151
|
Montassier E, Al-Ghalith GA, Hillmann B, Viskocil K, Kabage AJ, McKinlay CE, Sadowsky MJ, Khoruts A, Knights D. CLOUD: a non-parametric detection test for microbiome outliers. MICROBIOME 2018; 6:137. [PMID: 30081949 PMCID: PMC6080375 DOI: 10.1186/s40168-018-0514-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/04/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition even within body sites of healthy humans. An individual's microbiome varies over time in a high-dimensional space to form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no robust non-parametric test that determines whether a patient's microbiome cloud is an outlier with respect to a reference group of healthy individuals with widely varying microbiome profiles. METHODS Here, we propose a test for outliers' detection in the human gut microbiome that accounts for the wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a patient's microbiome health: conformity, the extent to which the patient's microbiome cloud is ecologically similar to a subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects. The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying microbiome compositions among reference individuals. It also leverages temporal variability within patients and reference individuals to increase the robustness of the test. RESULTS We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes. CONCLUSIONS Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in diagnosis and prognosis of numerous pediatric and adult diseases.
Collapse
Affiliation(s)
- Emmanuel Montassier
- MiHAR lab, Université de Nantes, 44000 Nantes, France
- Department of Emergency Medicine, CHU Nantes, Nantes, France
| | - Gabriel A. Al-Ghalith
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Benjamin Hillmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kimberly Viskocil
- Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Amanda J. Kabage
- Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Christopher E. McKinlay
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Michael J. Sadowsky
- Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108 USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA
- Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
- Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
152
|
Gonze D, Coyte KZ, Lahti L, Faust K. Microbial communities as dynamical systems. Curr Opin Microbiol 2018; 44:41-49. [PMID: 30041083 DOI: 10.1016/j.mib.2018.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 01/03/2023]
Abstract
Nowadays, microbial communities are frequently monitored over long periods of time and the interactions between their members are explored in vitro. This development has opened the way to apply mathematical models to characterize community structure and dynamics, to predict responses to perturbations and to explore general dynamical properties such as stability, alternative stable states and periodicity. Here, we highlight the role of dynamical systems theory in the exploration of microbial communities, with a special emphasis on the generalized Lotka-Volterra (gLV) equations. In particular, we discuss applications, assumptions and limitations of the gLV model, mention modifications to address these limitations and review stochastic extensions. The development of dynamical models, together with the generation of time series data, can improve the design and control of microbial communities.
Collapse
Affiliation(s)
- Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, 1050 Brussels, Belgium.
| | - Katharine Z Coyte
- Boston Children's Hospital, 300 Longwood Avenue, Boston, USA; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Leo Lahti
- Department of Microbiology and Immunology, Rega institute, Herestraat 49, KU Leuven, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Herestraat 49, 3000 Leuven, Belgium; Department of Mathematics and Statistics, 20014 University of Turku, Finland
| | - Karoline Faust
- Department of Microbiology and Immunology, Rega institute, Herestraat 49, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
153
|
Xiong J. Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Appl Microbiol Biotechnol 2018; 102:7343-7350. [PMID: 29982924 DOI: 10.1007/s00253-018-9199-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
It is now recognized that gut microbiota contributes indispensable roles in safeguarding host health. Shrimp is being threatened by newly emerging diseases globally; thus, understanding the driving factors that govern its gut microbiota would facilitate an initial step to reestablish and maintain a "healthy" gut microbiota. This review summarizes the factors that assemble the shrimp gut microbiota, which focuses on the current progresses of knowledge linking the gut microbiota and shrimp health status. In particular, I propose the exploration of shrimp disease pathogenesis and incidence based on the interplay between dysbiosis in the gut microbiota and disease severity. An updated research on shrimp disease toward an ecological perspective is discussed, including host-bacterial colonization, identification of polymicrobial pathogens and diagnosing disease incidence. Further, a simple conceptual model is offered to summarize the interplay among the gut microbiota, external factors, and shrimp disease. Finally, based on the review, current limitations are raised and future studies directed at solving these concerns are proposed. This review is timely given the increased interest in the role of gut microbiota in disease pathogenesis and the advent of novel diagnosis strategies.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
154
|
Affiliation(s)
- Jin-Bo Xiong
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China; E-mail:
| |
Collapse
|
155
|
Danchin A. Bacteria in the ageing gut: did the taming of fire promote a long human lifespan? Environ Microbiol 2018; 20:1966-1987. [PMID: 29727052 DOI: 10.1111/1462-2920.14255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unique among animals as they evolved towards Homo sapiens, hominins progressively cooked their food on a routine basis. Cooked products are characterized by singular chemical compounds, derived from the pervasive Maillard reaction. This same reaction is omnipresent in normal metabolism involving carbonyls and amines, and its products accumulate with age. The gut microbiota acts as a first line of defence against the toxicity of cooked Maillard compounds, that also selectively shape the microbial flora, letting specific metabolites to reach the blood stream. Positive selection of metabolic functions allowed the body of hominins who tamed fire to use and dispose of these age-related compounds. I propose here that, as a hopeful accidental consequence, this resulted in extending human lifespan far beyond that of our great ape cousins. The limited data exploring the role of taming fire on the human genetic setup and on its microbiota is discussed in relation with ageing.
Collapse
Affiliation(s)
- Antoine Danchin
- Integromics, Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, Paris, 75013, France.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong University, 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
156
|
Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Furman E, Haahtela T, Massart S, Plovier H, Sanz Y, Rook G. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1018-1038. [PMID: 29426121 DOI: 10.1016/j.scitotenv.2018.01.288] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/28/2018] [Accepted: 01/28/2018] [Indexed: 05/03/2023]
Abstract
Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making.
Collapse
Affiliation(s)
- Lucette Flandroy
- Federal Public Service Health, Food Chain Safety and Environment, Belgium
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Maria-Carlota Dao
- ICAN, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS U1166 (Eq 6) Nutriomics, Paris 6, France; UPMC, Sorbonne University, Pierre et Marie Curie-Paris 6, France
| | - Ellen Decaestecker
- Aquatic Biology, Department Biology, Science, Engineering & Technology Group, KU Leuven, Campus Kortrijk. E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Eeva Furman
- Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
| | - Sébastien Massart
- Laboratory of Integrated and Urban Phytopathology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des deportes, 2, 5030 Gembloux, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Graham Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, UK.
| |
Collapse
|
157
|
Higashi K, Suzuki S, Kurosawa S, Mori H, Kurokawa K. Latent environment allocation of microbial community data. PLoS Comput Biol 2018; 14:e1006143. [PMID: 29874232 PMCID: PMC6005635 DOI: 10.1371/journal.pcbi.1006143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/18/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
As data for microbial community structures found in various environments has increased, studies have examined the relationship between environmental labels given to retrieved microbial samples and their community structures. However, because environments continuously change over time and space, mixed states of some environments and its effects on community formation should be considered, instead of evaluating effects of discrete environmental categories. Here we applied a hierarchical Bayesian model to paired datasets containing more than 30,000 samples of microbial community structures and sample description documents. From the training results, we extracted latent environmental topics that associate co-occurring microbes with co-occurring word sets among samples. Topics are the core elements of environmental mixtures and the visualization of topic-based samples clarifies the connections of various environments. Based on the model training results, we developed a web application, LEA (Latent Environment Allocation), which provides the way to evaluate typicality and heterogeneity of microbial communities in newly obtained samples without confining environmental categories to be compared. Because topics link words and microbes, LEA also enables to search samples semantically related to the query out of 30,000 microbiome samples. In the past decade, microbiomes from various natural and human symbiotic environments have been thoroughly studied. However, our knowledge is limited as to what types of environments affect the structure of a microbial community. In the first place, how can we define “environments”, in particular, the environmental entities that are often continuously varying and difficult to discretely categorize? We assumed that environments could be represented from microbiome data because the structure of microbial communities reflect the state of the environment. We applied a probabilistic topic model to a dataset containing taxonomic composition data and natural language sample descriptions of >30,000 microbiome samples and extracted “latent environments” of the microbial communities, which are core elements of environmental mixtures. Integrating the training results of the model, we developed a web application to explore the microbiome universe and to place new metagenomic data on this universe like a global positioning system. Our tool shows what kinds of the environment naturally exist and are similar to each other on the perspective of the structural patterns of microbiome, and provides the way to evaluate the commonality and the heterogeneity of users’ microbiome samples.
Collapse
Affiliation(s)
- Koichi Higashi
- Genome Evolution Laboratory, National Institute of Genetics, Mishima, Japan
| | - Shinya Suzuki
- Department of Biological Information, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Shin Kurosawa
- Department of Biological Information, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, National Institute of Genetics, Mishima, Japan
- * E-mail:
| |
Collapse
|
158
|
Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes (Lond) 2018; 43:149-157. [PMID: 29777234 PMCID: PMC6331389 DOI: 10.1038/s41366-018-0093-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/22/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Individuals with high pre-treatment bacterial Prevotella-to-Bacteroides (P/B) ratio have been reported to lose more body weight on diets high in fiber than subjects with a low P/B ratio. Therefore, the aim of the present study was to examine potential differences in dietary weight loss responses between participants with low and high P/B. SUBJECTS/METHODS Eighty overweight participants were randomized (52 completed) to a 500 kcal/d energy deficit diet with a macronutrient composition of 30 energy percentage (E%) fat, 52 E% carbohydrate and 18 E% protein either high (≈1500 mg calcium/day) or low ( ≤ 600 mg calcium/day) in dairy products for 24 weeks. Body weight, body fat, and dietary intake (by 7-day dietary records) were determined. Individuals were dichotomized according to their pre-treatment P/B ratio derived from 16S rRNA gene sequencing of collected fecal samples to test the potential modification of dietary effects using linear mixed models. RESULTS Independent of the randomized diets, individuals with high P/B lost 3.8 kg (95%CI, 1.8,5.8; P < 0.001) more body weight and 3.8 kg (95% CI, 1.1, 6.5; P = 0.005) more body fat compared to individuals with low P/B. After adjustment for multiple covariates, individuals with high P/B ratio lost 8.3 kg (95% CI, 5.8;10.9, P < 0.001) more body weight when consuming above compared to below 30 g fiber/10MJ whereas this weight loss was 3.2 kg (95% CI, 0.8;5.5, P = 0.008) among individuals with low P/B ratio [Mean difference: 5.1 kg (95% CI, 1.7;8.6, P = 0.003)]. Partial correlation coefficients between fiber intake and weight change was 0.90 (P < 0.001) among individuals with high P/B ratio and 0.25 (P = 0.29) among individuals with low P/B ratio. CONCLUSIONS Individuals with high P/B lost more body weight and body fat compared to individuals with low P/B, confirming that individuals with a high P/B are more susceptible to weight loss on a diet rich in fiber.
