151
|
Abstract
Nephrotic syndrome is a highly prevalent disease that is associated with high morbidity despite notable advances in its treatment. Many of the complications of nephrotic syndrome, including the increased risk of atherosclerosis and thromboembolism, can be linked to dysregulated lipid metabolism and dyslipidaemia. These abnormalities include elevated plasma levels of cholesterol, triglycerides and the apolipoprotein B-containing lipoproteins VLDL and IDL; decreased lipoprotein lipase activity in the endothelium, muscle and adipose tissues; decreased hepatic lipase activity; and increased levels of the enzyme PCSK9. In addition, there is an increase in the plasma levels of immature HDL particles and reduced cholesterol efflux. Studies from the past few years have markedly improved our understanding of the molecular pathogenesis of nephrotic syndrome-associated dyslipidaemia, and also heightened our awareness of the associated exacerbated risks of cardiovascular complications, progressive kidney disease and thromboembolism. Despite the absence of clear guidelines regarding treatment, various strategies are being increasingly utilized, including statins, bile acid sequestrants, fibrates, nicotinic acid and ezetimibe, as well as lipid apheresis, which seem to also induce partial or complete clinical remission of nephrotic syndrome in a substantial percentage of patients. Future potential treatments will likely also include inhibition of PCSK9 using recently-developed anti-PCSK9 monoclonal antibodies and small inhibitory RNAs, as well as targeting newly identified molecular regulators of lipid metabolism that are dysregulated in nephrotic syndrome.
Collapse
|
152
|
Muraba Y, Koga T, Shimomura Y, Ito Y, Hirao Y, Kobayashi J, Kimura T, Nakajima K, Murakami M. The role of plasma lipoprotein lipase, hepatic lipase and GPIHBP1 in the metabolism of remnant lipoproteins and small dense LDL in patients with coronary artery disease. Clin Chim Acta 2017; 476:146-153. [PMID: 29174344 DOI: 10.1016/j.cca.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND The relationship between plasma lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL), glycosylphosphatidylinositol anchored HDL binding protein1 (GPIHBP1) concentration and the metabolism of remnant lipoproteins (RLP) and small dense LDL (sdLDL) in patients with coronary artery disease (CAD) is not fully elucidated. METHODS One hundred patients who underwent coronary angiography were enrolled. The plasma LPL, HTGL and GPIHBP1 concentrations were determined by ELISA. The time dependent changes in those lipases, lipids and lipoproteins were studied at a time-point just before, and 15min, 4h and 24h after heparin administration. RESULTS The LPL concentration exhibited a significant positive correlation with HDL-C, and inversely correlated with TG and RLP-C. The HTGL concentration was positively correlated with RLP-C and sdLDL-C. The HTGL ratio of the pre-heparin/post-heparin plasma concentration and sdLDL-C/LDL-C ratio were significantly greater in CAD patients than in non-CAD patients. GPIHBP1 was positively correlated with LPL and inversely correlated with RLP-C and sdLDL-C. CONCLUSION The HTGL concentration was positively correlated with RLP-C and sdLDL-C, while LPL and GPIHBP1 were inversely correlated with RLP-C and sdLDL-C. These results suggest that elevated HTGL is associated with increased CAD risk, while elevated LPL is associated with a reduction of CAD risk.
Collapse
Affiliation(s)
- Yuji Muraba
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Hidaka Hospital, Takasaki, Gunma, Japan.
| | | | | | | | | | - Junji Kobayashi
- Department of General Internal Medicine, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Hidaka Hospital, Takasaki, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
153
|
Moran-Ramos S, Guerrero-Vargas NN, Mendez-Hernandez R, Basualdo MDC, Escobar C, Buijs RM. The suprachiasmatic nucleus drives day-night variations in postprandial triglyceride uptake into skeletal muscle and brown adipose tissue. Exp Physiol 2017; 102:1584-1595. [PMID: 29113012 DOI: 10.1113/ep086026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/26/2017] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the factors influencing day-night variations in postprandial triglycerides? What is the main finding and its importance? Rats show low postprandial plasma triglyceride concentrations early in the active period that are attributable to a higher uptake by skeletal muscle and brown adipose tissue. We show that these day-night variations in uptake are driven by the suprachiasmatic nucleus, probably via a Rev-erbα-mediated mechanism and independent of locomotor activity. These findings highlight that the suprachiasmatic nucleus has a major role in day-night variations in plasma triglycerides and that disturbances in our biological clock might be an important risk factor contributing to development of postprandial hyperlipidaemia. Energy metabolism follows a diurnal pattern, mainly driven by the suprachiasmatic nucleus (SCN), and disruption of circadian regulation has been linked to metabolic abnormalities. Indeed, epidemiological evidence shows that night work is a risk factor for cardiovascular disease, and postprandial hyperlipidaemia is an important contributor. Therefore, the aim of this work was to investigate the factors that drive day-night variations in postprandial triglycerides (TGs). Intact and SCN-lesioned male Wistar rats were subjected to an oral fat challenge during the beginning of the rest phase (day) or the beginning of the active phase (night). The plasma TG profile was evaluated and tissue TG uptake assayed. After the fat challenge, intact rats showed lower postprandial plasma TG concentrations early in the night when compared with the day. However, no differences were observed in the rate of intestinal TG secretion between day and night. Instead, there was a higher uptake of TG by skeletal muscle and brown adipose tissue early in the active phase (night) when compared with the rest phase (day), and these variations were abolished in rats bearing bilateral SCN lesions. Rev-erbα gene expression suggests this as a possible mediator of the mechanism linking the SCN and day-night variations in TG uptake. These findings show that the SCN has a major role in day-night variations in plasma TGs by promoting TG uptake into skeletal muscle and brown adipose tissue. Consequently, disturbance of the biological clock might be an important risk factor contributing to the development of hyperlipidaemia.
Collapse
Affiliation(s)
- Sofía Moran-Ramos
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, Mexico City, Mexico
| | - Natali N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, Mexico City, Mexico.,Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Rebeca Mendez-Hernandez
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Maria Del Carmen Basualdo
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Carolina Escobar
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, Mexico City, Mexico
| | - Ruud M Buijs
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
154
|
Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, Remaley AT. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017; 267:49-60. [PMID: 29100061 DOI: 10.1016/j.atherosclerosis.2017.10.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein C-II (apoC-II) is a small exchangeable apolipoprotein found on triglyceride-rich lipoproteins (TRL), such as chylomicrons (CM) and very low-density lipoproteins (VLDL), and on high-density lipoproteins (HDL), particularly during fasting. ApoC-II plays a critical role in TRL metabolism by acting as a cofactor of lipoprotein lipase (LPL), the main enzyme that hydrolyses plasma triglycerides (TG) on TRL. Here, we present an overview of the role of apoC-II in TG metabolism, emphasizing recent novel findings regarding its transcriptional regulation and biochemistry. We also review the 24 genetic mutations in the APOC2 gene reported to date that cause hypertriglyceridemia (HTG). Finally, we describe the clinical presentation of apoC-II deficiency and assess the current therapeutic approaches, as well as potential novel emerging therapies.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Richard L Dunbar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ICON plc, North Wales, PA, USA; Cardiometabolic and Lipid Clinic, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masako Ueda
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis O Sviridov
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
155
|
He C, Hu X, Jung RS, Larsson M, Tu Y, Duarte-Vogel S, Kim P, Sandoval NP, Price TR, Allan CM, Raney B, Jiang H, Bensadoun A, Walzem RL, Kuo RI, Beigneux AP, Fong LG, Young SG. Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. JCI Insight 2017; 2:96783. [PMID: 29046479 DOI: 10.1172/jci.insight.96783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022] Open
Abstract
In mammals, GPIHBP1 is absolutely essential for transporting lipoprotein lipase (LPL) to the lumen of capillaries, where it hydrolyzes the triglycerides in triglyceride-rich lipoproteins. In all lower vertebrate species (e.g., birds, amphibians, reptiles, fish), a gene for LPL can be found easily, but a gene for GPIHBP1 has never been found. The obvious question is whether the LPL in lower vertebrates is able to reach the capillary lumen. Using purified antibodies against chicken LPL, we showed that LPL is present on capillary endothelial cells of chicken heart and adipose tissue, colocalizing with von Willebrand factor. When the antibodies against chicken LPL were injected intravenously into chickens, they bound to LPL on the luminal surface of capillaries in heart and adipose tissue. LPL was released rapidly from chicken hearts with an infusion of heparin, consistent with LPL being located inside blood vessels. Remarkably, chicken LPL bound in a specific fashion to mammalian GPIHBP1. However, we could not identify a gene for GPIHBP1 in the chicken genome, nor could we identify a transcript for GPIHBP1 in a large chicken RNA-seq data set. We conclude that LPL reaches the capillary lumen in chickens - as it does in mammals - despite an apparent absence of GPIHBP1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tara R Price
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, Texas, USA
| | | | - Brian Raney
- University of California, Santa Cruz Genomics Institute and
| | - Haibo Jiang
- Department of Medicine and.,Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Western Australia, Perth, Australia
| | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, New York, USA
| | - Rosemary L Walzem
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Richard I Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Stephen G Young
- Department of Medicine and.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
156
|
Aruga M, Tokita Y, Nakajima K, Kamachi K, Tanaka A. The effect of combined diet and exercise intervention on body weight and the serum GPIHBP1 concentration in overweight/obese middle-aged women. Clin Chim Acta 2017; 475:109-115. [PMID: 29056530 DOI: 10.1016/j.cca.2017.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND The relationship between the effects of diet and exercise intervention and the body weight associated with the serum lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL) and glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1) concentrations has not been elucidated. METHODS Sixty-six overweight/obese middle aged women were assigned to the diet and exercise intervention for 4months. They were divided into 2 groups followed by the body mass index (BMI) decreased >3% (n=41) and <3% (n=25). Serum lipids, lipoproteins and the LPL, HTGL, GPIHBP1 concentrations were determined. RESULTS The cases in which the BMI decreased >3% exhibited significant improvement of diagnostic markers compared with the cases with <3% decrease after the intervention. The LPL concentration did not significantly change, but GPIHBP1 increased significantly after the intervention. The increased GPIHBP1 was significantly associated with decreased body weight. Multiple regression analysis indicated a strong association between GPIHBP1 and percentage of body fat. CONCLUSIONS The diet and exercise intervention significantly increased the serum GPIHBP1 concentration in association with a decrease in body weight and percentage of body fat. These results suggest that GPIHBP1 is a better marker for body weight decrease than LPL.
