151
|
Hill CN, Hernández-Cáceres MP, Asencio C, Torres B, Solis B, Owen GI. Deciphering the Role of the Coagulation Cascade and Autophagy in Cancer-Related Thrombosis and Metastasis. Front Oncol 2020; 10:605314. [PMID: 33365273 PMCID: PMC7750537 DOI: 10.3389/fonc.2020.605314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Thrombotic complications are the second leading cause of death among oncology patients worldwide. Enhanced thrombogenesis has multiple origins and may result from a deregulation of megakaryocyte platelet production in the bone marrow, the synthesis of coagulation factors in the liver, and coagulation factor signaling upon cancer and the tumor microenvironment (TME). While a hypercoagulable state has been attributed to factors such as thrombocytosis, enhanced platelet aggregation and Tissue Factor (TF) expression on cancer cells, further reports have suggested that coagulation factors can enhance metastasis through increased endothelial-cancer cell adhesion and enhanced endothelial cell activation. Autophagy is highly associated with cancer survival as a double-edged sword, as can both inhibit and promote cancer progression. In this review, we shall dissect the crosstalk between the coagulation cascade and autophagic pathway and its possible role in metastasis and cancer-associated thrombosis formation. The signaling of the coagulation cascade through the autophagic pathway within the hematopoietic stem cells, the endothelial cell and the cancer cell are discussed. Relevant to the coagulation cascade, we also examine the role of autophagy-related pathways in cancer treatment. In this review, we aim to bring to light possible new areas of cancer investigation and elucidate strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Charlotte Nicole Hill
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Catalina Asencio
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Begoña Torres
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Solis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
152
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
153
|
Fuentes-Baile M, Ventero MP, Encinar JA, García-Morales P, Poveda-Deltell M, Pérez-Valenciano E, Barberá VM, Gallego-Plazas J, Rodríguez-Lescure Á, Martín-Nieto J, Saceda M. Differential Effects of IGF-1R Small Molecule Tyrosine Kinase Inhibitors BMS-754807 and OSI-906 on Human Cancer Cell Lines. Cancers (Basel) 2020; 12:cancers12123717. [PMID: 33322337 PMCID: PMC7763458 DOI: 10.3390/cancers12123717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Simple Summary We have tested the effects of IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on human colon, pancreatic carcinoma cell, and glioblastoma cell lines and primary cultures. Although OSI and BMS are able to inhibit IGF-1R activity at low doses, the differential effect on cell proliferation and cell-cycle phase distribution shown by both compounds probes that many effects observed are mediated by BMS off-target interactions. Using MAPKs ELISAs and phospho-RTK array analysis, we have identified several BMS regulated putative kinases able to mediate BMS off-target effects. Interestingly, molecular docking assays suggest that BMS could affect these kinases not only by blocking their ATP-binding domain, but also by means of allosteric interactions. Since BMS has an important antineoplastic effect on these poor prognosis types of cancer, these compounds could be taken in consideration for treatment independently of IGF-1R status. Abstract We have determined the effects of the IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on cell proliferation and cell-cycle phase distribution in human colon, pancreatic carcinoma, and glioblastoma cell lines and primary cultures. IGF-1R signaling was blocked by BMS and OSI at equivalent doses, although both inhibitors exhibited differential antiproliferative effects. In all pancreatic carcinoma cell lines tested, BMS exerted a strong antiproliferative effect, whereas OSI had a minimal effect. Similar results were obtained on glioblastoma primary cultures, where HGUE-GB-15, -16 and -17 displayed resistance to OSI effects, whereas they were inhibited in their proliferation by BMS. Differential effects of BMS and OSI were also observed in colon carcinoma cell lines. Both inhibitors also showed different effects on cell cycle phase distribution, BMS induced G2/M arrest followed by cell death, while OSI induced G1 arrest with no cell death. Both inhibitors also showed different effects on other protein kinases activities. Taken together, our results are indicative that BMS mainly acts through off-target effects exerted on other protein kinases. Given that BMS exhibits a potent antiproliferative effect, we believe that this compound could be useful for the treatment of different types of tumors independently of their IGF-1R activation status.