Collapse
|
159
|
Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project. Nutrients 2018; 10:nu10050576. [PMID: 29738477 PMCID: PMC5986456 DOI: 10.3390/nu10050576] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Personalized nutrition is of increasing interest to individuals actively monitoring their health. The relations between the duration of diet intervention and the effects on gut microbiota have yet to be elucidated. Here we examined the associations of short-term dietary changes, long-term dietary habits and lifestyle with gut microbiota. Stool samples from 248 citizen-science volunteers were collected before and after a self-reported 2-week personalized diet intervention, then analyzed using 16S rRNA sequencing. Considerable correlations between long-term dietary habits and gut community structure were detected. A higher intake of vegetables and fruits was associated with increased levels of butyrate-producing Clostridiales and higher community richness. A paired comparison of the metagenomes before and after the 2-week intervention showed that even a brief, uncontrolled intervention produced profound changes in community structure: resulting in decreased levels of Bacteroidaceae, Porphyromonadaceae and Rikenellaceae families and decreased alpha-diversity coupled with an increase of Methanobrevibacter, Bifidobacterium, Clostridium and butyrate-producing Lachnospiraceae- as well as the prevalence of a permatype (a bootstrapping-based variation of enterotype) associated with a higher diversity of diet. The response of microbiota to the intervention was dependent on the initial microbiota state. These findings pave the way for the development of an individualized diet.
Collapse
|
160
|
Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun 2018; 9:1786. [PMID: 29725011 PMCID: PMC5934369 DOI: 10.1038/s41467-018-04204-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The microbiome is essential for extraction of energy and nutrition from plant-based diets and may have facilitated primate adaptation to new dietary niches in response to rapid environmental shifts. Here we use 16S rRNA sequencing to characterize the microbiota of wild western lowland gorillas and sympatric central chimpanzees and demonstrate compositional divergence between the microbiotas of gorillas, chimpanzees, Old World monkeys, and modern humans. We show that gorilla and chimpanzee microbiomes fluctuate with seasonal rainfall patterns and frugivory. Metagenomic sequencing of gorilla microbiomes demonstrates distinctions in functional metabolic pathways, archaea, and dietary plants among enterotypes, suggesting that dietary seasonality dictates shifts in the microbiome and its capacity for microbial plant fiber digestion versus growth on mucus glycans. These data indicate that great ape microbiomes are malleable in response to dietary shifts, suggesting a role for microbiome plasticity in driving dietary flexibility, which may provide fundamental insights into the mechanisms by which diet has driven the evolution of human gut microbiomes. Microbiota composition fluctuates in response to changes in environmental and lifestyle factors. Here, Hicks et al. show that the faecal microbiota of wild gorillas and chimpanzees is temporally dynamic, with shifts that correlate with seasonal rainfall patterns and periods of high and low frugivory.
Collapse
|
161
|
van de Guchte M, Blottière HM, Doré J. Humans as holobionts: implications for prevention and therapy. MICROBIOME 2018; 6:81. [PMID: 29716650 PMCID: PMC5928587 DOI: 10.1186/s40168-018-0466-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 05/27/2023]
Abstract
The human gut microbiota is increasingly recognized for its important or even decisive role in health. As it becomes clear that microbiota and host mutually affect and depend on each other in an intimate relationship, a holistic view of the gut microbiota-host association imposes itself. Ideally, a stable state of equilibrium, homeostasis, is maintained and serves health, but signs are that perturbation of this equilibrium beyond the limits of resilience can propel the system into an alternative stable state, a pre-disease state, more susceptible to the development of chronic diseases. The microbiota-host equilibrium of a large and growing proportion of individuals in Western society may represent such a pre-disease state and explain the explosive development of chronic diseases such as inflammatory bowel disease, obesity, and other inflammatory diseases. These diseases themselves represent other alternative stable states again and are therefore hard to cure. The holistic view of the microbiota-host association where feedback loops between microbiota and host are thought to maintain the system in a stable state-be it a healthy, pre-disease, or disease state-implies that integrated approaches, addressing host processes and microbiota, should be used to treat or prevent (pre-)disease.
Collapse
Affiliation(s)
- Maarten van de Guchte
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- MetaGenoPolis, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- MetaGenoPolis, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
162
|
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET. Core microbiomes for sustainable agroecosystems. NATURE PLANTS 2018; 4:247-257. [PMID: 29725101 DOI: 10.1038/s41477-018-0139-4] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/23/2018] [Indexed: 05/18/2023]
Abstract
In an era of ecosystem degradation and climate change, maximizing microbial functions in agroecosystems has become a prerequisite for the future of global agriculture. However, managing species-rich communities of plant-associated microbiomes remains a major challenge. Here, we propose interdisciplinary research strategies to optimize microbiome functions in agroecosystems. Informatics now allows us to identify members and characteristics of 'core microbiomes', which may be deployed to organize otherwise uncontrollable dynamics of resident microbiomes. Integration of microfluidics, robotics and machine learning provides novel ways to capitalize on core microbiomes for increasing resource-efficiency and stress-resistance of agroecosystems.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Masato Yamamichi
- Department of General Systems Studies, University of Tokyo, Meguro, Tokyo, Japan
| | - Kazuhiko Narisawa
- Department of Bioresource Science, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Kei Hiruma
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Ken Naito
- Genetic Resource Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Shinji Fukuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Ushio
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Shinji Nakaoka
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute of Industrial Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Yoshida
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
- Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Science & John Innes Centre, Beijing, China
| | - Ryo Sugiura
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Hokkaido Agricultural Research Center, NARO (National Agriculture and Food Research Organization), Memuro, Hokkaido, Japan
| | - Yasunori Ichihashi
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai, Japan
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
163
|
Abstract
Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity, composition and functional potential of the salivary microbiota in 160 healthy vegans and omnivores using 16S rRNA gene amplicon sequencing. We further sought to identify bacterial taxa in saliva associated with host inflammatory markers. We show that compositional differences in the salivary microbiota of vegans and omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas endodontalis). Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary fibre was associated with bacterial diversity, community structure, as well as relative abundance of several species-level operational taxonomic units. Analysis of imputed genomic potential revealed several metabolic pathways differentially abundant in vegans and omnivores indicating possible effects of macro- and micro-nutrient intake. We also show that certain oral bacteria are associated with the systemic inflammatory state of the host.
Collapse
|
164
|
Shortt N, Poyntz H, Young W, Jones A, Gestin A, Mooney A, Thayabaran D, Sparks J, Ostapowicz T, Tay A, Poppitt S, Elliott S, Wakefield G, Parry-Strong A, Ralston J, Gasser O, Beasley R, Weatherall M, Braithwaite I, Forbes-Blom E. A feasibility study: association between gut microbiota enterotype and antibody response to seasonal trivalent influenza vaccine in adults. Clin Transl Immunology 2018; 7:e1013. [PMID: 29610662 PMCID: PMC5874500 DOI: 10.1002/cti2.1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 01/19/2023] Open
Abstract
Objective We investigated the potential feasibility of a randomized controlled trial of a nutritional intervention that may alter human gut microbiota and support immune defence against respiratory tract infection in adults (Proposed Study). Methods In total, 125 healthy adults aged 18–64 participated in a 6‐month study that measured antibody response to the seasonal trivalent influenza vaccine. We assessed completion rates, procedure adherence rates and the influence of possible exclusion criteria on potential recruitment into the Proposed Study. We examined whether the gut microbiota could be categorised into enterotypes, and whether there was an association between enterotypes and the antibody response to the influenza vaccine. Results The participant completion rate was 97.6% (95% CI 93.1–99.5%). The proportions (95% CI) of participants who may be excluded for antibiotic or corticosteroid use in the 30 days prior to the study, or due to receiving the influenza vaccine in the previous two years were 9.6% (5.1–16.2), 8.0% (3.9–14.2) and 61.6% (52.5–70.2), respectively. All participants were stratified into four gut microbiota enterotypes. There was no association between these enterotypes and the antibody response to the influenza vaccine, although the study was not powered for this outcome. Conclusion This study design is suitable for the Proposed Study. The completion rate is likely to be high, although exclusion criteria should be selected with care. Further analyses of gut microbiota composition or function in association with antibody and immune responses are warranted to explore the role of host–microbiota interactions on protective immunity.