Collapse
Affiliation(s)
- Masashi Aruga
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Yoshiharu Tokita
- Department of Laboratory Sciences, Gunma University, Graduate School of Health Sciences, Maebashi, Japan
| | - Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan.
| | - Keiko Kamachi
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| |
Collapse
|
157
|
Abstract
It is now evident that elevated circulating levels of triglycerides in the non-fasting state, a marker for triglyceride (TG)-rich remnant particles, are associated with increased risk of premature cardiovascular disease (CVD). Recent findings from basic and clinical studies have begun to elucidate the mechanisms that contribute to the atherogenicity of these apoB-containing particles. Here, we review current knowledge of the formation, intravascular remodelling and catabolism of TG-rich lipoproteins and highlight (i) the pivotal players involved in this process, including lipoprotein lipase, glycosylphosphatidylinositol HDL binding protein 1 (GPIHBP1), apolipoprotein (apo) C-II, apoC-III, angiopoietin-like protein (ANGPTL) 3, 4 and 8, apoA-V and cholesteryl ester transfer protein; (ii) key determinants of triglyceride (TG) levels and notably rates of production of very-low-density lipoprotein 1 (VLDL1) particles; and (iii) the mechanisms which underlie the atherogenicity of remnant particles. Finally, we emphasise the polygenic nature of moderate hypertriglyceridemia and briefly discuss modalities for its clinical management. Several new therapeutic strategies to attenuate hypertriglyceridemia have appeared recently, among which those targeted to apoC-III appear to hold considerable promise.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands. .,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Jeffrey Kroon
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- INSERM and University of Pierre and Marie Curie, Pitie-Salpetriere University Hospital, 75651, Paris Cedex 13, France
| |
Collapse
|
158
|
Chi X, Britt EC, Shows HW, Hjelmaas AJ, Shetty SK, Cushing EM, Li W, Dou A, Zhang R, Davies BSJ. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab 2017; 6:1137-1149. [PMID: 29031715 PMCID: PMC5641604 DOI: 10.1016/j.molmet.2017.06.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Several members of the angiopoietin-like (ANGPTL) family of proteins, including ANGPTL3 and ANGPTL8, regulate lipoprotein lipase (LPL) activity. Deficiency in either ANGPTL3 or ANGPTL8 reduces plasma triglyceride levels and increases LPL activity, whereas overexpression of either protein does the opposite. Recent studies suggest that ANGPTL8 may functionally interact with ANGPTL3 to alter clearance of plasma triglycerides; however, the nature of this interaction has remained elusive. We tested the hypothesis that ANGPTL8 forms a complex with ANGPTL3 and that this complex is necessary for the inhibition of vascular LPL by ANGPTL3. METHODS We analyzed the interactions of ANGPTL3 and ANGPTL8 with each other and with LPL using co-immunoprecipitation, western blotting, lipase activity assays, and the NanoBiT split-luciferase system. We also used adenovirus injection to overexpress ANGPTL3 in mice that lacked ANGPTL8. RESULTS We found that ANGPTL3 or ANGPTL8 alone could only inhibit LPL at concentrations that far exceeded physiological levels, especially when LPL was bound to its endothelial cell receptor/transporter GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1). Physical interaction was observed between ANGPTL3 and ANGPTL8 when the proteins were co-expressed, and co-expression with ANGPTL3 greatly enhanced the secretion of ANGPTL8. Importantly, ANGPTL3-ANGPTL8 complexes had a dramatically increased ability to inhibit LPL compared to either protein alone. Adenovirus experiments showed that 2-fold overexpression of ANGPTL3 significantly increased plasma triglycerides only in the presence of ANGPTL8. Protein interaction assays showed that ANGPTL8 greatly increased the ability of ANGPTL3 to bind LPL. CONCLUSIONS Together, these data indicate that ANGPTL8 binds to ANGPTL3 and that this complex is necessary for ANGPTL3 to efficiently bind and inhibit LPL.
Collapse
Affiliation(s)
- Xun Chi
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Emily C Britt
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hannah W Shows
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Alexander J Hjelmaas
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shwetha K Shetty
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Emily M Cushing
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Wendy Li
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Alex Dou
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| | - Brandon S J Davies
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
159
|
Lun Y, Sun X, Wang P, Chi J, Hou X, Wang Y. Severe hypertriglyceridemia due to two novel loss-of-function lipoprotein lipase gene mutations (C310R/E396V) in a Chinese family associated with recurrent acute pancreatitis. Oncotarget 2017; 8:47741-47754. [PMID: 28548960 PMCID: PMC5564601 DOI: 10.18632/oncotarget.17762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Lipoprotein lipase (LPL) is widely expressed in skeletal muscles, cardiac muscles as well as adipose tissue and involved in the catabolism of triglyceride. Herein we have systematically characterized two novel loss-of-function mutations in LPL from a Chinese family in which afflicted members were manifested by severe hypertriglyceridemia and recurrent pancreatitis. DNA sequencing revealed that the proband was a heterozygote carrying a novel c.T928C (p.C310R) mutation in exon 6 of the LPL gene. Another member of the family was detected to be a compound heterozygote who along with the c.T928C mutation also carried a novel missense mutation c.A1187T (p.E396V) in exon 8 of the LPL gene. Furthermore, COS-1 cells were transfected with lentiviruses containing the mutant LPL genes. While C310R markedly reduced the overall LPL protein level, COS-1 cells carrying E396V or double mutations contained similar overall LPL protein levels to the wild-type. The specific activity of the LPL mutants remained at comparable magnitude to the wild-type. However, few LPL were detected in the culture medium for the mutants, suggesting that both mutations caused aberrant triglyceride catabolism. More specifically, E396V and double mutations dampened the transport of LPL to the cell surface, while for the C310R mutation, reducing LPL protein level might be involved. By characterizing these two novel LPL mutations, this study has expanded our understanding on the pathogenesis of familial hypertriglyceridemia (FHTG).
Collapse
Affiliation(s)
- Yu Lun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Wang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xu Hou
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
160
|
Larsson M, Allan CM, Jung RS, Heizer PJ, Beigneux AP, Young SG, Fong LG. Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL. J Lipid Res 2017; 58:1893-1902. [PMID: 28694296 DOI: 10.1194/jlr.m078220] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
apoC-III is often assumed to retard the intravascular processing of triglyceride-rich lipoproteins (TRLs) by inhibiting LPL, but that view is based largely on studies of free LPL. We now recognize that intravascular LPL is neither free nor loosely bound, but instead is tightly bound to glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) on endothelial cells. Here, we revisited the effects of apoC-III on LPL, focusing on apoC-III's capacity to affect the activity of GPIHBP1-bound LPL. We found that TRLs from APOC3 transgenic mice bound normally to GPIHBP1-bound LPL on cultured cells in vitro and to heart capillaries in vivo. However, the triglycerides in apoC-III-enriched TRLs were hydrolyzed more slowly by free LPL, and the inhibitory effect of apoC-III on triglyceride lipolysis was exaggerated when LPL was bound to GPIHBP1 on the surface of agarose beads. Also, recombinant apoC-III reduced triglyceride hydrolysis by free LPL only modestly, but the inhibitory effect was greater when the LPL was bound to GPIHBP1. A mutant apoC-III associated with low plasma triglyceride levels (p.A23T) displayed a reduced capacity to inhibit free and GPIHBP1-bound LPL. Our results show that apoC-III potently inhibits triglyceride hydrolysis when LPL is bound to GPIHBP1.
Collapse
Affiliation(s)
- Mikael Larsson
- Departments of Medicine and Human Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Christopher M Allan
- Departments of Medicine and Human Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Rachel S Jung
- Departments of Medicine and Human Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Patrick J Heizer
- Departments of Medicine and Human Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Anne P Beigneux
- Departments of Medicine and Human Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Departments of Medicine and Human Genetics, University of California Los Angeles, Los Angeles, CA 90095 .,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Loren G Fong
- Departments of Medicine and Human Genetics, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
161
|
Angiopoietin-like 4 directs uptake of dietary fat away from adipose during fasting. Mol Metab 2017; 6:809-818. [PMID: 28752045 PMCID: PMC5518724 DOI: 10.1016/j.molmet.2017.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022] Open
Abstract
Objective Angiopoietin-like 4 (ANGPTL4) is a fasting-induced inhibitor of lipoprotein lipase (LPL) and a regulator of plasma triglyceride metabolism. Here, we examined the kinetics of Angptl4 induction and tested the hypothesis that ANGPTL4 functions physiologically to reduce triglyceride delivery to adipose tissue during nutrient deprivation. Methods Gene expression, LPL activity, and triglyceride uptake were examined in fasted and fed wild-type and Angptl4−/− mice. Results Angptl4 was strongly induced early in fasting, and this induction was suppressed in mice with access to food during the light cycle. Fasted Angptl4−/− mice manifested increased LPL activity and triglyceride uptake in adipose tissue compared to wild-type mice. Conclusions Angptl4 is induced early in fasting to divert uptake of fatty acids and triglycerides away from adipose tissues. •Angptl4 is induced within the first few hours of fasting. •Angptl4 expression is driven by fasting rather than circadian rhythms. •Fasted Angptl4−/− mice have increased triglyceride uptake in adipose tissue. •Angptl4−/− mice also have increased LPL activity specifically in adipose tissue. •Data support a model where ANGPTL4 acts locally in adipose during fasting.
