sawa S, Aalen RB. The sequenced genomes of non-flowering land plants reveal the innovative evolutionary history of peptide signaling. THE PLANT CELL 2021; 33:2915-2934. [PMID: 34240188 PMCID: PMC8462819 DOI: 10.1093/plcell/koab173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
An understanding of land plant evolution is a prerequisite for in-depth knowledge of plant biology. Here we extract and explore information hidden in the increasing number of sequenced plant genomes, from bryophytes to angiosperms, to elucidate a specific biological question - how peptide signaling evolved. To conquer land and cope with changing environmental conditions, plants have gone through transformations that must have required innovations in cell-to-cell communication. We discuss peptides mediating endogenous and exogenous changes by interaction with receptors activating intracellular molecular signaling. Signaling peptides were discovered in angiosperms and operate in tissues and organs such as flowers, seeds, vasculature, and 3D meristems that are not universally conserved across land plants. Nevertheless, orthologs of angiosperm peptides and receptors have been identified in non-angiosperms. These discoveries provoke questions regarding co-evolution of ligands and their receptors, and whether de novo interactions in peptide signaling pathways may have contributed to generate novel traits in land plants. The answers to such questions will have profound implications for the understanding of the evolution of cell-to-cell communication and the wealth of diversified terrestrial plants. Under this perspective we have generated, analyzed, and reviewed phylogenetic, genomic, structural, and functional data to elucidate the evolution of peptide signaling.
Collapse
Affiliation(s)
- Chihiro Furumizu
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Anders K Krabberød
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, Norway
| | - Renate M Alling
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Mari Wildhagen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Reidunn B Aalen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
174
|
Müller-Schüssele SJ, Bohle F, Rossi J, Trost P, Meyer AJ, Zaffagnini M. Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites. BMC PLANT BIOLOGY 2021; 21:322. [PMID: 34225654 PMCID: PMC8256493 DOI: 10.1186/s12870-021-03087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear. RESULTS We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Focussing on glutathione-dependent redox modifications, we screened the literature for target thiols of S-glutathionylation, and found that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution. CONCLUSIONS We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.
Collapse
Affiliation(s)
- Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany.
- Present Address: Department of Biology, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany.
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
175
|
Gao J, Liang Y, Li J, Wang S, Zhan M, Zheng M, Li H, Yang Z. Identification of a bacterial-type ATP-binding cassette transporter implicated in aluminum tolerance in sweet sorghum ( Sorghum bicolor L.). PLANT SIGNALING & BEHAVIOR 2021; 16:1916211. [PMID: 34034635 PMCID: PMC8205057 DOI: 10.1080/15592324.2021.1916211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 06/01/2023]
Abstract
Aluminum (Al) toxicity in acidic soils severely reduces crop production worldwide. Sorghum (Sorghum bicolor L.) is an important agricultural crop widely grown in tropical and subtropical regions, where Al toxicity is prevalent. ATP-binding cassette (ABC) transporters play key roles in the development of plants and include the member sensitive to aluminum rhizotoxicity 1 (STAR1), which is reported to be associated with Al tolerance in a few plant species. However, a STAR1 homolog has not been characterized in sorghum with respect to Al tolerance. Here, we identified and characterized a SbSTAR1 gene in sweet sorghum encoding the nucleotide-binding domain of a bacterial-type ABC transporter. The transcriptional expression of SbSTAR1 is induced by Al in a time- and dosage-dependent manner in root, especially in root tip, which is the key site of Al toxicity in plants. The typical Al-associated transcription factor SbSTOP1 showed transcriptional regulation of SbSTAR1. SbSTAR1 was present at both the cytoplasm and nuclei. Overexpression of SbSTAR1 significantly enhanced the Al tolerance of transgenic plants, which possibly via regulating the hemicellulose content in root cell wall. This study provides the first ABC protein in sorghum implicated in Al tolerance, suggesting the existence of a SbSTAR1-mediated Al tolerance mechanism in sorghum.