Collapse
Affiliation(s)
- Nick Shortt
- Medical Research Institute of New Zealand Wellington New Zealand.,High-Value Nutrition National Science Challenge Wellington New Zealand
| | - Hazel Poyntz
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| | - Wayne Young
- High-Value Nutrition National Science Challenge Wellington New Zealand.,AgResearch Palmerston North New Zealand
| | - Angela Jones
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| | - Aurélie Gestin
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| | - Anna Mooney
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| | - Darmiga Thayabaran
- Medical Research Institute of New Zealand Wellington New Zealand.,High-Value Nutrition National Science Challenge Wellington New Zealand
| | - Jenny Sparks
- Medical Research Institute of New Zealand Wellington New Zealand.,High-Value Nutrition National Science Challenge Wellington New Zealand
| | - Tess Ostapowicz
- Medical Research Institute of New Zealand Wellington New Zealand.,High-Value Nutrition National Science Challenge Wellington New Zealand
| | - Audrey Tay
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Human Nutrition Unit School of Biological Sciences University of Auckland Auckland New Zealand
| | - Sally Poppitt
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Human Nutrition Unit School of Biological Sciences University of Auckland Auckland New Zealand
| | - Sarah Elliott
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Food Savvy Wellington New Zealand
| | - Georgia Wakefield
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Food Savvy Wellington New Zealand
| | - Amber Parry-Strong
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Centre for Endocrine, Diabetes and Obesity Research CCDHB Wellington New Zealand
| | - Jacqui Ralston
- Institute of Environmental Science and Research Limited (ESR) NCBID Upper Hutt New Zealand
| | - Olivier Gasser
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| | - Richard Beasley
- Medical Research Institute of New Zealand Wellington New Zealand.,High-Value Nutrition National Science Challenge Wellington New Zealand
| | - Mark Weatherall
- Wellington School of Medicine University of Otago Wellington New Zealand
| | - Irene Braithwaite
- Medical Research Institute of New Zealand Wellington New Zealand.,High-Value Nutrition National Science Challenge Wellington New Zealand
| | - Elizabeth Forbes-Blom
- High-Value Nutrition National Science Challenge Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand.,Present address: Institute of Nutritional Science Nestle Research Centre Lausanne Switzerland
| |
Collapse
|
165
|
Das P, Ji B, Kovatcheva-Datchary P, Bäckhed F, Nielsen J. In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS One 2018; 13:e0195161. [PMID: 29601608 PMCID: PMC5877883 DOI: 10.1371/journal.pone.0195161] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/16/2018] [Indexed: 01/21/2023] Open
Abstract
Network analysis of large metagenomic datasets generated by current sequencing technologies can reveal significant co-occurrence patterns between microbial species of a biological community. These patterns can be analyzed in terms of pairwise combinations between all species comprising a community. Here, we construct a co-occurrence network for abundant microbial species encompassing the three dominant phyla found in human gut. This was followed by an in vitro evaluation of the predicted microbe-microbe co-occurrences, where we chose species pairs Bifidobacterium adolescentis and Bacteroides thetaiotaomicron, as well as Faecalibacterium prausnitzii and Roseburia inulinivorans as model organisms for our study. We then delineate the outcome of the co-cultures when equal distributions of resources were provided. The growth behavior of the co-culture was found to be dependent on the types of microbial species present, their specific metabolic activities, and resulting changes in the culture environment. Through this reductionist approach and using novel in vitro combinations of microbial species under anaerobic conditions, the results of this work will aid in the understanding and design of synthetic community formulations.
Collapse
Affiliation(s)
- Promi Das
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Petia Kovatcheva-Datchary
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, SE, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, SE, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK Lyngby, Denmark
- * E-mail:
| |
Collapse
|
166
|
Hornung B, Martins Dos Santos VAP, Smidt H, Schaap PJ. Studying microbial functionality within the gut ecosystem by systems biology. GENES AND NUTRITION 2018; 13:5. [PMID: 29556373 PMCID: PMC5840735 DOI: 10.1186/s12263-018-0594-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
Abstract
Humans are not autonomous entities. We are all living in a complex environment, interacting not only with our peers, but as true holobionts; we are also very much in interaction with our coexisting microbial ecosystems living on and especially within us, in the intestine. Intestinal microorganisms, often collectively referred to as intestinal microbiota, contribute significantly to our daily energy uptake by breaking down complex carbohydrates into simple sugars, which are fermented to short-chain fatty acids and subsequently absorbed by human cells. They also have an impact on our immune system, by suppressing or enhancing the growth of malevolent and beneficial microbes. Our lifestyle can have a large influence on this ecosystem. What and how much we consume can tip the ecological balance in the intestine. A "western diet" containing mainly processed food will have a different effect on our health than a balanced diet fortified with pre- and probiotics. In recent years, new technologies have emerged, which made a more detailed understanding of microbial communities and ecosystems feasible. This includes progress in the sequencing of PCR-amplified phylogenetic marker genes as well as the collective microbial metagenome and metatranscriptome, allowing us to determine with an increasing level of detail, which microbial species are in the microbiota, understand what these microorganisms do and how they respond to changes in lifestyle and diet. These new technologies also include the use of synthetic and in vitro systems, which allow us to study the impact of substrates and addition of specific microbes to microbial communities at a high level of detail, and enable us to gather quantitative data for modelling purposes. Here, we will review the current state of microbiome research, summarizing the computational methodologies in this area and highlighting possible outcomes for personalized nutrition and medicine.
Collapse
Affiliation(s)
- Bastian Hornung
- 1Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Vitor A P Martins Dos Santos
- 1Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Hauke Smidt
- 2Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Peter J Schaap
- 1Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
167
|
Comparative analyses of fecal microbiota in Chinese isolated Yao population, minority Zhuang and rural Han by 16sRNA sequencing. Sci Rep 2018; 8:1142. [PMID: 29348587 PMCID: PMC5773753 DOI: 10.1038/s41598-017-17851-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome in humans is associated with geography, diet, lifestyles and so on, but its relationship with some isolated populations is not clear. We used the 16sRNA technique to sequence the fecal microbiome in the Chinese isolated Yao population and compared it with the major minority Zhuang and the major ethnic Han populations living in the same rural area. Information about diet frequency and health status and routine serum measurements were collected. The unweighted UniFrac principal coordinates analysis showed significant structural differences in fecal microbiota among the three ethnic groups. Statistically significant differences were observed in the community richness estimator (chaos) and the diversity estimator (Shannon) among the three groups. At the genus level, the fecal samples of the isolated Yao population presented the lowest relative abundance of the Megamonas genus, which was potentially related to the high frequency of bean consumption in the diet. Two enterotypes were identified in the overall fecal microbiota in the three populations. In the isolated Yao population, a higher Bacteroides abundance was observed, but the Prevotella abundance decreased with increased alcohol consumption.
Collapse
|
168
|
Carlson AL, Xia K, Azcarate-Peril MA, Goldman BD, Ahn M, Styner MA, Thompson AL, Geng X, Gilmore JH, Knickmeyer RC. Infant Gut Microbiome Associated With Cognitive Development. Biol Psychiatry 2018; 83:148-159. [PMID: 28793975 PMCID: PMC5724966 DOI: 10.1016/j.biopsych.2017.06.021] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/31/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies in rodents provide compelling evidence that microorganisms inhabiting the gut influence neurodevelopment. In particular, experimental manipulations that alter intestinal microbiota impact exploratory and communicative behaviors and cognitive performance. In humans, the first years of life are a dynamic time in gut colonization and brain development, but little is known about the relationship between these two processes. METHODS We tested whether microbial composition at 1 year of age is associated with cognitive outcomes using the Mullen Scales of Early Learning and with global and regional brain volumes using structural magnetic resonance imaging at 1 and 2 years of age. Fecal samples were collected from 89 typically developing 1-year-olds. 16S ribosomal RNA amplicon sequencing was used for identification and relative quantification of bacterial taxa. RESULTS Cluster analysis identified 3 groups of infants defined by their bacterial composition. Mullen scores at 2 years of age differed significantly between clusters. In addition, higher alpha diversity was associated with lower scores on the overall composite score, visual reception scale, and expressive language scale at 2 years of age. Exploratory analyses of neuroimaging data suggest the gut microbiome has minimal effects on regional brain volumes at 1 and 2 years of age. CONCLUSIONS This is the first study to demonstrate associations between the gut microbiota and cognition in human infants. As such, it represents an essential first step in translating animal data into the clinic.
Collapse
Affiliation(s)
- Alexander L Carlson
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - M Andrea Azcarate-Peril
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; Microbiome Core Facility, University of North Carolina, Chapel Hill, North Carolina
| | - Barbara D Goldman
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, Nevada
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina; Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina
| | - Amanda L Thompson
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina; Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Xiujuan Geng
- Department of Psychology Lab of Neuropsychology and Lab of Social Cognitive Affective Neuroscience, University of Hong Kong, Hong Kong; State Key Lab of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
169
|
Clark RI, Walker DW. Role of gut microbiota in aging-related health decline: insights from invertebrate models. Cell Mol Life Sci 2018; 75:93-101. [PMID: 29026921 PMCID: PMC5754256 DOI: 10.1007/s00018-017-2671-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Studies in mammals, including humans, have reported age-related changes in microbiota dynamics. A major challenge, however, is to dissect the cause and effect relationships involved. Invertebrate model organisms such as the fruit fly Drosophila and the nematode Caenorhabditis elegans have been invaluable in studies of the biological mechanisms of aging. Indeed, studies in flies and worms have resulted in the identification of a number of interventions that can slow aging and prolong life span. In this review, we discuss recent work using invertebrate models to provide insight into the interplay between microbiota dynamics, intestinal homeostasis during aging and life span determination. An emerging theme from these studies is that the microbiota contributes to cellular and physiological changes in the aging intestine and, in some cases, age-related shifts in microbiota dynamics can drive health decline in aged animals.
Collapse
Affiliation(s)
- Rebecca I Clark
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
170
|
Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 2017; 3:8-16. [PMID: 29255284 DOI: 10.1038/s41564-017-0072-8] [Citation(s) in RCA: 604] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
Population stratification is a useful approach for a better understanding of complex biological problems in human health and wellbeing. The proposal that such stratification applies to the human gut microbiome, in the form of distinct community composition types termed enterotypes, has been met with both excitement and controversy. In view of accumulated data and re-analyses since the original work, we revisit the concept of enterotypes, discuss different methods of dividing up the landscape of possible microbiome configurations, and put these concepts into functional, ecological and medical contexts. As enterotypes are of use in describing the gut microbial community landscape and may become relevant in clinical practice, we aim to reconcile differing views and encourage a balanced application of the concept.