Collapse
|
162
|
GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. J Clin Lipidol 2017; 11:964-971. [PMID: 28666713 DOI: 10.1016/j.jacl.2017.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND GPIHBP1, a glycolipid-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the interstitial spaces and transports it to the capillary lumen. GPIHBP1 deficiency prevents LPL from reaching the capillary lumen, resulting in low intravascular LPL levels, impaired intravascular triglyceride processing, and severe hypertriglyceridemia (chylomicronemia). A recent study showed that some cases of hypertriglyceridemia are caused by autoantibodies against GPIHBP1 ("GPIHBP1 autoantibody syndrome"). OBJECTIVE Our objective was to gain additional insights into the frequency of the GPIHBP1 autoantibody syndrome in patients with unexplained chylomicronemia. METHODS We used enzyme-linked immunosorbent assays to screen for GPIHBP1 autoantibodies in 33 patients with unexplained chylomicronemia and then used Western blots and immunocytochemistry studies to characterize the GPIHBP1 autoantibodies. RESULTS The plasma of 1 patient, a 36-year-old man with severe hypertriglyceridemia, contained GPIHBP1 autoantibodies. The autoantibodies, which were easily detectable by Western blot, blocked the ability of GPIHBP1 to bind LPL. The plasma levels of LPL mass and activity were low. The patient had no history of autoimmune disease, but his plasma was positive for antinuclear antibodies. CONCLUSIONS One of 33 patients with unexplained chylomicronemia had the GPIHBP1 autoantibody syndrome. Additional studies in large lipid clinics will be helpful for better defining the frequency of this syndrome and for exploring the best strategies for treatment.
Collapse
|
163
|
Abstract
Hydrolysis of circulating triglycerides is carried out by the enzyme lipoprotein lipase, which is transported and anchored to the capillary wall by the protein GPIHBP1. Recent evidence indicates that certain individuals develop autoantibodies against GPIHBP1, impairing lipoprotein lipase function and leading to markedly elevated plasma triglyceride levels (Beigneux et al., 2017).
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| |
Collapse
|
164
|
Allan CM, Jung CJ, Larsson M, Heizer PJ, Tu Y, Sandoval NP, Dang TLP, Jung RS, Beigneux AP, de Jong PJ, Fong LG, Young SG. Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. J Lipid Res 2017; 58:1453-1461. [PMID: 28476858 DOI: 10.1194/jlr.m076943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/04/2017] [Indexed: 12/22/2022] Open
Abstract
Mutation of conserved cysteines in proteins of the Ly6 family cause human disease-chylomicronemia in the case of glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1) and paroxysmal nocturnal hemoglobinuria in the case of CD59. A mutation in a conserved cysteine in CD59 prevented the protein from reaching the surface of blood cells. In contrast, mutation of conserved cysteines in human GPIHBP1 had little effect on GPIHBP1 trafficking to the surface of cultured CHO cells. The latter findings were somewhat surprising and raised questions about whether CHO cell studies accurately model the fate of mutant GPIHBP1 proteins in vivo. To explore this concern, we created mice harboring a GPIHBP1 cysteine mutation (p.C63Y). The p.C63Y mutation abolished the ability of mouse GPIHBP1 to bind LPL, resulting in severe chylomicronemia. The mutant GPIHBP1 was detectable by immunohistochemistry on the surface of endothelial cells, but the level of expression was ∼70% lower than in WT mice. The mutant GPIHBP1 protein in mouse tissues was predominantly monomeric. We conclude that mutation of a conserved cysteine in GPIHBP1 abolishes the ability of GPIHBP1 to bind LPL, resulting in mislocalization of LPL and severe chylomicronemia. The mutation reduced but did not eliminate GPIHBP1 on the surface of endothelial cells in vivo.
Collapse
Affiliation(s)
- Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Cris J Jung
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Patrick J Heizer
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Yiping Tu
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Norma P Sandoval
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Tiffany Ly P Dang
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095.
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095.
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095; Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
165
|
Beigneux AP, Miyashita K, Ploug M, Blom DJ, Ai M, Linton MF, Khovidhunkit W, Dufour R, Garg A, McMahon MA, Pullinger CR, Sandoval NP, Hu X, Allan CM, Larsson M, Machida T, Murakami M, Reue K, Tontonoz P, Goldberg IJ, Moulin P, Charrière S, Fong LG, Nakajima K, Young SG. Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia. N Engl J Med 2017; 376:1647-1658. [PMID: 28402248 PMCID: PMC5555413 DOI: 10.1056/nejmoa1611930] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND A protein that is expressed on capillary endothelial cells, called GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1), binds lipoprotein lipase and shuttles it to its site of action in the capillary lumen. A deficiency in GPIHBP1 prevents lipoprotein lipase from reaching the capillary lumen. Patients with GPIHBP1 deficiency have low plasma levels of lipoprotein lipase, impaired intravascular hydrolysis of triglycerides, and severe hypertriglyceridemia (chylomicronemia). During the characterization of a monoclonal antibody-based immunoassay for GPIHBP1, we encountered two plasma samples (both from patients with chylomicronemia) that contained an interfering substance that made it impossible to measure GPIHBP1. That finding raised the possibility that those samples might contain GPIHBP1 autoantibodies. METHODS Using a combination of immunoassays, Western blot analyses, and immunocytochemical studies, we tested the two plasma samples (as well as samples from other patients with chylomicronemia) for the presence of GPIHBP1 autoantibodies. We also tested the ability of GPIHBP1 autoantibodies to block the binding of lipoprotein lipase to GPIHBP1. RESULTS We identified GPIHBP1 autoantibodies in six patients with chylomicronemia and found that these autoantibodies blocked the binding of lipoprotein lipase to GPIHBP1. As in patients with GPIHBP1 deficiency, those with GPIHBP1 autoantibodies had low plasma levels of lipoprotein lipase. Three of the six patients had systemic lupus erythematosus. One of these patients who had GPIHBP1 autoantibodies delivered a baby with plasma containing maternal GPIHBP1 autoantibodies; the infant had severe but transient chylomicronemia. Two of the patients with chylomicronemia and GPIHBP1 autoantibodies had a response to treatment with immunosuppressive agents. CONCLUSIONS In six patients with chylomicronemia, GPIHBP1 autoantibodies blocked the ability of GPIHBP1 to bind and transport lipoprotein lipase, thereby interfering with lipoprotein lipase-mediated processing of triglyceride-rich lipoproteins and causing severe hypertriglyceridemia. (Funded by the National Heart, Lung, and Blood Institute and the Leducq Foundation.).
Collapse
Affiliation(s)
- Anne P Beigneux
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Kazuya Miyashita
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Michael Ploug
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Dirk J Blom
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Masumi Ai
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - MacRae F Linton
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Weerapan Khovidhunkit
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Robert Dufour
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Abhimanyu Garg
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Maureen A McMahon
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Clive R Pullinger
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Norma P Sandoval
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Xuchen Hu
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Christopher M Allan
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Mikael Larsson
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Tetsuo Machida
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Masami Murakami
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Karen Reue
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Peter Tontonoz
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Ira J Goldberg
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Philippe Moulin
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Sybil Charrière
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Loren G Fong
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Katsuyuki Nakajima
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Stephen G Young
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| |
Collapse
|
166
|
Jung MK, Jin J, Kim HO, Kwon A, Chae HW, Kang SJ, Kim DH, Kim HS. A 1-month-old infant with chylomicronemia due to GPIHBP1 gene mutation treated by plasmapheresis. Ann Pediatr Endocrinol Metab 2017; 22:68-71. [PMID: 28443263 PMCID: PMC5401827 DOI: 10.6065/apem.2017.22.1.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/22/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Chylomicronemia is a severe type of hypertriglyceridemia characterized by chylomicron accumulation that arises from a genetic defect in intravascular lipolysis. It requires urgent and proper management, because serious cases can be accompanied by pancreatic necrosis or persistent multiple organ failure. We present the case of a 1-month-old infant with chylomicronemia treated by plasmapheresis. His chylomicronemia was discovered incidentally when lactescent plasma was noticed during routine blood sampling during a hospital admission for fever and irritability. Laboratory investigation revealed marked triglyceridemia (>5,000 mg/dL) with high chylomicron levels. We therefore decided to perform a therapeutic plasmapheresis to prevent acute pancreatitis. Sequence analysis revealed a homozygous novel mutation in exon 4 of GPIHBP1: c.476delG (p.Gly159Alafs). Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) stabilizes the binding of chylomicrons near lipoprotein lipase and supports lipolysis. Mutations of GPIHBP1, the most recently discovered gene, can lead to severe hyperlipidemia and are known to make up only 2% of the monogenic mutations associated with chylomicronemia. The patient maintains mild hypertriglyceridemia without rebound after single plasmapheresis and maintenance fibrate medication so far. Here, we report an infant with chylomicronemia due to GPIHBP1 mutation, successfully treated by plasmapheresis.