Collapse
Affiliation(s)
- Jie Gao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yanan Liang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jinping Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Shuqi Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Meiqi Zhan
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Meihui Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - He Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
176
|
Nguyen HN, Lai N, Kisiala AB, Emery RJN. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1297-1313. [PMID: 33934489 PMCID: PMC8313133 DOI: 10.1111/pbi.13603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Isopentenyltransferase (IPT) in plants regulates a rate-limiting step of cytokinin (CTK) biosynthesis. IPTs are recognized as key regulators of CTK homeostasis and phytohormone crosstalk in both biotic and abiotic stress responses. Recent research has revealed the regulatory function of IPTs in gene expression and metabolite profiles including source-sink modifications, energy metabolism, nutrient allocation and storage, stress defence and signalling pathways, protein synthesis and transport, and membrane transport. This suggests that IPTs play a crucial role in plant growth and adaptation. In planta studies of IPT-driven modifications indicate that, at a physiological level, IPTs improve stay-green characteristics, delay senescence, reduce stress-induced oxidative damage and protect photosynthetic machinery. Subsequently, these improvements often manifest as enhanced or stabilized crop yields and this is especially apparent under environmental stress. These mechanisms merit consideration of the IPTs as 'master regulators' of core cellular metabolic pathways, thus adjusting plant homeostasis/adaptive responses to altered environmental stresses, to maximize yield potential. If their expression can be adequately controlled, both spatially and temporally, IPTs can be a key driver for seed yield. In this review, we give a comprehensive overview of recent findings on how IPTs influence plant stress physiology and yield, and we highlight areas for future research.
Collapse
Affiliation(s)
| | - Nhan Lai
- School of BiotechnologyVietnam National UniversityHo Chi Minh CityVietnam
| | | | | |
Collapse
|
177
|
Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1211-1226. [PMID: 33538411 DOI: 10.1111/jipb.13076] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development, and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues. Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Xiumei Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Qing Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| |
Collapse
|
178
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
179
|
Ludwig W, Hayes S, Trenner J, Delker C, Quint M. On the evolution of plant thermomorphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab310. [PMID: 34190313 DOI: 10.1093/jxb/erab310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 05/16/2023]
Abstract
Plants have a remarkable capacity to acclimate to their environment. Acclimation is enabled to a large degree by phenotypic plasticity, the extent of which confers a selective advantage, especially in natural habitats. Certain key events in evolution triggered adaptive bursts necessary to cope with drastic environmental changes. One such event was the colonization of land 400-500 mya. Compared to most aquatic habitats, fluctuations in abiotic parameters became more pronounced, generating significant selection pressure. To endure these harsh conditions, plants needed to adapt their physiology and morphology and to increase the range of phenotypic plasticity. In addition to drought stress and high light, high temperatures and fluctuation thereof were among the biggest challenges faced by terrestrial plants. Thermomorphogenesis research has emerged as a new sub-discipline of the plant sciences and aims to understand how plants acclimate to elevated ambient temperatures through changes in architecture. While we have begun to understand how angiosperms sense and respond to elevated ambient temperature, very little is known about thermomorphogenesis in plant lineages with less complex body plans. It is unclear when thermomorphogenesis initially evolved and how this depended on morphological complexity. In this review, we take an evolutionary-physiological perspective and generate hypotheses about the emergence of thermomorphogenesis.
Collapse
Affiliation(s)
- Wenke Ludwig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
180
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
181
|
Ancient origin of fucosylated xyloglucan in charophycean green algae. Commun Biol 2021; 4:754. [PMID: 34140625 PMCID: PMC8211770 DOI: 10.1038/s42003-021-02277-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
The charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.
Collapse
|
182
|
Phipps S, Goodman CA, Delwiche CF, Bisson MA. The role of ion-transporting proteins in the evolution of salt tolerance in charophyte algae. JOURNAL OF PHYCOLOGY 2021; 57:1014-1025. [PMID: 33655493 DOI: 10.1111/jpy.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Species within the genus Chara have variable salinity tolerance. Their close evolutionary relationship with embryophytes makes their study crucial to understanding the evolution of salt tolerance and key evolutionary processes shared among the phyla. We examined salt-tolerant Chara longifolia and salt-sensitive Chara australis for mechanisms of salt tolerance and their potential role in adaptation to salt. We hypothesize that there are shared mechanisms similar to those in embryophytes, which assist in conferring salt tolerance in Chara, including a cation transporter (HKT), a Na+ /H+ antiport (NHX), a H+ -ATPase (AHA), and a Na+ -ATPase (ENA). Illumina transcriptomes were created using cultures grown in freshwater and exposed to salt stress. The presence of these candidate genes, identified by comparing with genes known from embryophytes, has been confirmed in both species of Chara, with the exception of ENA, present only in salt-tolerant C. longifolia. These transcriptomes provide evidence for the contribution of these mechanisms to differences in salt tolerance in the two species and for the independent evolution of the Na+ -ATPase. We also examined genes that may have played a role in important evolutionary processes, suggested by previous work on the Chara braunii genome. Among the genes examined, cellulose synthase protein (GT43) and response regulator (RRB) were confirmed in both species. Genes absent from all three Chara species were members of the GRAS family, microtubule-binding protein (TANGLED1), and auxin synthesizers (YUCCA, TAA). Results from this study shed light on the evolutionary relationship between Chara and embryophytes through confirmation of shared salt tolerance mechanisms, as well as unique mechanisms that do not occur in angiosperms.