Collapse
|
171
|
Lan D, Ji W, Lin B, Chen Y, Huang C, Xiong X, Fu M, Mipam TD, Ai Y, Zeng B, Li Y, Cai Z, Zhu J, Zhang D, Li J. Correlations between gut microbiota community structures of Tibetans and geography. Sci Rep 2017; 7:16982. [PMID: 29209019 PMCID: PMC5717229 DOI: 10.1038/s41598-017-17194-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/22/2017] [Indexed: 01/30/2023] Open
Abstract
Microbial communities of human gut directly influence health and bear adaptive potential to different geography environment and lifestyles. However, knowledge about the influences of altitude and geography on the gut microbiota of Tibetans is currently limited. In this study, fecal microbiota from 208 Tibetans across six different locations were analyzed by MiSeq sequencing; these locations included Gannan, Gangcha, Tianzhu, Hongyuan, Lhasa and Nagqu, with altitudes above sea level ranging from 2800 m to 4500 m across the Tibetan plateau. Significant differences were observed in microbial diversity and richness in different locations. At the phylum level, gut populations of Tibetans comprised Bacteroidetes (60.00%), Firmicutes (29.04%), Proteobacteria (5.40%), and Actinobacteria (3.85%) and were marked by a low ratio (0.48) of Firmicutes to Bacteroidetes. Analysis based on operational taxonomic unit level revealed that core microbiotas included Prevotella, Faecalibacterium, and Blautia, whereas Prevotella predominated all locations, except Gangcha. Four community state types were detected in all samples, and they mainly belong to Prevotella, Bacteroides, and Ruminococcaceae. Principal component analysis and related correspondence analysis results revealed that bacterial profiles in Tibetan guts varied significantly with increasing altitude, BMI, and age, and facultative anaerobes were rich in Tibetan guts. Gut microbiota may play important roles in regulating high-altitude and geographical adaptations.
Collapse
Affiliation(s)
- Daoliang Lan
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China. .,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.
| | - Wenhui Ji
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Baoshan Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.,Animal Disease Prevention and Control Center of Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province, 624000, People's Republic of China
| | - Yabing Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Cai Huang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Xianrong Xiong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Mei Fu
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Tserang Donko Mipam
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Yi Ai
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhixin Cai
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Jiangjiang Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Dawei Zhang
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China
| | - Jian Li
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China. .,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
172
|
Lien entre les probiotiques et le microbiote : vision du clinicien. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2017. [DOI: 10.1016/s0007-9960(17)30193-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
173
|
The human gut virome: form and function. Emerg Top Life Sci 2017; 1:351-362. [PMID: 33525769 DOI: 10.1042/etls20170039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023]
Abstract
Advances in next-generation sequencing technologies and the application of metagenomic approaches have fuelled an exponential increase in our understanding of the human gut microbiome. These approaches are now also illuminating features of the diverse and abundant collection of viruses (termed the virome) subsisting with the microbial ecosystems residing within the human holobiont. Here, we focus on the current and emerging knowledge of the human gut virome, in particular on viruses infecting bacteria (bacteriophage or phage), which are a dominant component of this viral community. We summarise current insights regarding the form and function of this 'human gut phageome' and highlight promising avenues for future research. In doing so, we discuss the potential for phage to drive ecological functioning and evolutionary change within this important microbial ecosystem, their contribution to modulation of host-microbiome interactions and stability of the community as a whole, as well as the potential role of the phageome in human health and disease. We also consider the emerging concepts of a 'core healthy gut phageome' and the putative existence of 'viral enterotypes' and 'viral dysbiosis'.
Collapse
|
174
|
Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J, Ren H, Liu W, Ma J, Su Q, Zhang H, Yang J, Wang X, Zhao X, Gu W, Bi Y, Peng Y, Xu X, Xia H, Li F, Xu X, Yang H, Xu G, Madsen L, Kristiansen K, Ning G, Wang W. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 2017; 8:1785. [PMID: 29176714 PMCID: PMC5702614 DOI: 10.1038/s41467-017-01682-2] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Antidiabetic medication may modulate the gut microbiota and thereby alter plasma and faecal bile acid (BA) composition, which may improve metabolic health. Here we show that treatment with Acarbose, but not Glipizide, increases the ratio between primary BAs and secondary BAs and plasma levels of unconjugated BAs in treatment-naive type 2 diabetes (T2D) patients, which may beneficially affect metabolism. Acarbose increases the relative abundances of Lactobacillus and Bifidobacterium in the gut microbiota and depletes Bacteroides, thereby changing the relative abundance of microbial genes involved in BA metabolism. Treatment outcomes of Acarbose are dependent on gut microbiota compositions prior to treatment. Compared to patients with a gut microbiota dominated by Prevotella, those with a high abundance of Bacteroides exhibit more changes in plasma BAs and greater improvement in metabolic parameters after Acarbose treatment. Our work highlights the potential for stratification of T2D patients based on their gut microbiota prior to treatment.
Collapse
Affiliation(s)
- Yanyun Gu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Xiaokai Wang
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,BGI Education Centre, University of Chinese Academy of Sciences, 518083, Shenzhen, China
| | - Junhua Li
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yifei Zhang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Huanzi Zhong
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Ruixin Liu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Dongya Zhang
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China
| | - Qiang Feng
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China
| | - Xiaoyan Xie
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Jie Hong
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Huahui Ren
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Liu
- Renji Hospital affiliated to Shanghai Jiaotong University Medical School, 200127, Shanghai, China
| | - Jing Ma
- Renji Hospital affiliated to Shanghai Jiaotong University Medical School, 200127, Shanghai, China
| | - Qing Su
- Xinhua Hospital affiliated to Shanghai Jiaotong University Medical School, 200092, Shanghai, China
| | - Hongmei Zhang
- Xinhua Hospital affiliated to Shanghai Jiaotong University Medical School, 200092, Shanghai, China
| | - Jialin Yang
- MinHang Central Hospital affiliated to Fudan University Medical School, 201100, Shanghai, China
| | - Xiaoling Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Science, 116011, Dalian, China
| | - Xinjie Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Science, 116011, Dalian, China
| | - Weiqiong Gu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Yufang Bi
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Yongde Peng
- Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Xiaoqiang Xu
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,BGI Education Centre, University of Chinese Academy of Sciences, 518083, Shenzhen, China
| | - Huihua Xia
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - Fang Li
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, 310008, China
| | - Guowang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Science, 116011, Dalian, China
| | - Lise Madsen
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China.,BGI Education Centre, University of Chinese Academy of Sciences, 518083, Shenzhen, China.,National Institute of Nutrition and Seafood Research (NIFES), 5817, Bergen, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, China National GeneBank-Shenzhen, 518083, Shenzhen, China. .,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Guang Ning
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| | - Weiqing Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
175
|
Li J, Fu R, Yang Y, Horz HP, Guan Y, Lu Y, Lou H, Tian L, Zheng S, Liu H, Shi M, Tang K, Wang S, Xu S. A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Syst Appl Microbiol 2017; 41:1-12. [PMID: 29129355 DOI: 10.1016/j.syapm.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Distinct enterotypes have been observed in the human gut but little is known about the genetic basis of the microbiome. Moreover, it is not clear how many genetic differences exist between enterotypes within or between populations. In this study, both the 16S rRNA gene and the metagenomes of the gut microbiota were sequenced from 48 Han Chinese, 48 Kazaks, and 96 Uyghurs, and taxonomies were assigned after de novo assembly. Single nucleotide polymorphisms were also identified by referring to data from the Human Microbiome Project. Systematic analysis of the gut communities in terms of their abundance and genetic composition was also performed, together with a genome-wide association study of the host genomes. The gut microbiota of 192 subjects was clearly classified into two enterotypes (Bacteroides and Prevotella). Interestingly, both enterotypes showed a clear genetic differentiation in terms of their functional catalogue of genes, especially for genes involved in amino acid and carbohydrate metabolism. In addition, several differentiated genera and genes were found among the three populations. Notably, one human variant (rs878394) was identified that showed significant association with the abundance of Prevotella, which is linked to LYPLAL1, a gene associated with body fat distribution, the waist-hip ratio and insulin sensitivity. Taken together, considerable differentiation was observed in gut microbes between enterotypes and among populations that was reflected in both the taxonomic composition and the genetic makeup of their functional genes, which could have been influenced by a variety of factors, such as diet and host genetic variation.
Collapse
Affiliation(s)
- Jing Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruiqing Fu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hans-Peter Horz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yaqun Guan
- Department of Biochemistry, Preclinical Medicine College, XinJiang Medical University, Urumqi 830011, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Haiyi Lou
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Lei Tian
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Zheng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Hongjiao Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Meng Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Sijia Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China.
| |
Collapse
|
176
|
Vázquez-Baeza Y, Callewaert C, Debelius J, Hyde E, Marotz C, Morton JT, Swafford A, Vrbanac A, Dorrestein PC, Knight R. Impacts of the Human Gut Microbiome on Therapeutics. Annu Rev Pharmacol Toxicol 2017; 58:253-270. [PMID: 28968189 DOI: 10.1146/annurev-pharmtox-042017-031849] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.
Collapse
Affiliation(s)
- Yoshiki Vázquez-Baeza
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA;
| | - Chris Callewaert
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Embriette Hyde
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Clarisse Marotz
- Biomedical Sciences, University of California, San Diego, California 92093, USA
| | - James T Morton
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA;
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| | - Alison Vrbanac
- Biomedical Sciences, University of California, San Diego, California 92093, USA
| | - Pieter C Dorrestein
- Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
| | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA; .,Department of Pediatrics, University of California, San Diego, California 92093, USA.,Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| |
Collapse
|
177
|
Jalanka J, Spiller R. Role of microbiota in the pathogenesis of functional disorders of the lower GI tract: Work in progress. Neurogastroenterol Motil 2017; 29:1-5. [PMID: 28891277 DOI: 10.1111/nmo.13194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022]
Abstract
Functional bowel disorders affect a significant proportion of people word wide. Patients suffer from longstanding symptoms of abdominal pain or discomfort in combination with abnormal bowel habits. The evidence for role of microbiota is currently contradictory and descriptive. This review aims to summarize the reasons which include methodological differences in DNA extraction and sample handling along with other factors such as diet, prior antibiotic use and transit, all important major determinants of microbiota which are difficult to control. Randomized studies of specific intervention in which such factors are varied may improve reproducibility and consistency of findings in future research.