Collapse
Affiliation(s)
- Mo Kyung Jung
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Juhyun Jin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ahreum Kwon
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jin Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
167
|
Kuo A, Lee MY, Sessa WC. Lipid Droplet Biogenesis and Function in the Endothelium. Circ Res 2017; 120:1289-1297. [PMID: 28119423 DOI: 10.1161/circresaha.116.310498] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 01/22/2023]
Abstract
RATIONALE Fatty acids (FA) are transported across the capillary endothelium to parenchymal tissues. However, it is not known how endothelial cells (EC) from large vessels process a postprandial surge of FA. OBJECTIVE This study was designed to characterize lipid droplet (LD) formation in EC by manipulating pathways leading to the formation and degradation of LD. In addition, several functions of LD-derived FA were assessed. METHODS AND RESULTS LD were present in EC lining the aorta after the peak in plasma triglycerides initiated by a gavage of olive oil in mice, in vivo. Similarly, in isolated aorta, oleic acid treatment generates LD in EC ex vivo. Cultured EC readily form LD largely via the enzyme DGAT (diacylglycerol O-acyltransferase 1) and degrade LD via ATGL (adipocyte triglyceride lipase) after FA loading. Functionally, LD-derived FA are dynamically regulated and function to protect EC from lipotoxic stress and provide FA for metabolic needs. CONCLUSIONS Our results delineate endothelial LD dynamics for the first time in vivo and in vitro. Moreover, LD formation protects EC from lipotoxic stress, regulates EC glycolysis, and provides a source of FA for adjacent cells in the vessel wall or tissues.
Collapse
Affiliation(s)
- Andrew Kuo
- From the Vascular Biology and Therapeutics Program (A.K., M.Y.L., W.C.S.), Department of Pharmacology (M.Y.L., W.C.S.), and Department of Cell Biology (A.K.), Yale University, School of Medicine, New Haven, CT
| | - Monica Y Lee
- From the Vascular Biology and Therapeutics Program (A.K., M.Y.L., W.C.S.), Department of Pharmacology (M.Y.L., W.C.S.), and Department of Cell Biology (A.K.), Yale University, School of Medicine, New Haven, CT
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (A.K., M.Y.L., W.C.S.), Department of Pharmacology (M.Y.L., W.C.S.), and Department of Cell Biology (A.K.), Yale University, School of Medicine, New Haven, CT.
| |
Collapse
|
168
|
Reimund M, Kovrov O, Olivecrona G, Lookene A. Lipoprotein lipase activity and interactions studied in human plasma by isothermal titration calorimetry. J Lipid Res 2017; 58:279-288. [PMID: 27845686 PMCID: PMC5234706 DOI: 10.1194/jlr.d071787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
LPL hydrolyzes triglycerides in plasma lipoproteins. Due to the complex regulation mechanism, it has been difficult to mimic the physiological conditions under which LPL acts in vitro. We demonstrate that isothermal titration calorimetry (ITC), using human plasma as substrate, overcomes several limitations of previously used techniques. The high sensitivity of ITC allows continuous recording of the heat released during hydrolysis. Both initial rates and kinetics for complete hydrolysis of plasma lipids can be studied. The heat rate was shown to correspond to the release of fatty acids and was linearly related to the amount of added enzyme, either purified LPL or postheparin plasma. Addition of apoC-III reduced the initial rate of hydrolysis by LPL, but the inhibition became less prominent with time when the lipoproteins were triglyceride poor. Addition of angiopoietin-like protein (ANGPTL)3 or ANGPTL4 caused reduction of the activity of LPL via a two-step mechanism. We conclude that ITC can be used for quantitative measurements of LPL activity and interactions under in vivo-like conditions, for comparisons of the properties of plasma samples from patients and control subjects as substrates for LPL, as well as for testing of drug candidates developed with the aim to affect the LPL system.
Collapse
Affiliation(s)
- Mart Reimund
- Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Oleg Kovrov
- Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia
- Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden
| | - Gunilla Olivecrona
- Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden
| | - Aivar Lookene
- Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia
| |
Collapse
|
169
|
Viecili PRN, da Silva B, Hirsch GE, Porto FG, Parisi MM, Castanho AR, Wender M, Klafke JZ. Triglycerides Revisited to the Serial. Adv Clin Chem 2017; 80:1-44. [PMID: 28431638 DOI: 10.1016/bs.acc.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of triglycerides (TGs) in the normal cardiovascular system as well as in the development and clinical manifestation of cardiovascular diseases. Regulation of TGs at the enzymatic and genetic level, in addition to their possible relevance as preclinical and clinical biomarkers, is discussed, culminating with a description of available and emerging treatments. Due to the high complexity of the subject and the vast amount of material in the literature, the objective of this review was not to exhaust the subject, but rather to compile the information to facilitate and improve the understanding of those interested in this topic. The main publications on the topic were sought out, especially those from the last 5 years. The data in the literature still give reason to believe that there is room for doubt regarding the use of TG as disease biomarkers; however, there is increasing evidence for the role of hypertriglyceridemia on the atherosclerotic inflammatory process, cardiovascular outcomes, and mortality.
Collapse
|
170
|
Abstract
Lipoprotein lipase (LPL) is a rate-limiting enzyme for hydrolysing circulating triglycerides (TG) into free fatty acids that are taken up by peripheral tissues. Postprandial LPL activity rises in white adipose tissue (WAT), but declines in the heart and skeletal muscle, thereby directing circulating TG to WAT for storage; the reverse is true during fasting. However, the mechanism for the tissue-specific regulation of LPL activity during the fed–fast cycle has been elusive. Recent identification of lipasin/angiopoietin-like 8 (Angptl8), a feeding-induced hepatokine, together with Angptl3 and Angptl4, provides intriguing, yet puzzling, insights, because all the three Angptl members are LPL inhibitors, and the deficiency (overexpression) of any one causes hypotriglyceridaemia (hypertriglyceridaemia). Then, why does nature need all of the three? Our recent data that Angptl8 negatively regulates LPL activity specifically in cardiac and skeletal muscles suggest an Angptl3-4-8 model: feeding induces Angptl8, activating the Angptl8–Angptl3 pathway, which inhibits LPL in cardiac and skeletal muscles, thereby making circulating TG available for uptake by WAT, in which LPL activity is elevated owing to diminished Angptl4; the reverse is true during fasting, which suppresses Angptl8 but induces Angptl4, thereby directing TG to muscles. The model suggests a general framework for how TG trafficking is regulated.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
171
|
Mysling S, Kristensen KK, Larsson M, Kovrov O, Bensadouen A, Jørgensen TJ, Olivecrona G, Young SG, Ploug M. The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. eLife 2016; 5. [PMID: 27929370 PMCID: PMC5148603 DOI: 10.7554/elife.20958] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
Lipoprotein lipase (LPL) undergoes spontaneous inactivation via global unfolding and this unfolding is prevented by GPIHBP1 (Mysling et al., 2016). We now show: (1) that ANGPTL4 inactivates LPL by catalyzing the unfolding of its hydrolase domain; (2) that binding to GPIHBP1 renders LPL largely refractory to this inhibition; and (3) that both the LU domain and the intrinsically disordered acidic domain of GPIHBP1 are required for this protective effect. Genetic studies have found that a common polymorphic variant in ANGPTL4 results in lower plasma triglyceride levels. We now report: (1) that this ANGPTL4 variant is less efficient in catalyzing the unfolding of LPL; and (2) that its Glu-to-Lys substitution destabilizes its N-terminal α-helix. Our work elucidates the molecular basis for regulation of LPL activity by ANGPTL4, highlights the physiological relevance of the inherent instability of LPL, and sheds light on the molecular defects in a clinically relevant variant of ANGPTL4. DOI:http://dx.doi.org/10.7554/eLife.20958.001
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Oleg Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
172
|
Hu X, Sleeman MW, Miyashita K, Linton MF, Allan CM, He C, Larsson M, Tu Y, Sandoval NP, Jung RS, Mapar A, Machida T, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP. Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL. J Lipid Res 2016; 58:208-215. [PMID: 27875259 DOI: 10.1194/jlr.m072462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/31/2016] [Indexed: 01/18/2023] Open
Abstract
GPIHBP1, an endothelial cell protein, binds LPL in the interstitial spaces and shuttles it to its site of action inside blood vessels. For years, studies of human GPIHBP1 have been hampered by an absence of useful antibodies. We reasoned that monoclonal antibodies (mAbs) against human GPIHBP1 would be useful for 1) defining the functional relevance of GPIHBP1's Ly6 and acidic domains to the binding of LPL; 2) ascertaining whether human GPIHBP1 is expressed exclusively in capillary endothelial cells; and 3) testing whether GPIHBP1 is detectable in human plasma. Here, we report the development of a panel of human GPIHBP1-specific mAbs. Two mAbs against GPIHBP1's Ly6 domain, RE3 and RG3, abolished LPL binding, whereas an antibody against the acidic domain, RF4, did not. Also, mAbs RE3 and RG3 bound with reduced affinity to a mutant GPIHBP1 containing an Ly6 domain mutation (W109S) that abolishes LPL binding. Immunohistochemistry studies with the GPIHBP1 mAbs revealed that human GPIHBP1 is expressed only in capillary endothelial cells. Finally, we created an ELISA that detects GPIHBP1 in human plasma. That ELISA should make it possible for clinical lipidologists to determine whether plasma GPIHBP1 levels are a useful biomarker of metabolic or vascular disease.
