151
|
Walker RL. Integrative Genomics for the Interpretation of Genetic Loci Implicated in Neurodevelopmental Disorders. Biol Psychiatry 2020; 88:438-439. [PMID: 32854829 DOI: 10.1016/j.biopsych.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Rebecca L Walker
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| |
Collapse
|
152
|
Matos MR, Ho SM, Schrode N, Brennand KJ. Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Mol Cell Neurosci 2020; 107:103532. [PMID: 32712198 PMCID: PMC7484226 DOI: 10.1016/j.mcn.2020.103532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropsychiatric disorders are highly heritable polygenic disorders arising from the complex interplay of highly penetrant rare variants and common variants of small effect. There is a large index of comorbidity and shared genetic risk between disorders, reflecting the pleiotropy of individual variants as well as predicted downstream pathway-level convergence. Importantly, the mechanism(s) through which psychiatric disease-associated variants interact to contribute to disease risk remains unknown. Human induced pluripotent stem cell (hiPSC)-based models are increasingly useful for the systematic study of the complex genetics associated with brain diseases, particularly when combined with CRISPR-mediated genomic engineering, which together facilitate isogenic comparisons of defined neuronal cell types. In this review, we discuss the latest CRISPR technologies and consider how they can be successfully applied to the functional characterization of the growing list genetic variants linked to psychiatric disease.
Collapse
Affiliation(s)
- Marliette R Matos
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Seok-Man Ho
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Stem Cell and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Nadine Schrode
- Department of Genetics and Genomics, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - Kristen J Brennand
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Stem Cell and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
153
|
Moyses-Oliveira M, Yadav R, Erdin S, Talkowski ME. New gene discoveries highlight functional convergence in autism and related neurodevelopmental disorders. Curr Opin Genet Dev 2020; 65:195-206. [PMID: 32846283 DOI: 10.1016/j.gde.2020.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
Abstract
Over the last two years, remarkable gene discovery efforts have implicated disruption of pathways involving gene regulatory functions and neuronal processes in autism spectrum disorder (ASD), and more broadly defined neurodevelopmental disorders (NDDs). Functional studies in the developing brain and across cell types demonstrate that the spatiotemporal expression patterns of many of these genes coalesce on subnetworks with distinct developmental trajectories. Here, we review the convergent biological processes derived from gene discovery and functional genomics in ASD and NDD from 2018-2020. We further probe the mechanistic insights that suggest these frequently perturbed pathways are interconnected and, ultimately, converge on specific functional deficits in human neurodevelopment.
Collapse
Affiliation(s)
- Mariana Moyses-Oliveira
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
154
|
Matoba N, Liang D, Sun H, Aygün N, McAfee JC, Davis JE, Raffield LM, Qian H, Piven J, Li Y, Kosuri S, Won H, Stein JL. Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl Psychiatry 2020; 10:265. [PMID: 32747698 PMCID: PMC7400671 DOI: 10.1038/s41398-020-00953-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of a limited number of common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) on 6222 case-pseudocontrol pairs from the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD. We identified one novel GWS locus from the SPARK GWAS and four significant loci, including an additional novel locus from meta-analysis with a previous GWAS. We replicated the previous observation of significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. We further employed a massively parallel reporter assay (MPRA) and identified a putative causal variant at the novel locus from SPARK GWAS with strong impacts on gene regulation (rs7001340). Expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and prenatal brains. In conclusion, by integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaigu Sun
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huijun Qian
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Piven
- Department of Psychiatry and the Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sriam Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
155
|
Liu W, Li W, Cai X, Yang Z, Li H, Su X, Song M, Zhou DS, Li X, Zhang C, Shao M, Zhang L, Yang Y, Zhang Y, Zhao J, Chang H, Yao YG, Fang Y, Lv L, Li M, Xiao X. Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology 2020; 45:1196-1206. [PMID: 32193514 PMCID: PMC7235090 DOI: 10.1038/s41386-020-0659-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial single-nucleotide polymorphisms (SNPs) associated with major depressive disorder (MDD), but the underlying functional variations in the GWAS risk loci are unclear. Here we show that the European MDD genome-wide risk-associated allele of rs12129573 at 1p31.1 is associated with MDD in Han Chinese, and this SNP is in strong linkage disequilibrium (LD) with a human-unique Alu insertion polymorphism (rs70959274) in the 5' flanking region of a long non-coding RNA (lncRNA) LINC01360 (Long Intergenic Non-Protein Coding RNA 1360), which is preferably expressed in human testis in the currently available expression datasets. The risk allele at rs12129573 is almost completely linked with the absence of this Alu insertion. The Alu insertion polymorphism (rs70959274) is significantly associated with a lower RNA level of LINC01360 and acts as a transcription silencer likely through modulating the methylation of its internal CpG sites. Luciferase assays confirm that the presence of Alu insertion at rs70959274 suppresses transcriptional activities in human cells, and deletion of the Alu insertion through CRISPR/Cas9-directed genome editing increases RNA expression of LINC01360. Deletion of the Alu insertion in human cells also leads to dysregulation of gene expression, biological processes and pathways relevant to MDD, such as the alterations of mRNA levels of DRD2 and FLOT1, transcription of genes involved in synaptic transmission, neurogenesis, learning or memory, and the PI3K-Akt signaling pathway. In summary, we identify a human-unique DNA repetitive polymorphism in robust LD with the MDD risk-associated SNP at the prominent 1p31.1 GWAS loci, and offer insights into the molecular basis of the illness.