Collapse
Affiliation(s)
- Jonna Jalanka
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Robin Spiller
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
178
|
Abstract
OBJECTIVE Brain-gut-microbiota interactions may play an important role in human health and behavior. Although rodent models have demonstrated effects of the gut microbiota on emotional, nociceptive, and social behaviors, there is little translational human evidence to date. In this study, we identify brain and behavioral characteristics of healthy women clustered by gut microbiota profiles. METHODS Forty women supplied fecal samples for 16S rRNA profiling. Microbial clusters were identified using Partitioning Around Medoids. Functional magnetic resonance imaging was acquired. Microbiota-based group differences were analyzed in response to affective images. Structural and diffusion tensor imaging provided gray matter metrics (volume, cortical thickness, mean curvature, surface area) as well as fiber density between regions. A sparse Partial Least Square-Discrimination Analysis was applied to discriminate microbiota clusters using white and gray matter metrics. RESULTS Two bacterial genus-based clusters were identified, one with greater Bacteroides abundance (n = 33) and one with greater Prevotella abundance (n = 7). The Prevotella group showed less hippocampal activity viewing negative valences images. White and gray matter imaging discriminated the two clusters, with accuracy of 66.7% and 87.2%, respectively. The Prevotella cluster was associated with differences in emotional, attentional, and sensory processing regions. For gray matter, the Bacteroides cluster showed greater prominence in the cerebellum, frontal regions, and the hippocampus. CONCLUSIONS These results support the concept of brain-gut-microbiota interactions in healthy humans. Further examination of the interaction between gut microbes, brain, and affect in humans is needed to inform preclinical reports that microbial modulation may affect mood and behavior.
Collapse
|
179
|
Hjorth MF, Roager HM, Larsen TM, Poulsen SK, Licht TR, Bahl MI, Zohar Y, Astrup A. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int J Obes (Lond) 2017; 42:580-583. [PMID: 28883543 PMCID: PMC5880576 DOI: 10.1038/ijo.2017.220] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022]
Abstract
On the basis of the abundance of specific bacterial genera, the human gut microbiota can be divided into two relatively stable groups that might have a role in personalized nutrition. We studied these simplified enterotypes as prognostic markers for successful body fat loss on two different diets. A total of 62 participants with increased waist circumference were randomly assigned to receive an ad libitum New Nordic Diet (NND) high in fiber/whole grain or an Average Danish Diet for 26 weeks. Participants were grouped into two discrete enterotypes by their relative abundance of Prevotella spp. divided by Bacteroides spp. (P/B ratio) obtained by quantitative PCR analysis. Modifications of dietary effects of pre-treatment P/B group were examined by linear mixed models. Among individuals with high P/B the NND resulted in a 3.15 kg (95% confidence interval (CI): 1.55; 4.76, P<0.001) larger body fat loss compared with ADD, whereas no differences was observed among individuals with low P/B (0.88 kg (95% CI: −0.61; 2.37, P=0.25)). Consequently, a 2.27 kg (95% CI: 0.09; 4.45, P=0.041) difference in responsiveness to the diets were found between the two groups. In summary, subjects with high P/B ratio appeared more susceptible to lose body fat on diets high in fiber and whole grain than subjects with a low P/B ratio.
Collapse
Affiliation(s)
- M F Hjorth
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - H M Roager
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - T M Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - S K Poulsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - T R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M I Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Y Zohar
- Gelesis Inc., Boston, MA, USA
| | - A Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
180
|
Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers. Drug Metab Dispos 2017; 45:1197-1214. [PMID: 28864748 DOI: 10.1124/dmd.117.077024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) and BDE-99 (2, 2', 4, 4',5-pentabromodiphenyl ether), are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ-free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for 4 days. Following BDE-47 treatment, GF mice had higher levels of 5-OH-BDE-47 but lower levels of four other metabolites in liver than CV mice; whereas following BDE-99 treatment GF mice had lower levels of four minor metabolites in liver than CV mice. RNA sequencing demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal conditions, the lack of gut microbiome upregulated the Cyp2c subfamily but downregulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated upregulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Soowan Lee
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Sara Cade
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Li-Jung Kuo
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Irvin R Schultz
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Deepak K Bhatt
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Bhagwat Prasad
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| |
Collapse
|
181
|
Fond G, Bulzacka E, Boyer L, Llorca PM, Godin O, Brunel L, Andrianarisoa MG, Aouizerate B, Berna F, Capdevielle D, Chereau I, Denizot H, Dorey JM, Dubertret C, Dubreucq J, Faget C, Gabayet F, Le Strat Y, Micoulaud-Franchi JA, Misdrahi D, Rey R, Richieri R, Roger M, Passerieux C, Schandrin A, Urbach M, Vidalhet P, Schürhoff F, Leboyer M. Birth by cesarean section and schizophrenia: results from the multicenter FACE-SZ data-set. Eur Arch Psychiatry Clin Neurosci 2017; 267:587-594. [PMID: 27349652 DOI: 10.1007/s00406-016-0708-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
Children born by cesarean section ("c-birth") are known to have different microbiota and a natural history of different disorders including allergy, asthma and overweight compared to vaginally born ("v-birth") children. C-birth is not known to increase the risk of schizophrenia (SZ), but to be associated with an earlier age at onset. To further explore possible links between c-birth and SZ, we compared clinical and biological characteristics of c-born SZ patients compared to v-born ones. Four hundred and fifty-four stable community-dwelling SZ patients (mean age = 32.4 years, 75.8 % male gender) were systematically included in the multicentre network of FondaMental Expert Center for schizophrenia. Overall, 49 patients (10.8 %) were c-born. These subjects had a mean age at schizophrenia onset of 21.9 ± 6.7 years, a mean duration of illness of 10.5 ± 8.7 years and a mean PANSS total score of 70.9 ± 18.7. None of these variables was significantly associated with c-birth. Multivariate analysis showed that c-birth remained associated with lower CRP levels (aOR = 0.07; 95 % CI 0.009-0.555, p = 0.012) and lower premorbid ability (aOR = 0.945; 95 % CI 0.898-0.994, p = 0.03). No significant association between birth by C-section and, respectively, age, age at illness onset, sex, education level, psychotic and mood symptomatology, antipsychotic treatment, tobacco consumption, birth weight and mothers suffering from schizophrenia or bipolar disorder has been found. Altogether, the present results suggest that c-birth is associated with lower premorbid intellectual functioning and lower blood CRP levels in schizophrenia. Further studies should determine the mechanisms underlying this association.
Collapse
Affiliation(s)
- G Fond
- Fondation FondaMental, Créteil, France. .,Translational Psychiatry Laboratory, INSERM U955, Créteil, France. .,DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Paris Est University, Créteil, France. .,Hôpital A. Chenevier, Pole de Psychiatrie, 40 rue de Mesly, 94010, Créteil, France.