Collapse
Affiliation(s)
- Shaunna Phipps
- Department of Environment & Sustainability, State University at Buffalo, Buffalo, New York, USA
- Department of Biological Sciences, State University at Buffalo, Buffalo, New York, USA
| | - Charles A Goodman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Mary A Bisson
- Department of Environment & Sustainability, State University at Buffalo, Buffalo, New York, USA
- Department of Biological Sciences, State University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
183
|
Phipps S, Delwiche CF, Bisson MA. Salinity-induced Changes in Gene Expression in the Streptophyte Alga Chara: The Critical Role of a Rare Na + -ATPase. JOURNAL OF PHYCOLOGY 2021; 57:1004-1013. [PMID: 33713364 DOI: 10.1111/jpy.13166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The primarily freshwater genus Chara is comprised of many species that exhibit a wide range of salinity tolerance. The range of salt tolerance provides a good platform for investigating the role of transport mechanisms in response to salt stress, and the close evolutionary relationship between Charophytes and land plants can provide broader insights. We investigated the response to salt stress of previously identified transport mechanisms in two species of Chara, Chara longifolia (salt-tolerant), and Chara australis (salt-sensitive): a cation transporter (HKT), a Na+ /H+ antiport (NHX), H+ -ATPase (AHA), and a Na+ -ATPase (ENA). The presence of these candidate genes has been confirmed in both species of Chara, with the exception of the Na+ -ATPase, which is present only in salt-tolerant Chara longifolia. Time-course Illumina transcriptomes were created using RNA from multiple time points (0, 6, 12, 24 and 48 h) after freshwater cultures for each species were exposed to salt stress. These transcriptomes verified our hypotheses of these mechanisms conferring salt tolerance in the two species examined and also aided in identification of specific transcripts representing our genes of interest in both species. The expression of these transcripts was validated through use of qPCR, in a similar experimental set-up used for the RNAseq data described above. The RNAseq and qPCR data showed significant changes of expression mechanisms in C. longifolia (respectively), a down-regulation of HKT and a substantial up-regulation of ENA. Significant responses to salt stress in salt-sensitive C. australis show up-regulation of NHX and AHA.
Collapse
Affiliation(s)
- Shaunna Phipps
- Department of Environment & Sustainability, State University at Buffalo, Buffalo, New York, USA
- Department of Biological Sciences, State University at Buffalo, Buffalo, New York, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Mary A Bisson
- Department of Environment & Sustainability, State University at Buffalo, Buffalo, New York, USA
- Department of Biological Sciences, State University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
184
|
Bowman JL, Flores Sandoval E, Kato H. On the Evolutionary Origins of Land Plant Auxin Biology. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a040048. [PMID: 33558368 DOI: 10.1101/cshperspect.a040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Indole-3-acetic acid, that is, auxin, is a molecule found in a broad phylogenetic distribution of organisms, from bacteria to eukaryotes. In the ancestral land plant auxin was co-opted to be the paramount phytohormone mediating tropic responses and acting as a facilitator of developmental decisions throughout the life cycle. The evolutionary origins of land plant auxin biology genes can now be traced with reasonable clarity. Genes encoding the two enzymes of the land plant auxin biosynthetic pathway arose in the ancestral land plant by a combination of horizontal gene transfer from bacteria and possible neofunctionalization following gene duplication. Components of the auxin transcriptional signaling network have their origins in ancestral alga genes, with gene duplication and neofunctionalization of key domains allowing integration of a portion of the preexisting transcriptional network with auxin. Knowledge of the roles of orthologous genes in extant charophycean algae is lacking, but could illuminate the ancestral functions of both auxin and the co-opted transcriptional network.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Science, Monash University, Melbourne, Victoria 3800, Australia
| | | | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
185
|
Li Y, Huang Y, Wen Y, Wang D, Liu H, Li Y, Zhao J, An L, Yu F, Liu X. The domain of unknown function 4005 (DUF4005) in an Arabidopsis IQD protein functions in microtubule binding. J Biol Chem 2021; 297:100849. [PMID: 34058197 PMCID: PMC8246641 DOI: 10.1016/j.jbc.2021.100849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yujia Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yunze Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuanfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
186
|