Collapse
Affiliation(s)
- Xuchen Hu
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Mark W Sleeman
- Monash Biomedicine Discovery Institute and Antibody Technologies Facility, Monash University, Victoria, Australia
| | - Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - MacRae F Linton
- Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Cuiwen He
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Yiping Tu
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Norma P Sandoval
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Alaleh Mapar
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Tetsuo Machida
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA .,Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
173
|
Allan CM, Larsson M, Jung RS, Ploug M, Bensadoun A, Beigneux AP, Fong LG, Young SG. Mobility of "HSPG-bound" LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 2016; 58:216-225. [PMID: 27811232 DOI: 10.1194/jlr.m072520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
In mice lacking glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1), the LPL secreted by adipocytes and myocytes remains bound to heparan sulfate proteoglycans (HSPGs) on all cells within tissues. That observation raises a perplexing issue: Why isn't the freshly secreted LPL in wild-type mice captured by the same HSPGs, thereby preventing LPL from reaching GPIHBP1 on capillaries? We hypothesized that LPL-HSPG interactions are transient, allowing the LPL to detach and move to GPIHBP1 on capillaries. Indeed, we found that LPL detaches from HSPGs on cultured cells and moves to: 1) soluble GPIHBP1 in the cell culture medium; 2) GPIHBP1-coated agarose beads; and 3) nearby GPIHBP1-expressing cells. Movement of HSPG-bound LPL to GPIHBP1 did not occur when GPIHBP1 contained a Ly6 domain missense mutation (W109S), but was almost normal when GPIHBP1's acidic domain was mutated. To test the mobility of HSPG-bound LPL in vivo, we injected GPIHBP1-coated agarose beads into the brown adipose tissue of GPIHBP1-deficient mice. LPL moved quickly from HSPGs on adipocytes to GPIHBP1-coated beads, thereby depleting LPL stores on the surface of adipocytes. We conclude that HSPG-bound LPL in the interstitial spaces of tissues is mobile, allowing the LPL to move to GPIHBP1 on endothelial cells.
Collapse
Affiliation(s)
- Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-220 Copenhagen N, Denmark
| | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, NY 14853
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095 .,Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
174
|
Geldenhuys WJ, Lin L, Darvesh AS, Sadana P. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discov Today 2016; 22:352-365. [PMID: 27771332 DOI: 10.1016/j.drudis.2016.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Prabodh Sadana
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
175
|
Schwarzova L, Hubacek JA, Vrablik M. Genetic predisposition of human plasma triglyceride concentrations. Physiol Res 2016; 64:S341-54. [PMID: 26680667 DOI: 10.33549/physiolres.933197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The issue of plasma triglyceride levels relative to the risk of development of cardiovascular disease, as well as overall mortality, has been actively discussed for many years. Like other cardiovascular disease risk factors, final plasma TG values have environmental influences (primarily dietary habits, physical activity, and smoking), and a genetic predisposition. Rare mutations (mainly in the lipoprotein lipase and apolipoprotein C2) along with common polymorphisms (within apolipoprotein A5, glucokinase regulatory protein, apolipoprotein B, apolipo-protein E, cAMP responsive element binding protein 3-like 3, glycosylphosphatidylinositol-anchored HDL-binding protein 1) play an important role in determining plasma TG levels.
Collapse
Affiliation(s)
- L Schwarzova
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
176
|
Allan CM, Larsson M, Hu X, He C, Jung RS, Mapar A, Voss C, Miyashita K, Machida T, Murakami M, Nakajima K, Bensadoun A, Ploug M, Fong LG, Young SG, Beigneux AP. An LPL-specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1. J Lipid Res 2016; 57:1889-1898. [PMID: 27494936 DOI: 10.1194/jlr.m070813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
LPL contains two principal domains: an amino-terminal catalytic domain (residues 1-297) and a carboxyl-terminal domain (residues 298-448) that is important for binding lipids and binding glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1) (an endothelial cell protein that shuttles LPL to the capillary lumen). The LPL sequences required for GPIHBP1 binding have not been examined in detail, but one study suggested that sequences near LPL's carboxyl terminus (residues ∼403-438) were crucial. Here, we tested the ability of LPL-specific monoclonal antibodies (mAbs) to block the binding of LPL to GPIHBP1. One antibody, 88B8, abolished LPL binding to GPIHBP1. Consistent with those results, antibody 88B8 could not bind to GPIHBP1-bound LPL on cultured cells. Antibody 88B8 bound poorly to LPL proteins with amino acid substitutions that interfered with GPIHBP1 binding (e.g., C418Y, E421K). However, the sequences near LPL's carboxyl terminus (residues ∼403-438) were not sufficient for 88B8 binding; upstream sequences (residues 298-400) were also required. Additional studies showed that these same sequences are required for LPL binding to GPIHBP1. In conclusion, we identified an LPL mAb that binds to LPL's GPIHBP1-binding domain. The binding of both antibody 88B8 and GPIHBP1 to LPL depends on large segments of LPL's carboxyl-terminal domain.
Collapse
Affiliation(s)
- Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Xuchen Hu
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Cuiwen He
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Alaleh Mapar
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Constance Voss
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | | | - Tetsuo Machida
- Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Masami Murakami
- Gunma University, Graduate School of Medicine, Maebashi, Japan
| | | | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, NY
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA.
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA; Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
177
|
Abstract
Excess and ectopic fat accumulation in obesity is a major risk factor for developing hyperlipidemia, type 2 diabetes and cardiovascular disease. The activation of brown and/or beige adipocytes is a promising target for the treatment of metabolic disorders as the combustion of excess energy by these thermogenic adipocytes may help losing weight and improving plasma parameters including triglyceride, cholesterol and glucose levels. The regulation of heat production by thermogenic adipose tissues is based on a complex crosstalk between the autonomous nervous system, intracellular and secreted factors. This multifaceted alignment regulates thermogenic demands to environmental circumstances in dependence on available energy resources. This review summarizes the current knowledge how thermogenic tissues can be targeted to combat the burden of diseases with a special focus on lipid metabolism and diseases related to lipoprotein metabolism.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
178
|
Blanchard PG, Turcotte V, Côté M, Gélinas Y, Nilsson S, Olivecrona G, Deshaies Y, Festuccia WT. Peroxisome proliferator-activated receptor γ activation favours selective subcutaneous lipid deposition by coordinately regulating lipoprotein lipase modulators, fatty acid transporters and lipogenic enzymes. Acta Physiol (Oxf) 2016; 217:227-39. [PMID: 26918671 DOI: 10.1111/apha.12665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
AIM Peroxisome proliferator-activated receptor (PPAR) γ activation is associated with preferential lipoprotein lipase (LPL)-mediated fatty acid storage in peripheral subcutaneous fat depots. How PPARγ agonism acts upon the multi-level modulation of depot-specific lipid storage remains incompletely understood. METHODS We evaluated herein triglyceride-derived lipid incorporation into adipose tissue depots, LPL mass and activity, mRNA levels and content of proteins involved in the modulation of LPL activity and fatty acid transport, and the expression/activity of enzymes defining adipose tissue lipogenic potential in rats treated with the PPARγ ligand rosiglitazone (30 mg kg(-1) day(-1) , 23 days) after either a 10-h fasting period or a 17-h fast followed by 6 h of ad libitum refeeding. RESULTS Rosiglitazone stimulated lipid accretion in subcutaneous fat (SF) ~twofold and significantly reduced that of visceral fat (VF) to nearly half. PPARγ activation selectively increased LPL mass, activity and the expression of its chaperone LMF1 in SF. In VF, rosiglitazone had no effect on LPL activity and downregulated the mRNA levels of the transendothelial transporter GPIHBP1. Overexpression of lipid uptake and fatty acid transport proteins (FAT/CD36, FATP1 and FABP4) and stimulation of lipogenic enzyme activities (GPAT, AGPAT and DGAT) upon rosiglitazone treatment were of higher magnitude in SF. CONCLUSIONS Together these findings demonstrate that the depot-specific transcriptional control of LPL induced by PPARγ activation extends to its key interacting proteins and post-translational modulators to favour subcutaneous lipid storage.
Collapse
Affiliation(s)
- P. G. Blanchard
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - V. Turcotte
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - M. Côté
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - Y. Gélinas
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - S. Nilsson
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - G. Olivecrona
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - Y. Deshaies
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - W. T. Festuccia
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
179
|
Patni N, Brothers J, Xing C, Garg A. Type 1 hyperlipoproteinemia in a child with large homozygous deletion encompassing GPIHBP1. J Clin Lipidol 2016; 10:1035-1039.e2. [DOI: 10.1016/j.jacl.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 01/12/2023]
|
180
|
Fong LG, Young SG, Beigneux AP, Bensadoun A, Oberer M, Jiang H, Ploug M. GPIHBP1 and Plasma Triglyceride Metabolism. Trends Endocrinol Metab 2016; 27:455-469. [PMID: 27185325 PMCID: PMC4927088 DOI: 10.1016/j.tem.2016.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
GPIHBP1, a GPI-anchored protein in capillary endothelial cells, is crucial for the lipolytic processing of triglyceride-rich lipoproteins (TRLs). GPIHBP1 shuttles lipoprotein lipase (LPL) to its site of action in the capillary lumen and is essential for the margination of TRLs along capillaries - such that lipolytic processing can proceed. GPIHBP1 also reduces the unfolding of the LPL catalytic domain, thereby stabilizing LPL catalytic activity. Many different GPIHBP1 mutations have been identified in patients with severe hypertriglyceridemia (chylomicronemia), the majority of which interfere with folding of the protein and abolish its capacity to bind and transport LPL. The discovery of GPIHBP1 has substantially revised our understanding of intravascular triglyceride metabolism but has also raised many new questions for future research.