| | - E Bulzacka
- Fondation FondaMental, Créteil, France.,Translational Psychiatry Laboratory, INSERM U955, Créteil, France.,DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Paris Est University, Créteil, France
| | - L Boyer
- CHU Sainte-Marguerite, Pôle Psychiatrie Universitaire, 13274, Marseille Cedex 09, France
| | - P M Llorca
- Fondation FondaMental, Créteil, France.,CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69, 63003, Clermont-Ferrand Cedex 1, France
| | - O Godin
- Fondation FondaMental, Créteil, France.,UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, INSERM, 75013, UPMC Univ Paris 06, Sorbonne Universités, 75013, Paris, France
| | - L Brunel
- Fondation FondaMental, Créteil, France.,Translational Psychiatry Laboratory, INSERM U955, Créteil, France.,DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Paris Est University, Créteil, France
| | - M G Andrianarisoa
- Fondation FondaMental, Créteil, France.,Translational Psychiatry Laboratory, INSERM U955, Créteil, France.,DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Paris Est University, Créteil, France
| | - B Aouizerate
- Fondation FondaMental, Créteil, France.,Centre Hospitalier Charles Perrens, Université de Bordeaux, 33076, Bordeaux, France.,Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Inserm, U862, 33000, Bordeaux, France
| | - F Berna
- Fondation FondaMental, Créteil, France.,INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - D Capdevielle
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, Inserm 1061, CHRU Montpellier, Université Montpellier 1, Montpellier, France
| | - I Chereau
- Fondation FondaMental, Créteil, France.,CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69, 63003, Clermont-Ferrand Cedex 1, France
| | - H Denizot
- Fondation FondaMental, Créteil, France.,CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69, 63003, Clermont-Ferrand Cedex 1, France
| | - J M Dorey
- Fondation FondaMental, Créteil, France.,Université Claude Bernard Lyon 1/Centre Hospitalier Le Vinatier Pole Est, BP 300 39, 95 bd Pinel, 69678, Bron Cedex, France
| | - C Dubertret
- Fondation FondaMental, Créteil, France.,AP-HP, Department of Psychiatry, Faculté de Médecine, Louis Mourier Hospital, Inserm U894, Université Paris Diderot, Sorbonne Paris Cité, Colombes, France
| | - J Dubreucq
- Fondation FondaMental, Créteil, France.,Centre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France
| | - C Faget
- Fondation FondaMental, Créteil, France.,Assistance Publique des Hôpitaux de Marseille (AP-HM), Pôle Universitaire de Psychiatrie, Marseille, France
| | - F Gabayet
- Fondation FondaMental, Créteil, France.,Centre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France
| | - Y Le Strat
- Fondation FondaMental, Créteil, France.,AP-HP, Department of Psychiatry, Faculté de Médecine, Louis Mourier Hospital, Inserm U894, Université Paris Diderot, Sorbonne Paris Cité, Colombes, France
| | - J A Micoulaud-Franchi
- Bordeaux Sleep Clinique, Pellegrin University Hospital, USR CNRS 3413 SANPSY, Research Unit, Bordeaux University, 33000, Bordeaux, France
| | - D Misdrahi
- Fondation FondaMental, Créteil, France.,Centre Hospitalier Charles Perrens, Université de Bordeaux, 33076, Bordeaux, France.,CNRS UMR 5287-INCIA, Talence, France
| | - R Rey
- Fondation FondaMental, Créteil, France.,Université Claude Bernard Lyon 1/Centre Hospitalier Le Vinatier Pole Est, BP 300 39, 95 bd Pinel, 69678, Bron Cedex, France
| | - R Richieri
- Fondation FondaMental, Créteil, France.,Assistance Publique des Hôpitaux de Marseille (AP-HM), Pôle Universitaire de Psychiatrie, Marseille, France
| | - M Roger
- Fondation FondaMental, Créteil, France.,Translational Psychiatry Laboratory, INSERM U955, Créteil, France.,DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Paris Est University, Créteil, France
| | - C Passerieux
- Fondation FondaMental, Créteil, France.,Service de Psychiatrie d'Adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France
| | - A Schandrin
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, Inserm 1061, CHRU Montpellier, Université Montpellier 1, Montpellier, France
| | - M Urbach
- Fondation FondaMental, Créteil, France.,Service de Psychiatrie d'Adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France
| | - P Vidalhet
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - F Schürhoff
- Fondation FondaMental, Créteil, France.,Translational Psychiatry Laboratory, INSERM U955, Créteil, France.,DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Paris Est University, Créteil, France
| | - M Leboyer
- Fondation FondaMental, Créteil, France.,Translational Psychiatry Laboratory, INSERM U955, Créteil, France.,DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Paris Est University, Créteil, France
| | | |
Collapse
|
182
|
Yang H, Huang X, Fang S, He M, Zhao Y, Wu Z, Yang M, Zhang Z, Chen C, Huang L. Unraveling the Fecal Microbiota and Metagenomic Functional Capacity Associated with Feed Efficiency in Pigs. Front Microbiol 2017; 8:1555. [PMID: 28861066 PMCID: PMC5559535 DOI: 10.3389/fmicb.2017.01555] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota plays fundamental roles in energy harvest, nutrient digestion, and intestinal health, especially in processing indigestible components of polysaccharides in diet. Unraveling the microbial taxa and functional capacity of gut microbiome associated with feed efficiency can provide important knowledge to improve pig feed efficiency in swine industry. In the current research, we studied the association of fecal microbiota with feed efficiency in 280 commercial Duroc pigs. All experimental pigs could be clustered into two enterotype-like groups. Different enterotypes showed the tendency of association with the feed efficiency (P = 0.07). We further identified 31 operational taxonomic units (OTUs) showing the potential associations with porcine feed efficiency. These OTUs were mainly annotated to the bacteria related to the metabolisms of dietary polysaccharides. Although we did not identify the RFI-associated bacterial species at FDR < 0.05 level, metagenomic sequencing analysis did find the distinct function capacities of gut microbiome between the high and low RFI pigs (FDR < 0.05). The KEGG orthologies related to nitrogen metabolism, amino acid metabolism, and transport system, and eight KEGG pathways including glycine, serine, and threonine metabolism were positively associated with porcine feed efficiency. We inferred that gut microbiota might improve porcine feed efficiency through promoting intestinal health by the SCFAs produced by fermenting dietary polysaccharides and improving the utilization of dietary protein. The present results provided important basic knowledge for improving porcine feed efficiency through modulating gut microbiome.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China.,College of Bioscience and Engineering, Jiangxi Agricultural UniversityNanchang, China
| | - Xiaochang Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China
| | - Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China
| | - Yuanzhang Zhao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Co. Ltd.Xinxing, China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Co. Ltd.Xinxing, China
| | - Zhiyan Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural UniversityNanchang, China
| |
Collapse
|
183
|
Investigation into the stability and culturability of Chinese enterotypes. Sci Rep 2017; 7:7947. [PMID: 28801639 PMCID: PMC5554170 DOI: 10.1038/s41598-017-08478-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Although many gut microbial enterotypes have been reported in Europe, Africa and the U.S., their effects on human health are still not yet clear. Culturing gut microbial enterotypes in vitro will be helpful to study their effects and applications. Here, fecal samples from 13 healthy Chinese volunteers were collected and subjected to next-generation sequencing. The results showed that seven of these samples belong to the Bacteroides enterotype and another six to the Prevotella enterotype. Stability of these Chinese gut microbial enterotypes was also evaluated. Results showed that most of the tested volunteer gut microbiota to be very stable. For one volunteer, the bacterial community returned to the state it was in before intestinal lavage and antibiotics treatment after four months. XP medium was found effective for simulating the Bacteroides enterotype independent of the original gut microbial community in an in vitro chemostat culture system. Although, the Prevotella enterotype was not very well simulated in vitro, different culture elements selectively enriched different gut bacteria. Pectin and xylan were found to be related to the enrichment of the genera Bacteroides, Sutterella, and Flavonifractor in this chemostat culture system.
Collapse
|
184
|
Affiliation(s)
- Lesley A Ogilvie
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Brian V Jones
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
185
|
Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, Wasfi M, Zha CY, Gamberi C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017; 8:1265. [PMID: 28769880 PMCID: PMC5511848 DOI: 10.3389/fmicb.2017.01265] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.
Collapse
Affiliation(s)
| | - Belise Rukundo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hayfa Akoubi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hend Al-Bizri
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Adelekan F Aliu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lilit Avetisyan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Irmak Bahar
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alexandra Baird
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fatema Begum
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Helene Bramwell
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alicia Briggs
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Richard Bui
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Talia Chevassus
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jin H Choi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Karyne Coulombe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Meghan Davies
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tamara Di Maulo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Paola K Duncan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Sara El-Nounou
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tanya Fotakis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Metodi Georgiev
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tazkia Hassan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Iman Huseen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tania Iozzo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Safina Islam
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Cedric Kamani
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Filip Konieczny
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Karina Legros
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Jun Li
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Yara Maalouf
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jessica Mantha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Thi T T Nguyen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Ian Niu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Matthew Oueis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Nehal Patel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Emily Pecsi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jackie Peters
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | | | | | - Surya Sakr
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lisa Serravalle
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fily Sidibe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Dominique Soho
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | - Olga Voitovich
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Pamela Vrabel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Lu Wang
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Maryse Wasfi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Cong Y Zha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Chiara Gamberi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
186
|
Dai W, Yu W, Zhang J, Zhu J, Tao Z, Xiong J. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp. Appl Microbiol Biotechnol 2017; 101:6447-6457. [PMID: 28702793 DOI: 10.1007/s00253-017-8388-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence has revealed a close interplay between the gut bacterial communities and host growth performance. However, until recently, studies generally ignored the contribution of eukaryotes, endobiotic organisms. To fill this gap, we used Illumina sequencing technology on eukaryotic 18S rRNA gene to compare the structures of gut eukaryotic communities among cohabitating retarded, overgrown, and normal shrimp obtained from identically managed ponds. Results showed that a significant difference between gut eukaryotic communities differed significantly between water and intestine and among three shrimp categories. Structural equation modeling revealed that changes in the gut eukaryotic community were positively related to digestive enzyme activities, which in turn influenced shrimp growth performance (λ = 0.97, P < 0.001). Overgrown shrimp exhibited a more complex and cooperative gut eukaryotic interspecies interaction than retarded and normal shrimp, which may facilitate their nutrient acquisition efficiency. Notably, the distribution of dominant eukaryotic genera and shifts in keystone species were closely concordant with shrimp growth performance. In summary, this study provides an integrated overview on direct roles of gut eukaryotic communities in shrimp growth performance instead of well-studied bacterial assembly.
Collapse
Affiliation(s)
- Wenfang Dai
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weina Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jinjie Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhen Tao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China. .,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| |
Collapse
|
187
|
Duranti S, Ferrario C, van Sinderen D, Ventura M, Turroni F. Obesity and microbiota: an example of an intricate relationship. GENES AND NUTRITION 2017. [PMID: 28638490 PMCID: PMC5473000 DOI: 10.1186/s12263-017-0566-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that metabolic disorders, such as obesity, are closely linked to lifestyle and diet. Recently, the central role played by the intestinal microbiota in human metabolism and in progression of metabolic disorders has become evident. In this context, animal studies and human trials have demonstrated that alterations of the intestinal microbiota towards enhanced energy harvest is a characteristic of the obese phenotype. Many publications, involving both animal studies and clinical trials, have reported on the successful exploitation of probiotics and prebiotics to treat obesity. However, the molecular mechanisms underlying these observed anti-obesity effects of probiotics and prebiotic therapies are still obscure. The aim of this mini-review is to discuss the intricate relationship of various factors, including diet, gut microbiota, and host genetics, that are believed to impact on the development of obesity, and to understand how modulation of the gut microbiota with dietary intervention may alleviate obesity-associated symptoms.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
188
|
Multi-stability and the origin of microbial community types. ISME JOURNAL 2017; 11:2159-2166. [PMID: 28475180 PMCID: PMC5607358 DOI: 10.1038/ismej.2017.60] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 12/31/2022]
Abstract
The study of host-associated microbial community composition has suggested the presence of alternative community types. We discuss three mechanisms that could explain these observations. The most commonly invoked mechanism links community types to a response to environmental change; alternatively, community types were shown to emerge from interactions between members of local communities sampled from a metacommunity. Here, we emphasize multi-stability as a third mechanism, giving rise to different community types in the same environmental conditions. We illustrate with a toy model how multi-stability can generate community types and discuss the consequences of multi-stability for data interpretation.