Collapse
Affiliation(s)
- María Fuentes-Baile
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (M.F.-B.); (V.M.B.)
| | - María P. Ventero
- Unidad de Investigación, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, 03005 Alicante, Spain;
| | - José A. Encinar
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
- Correspondence: (J.A.E.); (M.S.); Tel.: +34-966658432 (M.S.)
| | - Pilar García-Morales
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
| | - María Poveda-Deltell
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
| | - Elizabeth Pérez-Valenciano
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
| | - Víctor M. Barberá
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (M.F.-B.); (V.M.B.)
- Unidad de Genética Molecular, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain
| | - Javier Gallego-Plazas
- Servicio de Oncología, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (J.G.-P.); (Á.R.-L.)
| | - Álvaro Rodríguez-Lescure
- Servicio de Oncología, Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (J.G.-P.); (Á.R.-L.)
| | - José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain;
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, 03203 Elche (Alicante), Spain; (M.F.-B.); (V.M.B.)
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; (P.G.-M.); (M.P.-D.); (E.P.-V.)
- Correspondence: (J.A.E.); (M.S.); Tel.: +34-966658432 (M.S.)
| |
Collapse
|
154
|
Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal 2020; 33:1257-1275. [PMID: 32524825 DOI: 10.1089/ars.2019.7931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.
Collapse
Affiliation(s)
- Hugo Pothion
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Tostivint
- Physiologie moléculaire et Adaptation, UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
155
|
Chen M, Huang N, Liu J, Huang J, Shi J, Jin F. AMPK: A bridge between diabetes mellitus and Alzheimer's disease. Behav Brain Res 2020; 400:113043. [PMID: 33307136 DOI: 10.1016/j.bbr.2020.113043] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and etiology of diabetes mellitus (DM) and Alzheimer's disease (AD) share many common cellular and molecular themes. Recently, a growing body of research has shown that AMP-activated protein kinase (AMPK), a biomolecule that regulates energy balance and glucose and lipid metabolism, plays key roles in DM and AD. In this review, we summarize the relevant research on the roles of AMPK in DM and AD, including its functions in gluconeogenesis and insulin resistance (IR) and its relationships with amyloid β-protein (Aβ), Tau and AMPK activators. In DM, AMPK is involved in the regulation of glucose metabolism and IR. AMPK is closely related to gluconeogenesis, which can not only be activated by the upstream kinases liver kinase B1 (LKB1), transforming growth factor β-activated kinase 1 (TAK1), and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) but also regulate the downstream kinases glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxy kinase (PEPCK), thereby affecting gluconeogenesis and ameliorating DM. Moreover, AMPK can regulate glucose transporter 4 (GLUT4) and free fatty acids to improve IR. In AD, AMPK can ameliorate abnormal brain energy metabolism, not only by reduces Aβ deposition through β-secretase but also reduces tau hyperphosphorylation through sirtuin 1 (SIRT1) and protein phosphatase 2A (PP2A). Therefore, AMPK is a bridge between DM and AD.