Nishiyama E, Nonogaki M, Yamazaki S, Nonogaki H, Ohshima K. Ancient and recent gene duplications as evolutionary drivers of the seed maturation regulators DELAY OF GERMINATION1 family genes. THE NEW PHYTOLOGIST 2021; 230:889-901. [PMID: 33454982 DOI: 10.1111/nph.17201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The DELAY OF GERMINATION1 (DOG1) family genes (DFGs) in Arabidopsis thaliana are involved in seed dormancy, reserve accumulation, and desiccation tolerance. Decoding the molecular evolution of DFGs is key to understanding how these seed programs evolved. This article demonstrates that DFGs have diverged in the four lineages DOG1, DOG1-LIKE4 (DOGL4), DOGL5 and DOGL6, whereas DOGL1, DOGL2 and DOGL3 arose separately within the DOG1 lineage. The systematic DFG nomenclature proposed in this article addresses the current issues of inconsistent DFG annotation and highlights DFG genomic synteny in angiosperms. DFG pseudogenes, or collapsed coding sequences, hidden in the genomes of early-diverging angiosperms are documented here. They suggest ancient birth and loss of DFGs over the course of angiosperm evolution. The proposed models suggest that the origin of DFG diversification dates back to the most recent common ancestor of living angiosperms. The presence of a single form of DFG in nonflowering plants is discussed. Phylogenetic analysis of gymnosperm, lycophyte, and liverwort DFGs and similar genes found in mosses and algae suggests that DFGs diverged from the TGACG motif-binding transcription factor genes before the divergence of the bryophyte lineage.
Collapse
Affiliation(s)
- Eri Nishiyama
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Mariko Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Satoru Yamazaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Kazuhiko Ohshima
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| |
Collapse
|
187
|
Romani F, Moreno JE. Molecular mechanisms involved in functional macroevolution of plant transcription factors. THE NEW PHYTOLOGIST 2021; 230:1345-1353. [PMID: 33368298 DOI: 10.1111/nph.17161] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
Transcription factors (TFs) are key components of the transcriptional regulation machinery. In plants, they accompanied the evolution from unicellular aquatic algae to complex flowering plants that dominate the land environment. The adaptations of the body plan and physiological responses required changes in the biological functions of TFs. Some ancestral gene regulatory networks are highly conserved, while others evolved more recently and only exist in particular lineages. The recent emergence of novel model organisms provided the opportunity for comparative studies, producing new insights to infer these evolutionary trajectories. In this review, we comprehensively revisit the recent literature on TFs of nonseed plants and algae, focusing on the molecular mechanisms driving their functional evolution. We discuss the particular contribution of changes in DNA-binding specificity, protein-protein interactions and cis-regulatory elements to gene regulatory networks. Current advances have shown that these evolutionary processes were shaped by changes in TF expression pattern, not through great innovation in TF protein sequences. We propose that the role of TFs associated with environmental and developmental regulation was unevenly conserved during land plant evolution.
Collapse
Affiliation(s)
- Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| | - Javier E Moreno
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| |
Collapse
|
188
|
Szövényi P, Gunadi A, Li FW. Charting the genomic landscape of seed-free plants. NATURE PLANTS 2021; 7:554-565. [PMID: 33820965 DOI: 10.1038/s41477-021-00888-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/25/2021] [Indexed: 05/02/2023]
Abstract
During the past few years several high-quality genomes has been published from Charophyte algae, bryophytes, lycophytes and ferns. These genomes have not only elucidated the origin and evolution of early land plants, but have also provided important insights into the biology of the seed-free lineages. However, critical gaps across the phylogeny remain and many new questions have been raised through comparing seed-free and seed plant genomes. Here, we review the reference genomes available and identify those that are missing in the seed-free lineages. We compare patterns of various levels of genome and epigenomic organization found in seed-free plants to those of seed plants. Some genomic features appear to be fundamentally different. For instance, hornworts, Selaginella and most liverworts are devoid of whole-genome duplication, in stark contrast to other land plants. In addition, the distribution of genes and repeats appear to be less structured in seed-free genomes than in other plants, and the levels of gene body methylation appear to be much lower. Finally, we highlight the currently available (or needed) model systems, which are crucial to further our understanding about how changes in genes translate into evolutionary novelties.
Collapse
Affiliation(s)
- Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland.