Collapse
|
189
|
Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, Soininen P, Wang Z, Ala-Korpela M, Hazen SL, Laakso M, Lusis AJ. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol 2017; 18:70. [PMID: 28407784 PMCID: PMC5390365 DOI: 10.1186/s13059-017-1194-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The gut microbiome is a complex and metabolically active community that directly influences host phenotypes. In this study, we profile gut microbiota using 16S rRNA gene sequencing in 531 well-phenotyped Finnish men from the Metabolic Syndrome In Men (METSIM) study. RESULTS We investigate gut microbiota relationships with a variety of factors that have an impact on the development of metabolic and cardiovascular traits. We identify novel associations between gut microbiota and fasting serum levels of a number of metabolites, including fatty acids, amino acids, lipids, and glucose. In particular, we detect associations with fasting plasma trimethylamine N-oxide (TMAO) levels, a gut microbiota-dependent metabolite associated with coronary artery disease and stroke. We further investigate the gut microbiota composition and microbiota-metabolite relationships in subjects with different body mass index and individuals with normal or altered oral glucose tolerance. Finally, we perform microbiota co-occurrence network analysis, which shows that certain metabolites strongly correlate with microbial community structure and that some of these correlations are specific for the pre-diabetic state. CONCLUSIONS Our study identifies novel relationships between the composition of the gut microbiota and circulating metabolites and provides a resource for future studies to understand host-gut microbiota relationships.
Collapse
Affiliation(s)
- Elin Org
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Estonian Genome Centre, University of Tartu, Tartu, 51010, Estonia.
| | - Yuna Blum
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Silva Kasela
- Estonian Genome Centre, University of Tartu, Tartu, 51010, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Margarete Mehrabian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland.,Kuopio University Hospital, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, School of Social and Community Medicine, University of Bristol and Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland.,Kuopio University Hospital, Kuopio, Finland
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
190
|
Brooks JP, Buck GA, Chen G, Diao L, Edwards DJ, Fettweis JM, Huzurbazar S, Rakitin A, Satten GA, Smirnova E, Waks Z, Wright ML, Yanover C, Zhou YH. Changes in vaginal community state types reflect major shifts in the microbiome. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2017; 28:1303265. [PMID: 28572753 PMCID: PMC5443090 DOI: 10.1080/16512235.2017.1303265] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/05/2017] [Indexed: 12/21/2022]
Abstract
Background: Recent studies of various human microbiome habitats have revealed thousands of bacterial species and the existence of large variation in communities of microorganisms in the same habitats across individual human subjects. Previous efforts to summarize this diversity, notably in the human gut and vagina, have categorized microbiome profiles by clustering them into community state types (CSTs). The functional relevance of specific CSTs has not been established. Objective: We investigate whether CSTs can be used to assess dynamics in the microbiome. Design: We conduct a re-analysis of five sequencing-based microbiome surveys derived from vaginal samples with repeated measures. Results: We observe that detection of a CST transition is largely insensitive to choices in methods for normalization or clustering. We find that healthy subjects persist in a CST for two to three weeks or more on average, while those with evidence of dysbiosis tend to change more often. Changes in CST can be gradual or occur over less than one day. Upcoming CST changes and switches to high-risk CSTs can be predicted with high accuracy in certain scenarios. Finally, we observe that presence of Gardnerella vaginalis is a strong predictor of an upcoming CST change. Conclusion: Overall, our results show that the CST concept is useful for studying microbiome dynamics.
Collapse
Affiliation(s)
- J Paul Brooks
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Guanhua Chen
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Liyang Diao
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - David J Edwards
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer M Fettweis
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | - Glen A Satten
- National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ekaterina Smirnova
- Department of Statistics, University of Wyoming, Laramie, Wyoming, USA.,Department of Mathematical Sciences, University of Montana, Missoula, Montana, USA
| | | | | | | | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
191
|
Dahiya DK, Renuka, Puniya M, Shandilya UK, Dhewa T, Kumar N, Kumar S, Puniya AK, Shukla P. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol 2017; 8:563. [PMID: 28421057 PMCID: PMC5378938 DOI: 10.3389/fmicb.2017.00563] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed.
Collapse
Affiliation(s)
- Dinesh K Dahiya
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research - Rajasthan University of Veterinary and Animal Sciences at BikanerJaipur, India
| | - Renuka
- Department of Biochemistry, Basic Medical Science, South Campus, Panjab UniversityChandigarh, India
| | - Monica Puniya
- Food Safety Management System Division, Food Safety and Standards Authority of IndiaNew Delhi, India
| | - Umesh K Shandilya
- Animal Biotechnology Division, National Bureau of Animal Genetic ResourcesKarnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of HaryanaMahendergarh, India
| | - Nikhil Kumar
- Department of Life Sciences, Shri Venkateshwara UniversityJP Nagar, India
| | - Sanjeev Kumar
- Department of Life Science, Central Assam UniversitySilchar, India
| | - Anil K Puniya
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India.,Dairy Microbiology Division, ICAR-National Dairy Research InstituteKarnal, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
192
|
Martinson VG, Douglas AE, Jaenike J. Community structure of the gut microbiota in sympatric species of wild Drosophila. Ecol Lett 2017; 20:629-639. [PMID: 28371064 DOI: 10.1111/ele.12761] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 12/21/2022]
Abstract
Many aspects of animal ecology and physiology are influenced by the microbial communities within them. The underlying forces contributing to the assembly and diversity of gut microbiotas include chance events, host-based selection and interactions among microorganisms within these communities. We surveyed 215 wild individuals from four sympatric species of Drosophila that share a common diet of decaying mushrooms. Their microbiotas consistently contained abundant bacteria that were undetectable or at low abundance in their diet. Despite their deep phylogenetic divergence, all species had similar microbiotas, thus failing to support predictions of the phylosymbiosis hypothesis. Communities within flies were not random assemblages drawn from a common pool; instead, many bacterial operational taxonomic units (OTUs) were overrepresented or underrepresented relative to the neutral expectations, and OTUs exhibited checkerboard distributions among flies. These results suggest that selective factors play an important role in shaping the gut community structure of these flies.
Collapse
Affiliation(s)
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14627, USA
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
193
|
Remote Sensing between Liver and Intestine: Importance of Microbial Metabolites. ACTA ACUST UNITED AC 2017; 3:101-113. [PMID: 28983453 DOI: 10.1007/s40495-017-0087-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent technological advancements including metagenomics sequencing and metabolomics have allowed the discovery of critical functions of gut microbiota in obesity, malnutrition, neurological disorders, asthma, and xenobiotic metabolism. Classification of the human gut microbiome into distinct "enterotypes" has been proposed to serve as a new paradigm for understanding the interplay between microbial variation and human disease phenotypes, as many organs are affected by gut microbiota modifications during the pathogenesis of diseases. Gut microbiota remotely interacts with liver and other metabolic organs of the host through various microbial metabolites that are absorbed into the systemic circulation. PURPOSE OF REVIEW The present review summarizes recent literature regarding the importance of gut microbiota in modulating the physiological and pathological responses of various host organs, and describes the functions of the known microbial metabolites that are involved in this remote sensing process, with a primary focus on the gut microbiota-liver axis. RECENT FINDINGS Under physiological conditions, gut microbiota modulates the hepatic transcriptome, proteome, and metabolome, most notably down-regulating cytochrome P450 3a mediated xenobiotic metabolism. Gut microbiome also modulates the rhythmicity in liver gene expression, likely through microbial metabolites, such as butyrate and propionate that serve as epigenetic modifiers. Additionally, the production of host hormones such as primary bile acids and glucagon like peptide 1 is altered by gut microbiota to modify intermediary metabolism of the host. SUMMARY Dysregulation of gut microbiota is implicated in various liver diseases such as alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis, cholangitis, and liver cancer. Gut microbiota modifiers such as probiotics and prebiotics are increasingly recognized as novel therapeutic modalities for liver and other types of human diseases.
Collapse
|
194
|
Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312:G171-G193. [PMID: 27908847 PMCID: PMC5440615 DOI: 10.1152/ajpgi.00048.2015] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Collapse
Affiliation(s)
- Jerry M. Wells
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | - Robert J. Brummer
- 2Nutrition-Gut-Brain Interactions Research Centre, School of Medicine and Health, Örebro University, Örebro, Sweden;
| | - Muriel Derrien
- 3Centre Daniel Carasso, Danone Research, Palaiseau, France;
| | - Thomas T. MacDonald
- 4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom;
| | - Freddy Troost
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands;
| | - Patrice D. Cani
- 6Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium;
| | - Vassilia Theodorou
- 7Neuro-Gastroenterology and Nutrition Group, Institut National de la Recherche Agronomique, Toulouse, France;
| | - Jan Dekker
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | | | - Willem M. de Vos
- 9Laboratory of Microbiology, Wageningen UR, Wageningen, The Netherlands;
| | - Annick Mercenier
- 10Institute of Nutritional Science, Nestlé Research Center, Lausanne, Switzerland; and
| | - Arjen Nauta
- 11FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
195
|
Jiang X, Hu X, Xu W. Microbiome Data Representation by Joint Nonnegative Matrix Factorization with Laplacian Regularization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:353-359. [PMID: 28368813 DOI: 10.1109/tcbb.2015.2440261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbiome datasets are often comprised of different representations or views which provide complementary information to understand microbial communities, such as metabolic pathways, taxonomic assignments, and gene families. Data integration methods including approaches based on nonnegative matrix factorization (NMF) combine multi-view data to create a comprehensive view of a given microbiome study by integrating multi-view information. In this paper, we proposed a novel variant of NMF which called Laplacian regularized joint non-negative matrix factorization (LJ-NMF) for integrating functional and phylogenetic profiles from HMP. We compare the performance of this method to other variants of NMF. The experimental results indicate that the proposed method offers an efficient framework for microbiome data analysis.