Collapse
Affiliation(s)
- Meixiang Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ju Liu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
156
|
Yuan W, He X, Morin D, Barrière G, Liu X, Li J, Zhu Y. Autophagy Induction Contributes to the Neuroprotective Impact of Intermittent Fasting on the Acutely Injured Spinal Cord. J Neurotrauma 2020; 38:373-384. [PMID: 33076741 DOI: 10.1089/neu.2020.7166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is one of the leading causes of neurological disability and death. So far, there is no satisfactory treatment for SCI, because of its complex and ill-defined pathophysiology. Recently, autophagy has been implicated as protective in acute SCI rat models. Here, we investigated the therapeutic value of a dietary intervention, namely, intermittent fasting (IF), on neuronal survival after acute SCI in rats, and its underlying mechanism related to autophagy regulation. We found remarkable improvement in both behavioral performance and neuronal survival at the injured segment of the spinal cord of animals previously subjected to IF. Western blotting revealed a marked decrease in apoptosis-related markers such as cleaved caspase 3 levels and the bax/bcl-2 ratio in the IF group, which suggested an inhibition of the intrinsic apoptosis pathway. In addition, the expression of the autophagy markers LC3-II and beclin 1 was also increased in the IF group compared with ad libitum fed animals. In parallel, IF decreased the levels of the substrate protein of autophagy, p62, indicative of an upregulation of the autophagic processes. Treatment with 3-methyladenine (3-MA), a selective inhibitor of autophagy, reversed the downregulated apoptosis-related markers by IF. Finally, IF could activate the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway and enhance lysosome function by upregulating transcription factor (TF)EB expression. Altogether, the present findings suggest that IF exerts a neuroprotective effect after acute SCI via the upregulation of autophagy, and further points to dietary interventions as a promising combinatorial treatment for SCI.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Didier Morin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Grégory Barrière
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Xuan Liu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
- Department of Orthopedics, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Jiatong Li
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
157
|
The role of AMPK in metabolism and its influence on DNA damage repair. Mol Biol Rep 2020; 47:9075-9086. [PMID: 33070285 PMCID: PMC7674386 DOI: 10.1007/s11033-020-05900-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
One of the most complex health disproportions in the human body is the metabolic syndrome (MetS). It can result in serious health consequences such as type 2 diabetes mellitus, atherosclerosis or insulin resistance. The center of energy regulation in human is AMP-activated protein kinase (AMPK), which modulates cells' metabolic pathways and protects them against negative effects of metabolic stress, e.g. reactive oxygen species. Moreover, recent studies show the relationship between the AMPK activity and the regulation of DNA damage repair such as base excision repair (BER) system, which is presented in relation to the influence of MetS on human genome. Hence, AMPK is studied not only in the field of counteracting MetS but also prevention of genetic alterations and cancer development. Through understanding AMPK pathways and its role in cells with damaged DNA it might be possible to improve cell's repair processes and develop new therapies. This review presents AMPK role in eukaryotic cells and focuses on the relationship between AMPK activity and the regulation of BER system through its main component-8-oxoguanine glycosylase (OGG1).
Collapse
|
158
|
Arias Del Angel JA, Nanjundiah V, Benítez M, Newman SA. Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo 2020; 11:21. [PMID: 33062243 PMCID: PMC7549232 DOI: 10.1186/s13227-020-00165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
159
|
Hsu JY, Lin HH, Wang ZH, Chen JH. Aqueous extract from Pepino (Solanum muricatum Ait.) leaves ameliorated insulin resistance, hyperlipidemia, and hyperglycemia in mice with metabolic syndrome. J Food Biochem 2020; 44:e13518. [PMID: 33047354 DOI: 10.1111/jfbc.13518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
Solanum muricatum Ait. (Pepino) is a plant food commonly cultivated in the Penghu Island, Taiwan. This present study aimed to investigate the protective effects of aqueous extract of Pepino leaves (AEPL) in mice with metabolic syndrome. Metabolic syndrome animal model was induced by continuous high-fat diet feeding and low-dose streptozotocin (40 mg/ml) for 5 days. A 1% AEPL or metformin were given for 6 weeks after streptozotocin injection. The results revealed that 1% AEPL effectively reduced fasting blood glucose, insulin resistance, and hyperlipidemia in metabolic syndrome mice. Histologic examination revealed lipid accumulation in liver decreased by 1% AEPL treatment. Further, western blot analysis revealed 1% AEPL treatment managed enzymes related to lipid synthesis and oxidation pathways and hepatic glucose production. Besides, 1% AEPL treatment increased liver antioxidant activities to against oxidative stress. These results concluded that AEPL treatment attenuated insulin resistance, hyperlipidemia, and hyperglycemia of metabolic syndrome. PRACTICAL APPLICATIONS: Metabolic syndrome (MS) is a multifactorial chronic disease which is characterized by dyslipidemia, insulin resistance, and hyperglycemia. However, there is no single drug or defined medication for MS so far. The present study revealed that AEPL treatment was able to regulate lipid metabolism and glycemic control at the molecular level to alleviate MS. AEPL has the potential to be a novo complementary medication for metabolic syndrome.