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| |
Collapse
|
189
|
Veldsman WP, Ma KY, Hui JHL, Chan TF, Baeza JA, Qin J, Chu KH. Comparative genomics of the coconut crab and other decapod crustaceans: exploring the molecular basis of terrestrial adaptation. BMC Genomics 2021; 22:313. [PMID: 33931033 PMCID: PMC8086120 DOI: 10.1186/s12864-021-07636-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background The complex life cycle of the coconut crab, Birgus latro, begins when an obligate terrestrial adult female visits the intertidal to hatch zoea larvae into the surf. After drifting for several weeks in the ocean, the post-larval glaucothoes settle in the shallow subtidal zone, undergo metamorphosis, and the early juveniles then subsequently make their way to land where they undergo further physiological changes that prevent them from ever entering the sea again. Here, we sequenced, assembled and analyzed the coconut crab genome to shed light on its adaptation to terrestrial life. For comparison, we also assembled the genomes of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus, and the short-tailed marine-living red king crab, Paralithodes camtschaticus. Our selection of the latter two organisms furthermore allowed us to explore parallel evolution of the crab-like form in anomurans. Results All three assembled genomes are large, repeat-rich and AT-rich. Functional analysis reveals that the coconut crab has undergone proliferation of genes involved in the visual, respiratory, olfactory and cytoskeletal systems. Given that the coconut crab has atypical mitochondrial DNA compared to other anomurans, we argue that an abundance of kif22 and other significantly proliferated genes annotated with mitochondrial and microtubule functions, point to unique mechanisms involved in providing cellular energy via nuclear protein-coding genes supplementing mitochondrial and microtubule function. We furthermore detected in the coconut crab a significantly proliferated HOX gene, caudal, that has been associated with posterior development in Drosophila, but we could not definitively associate this gene with carcinization in the Anomura since it is also significantly proliferated in the ornate spiny lobster. However, a cuticle-associated coatomer gene, gammacop, that is significantly proliferated in the coconut crab, may play a role in hardening of the adult coconut crab abdomen in order to mitigate desiccation in terrestrial environments. Conclusion The abundance of genomic features in the three assembled genomes serve as a source of hypotheses for future studies of anomuran environmental adaptations such as shell-utilization, perception of visual and olfactory cues in terrestrial environments, and cuticle sclerotization. We hypothesize that the coconut crab exhibits gene proliferation in lieu of alternative splicing as a terrestrial adaptation mechanism and propose life-stage transcriptomic assays to test this hypothesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07636-9.
Collapse
Affiliation(s)
- Werner Pieter Veldsman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ka Yan Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jerome Ho Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
190
|
Chen Z, Shang JL, Hou S, Li T, Li Q, Yang YW, Hess WR, Qiu BS. Genomic and transcriptomic insights into the habitat adaptation of the diazotrophic paddy-field cyanobacterium Nostoc sphaeroides. Environ Microbiol 2021; 23:5802-5822. [PMID: 33848055 DOI: 10.1111/1462-2920.15521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Nitrogen-fixing cyanobacteria are common in paddy fields, one of the most productive wetland ecosystems. Here, we present the complete genome of Nostoc sphaeroides, a paddy-field diazotroph used for food and medicine for more than 1700 years and deciphered the transcriptional regulation during the developmental transition from hormogonia to vegetative filaments with heterocysts. The genome of N. sphaeroides consists of one circular chromosome (6.48 Mb), one of the largest ever reported megaplasmids (2.34 Mb), and seven plasmids. Multiple gene families involved in the adaption to high solar radiation and water fluctuation conditions were found expanded, while genes involved in anoxic adaptation and phosphonate utilization are located on the megaplasmid, suggesting its indispensable role in environmental adaptation. Distinct gene expression patterns were observed during the light-intensity-regulated transition from hormogonia to vegetative filaments, specifically, genes encoding proteins involved in photosynthetic light reaction, carbon fixation, nitrogen metabolism and heterocyst differentiation were significantly upregulated, whereas genes related to cell motility were down-regulated. Our results provide genomic and transcriptomic insights into the adaptation of a filamentous nitrogen-fixing cyanobacterium to the highly dynamic paddy-field habitat, suggesting N. sphaeroides as an excellent system to understand the transition from aquatic to terrestrial habitats and to support sustainable rice production.