Collapse
Affiliation(s)
- Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, NY 14853, USA
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz and BioTechMed, Graz, Austria
| | - Haibo Jiang
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 220 Copenhagen N, Denmark.
| |
Collapse
|
181
|
Wan A, Rodrigues B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res 2016; 111:172-83. [PMID: 27288009 DOI: 10.1093/cvr/cvw159] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022] Open
Abstract
The incidence of diabetes is increasing globally, with cardiovascular disease accounting for a substantial number of diabetes-related deaths. Although atherosclerotic vascular disease is a primary reason for this cardiovascular dysfunction, heart failure in patients with diabetes might also be an outcome of an intrinsic heart muscle malfunction, labelled diabetic cardiomyopathy. Changes in cardiomyocyte metabolism, which encompasses a shift to exclusive fatty acid utilization, are considered a leading stimulus for this cardiomyopathy. In addition to cardiomyocytes, endothelial cells (ECs) make up a significant proportion of the heart, with the majority of ATP generation in these cells provided by glucose. In this review, we will discuss the metabolic machinery that drives energy metabolism in the cardiomyocyte and EC, its breakdown following diabetes, and the research direction necessary to assist in devising novel therapeutic strategies to prevent or delay diabetic heart disease.
Collapse
Affiliation(s)
- Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
182
|
Liu G, Xu JN, Liu D, Ding Q, Liu MN, Chen R, Fan M, Zhang Y, Zheng C, Zou DJ, Lyu J, Zhang WJ. Regulation of plasma lipid homeostasis by hepatic lipoprotein lipase in adult mice. J Lipid Res 2016; 57:1155-61. [PMID: 27234787 PMCID: PMC4918845 DOI: 10.1194/jlr.m065011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
LPL is a pivotal rate-limiting enzyme to catalyze the hydrolysis of TG in circulation, and plays a critical role in regulating lipid metabolism. However, little attention has been paid to LPL in the adult liver due to its relatively low expression. Here we show that endogenous hepatic LPL plays an important physiological role in plasma lipid homeostasis in adult mice. We generated a mouse model with the Lpl gene specifically ablated in hepatocytes with the Cre/LoxP approach, and found that specific deletion of hepatic Lpl resulted in a significant decrease in plasma LPL contents and activity. As a result, the postprandial TG clearance was markedly impaired, and plasma TG and cholesterol levels were significantly elevated. However, deficiency of hepatic Lpl did not change the liver TG and cholesterol contents or glucose homeostasis. Taken together, our study reveals that hepatic LPL is involved in the regulation of plasma LPL activity and lipid homeostasis.
Collapse
Affiliation(s)
- Gan Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Jun-Nan Xu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Dong Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Qingli Ding
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Meng-Na Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Rong Chen
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Mengdi Fan
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Ye Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Chao Zheng
- Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Da-Jin Zou
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Weiping J Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
183
|
Liu Z, Xiao Y, Zhou Z, Mao X, Cai J, Xiong L, Liao C, Huang F, Liu Z, Ali Sheikh MS, Plutzky J, Huang H, Yang T, Duan Q. Extensive metabolic disorders are present in APC(min) tumorigenesis mice. Mol Cell Endocrinol 2016; 427:57-64. [PMID: 26948948 DOI: 10.1016/j.mce.2016.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
Abstract
Wnt signaling plays essential role in mesenchymal stem cell (MSC) differentiation. Activation of Wnt signaling suppresses adipogenesis, but promotes osteogenesis in MSC. Adenomatous polyposis coli (APC) is a negative regulator of β-catenin and Wnt signaling activity. The mutation of APC gene leads to the activation of Wnt signaling and is responsible for tumorigenesis in APC(min) mouse; however, very few studies focused on its metabolic abnormalities. The present study reports a widespread metabolic disorder phenotype in APC(min) mice. The old APC(min) mice have decreased body weight and impaired adipogenesis, but severe hyperlipidemia, which mimic the phenotypes of Familial Adenomatous Polyposis (FAP), an inherited disease also caused by APC gene mutation in human. We found that the expression of lipid metabolism and free fat acids (FA) use genes in the white adipose tissue (WAT) of the APC(min) mice is much lower than those of control. The changed gene expression pattern may lead to the disability of circulatory lipid transportation and storage at WAT. Moreover, the APC(min) mice could not maintain the core body temperature in cold condition. PET-CT determination revealed that the BAT of APC(min) mice has significantly impaired ability to take up (18)FDG from the blood. Morphological studies identified that the brown adipocytes of APC(min) mice were filled with lipid droplets but fewer mitochondria. These results matched with the findings of impaired BAT function in APC(min) mice. Collectively, our study explores a new mechanism that explains abnormal metabolism in APC(min) mice and provides insights into studying the metabolic disorders of FAP patients.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiao
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxiang Zhou
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Mao
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha, China; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinxing Cai
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Xiong
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chaonan Liao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fulian Huang
- Department of Anatomy and Neuroscience, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zehao Liu
- Endocrinology Division, Xiangya Hospital, Central South University, Changsha, China
| | - Md Sayed Ali Sheikh
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha, China
| | - Jorge Plutzky
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China.
| | - Tianlun Yang
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha, China.
| | - Qiong Duan
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
184
|
Abstract
Approximately 25% of US adults are estimated to have hypertriglyceridemia (triglyceride [TG] level ≥150 mg/dL [≥1.7 mmol/L]). Elevated TG levels are associated with increased cardiovascular disease (CVD) risk, and severe hypertriglyceridemia (TG levels ≥500 mg/dL [≥5.6 mmol/L]) is a well-established risk factor for acute pancreatitis. Plasma TG levels correspond to the sum of the TG content in TG-rich lipoproteins (TRLs; ie, very low-density lipoproteins plus chylomicrons) and their remnants. There remains some uncertainty regarding the direct causal role of TRLs in the progression of atherosclerosis and CVD, with cardiovascular outcome studies of TG-lowering agents, to date, having produced inconsistent results. Although low-density lipoprotein cholesterol (LDL-C) remains the primary treatment target to reduce CVD risk, a number of large-scale epidemiological studies have shown that elevated TG levels are independently associated with increased incidence of cardiovascular events, even in patients treated effectively with statins. Genetic studies have further clarified the causal association between TRLs and CVD. Variants in several key genes involved in TRL metabolism are strongly associated with CVD risk, with the strength of a variant's effect on TG levels correlating with the magnitude of the variant's effect on CVD. TRLs are thought to contribute to the progression of atherosclerosis and CVD via a number of direct and indirect mechanisms. They directly contribute to intimal cholesterol deposition and are also involved in the activation and enhancement of several proinflammatory, proapoptotic, and procoagulant pathways. Evidence suggests that non-high-density lipoprotein cholesterol, the sum of the total cholesterol carried by atherogenic lipoproteins (including LDL, TRL, and TRL remnants), provides a better indication of CVD risk than LDL-C, particularly in patients with hypertriglyceridemia. This article aims to provide an overview of the available epidemiological, clinical, and genetic evidence relating to the atherogenicity of TRLs and their role in the progression of CVD.
Collapse
Affiliation(s)
- Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| |
Collapse
|
185
|
Yao Y, Norris EH, Mason CE, Strickland S. Laminin regulates PDGFRβ(+) cell stemness and muscle development. Nat Commun 2016; 7:11415. [PMID: 27138650 PMCID: PMC4857399 DOI: 10.1038/ncomms11415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. Muscle PDGFRβ+ cells are interstitial stem/progenitor cells with myogenic potential. Here, Yao et al. show that PDGFRβ+ cell-derived laminin actively regulates their proliferation, differentiation and fate determination.
Collapse
Affiliation(s)
- Yao Yao
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, Minnesota 55812, USA
| | - Erin H Norris
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10065, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA.,The Feil Family Brain and Mind Research Institute, New York, New York 10065, USA
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
186
|
Lamiquiz-Moneo I, Blanco-Torrecilla C, Bea AM, Mateo-Gallego R, Pérez-Calahorra S, Baila-Rueda L, Cenarro A, Civeira F, de Castro-Orós I. Frequency of rare mutations and common genetic variations in severe hypertriglyceridemia in the general population of Spain. Lipids Health Dis 2016; 15:82. [PMID: 27108409 PMCID: PMC4842266 DOI: 10.1186/s12944-016-0251-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Hypertriglyceridemia (HTG) is a common complex metabolic trait that results of the accumulation of relatively common genetic variants in combination with other modifier genes and environmental factors resulting in increased plasma triglyceride (TG) levels. The majority of severe primary hypertriglyceridemias is diagnosed in adulthood and their molecular bases have not been fully defined yet. The prevalence of HTG is highly variable among populations, possibly caused by differences in environmental factors and genetic background. However, the prevalence of very high TG and the frequency of rare mutations causing HTG in a whole non-selected population have not been previously studied. Methods The total of 23,310 subjects over 18 years from a primary care-district in a middle-class area of Zaragoza (Spain) with TG >500 mg/dL were selected to establish HTG prevalence. Those affected of primary HTG were considered for further genetic analisys. The promoters, coding regions and exon-intron boundaries of LPL, LMF1, APOC2, APOA5, APOE and GPIHBP1 genes were sequenced. The frequency of rare variants identified was studied in 90 controls. Results One hundred ninety-four subjects (1.04 %) had HTG and 90 subjects (46.4 %) met the inclusion criteria for primary HTG. In this subgroup, nine patients (12.3 %) were carriers of 7 rare variants in LPL, LMF1, APOA5, GPIHBP1 or APOE genes. Three of these mutations are described for the first time in this work. The presence of a rare pathogenic mutation did not confer a differential phenotype or a higher family history of HTG. Conclusion The prevalence of rare mutations in candidate genes in subjects with primary HTG is low. The low frequency of rare mutations, the absence of a more severe phenotype or the dominant transmission of the HTG would not suggest the use of genetic analysis in the clinical practice in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0251-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain.
| | - Cristian Blanco-Torrecilla
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Sofía Pérez-Calahorra
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Avenida Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Departamento de Bioquímica, Biología Molecular y Celular, 50009, Zaragoza, Spain
| |
Collapse
|
187
|
Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 2016; 5:98-118. [PMID: 27386151 PMCID: PMC4916887 DOI: 10.1080/21623945.2015.1122857] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy.