Collapse
Affiliation(s)
- Weipeng Liu
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wenqiang Li
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Xin Cai
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Zhihui Yang
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Huijuan Li
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xi Su
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Meng Song
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Dong-Sheng Zhou
- 0000 0004 1782 599Xgrid.452715.0Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xingxing Li
- 0000 0004 1782 599Xgrid.452715.0Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chen Zhang
- 0000 0004 0368 8293grid.16821.3cShanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglong Shao
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Luwen Zhang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yongfeng Yang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yan Zhang
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Jingyuan Zhao
- 0000 0004 1808 322Xgrid.412990.7Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,0000 0004 1808 322Xgrid.412990.7Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Hong Chang
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yong-Gang Yao
- 0000000119573309grid.9227.eKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China ,0000000119573309grid.9227.eCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,0000000119573309grid.9227.eKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yiru Fang
- 0000 0004 0368 8293grid.16821.3cShanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,0000000119573309grid.9227.eCAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Province People's Hospital, Zhengzhou, Henan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
156
|
Gordon A, Geschwind DH. Human in vitro models for understanding mechanisms of autism spectrum disorder. Mol Autism 2020; 11:26. [PMID: 32299488 PMCID: PMC7164291 DOI: 10.1186/s13229-020-00332-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Early brain development is a critical epoch for the development of autism spectrum disorder (ASD). In vivo animal models have, until recently, been the principal tool used to study early brain development and the changes occurring in neurodevelopmental disorders such as ASD. In vitro models of brain development represent a significant advance in the field. Here, we review the main methods available to study human brain development in vitro and the applications of these models for studying ASD and other psychiatric disorders. We discuss the main findings from stem cell models to date focusing on cell cycle and proliferation, cell death, cell differentiation and maturation, and neuronal signaling and synaptic stimuli. To be able to generalize the results from these studies, we propose a framework of experimental design and power considerations for using in vitro models to study ASD. These include both technical issues such as reproducibility and power analysis and conceptual issues such as the brain region and cell types being modeled.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
157
|
Werling DM, Pochareddy S, Choi J, An JY, Sheppard B, Peng M, Li Z, Dastmalchi C, Santpere G, Sousa AMM, Tebbenkamp ATN, Kaur N, Gulden FO, Breen MS, Liang L, Gilson MC, Zhao X, Dong S, Klei L, Cicek AE, Buxbaum JD, Adle-Biassette H, Thomas JL, Aldinger KA, O'Day DR, Glass IA, Zaitlen NA, Talkowski ME, Roeder K, State MW, Devlin B, Sanders SJ, Sestan N. Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex. Cell Rep 2020; 31:107489. [PMID: 32268104 PMCID: PMC7295160 DOI: 10.1016/j.celrep.2020.03.053] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Gene expression levels vary across developmental stage, cell type, and region in the brain. Genomic variants also contribute to the variation in expression, and some neuropsychiatric disorder loci may exert their effects through this mechanism. To investigate these relationships, we present BrainVar, a unique resource of paired whole-genome and bulk tissue RNA sequencing from the dorsolateral prefrontal cortex of 176 individuals across prenatal and postnatal development. Here we identify common variants that alter gene expression (expression quantitative trait loci [eQTLs]) constantly across development or predominantly during prenatal or postnatal stages. Both "constant" and "temporal-predominant" eQTLs are enriched for loci associated with neuropsychiatric traits and disorders and colocalize with specific variants. Expression levels of more than 12,000 genes rise or fall in a concerted late-fetal transition, with the transitional genes enriched for cell-type-specific genes and neuropsychiatric risk loci, underscoring the importance of cataloging developmental trajectories in understanding cortical physiology and pathology.
Collapse
Affiliation(s)
- Donna M Werling
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jinmyung Choi
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joon-Yong An
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Brooke Sheppard
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minshi Peng
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Claudia Dastmalchi
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabriel Santpere
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Neurogenomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Andrew T N Tebbenkamp
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Navjot Kaur
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsay Liang
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael C Gilson
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xuefang Zhao
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - A Ercument Cicek
- Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey; Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, APHP, Biobank BB-0033-00064, and Université de Paris, 75006 Paris, France
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael E Talkowski
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
158
|
Li HJ, Qu N, Hui L, Cai X, Zhang CY, Zhong BL, Zhang SF, Chen J, Xia B, Wang L, Jia QF, Li W, Chang H, Xiao X, Li M, Li Y. Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Transl Psychiatry 2020; 10:98. [PMID: 32184385 PMCID: PMC7078234 DOI: 10.1038/s41398-020-0777-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) of major depression and its relevant biological phenotypes have been extensively conducted in large samples, and transcriptome-wide analyses in the tissues of brain regions relevant to pathogenesis of depression, e.g., dorsolateral prefrontal cortex (DLPFC), have also been widely performed recently. Integrating these multi-omics data will enable unveiling of depression risk genes and even underlying pathological mechanisms. Here, we employ summary data-based Mendelian randomization (SMR) and integrative risk gene selector (iRIGS) approaches to integrate multi-omics data from GWAS, DLPFC expression quantitative trait loci (eQTL) analyses and enhancer-promoter physical link studies to prioritize high-confidence risk genes for depression, followed by independent replications across distinct populations. These integrative analyses identify multiple high-confidence depression risk genes, and numerous lines of evidence supporting pivotal roles of the netrin 1 receptor (DCC) gene in this illness across different populations. Our subsequent explorative analyses further suggest that DCC significantly predicts neuroticism, well-being spectrum, cognitive function and putamen structure in general populations. Gene expression correlation and pathway analyses in DLPFC further show that DCC potentially participates in the biological processes and pathways underlying synaptic plasticity, axon guidance, circadian entrainment, as well as learning and long-term potentiation. These results are in agreement with the recent findings of this gene in neurodevelopment and psychiatric disorders, and we thus further confirm that DCC is an important susceptibility gene for depression, and might be a potential target for new antidepressants.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China.
| |
Collapse
|