Collapse
Affiliation(s)
- Zhen Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.,Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jin-Long Shang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089, USA
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, Hubei, 430072, China
| | - Qi Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, Hubei, 430072, China
| | - Yi-Wen Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
191
|
Fichtner F, Dissanayake IM, Lacombe B, Barbier F. Sugar and Nitrate Sensing: A Multi-Billion-Year Story. TRENDS IN PLANT SCIENCE 2021; 26:352-374. [PMID: 33281060 DOI: 10.1016/j.tplants.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
Sugars and nitrate play a major role in providing carbon and nitrogen in plants. Understanding how plants sense these nutrients is crucial, most notably for crop improvement. The mechanisms underlying sugar and nitrate sensing are complex and involve moonlighting proteins such as the nitrate transporter NRT1.1/NFP6.3 or the glycolytic enzyme HXK1. Major components of nutrient signaling, such as SnRK1, TOR, and HXK1, are relatively well conserved across eukaryotes, and the diversification of components such as the NRT1 family and the SWEET sugar transporters correlates with plant terrestrialization. In plants, Tre6P plays a hormone-like role in plant development. In addition, nutrient signaling has evolved to interact with the more recent hormone signaling, allowing fine-tuning of physiological and developmental responses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
192
|
Gong Z, Han GZ. Flourishing in water: the early evolution and diversification of plant receptor-like kinases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:174-184. [PMID: 33423360 DOI: 10.1111/tpj.15157] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 05/19/2023]
Abstract
Receptor-like kinases (RLKs) play significant roles in mediating innate immunity and development of plants. The evolution of plant RLKs has been characterized by extensive variation in copy numbers and domain configurations. However, much remains unknown about the origin, evolution, and early diversification of plant RLKs. Here, we perform phylogenomic analyses of RLKs across plants (Archaeplastida), including embryophytes, charophytes, chlorophytes, prasinodermophytes, glaucophytes, and rhodophytes. We identify the presence of RLKs in all the streptophytes (land plants and charophytes), nine out of 18 chlorophytes, one prasinodermophyte, and one glaucophyte, but not in rhodophytes. Interestingly, the copy number of RLKs increased drastically in streptophytes after the split of the clade of Mesostigmatophyceae and Chlorokybophyceae and other streptophytes. Moreover, phylogenetic analyses suggest RLKs from charophytes form diverse distinct clusters, and are dispersed along the diversity of land plant RLKs, indicating that RLKs have extensively diversified in charophytes and charophyte RLKs seeded the major diversity of land plant RLKs. We identify at least 81 and 76 different kinase-associated domains for charophyte and land plant RLKs, 23 of which are shared, suggesting that RLKs might have evolved in a modular fashion through frequent domain gains or losses. We also detect signatures of positive selection for many charophyte RLK groups, indicating potential functions in host-microbe interaction. Taken together, our findings provide significant insights into the early evolution and diversification of plant RLKs and the ancient evolution of plant-microbe symbiosis.
Collapse
Affiliation(s)
- Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
193
|
Koselski M, Pupkis V, Hashimoto K, Lapeikaite I, Hanaka A, Wasko P, Plukaite E, Kuchitsu K, Kisnieriene V, Trebacz K. Impact of Mammalian Two-Pore Channel Inhibitors on Long-Distance Electrical Signals in the Characean Macroalga Nitellopsis obtusa and the Early Terrestrial Liverwort Marchantia polymorpha. PLANTS 2021; 10:plants10040647. [PMID: 33805421 PMCID: PMC8067100 DOI: 10.3390/plants10040647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022]
Abstract
Inhibitors of human two-pore channels (TPC1 and TPC2), i.e., verapamil, tetrandrine, and NED-19, are promising medicines used in treatment of serious diseases. In the present study, the impact of these substances on action potentials (APs) and vacuolar channel activity was examined in the aquatic characean algae Nitellopsis obtusa and in the terrestrial liverwort Marchantia polymorpha. In both plant species, verapamil (20-300 µM) caused reduction of AP amplitudes, indicating impaired Ca2+ transport. In N. obtusa, it depolarized the AP excitation threshold and resting potential and prolonged AP duration. In isolated vacuoles of M. polymorpha, verapamil caused a reduction of the open probability of slow vacuolar SV/TPC channels but had almost no effect on K+ channels in the tonoplast of N. obtusa. In both species, tetrandrine (20-100 µM) evoked a pleiotropic effect: reduction of resting potential and AP amplitudes and prolongation of AP repolarization phases, especially in M. polymorpha, but it did not alter vacuolar SV/TPC activity. NED-19 (75 µM) caused both specific and unspecific effects on N. obtusa APs. In M. polymorpha, NED-19 increased the duration of repolarization. However, no inhibition of SV/TPC channels was observed in Marchantia vacuoles, but an increase in open probability and channel flickering. The results indicate an effect on Ca2+ -permeable channels governing plant excitation.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Vilmantas Pupkis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.H.); (K.K.)