Collapse
Affiliation(s)
- María Calderon-Dominguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan F. Mir
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Fucho
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Minéia Weber
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
188
|
Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG, Kersten S. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J Lipid Res 2016; 57:1670-83. [PMID: 27034464 DOI: 10.1194/jlr.m067363] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 01/17/2023] Open
Abstract
LPL hydrolyzes triglycerides in triglyceride-rich lipoproteins along the capillaries of heart, skeletal muscle, and adipose tissue. The activity of LPL is repressed by angiopoietin-like 4 (ANGPTL4) but the underlying mechanisms have not been fully elucidated. Our objective was to study the cellular location and mechanism for LPL inhibition by ANGPTL4. We performed studies in transfected cells, ex vivo studies, and in vivo studies with Angptl4(-/-) mice. Cotransfection of CHO pgsA-745 cells with ANGPTL4 and LPL reduced intracellular LPL protein levels, suggesting that ANGPTL4 promotes LPL degradation. This conclusion was supported by studies of primary adipocytes and adipose tissue explants from wild-type and Angptl4(-/-) mice. Absence of ANGPTL4 resulted in accumulation of the mature-glycosylated form of LPL and increased secretion of LPL. Blocking endoplasmic reticulum (ER)-Golgi transport abolished differences in LPL abundance between wild-type and Angptl4(-/-) adipocytes, suggesting that ANGPTL4 acts upon LPL after LPL processing in the ER. Finally, physiological changes in adipose tissue ANGPTL4 expression during fasting and cold resulted in inverse changes in the amount of mature-glycosylated LPL in wild-type mice, but not Angptl4(-/-) mice. We conclude that ANGPTL4 promotes loss of intracellular LPL by stimulating LPL degradation after LPL processing in the ER.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Anne P Beigneux
- Departments of Medicine David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Mikael Larsson
- Departments of Medicine David Geffen School of Medicine, University of California, Los Angeles, CA
| | - André Bensadoun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Stephen G Young
- Departments of Medicine David Geffen School of Medicine, University of California, Los Angeles, CA Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
189
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
190
|
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1425-33. [PMID: 26993579 DOI: 10.1016/j.bbalip.2016.03.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction. This review examines the mechanisms by which the heart obtains fuels from the circulation or from mobilization of intracellular stores. We next describe experimental models that exhibit either an increase in glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac metabolism and function. Finally, we highlight the importance of alternative, relatively under-investigated strategies for the treatment of heart failure. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
191
|
Kusters YHAM, Barrett EJ. Muscle microvasculature's structural and functional specializations facilitate muscle metabolism. Am J Physiol Endocrinol Metab 2016; 310:E379-87. [PMID: 26714849 PMCID: PMC4888529 DOI: 10.1152/ajpendo.00443.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022]
Abstract
We review the evolving findings from studies that examine the relationship between the structural and functional properties of skeletal muscle's vasculature and muscle metabolism. Unique aspects of the organization of the muscle microvasculature are highlighted. We discuss the role of vasomotion at the microscopic level and of flowmotion at the tissue level as modulators of perfusion distribution in muscle. We then consider in some detail how insulin and exercise each modulate muscle perfusion at both the microvascular and whole tissue level. The central role of the vascular endothelial cell in modulating both perfusion and transendothelial insulin and nutrient transport is also reviewed. The relationship between muscle metabolic insulin resistance and the vascular action of insulin in muscle continues to indicate an important role for the microvasculature as a target for insulin action and that impairing insulin's microvascular action significantly affects body glucose metabolism.
Collapse
Affiliation(s)
- Yvo H A M Kusters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Eugene J Barrett
- Department of Medicine, Pediatrics, and Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
192
|
Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gårdsvoll H, Fong LG, Bensadouen A, Jørgensen TJ, Young SG, Ploug M. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. eLife 2016; 5:e12095. [PMID: 26725083 PMCID: PMC4755760 DOI: 10.7554/elife.12095] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/02/2016] [Indexed: 12/19/2022] Open
Abstract
GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia. DOI:http://dx.doi.org/10.7554/eLife.12095.001 Fat is an important part of our diet. The intestines absorb fats and package them into particles called lipoproteins. After reaching the bloodstream, the fat molecules (lipids) in the lipoproteins are broken down by an enzyme called lipoprotein lipase (LPL), which is located along the surface of small blood vessels. This releases nutrients that can be used by vital tissues – mainly the heart, skeletal muscle, and adipose tissues. LPL is produced by muscle and adipose tissue, but it is quickly swept up by a protein called GPIHBP1 and shuttled to its site of action inside the blood vessels. Mutations that alter the structure of LPL or GPIHBP1 can prevent the breakdown of lipids, resulting in high levels of lipids in the blood. This can lead to inflammation in the pancreas and also increases the risk of heart attacks and strokes. Many earlier studies have examined the properties of LPL, but our understanding of GPIHBP1 has been limited, mainly because it has been difficult to purify GPIHBP1 for analysis. Using genetically altered insect cells, Mysling et al. were able to purify two different forms of GPIHBP1 – a full-length version and a shorter version that lacked a small section at the end of the molecule known as the acidic domain. This revealed that the opposite end of the molecule – called the carboxyl-terminal domain – is primarily responsible for binding LPL and anchoring it inside blood vessels. Once LPL is bound to GPIHBP1, the acidic domain of GPIHBP1 helps to stabilize LPL. If GPIHBP1’s acidic domain is missing then LPL is more susceptible to losing its structure, rendering it incapable of breaking down the lipids in the blood. Mysling et al. describe a new model for how LPL and GPIHBP1 interact that explains how specific mutations in the genes that encode these proteins interfere with the delivery of LPL to small blood vessels. In the future, this could help researchers to develop new strategies to treat people with high levels of lipids in their blood. DOI:http://dx.doi.org/10.7554/eLife.12095.002
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Anne P Beigneux
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
193
|
Chiu APL, Wan A, Lal N, Zhang D, Wang F, Vlodavsky I, Hussein B, Rodrigues B. Cardiomyocyte VEGF Regulates Endothelial Cell GPIHBP1 to Relocate Lipoprotein Lipase to the Coronary Lumen During Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2016; 36:145-55. [DOI: 10.1161/atvbaha.115.306774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023]
Abstract
Objective—
Lipoprotein lipase (LPL)–mediated triglyceride hydrolysis is the major source of fatty acid for cardiac energy. LPL, synthesized in cardiomyocytes, is translocated across endothelial cells (EC) by its transporter glycosylphosphatidylinositol-anchored high-density lipoprotein–binding protein 1 (GPIHBP1). Previously, we have reported an augmentation in coronary LPL, which was linked to an increased expression of GPIHBP1 following moderate diabetes mellitus. We examined the potential mechanism by which hyperglycemia amplifies GPIHBP1.
Approach and Results—
Exposure of rat aortic EC to high glucose induced GPIHBP1 expression and amplified LPL shuttling across these cells. This effect coincided with an elevated secretion of heparanase. Incubation of EC with high glucose or latent heparanase resulted in secretion of vascular endothelial growth factor (VEGF). Primary cardiomyocytes, being a rich source of VEGF, when cocultured with EC, restored EC GPIHBP1 that is lost because of cell passaging. Furthermore, recombinant VEGF induced EC GPIHBP1 mRNA and protein expression within 24 hours, an effect that could be prevented by a VEGF neutralizing antibody. This VEGF-induced increase in GPIHBP1 was through Notch signaling that encompassed Delta-like ligand 4 augmentation and nuclear translocation of the Notch intracellular domain. Finally, cardiomyocytes from severely diabetic animals exhibiting attenuation of VEGF were unable to increase EC GPIHBP1 expression and had lower LPL activity at the vascular lumen in perfused hearts.
Conclusion—
EC, as the first responders to hyperglycemia, can release heparanase to liberate myocyte VEGF. This growth factor, by activating EC Notch signaling, is responsible for facilitating GPIHBP1-mediated translocation of LPL across EC and regulating LPL-derived fatty acid delivery to the cardiomyocytes.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Andrea Wan
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Nathaniel Lal
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Dahai Zhang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Fulong Wang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Israel Vlodavsky
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Bahira Hussein
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Brian Rodrigues
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| |
Collapse
|
194
|
Allan CM, Procaccia S, Tran D, Tu Y, Barnes RH, Larsson M, Allan BB, Young LC, Hong C, Tontonoz P, Fong LG, Young SG, Beigneux AP. Palmoplantar Keratoderma in Slurp2-Deficient Mice. J Invest Dermatol 2015; 136:436-443. [PMID: 26967477 PMCID: PMC4789766 DOI: 10.1016/j.jid.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023]
Abstract
SLURP1, a member of the Ly6 protein family, is secreted by suprabasal keratinocytes. Mutations in SLURP1 cause a palmoplantar keratoderma (PPK) known as mal de Meleda. Another secreted Ly6 protein, SLURP2, is encoded by a gene located ~20 kb downstream from SLURP1. SLURP2 is produced by suprabasal keratinocytes. To investigate the importance of SLURP2, we first examined Slurp2 knockout mice in which exon 2–3 sequences had been replaced with lacZ and neo cassettes. Slurp2−/− mice exhibited hyperkeratosis on the volar surface of the paws (i.e., PPK), increased keratinocyte proliferation, and an accumulation of lipid droplets in the stratum corneum. They also exhibited reduced body weight and hind limb clasping. These phenotypes are very similar to those of Slurp1−/− mice. To solidify a link between Slurp2 deficiency and PPK and to be confident that the disease phenotypes in Slurp2−/− mice were not secondary to the effects of the lacZ and neo cassettes on Slurp1 expression, we created a new line of Slurp2 knockout mice (Slurp2X−/−) in which Slurp2 was inactivated with a simple nonsense mutation. Slurp2X−/− mice exhibited the same disease phenotypes. Thus, Slurp2 deficiency and Slurp1 deficiencies cause the same disease phenotypes.