Collapse
Affiliation(s)
- Jen-Ying Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
| | - Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan
| | - Zhi-Hong Wang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung City, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
160
|
Shan R, Liu N, Yan Y, Liu B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res 2020; 166:105169. [PMID: 33053445 DOI: 10.1016/j.phrs.2020.105169] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease of the arterial wall, and an important pathological basis of coronary heart disease. Endothelial cells, vascular smooth muscle cells, and macrophages play important roles in the development of atherosclerosis. Of note, apoptosis and autophagy, two types of programmed cell death, influence the development and progression of atherosclerosis via the modulation of such cells. The small heat shock protein Hsp27 is a multifunctional protein induced by various stress factors and has a protective effect on cells. A large number of studies have demonstrated that Hsp27 plays an important role in regulating apoptosis. Recently, some studies have suggested that Hsp27 also participates in the autophagic process. Moreover, Hsp27 is closely related to the occurrence and development of atherosclerosis. Here, we summarize the molecular mechanisms of apoptosis and autophagy and discuss their effects on endothelial cells, vascular smooth muscle cells, and macrophages in the context of atherosclerotic procession. We further explore the involvement of Hsp27 in apoptosis, autophagy, and atherosclerosis. We speculate that Hsp27 may exert its anti-atherosclerotic role via the regulation of apoptosis and autophagy; this may provide the basis for the development of new approaches for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ruiting Shan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
161
|
Chen Z, Chen Y, Peng L, Wang X, Tang N. 2,5-dimethylcelecoxib improves immune microenvironment of hepatocellular carcinoma by promoting ubiquitination of HBx-induced PD-L1. J Immunother Cancer 2020; 8:jitc-2020-001377. [PMID: 33028694 PMCID: PMC7542662 DOI: 10.1136/jitc-2020-001377] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background 2,5-dimethylcelecoxib (DMC) is a targeted inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1), a key enzyme in the PGE2 synthesis pathway of inflammatory mediators. Previous studies have confirmed that DMC can inhibit the growth of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). However, it is not known whether DMC is involved in the changes of tumor immune microenvironment. Methods In this study, we explored the effects of DMC on HBV-related HCC immune microenvironment, and deeply analyzed its unique effect and mechanism on programmed death receptor 1 (PD-1)/and its ligand 1 (PD-L1) pathway. Results Clinical hepatoma tissues detection showed that compared with non-virus-related HCC, the level of CD8 of HBV-related HCC was significantly lower, while the levels of PD-L1 and CD163 were higher. In vivo experiments indicated that DMC could increase the level of tumor infiltrating CD8+ T cells in hepatitis B virus X (HBx) (+) hepatoma cells implanted mouse models, and inhibit the expression of PD-L1 and CD163 in tumor tissues. DMC combined with atezolizumab had more significant antitumor effect and stronger blocking effect on PD-1/PD-L1 pathway. Mechanism studies have shown that DMC can promote ubiquitin degradation of HBx-induced PD-L1 protein in HCC cells by activating adenosine 5′-monophosphate-activated protein kinase pathway. Further experiments confirmed that this process was mainly mediated by E3 ligase RBX1. Conclusions Our results uncover a role for DMC in promoting HBV-related HCC immune microenvironment, which not only enrich the relationship between inflammatory factors (mPGES-1/PGE2 pathway) and immunosuppression (PD-L1), but also provide an important strategic reference for multitarget or combined immunotherapy of HBV-related HCC.