| | - Indre Lapeikaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Piotr Wasko
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Egle Plukaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.H.); (K.K.)
| | - Vilma Kisnieriene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
- Correspondence: (V.K.); (K.T.)
| | - Kazimierz Trebacz
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
- Correspondence: (V.K.); (K.T.)
| |
Collapse
|
194
|
Proulex GCR, Meade MJ, Manoylov KM, Cahoon AB. Mitochondrial mRNA Processing in the Chlorophyte Alga Pediastrum duplex and Streptophyte Alga Chara vulgaris Reveals an Evolutionary Branch in Mitochondrial mRNA Processing. PLANTS (BASEL, SWITZERLAND) 2021; 10:576. [PMID: 33803683 PMCID: PMC8003010 DOI: 10.3390/plants10030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria carry the remnant of an ancestral bacterial chromosome and express those genes with a system separate and distinct from the nucleus. Mitochondrial genes are transcribed as poly-cistronic primary transcripts which are post-transcriptionally processed to create individual translationally competent mRNAs. Algae post-transcriptional processing has only been explored in Chlamydomonas reinhardtii (Class: Chlorophyceae) and the mature mRNAs are different than higher plants, having no 5' UnTranslated Regions (UTRs), much shorter and more variable 3' UTRs and polycytidylated mature mRNAs. In this study, we analyzed transcript termini using circular RT-PCR and PacBio Iso-Seq to survey the 3' and 5' UTRs and termini for two green algae, Pediastrum duplex (Class: Chlorophyceae) and Chara vulgaris (Class: Charophyceae). This enabled the comparison of processing in the chlorophyte and charophyte clades of green algae to determine if the differences in mitochondrial mRNA processing pre-date the invasion of land by embryophytes. We report that the 5' mRNA termini and non-template 3' termini additions in P. duplex resemble those of C. reinhardtii, suggesting a conservation of mRNA processing among the chlorophyceae. We also report that C. vulgaris mRNA UTRs are much longer than chlorophytic examples, lack polycytidylation, and are polyadenylated similar to embryophytes. This demonstrates that some mitochondrial mRNA processing events diverged with the split between chlorophytic and streptophytic algae.
Collapse
Affiliation(s)
- Grayson C. R. Proulex
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Marcus J. Meade
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Kalina M. Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA;
| | - A. Bruce Cahoon
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| |
Collapse
|
195
|
Delaux PM, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 2021; 371:371/6531/eaba6605. [PMID: 33602828 DOI: 10.1126/science.aba6605] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today's continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Castanet Tolosan, France.
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
196
|
Zeng L, Dehesh K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genomics 2021; 22:137. [PMID: 33637041 PMCID: PMC7912892 DOI: 10.1186/s12864-021-07448-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes. Results Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant’s MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. Conclusion Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07448-x.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
197
|
Gylytė B, Jurkonienė S, Cimmperman R, Šveikauskas V, Manusadžianas L. Biomarker identification of isolated compartments of the cell wall, cytoplasm and vacuole from the internodal cell of characean Nitellopsis obtusa. PeerJ 2021; 9:e10930. [PMID: 33643716 PMCID: PMC7896509 DOI: 10.7717/peerj.10930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Cells of characean algae are attractive for plant cell physiologists because of their large size and their close relation to higher plant cells. The objective of our study was to evaluate the purity of the compartments (cell wall, cytoplasm with plastids, mitochondria, nuclei and endomembrane system, and vacuole) separated mechanically from the internodal cells of Nitellopsis obtusa using enzymatic markers. These included α-mannosidase and malate dehydrogenase, vacuolar and cytoplasmic enzymes, respectively. The biomarkers applied revealed the degree of compartment contamination with the material from unwanted cell parts. The cell wall was contaminated slightly by vacuole and cytoplasm residuals, respectively by 12.3 and 1.96% of corresponding biomarker activities. Relatively high activity of vacuolar marker in the cell wall could be associated with the cell vacuoles in the multicellular structure of the nodes. The biomarkers confirmed highly purified vacuolar (99.5%) and cytoplasmic (86.7%) compartments. Purity estimation of the cell fractions enabled reevaluating nCuO related Cu concentrations in the compartments of charophyte cell. The internalisation of CuO nanoparticles in N. obtusa cell occurred already after 0.5h. In general, the approach seems to be useful for assessing the accumulation and distribution of various xenobiotics and/or metabolites within plant cell. All this justifies N.obtusa internodal cells as a model organism for modern studies in cell biology and nanotoxicology.