Collapse
Affiliation(s)
- Christopher M Allan
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shiri Procaccia
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Deanna Tran
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yiping Tu
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Richard H Barnes
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Mikael Larsson
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Bernard B Allan
- Department of Molecular Biology, Genentech, South San Francisco, California, USA
| | - Lorraine C Young
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Howard Hughes Medical Institute, University of California, Los Angeles, California, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Howard Hughes Medical Institute, University of California, Los Angeles, California, USA
| | - Loren G Fong
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Stephen G Young
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Anne P Beigneux
- Department of Medicine, Divisions of Cardiology and Dermatology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
195
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
196
|
Lamiquiz-Moneo I, Bea AM, Mateo-Gallego R, Baila-Rueda L, Cenarro A, Pocoví M, Civeira F, de Castro-Orós I. [Identification of variants in LMF1 gene associated with primary hypertriglyceridemia]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2015; 27:246-252. [PMID: 25817768 DOI: 10.1016/j.arteri.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The majority of severe primary hypertriglyceridemia (HTG) are diagnosed in adults, and their molecular bases have not yet been fully defined. The promoter, coding regions and intron-exon boundaries of LMF1 were sequenced in 112 patients with severe primary hipertrigliceridemia (defined as TG above 500mg/dl). Five patients (4.46%) were carriers of four rare variants in the LMF1 gene associated with HTG, which participate in lipoprotein lipase (LpL) function. Also, we have identified two common variants, c.194-28 T>G and c.729+18C>G that were associated with HTG, with a different allelic frequency to that observed in the general population. A bioinformatic analysis of all found variants was conducted, defining the following as potentially harmful: p.Arg364Gln, p.Arg451Trp, p.Pro562Arg and p.Leu85Leu. Our results suggest that LMF1 mutations are involved in a substantial proportion of cases with severe HTG, putting together the moderate-aggressive effect of rare mutations with polymorphisms classically associated with this disease.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España.
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Miguel Pocoví
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| |
Collapse
|
197
|
Reimund M, Larsson M, Kovrov O, Kasvandik S, Olivecrona G, Lookene A. Evidence for Two Distinct Binding Sites for Lipoprotein Lipase on Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1). J Biol Chem 2015; 290:13919-34. [PMID: 25873395 DOI: 10.1074/jbc.m114.634626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/20/2023] Open
Abstract
GPIHBP1 is an endothelial membrane protein that transports lipoprotein lipase (LPL) from the subendothelial space to the luminal side of the capillary endothelium. Here, we provide evidence that two regions of GPIHBP1, the acidic N-terminal domain and the central Ly6 domain, interact with LPL as two distinct binding sites. This conclusion is based on comparative binding studies performed with a peptide corresponding to the N-terminal domain of GPIHBP1, the Ly6 domain of GPIHBP1, wild type GPIHBP1, and the Ly6 domain mutant GPIHBP1 Q114P. Although LPL and the N-terminal domain formed a tight but short lived complex, characterized by fast on- and off-rates, the complex between LPL and the Ly6 domain formed more slowly and persisted for a longer time. Unlike the interaction of LPL with the Ly6 domain, the interaction of LPL with the N-terminal domain was significantly weakened by salt. The Q114P mutant bound LPL similarly to the N-terminal domain of GPIHBP1. Heparin dissociated LPL from the N-terminal domain, and partially from wild type GPIHBP1, but was unable to elute the enzyme from the Ly6 domain. When LPL was in complex with the acidic peptide corresponding to the N-terminal domain of GPIHBP1, the enzyme retained its affinity for the Ly6 domain. Furthermore, LPL that was bound to the N-terminal domain interacted with lipoproteins, whereas LPL bound to the Ly6 domain did not. In summary, our data suggest that the two domains of GPIHBP1 interact independently with LPL and that the functionality of LPL depends on its localization on GPIHBP1.
Collapse
Affiliation(s)
- Mart Reimund
- From the Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Mikael Larsson
- the Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden, and
| | - Oleg Kovrov
- the Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden, and
| | - Sergo Kasvandik
- the Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Gunilla Olivecrona
- the Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden, and
| | - Aivar Lookene
- From the Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia,
| |
Collapse
|
198
|
Affiliation(s)
- Sara N Vallerie
- From the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (S.N.V., K.E.B.), and Department of Pathology (K.E.B.), Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA
| | - Karin E Bornfeldt
- From the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (S.N.V., K.E.B.), and Department of Pathology (K.E.B.), Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
199
|
Chen J, Kaiyala KJ, Lam J, Agrawal N, Nguyen L, Ogimoto K, Spencer D, Morton GJ, Schwartz MW, Dichek HL. In vivo structure-function studies of human hepatic lipase: the catalytic function rescues the lean phenotype of HL-deficient (hl-/-) mice. Physiol Rep 2015; 3:e12365. [PMID: 25862097 PMCID: PMC4425970 DOI: 10.14814/phy2.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 11/30/2022] Open
Abstract
The lean body weight phenotype of hepatic lipase (HL)-deficient mice (hl(-/-)) suggests that HL is required for normal weight gain, but the underlying mechanisms are unknown. HL plays a unique role in lipoprotein metabolism performing bridging as well as catalytic functions, either of which could participate in energy homeostasis. To determine if both the catalytic and bridging functions or the catalytic function alone are required for the effect of HL on body weight, we studied (hl(-/-)) mice that transgenically express physiologic levels of human (h)HL (with catalytic and bridging functions) or a catalytically-inactive (ci)HL variant (with bridging function only) in which the catalytic Serine 145 was mutated to Alanine. As expected, HL activity in postheparin plasma was restored to physiologic levels only in hHL-transgenic mice (hl(-/-)hHL). During high-fat diet feeding, hHL-transgenic mice exhibited increased body weight gain and body adiposity relative to hl(-/-)ciHL mice. A similar, albeit less robust effect was observed in female hHL-transgenic relative to hl(-/-)ciHL mice. To delineate the basis for this effect, we determined cumulative food intake and measured energy expenditure using calorimetry. Interestingly, in both genders, food intake was 5-10% higher in hl(-/-)hHL mice relative to hl(-/-)ciHL controls. Similarly, energy expenditure was ~10% lower in HL-transgenic mice after adjusting for differences in total body weight. Our results demonstrate that (1) the catalytic function of HL is required to rescue the lean body weight phenotype of hl(-/-) mice; (2) this effect involves complementary changes in both sides of the energy balance equation; and (3) the bridging function alone is insufficient to rescue the lean phenotype of hl(-/-)ciHL mice.
Collapse
Affiliation(s)
- Jeffrey Chen
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Karl J Kaiyala
- Department of Dental Public Health Sciences, School of Dentistry University of Washington, Seattle, Washington
| | - Jennifer Lam
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Nalini Agrawal
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lisa Nguyen
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Kayoko Ogimoto
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Dean Spencer
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Gregory J Morton
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Michael W Schwartz
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Helén L Dichek
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
200
|
Eelen G, de Zeeuw P, Simons M, Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circ Res 2015; 116:1231-44. [PMID: 25814684 PMCID: PMC4380230 DOI: 10.1161/circresaha.116.302855] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Higher organisms rely on a closed cardiovascular circulatory system with blood vessels supplying vital nutrients and oxygen to distant tissues. Not surprisingly, vascular pathologies rank among the most life-threatening diseases. At the crux of most of these vascular pathologies are (dysfunctional) endothelial cells (ECs), the cells lining the blood vessel lumen. ECs display the remarkable capability to switch rapidly from a quiescent state to a highly migratory and proliferative state during vessel sprouting. This angiogenic switch has long been considered to be dictated by angiogenic growth factors (eg, vascular endothelial growth factor) and other signals (eg, Notch) alone, but recent findings show that it is also driven by a metabolic switch in ECs. Furthermore, these changes in metabolism may even override signals inducing vessel sprouting. Here, we review how EC metabolism differs between the normal and dysfunctional/diseased vasculature and how it relates to or affects the metabolism of other cell types contributing to the pathology. We focus on the biology of ECs in tumor blood vessel and diabetic ECs in atherosclerosis as examples of the role of endothelial metabolism in key pathological processes. Finally, current as well as unexplored EC metabolism-centric therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Guy Eelen
- From the Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium (G.E., P.d.Z., P.C.); Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium (G.E., P.d.Z., P.C.); Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT (M.S.); and Department of Cell Biology, Yale University School of Medicine, New Haven, CT (M.S.)
| | - Pauline de Zeeuw
- From the Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium (G.E., P.d.Z., P.C.); Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium (G.E., P.d.Z., P.C.); Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT (M.S.); and Department of Cell Biology, Yale University School of Medicine, New Haven, CT (M.S.)
| | - Michael Simons
- From the Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium (G.E., P.d.Z., P.C.); Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium (G.E., P.d.Z., P.C.); Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT (M.S.); and Department of Cell Biology, Yale University School of Medicine, New Haven, CT (M.S.)
| | - Peter Carmeliet
- From the Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium (G.E., P.d.Z., P.C.); Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium (G.E., P.d.Z., P.C.); Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, CT (M.S.); and Department of Cell Biology, Yale University School of Medicine, New Haven, CT (M.S.).
| |
Collapse
|