Collapse
|
196
|
Shetty SA, Hugenholtz F, Lahti L, Smidt H, de Vos WM. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol Rev 2017; 41:182-199. [PMID: 28364729 PMCID: PMC5399919 DOI: 10.1093/femsre/fuw045] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss key concepts of the human intestinal microbiome landscape, i.e. the compositional and functional 'core', the presence of community types and the existence of alternative stable states. Genomic investigation of core taxa revealed functional redundancy, which is expected to stabilize the ecosystem, as well as taxa with specialized functions that have the potential to shape the microbiome landscape. The contrast between Prevotella- and Bacteroides-dominated systems has been well described. However, less known is the effect of not so abundant bacteria, for example, Dialister spp. that have been proposed to exhibit distinct bistable dynamics. Studies employing time-series analysis have highlighted the dynamical variation in the microbiome landscape with and without the effect of defined perturbations, such as the use of antibiotics or dietary changes. We incorporate ecosystem-level observations of the human intestinal microbiota and its keystone species to suggest avenues for designing microbiome modulation strategies to improve host health.
Collapse
Affiliation(s)
- Sudarshan A. Shetty
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE Wageningen, the Netherlands
| | - Floor Hugenholtz
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE Wageningen, the Netherlands
| | - Leo Lahti
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE Wageningen, the Netherlands
- VIB Lab for Bioinformatics and (Eco-)systems Biology, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
- Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE Wageningen, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE Wageningen, the Netherlands
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, P.O. Box 21, 00014 Helsinki, Finland
| |
Collapse
|
197
|
Gibbons SM, Kearney SM, Smillie CS, Alm EJ. Two dynamic regimes in the human gut microbiome. PLoS Comput Biol 2017; 13:e1005364. [PMID: 28222117 PMCID: PMC5340412 DOI: 10.1371/journal.pcbi.1005364] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes. Dynamics reveal crucial information about how a system functions. In this study, we develop an approach for disentangling two types of dynamics within the human gut microbiome. We find that autoregressive dynamics involve recovery from large deviations in community structure. These recovery processes appear to involve the blooming of facultative anaerobes and aerotolerant taxa, likely due to transient shifts in redox potential, followed by re-establishment of obligate anaerobes. Non-autoregressive dynamics carry a strong phylogenetic signal, wherein highly related taxa fluctuate coherently. These non-autoregressive dynamics appear to be driven by external, non-autoregressive variables like diet. We find that most of the community variance is driven by day-to-day fluctuations in the environment, with occasional autoregressive dynamics as the system recovers from larger shocks. Despite frequently observed disruptions to the gut ecosystem, there exists a returning force that continually pushes the gut microbiome back towards its steady-state configuration.
Collapse
Affiliation(s)
- Sean M. Gibbons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- The Broad Institute, Cambridge, MA, United States of America
- The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States of America
| | - Sean M. Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- The Broad Institute, Cambridge, MA, United States of America
- The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States of America
| | - Chris S. Smillie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- The Broad Institute, Cambridge, MA, United States of America
- The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States of America
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- The Broad Institute, Cambridge, MA, United States of America
- The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
198
|
Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, Lee YK. Impact of Westernized Diet on Gut Microbiota in Children on Leyte Island. Front Microbiol 2017; 8:197. [PMID: 28261164 PMCID: PMC5306386 DOI: 10.3389/fmicb.2017.00197] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/26/2017] [Indexed: 12/25/2022] Open
Abstract
Urbanization has changed life styles of the children in some towns and cities on Leyte island in the Philippines. To evaluate the impact of modernization in dietary habits on gut microbiota, we compared fecal microbiota of 7 to 9-year-old children from rural Baybay city (n = 24) and urban Ormoc city (n = 19), and assessed the correlation between bacterial composition and diet. A dietary survey indicated that Ormoc children consumed fast food frequently and more meat and confectionary than Baybay children, suggesting modernization/westernization of dietary habits. Fat intake accounted for 27.2% of the total energy intake in Ormoc children; this was remarkably higher than in their Baybay counterparts (18.1%) and close to the upper limit (30%) recommended by the World Health Organization. Their fecal microbiota were analyzed by high-throughput 16S rRNA gene sequencing in conjunction with a dataset from five other Asian countries. Their microbiota were classified into two enterotype-like clusters with the other countries' children, each defined by high abundance of either Prevotellaceae (P-type) or Bacteroidaceae (BB-type), respectively. Baybay and Ormoc children mainly harbored P-type and BB-type, respectively. Redundancy analysis showed that P-type favored carbohydrates whereas BB-type preferred fats. Fat intake correlated positively with the Firmicutes-to-Bacteroidetes (F/B) ratio and negatively with the relative abundance of the family Prevotellaceae/genus Prevotella. A species-level analysis suggested that dietary fat positively correlated with an Oscillibacter species as well as a series of Bacteroides/Parabacteroides species, whereas dietary carbohydrate positively correlated with Dialister succinatiphilus known as succinate-utilizing bacteria and some succinate-producing species of family Prevotellaceae, Veillonellaceae, and Erysipelotrichaceae. We also found that a Succinivibrio species was overrepresented in the P-type community, suggesting the syntroph via hydrogen and succinate. Predicted metagenomics suggests that BB-type microbiota is well nourished and metabolically more active with simple sugars, amino acids, and lipids, while P-type community is more involved in digestion of complex carbohydrates. Overweight and obese children living in Ormoc, who consumed a high-fat diet, harbored microbiota with higher F/B ratio and low abundance of Prevotella. The altered gut microbiota may be a sign of a modern diet-associated obesity among children in developing areas.
Collapse
Affiliation(s)
- Jiro Nakayama
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Fukuoka, Japan
| | - Azusa Yamamoto
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Fukuoka, Japan
| | | | - Kanako Higashi
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Fukuoka, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Fukuoka, Japan
| | - Julie Tan
- PhilRootcrops, Visayas State University Baybay, Philippines
| | - Yuan-Kun Lee
- Department of Microbiology, National University of Singapore Singapore, Singapore
| |
Collapse
|
199
|
Bhute SS, Suryavanshi MV, Joshi SM, Yajnik CS, Shouche YS, Ghaskadbi SS. Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Front Microbiol 2017; 8:214. [PMID: 28261173 PMCID: PMC5306211 DOI: 10.3389/fmicb.2017.00214] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
Diabetes in India has distinct genetic, nutritional, developmental and socio-economic aspects; owing to the fact that changes in gut microbiota are associated with diabetes, we employed semiconductor-based sequencing to characterize gut microbiota of diabetic subjects from this region. We suggest consolidated dysbiosis of eubacterial, archaeal and eukaryotic components in the gut microbiota of newly diagnosed (New-DMs) and long-standing diabetic subjects (Known-DMs) compared to healthy subjects (NGTs). Increased abundance of phylum Firmicutes (p = 0.010) and Operational Taxonomic Units (OTUs) of Lactobacillus (p < 0.01) were observed in Known-DMs subjects along with the concomitant graded decrease in butyrate-producing bacterial families like Ruminococcaceae and Lachnospiraceae. Eukaryotes and fungi were the least affected components in these subjects but archaea, except Methanobrevibacter were significantly decreased in them. The two dominant archaea viz. Methanobrevibacater and Methanosphaera followed opposite trends in abundance from NGTs to Known-DMs subjects. There was a substantial reduction in eubacteria, with a noticeable decrease in Bacteroidetes phylum (p = 0.098) and an increased abundance of fungi in New-DMs subjects. Likewise, opportunistic fungal pathogens such as Aspergillus, Candida were found to be enriched in New-DMs subjects. Analysis of eubacterial interaction network revealed disease-state specific patterns of ecological interactions, suggesting the distinct behavior of individual components of eubacteria in response to the disease. PERMANOVA test indicated that the eubacterial component was associated with diabetes-related risk factors like high triglyceride (p = 0.05), low HDL (p = 0.03), and waist-to-hip ratio (p = 0.02). Metagenomic imputation of eubacteria depict deficiencies of various essential functions such as carbohydrate metabolism, amino acid metabolism etc. in New-DMs subjects. Results presented here shows that in diabetes, microbial dysbiosis may not be just limited to eubacteria. Due to the inter-linked metabolic interactions among the eubacteria, archaea and eukarya in the gut, it may extend into other two domains leading to trans-domain dysbiosis in microbiota. Our results thus contribute to and expand the identification of biomarkers in diabetes.
Collapse
Affiliation(s)
- Shrikant S Bhute
- Department of Zoology, Savitribai Phule Pune University Pune, India
| | | | - Suyog M Joshi
- Diabetes Unit, KEM Hospital and Research Centre Pune, India
| | | | - Yogesh S Shouche
- Microbial Culture Collection-National Centre for Cell Science Pune, India
| | | |
Collapse
|
200
|
Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One 2017; 12:e0171352. [PMID: 28187199 PMCID: PMC5302835 DOI: 10.1371/journal.pone.0171352] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Physical exercise is a tool to prevent and treat some of the chronic diseases affecting the world’s population. A mechanism through which exercise could exert beneficial effects in the body is by provoking alterations to the gut microbiota, an environmental factor that in recent years has been associated with numerous chronic diseases. Here we show that physical exercise performed by women to at least the degree recommended by the World Health Organization can modify the composition of gut microbiota. Using high-throughput sequencing of the 16s rRNA gene, eleven genera were found to be significantly different between active and sedentary women. Quantitative PCR analysis revealed higher abundance of health-promoting bacterial species in active women, including Faecalibacterium prausnitzii, Roseburia hominis and Akkermansia muciniphila. Moreover, body fat percentage, muscular mass and physical activity significantly correlated with several bacterial populations. In summary, we provide the first demonstration of interdependence between some bacterial genera and sedentary behavior parameters, and show that not only does the dose and type of exercise influence the composition of gut microbiota, but also the breaking of sedentary behavior.
Collapse
|