Collapse
Affiliation(s)
- Brigita Gylytė
- Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | | | - Reda Cimmperman
- Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | | | | |
Collapse
|
198
|
Chaudhary K, Geeta R, Panjabi P. Origin and diversification of ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) genes in land plants and phylogenetic evidence that the ancestral CER1/3 gene resulted from the fusion of pre-existing domains. Mol Phylogenet Evol 2021; 159:107101. [PMID: 33592235 DOI: 10.1016/j.ympev.2021.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) are key genes in synthesis of alkanes, a major component of cuticular waxes in land plants. The genes share extensive similarity, including the N-terminal (ERG3/FAH) and C-terminal (WAX2) domains. This study, traces the origin, evolutionary history, phylogenetic relationships and variation in copy number of the two genes within and beyond the Viridiplantae (green plants). Protein homologs of both CER1 and CER3 were identified across most Embryophyta (land plants), a single homolog (CER1/3) in charophytes and prasinophytes, and none in the other green, red or brown algae. Ancestral state reconstructions in 100 sequenced Archaeplastida using presence/absence of CER1/3 family genes revealed that the CER1/3 gene probably originated in the common ancestor of Viridiplantae. Phylogenetic analysis of CER1 and CER3 protein sequences from 146 plant species strongly suggests that the two genes originated by duplication of CER1/3 in the ancestral embryophyte. The evolution of CER1 and CER3 genes involved differential divergence of the two domains. Outside Embryophyta, CER1/3 similar sequences identified in diatoms and a cryptophyte, were the closest relatives of the CER1/3 family proteins. Proteins harbouring WAX2-wxAR (WAX2 associated region) similar regions were identified in proteins of bacteria, Archaea, cryptophytes, dinoflagellates and Stramenopiles. The independent existence of both ERG3/FAH and WAX2-wxAR domains in diverse lineages strongly points to the origin of CER1/3 gene in green plants by the fusion of pre-existing domains.
Collapse
Affiliation(s)
- Komal Chaudhary
- Department of Botany, University of Delhi, Delhi 110007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi 110007, India.
| | - Priya Panjabi
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
199
|
Xu B, Taylor L, Pucker B, Feng T, Glover BJ, Brockington SF. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land. THE NEW PHYTOLOGIST 2021; 229:2324-2338. [PMID: 33051877 DOI: 10.1111/nph.16997] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Lin Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Genetics and Genomics of Plants, Center for Biotechnology & Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße, Bochum, 44801, Germany
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430047, China
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
200
|
Mazeed M, Singh R, Kumar P, Roy A, Raman B, Kruparani SP, Sankaranarayanan R. Recruitment of archaeal DTD is a key event toward the emergence of land plants. SCIENCE ADVANCES 2021; 7:7/6/eabe8890. [PMID: 33536220 PMCID: PMC7857688 DOI: 10.1126/sciadv.abe8890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 06/09/2023]
Abstract
Streptophyte algae emerged as a land plant with adaptations that eventually led to terrestrialization. Land plants encounter a range of biotic and abiotic stresses that elicit anaerobic stress responses. Here, we show that acetaldehyde, a toxic metabolite of anaerobic stress, targets and generates ethyl adducts on aminoacyl-tRNA, a central component of the translation machinery. However, elongation factor thermo unstable (EF-Tu) safeguards l-aminoacyl-tRNA, but not d-aminoacyl-tRNA, from being modified by acetaldehyde. We identified a unique activity of archaeal-derived chiral proofreading module, d-aminoacyl-tRNA deacylase 2 (DTD2), that removes N-ethyl adducts formed on d-aminoacyl-tRNAs (NEDATs). Thus, the study provides the molecular basis of ethanol and acetaldehyde hypersensitivity in DTD2 knockout plants. We uncovered an important gene transfer event from methanogenic archaea to the ancestor of land plants. While missing in other algal lineages, DTD2 is conserved from streptophyte algae to land plants, suggesting its role toward the emergence and evolution of land plants.
Collapse
Affiliation(s)
- Mohd Mazeed
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Raghvendra Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Pradeep Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad 500007, India
| | - Ankit Roy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Bakthisaran Raman
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Shobha P Kruparani
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB campus, Uppal Road, Hyderabad 500007, India
| |
Collapse
|