Collapse
Affiliation(s)
- Zhanfei Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yiyin Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lirong Peng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China .,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
162
|
Connections between Metabolism and Epigenetic Modification in MDSCs. Int J Mol Sci 2020; 21:ijms21197356. [PMID: 33027968 PMCID: PMC7582655 DOI: 10.3390/ijms21197356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are major immunosuppressive cells in the tumor microenvironment (TME). During the differentiation and development of MDSCs from myeloid progenitor cells, their functions are also affected by a series of regulatory factors in the TME, such as metabolic reprogramming, epigenetic modification, and cell signaling pathways. Additionally, there is a crosstalk between these regulatory factors. This review mainly introduces the metabolism (especially glucose metabolism) and significant epigenetic modification of MDSCs in the TME, and briefly introduces the connections between metabolism and epigenetic modification in MDSCs, in order to determine the further impact on the immunosuppressive effect of MDSCs, so as to serve as a more effective target for tumor therapy.
Collapse
|
163
|
Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells. Mar Drugs 2020; 18:md18090473. [PMID: 32962063 PMCID: PMC7551477 DOI: 10.3390/md18090473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Melanin protects skin from ultraviolet radiation, toxic drugs, and chemicals. Its synthesis is sophisticatedly regulated by multiple mechanisms, including transcriptional and enzymatic controls. However, uncontrolled excessive production of melanin can cause serious dermatological disorders, such as freckles, melasma, solar lentigo, and cancer. Moreover, melanogenesis disorders are also linked to neurodegenerative diseases. Therefore, there is a huge demand for safer and more potent inhibitors of melanogenesis. In the present study, we report novel inhibitory effects of Jeju magma-seawater (JMS) on melanogenesis induced by α-melanocyte stimulating hormone (α-MSH) in B16F10 melanoma cells. JMS is the abundant underground seawater found in Jeju Island, a volcanic island of Korea. Research into the physiological effects of JMS is rapidly increasing due to its high contents of various minerals that are essential to human health. However, little is known about the effects of JMS on melanogenesis. Here, we demonstrate that JMS safely and effectively inhibits α-MSH-induced melanogenesis via the CaMKKβ (calcium/calmodulin-dependent protein kinase β)-AMPK (5′ adenosine monophosphate-activated protein kinase) signaling pathway. We further demonstrate that AMPK inhibits the signaling pathways of protein kinase A and MAPKs (mitogen-activated protein kinase), which are critical for melanogenesis-related gene expression. Our results highlight the potential of JMS as a novel therapeutic agent for ameliorating skin pigmentation-related disorders.
Collapse
|
164
|
Dissecting the Effect of a 3D Microscaffold on the Transcriptome of Neural Stem Cells with Computational Approaches: A Focus on Mechanotransduction. Int J Mol Sci 2020; 21:ijms21186775. [PMID: 32942778 PMCID: PMC7555048 DOI: 10.3390/ijms21186775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
3D cell cultures are becoming more and more important in the field of regenerative medicine due to their ability to mimic the cellular physiological microenvironment. Among the different types of 3D scaffolds, we focus on the Nichoid, a miniaturized scaffold with a structure inspired by the natural staminal niche. The Nichoid can activate cellular responses simply by subjecting the cells to mechanical stimuli. This kind of influence results in different cellular morphology and organization, but the molecular bases of these changes remain largely unknown. Through RNA-Seq approach on murine neural precursors stem cells expanded inside the Nichoid, we investigated the deregulated genes and pathways showing that the Nichoid causes alteration in genes strongly connected to mechanobiological functions. Moreover, we fully dissected this mechanism highlighting how the changes start at a membrane level, with subsequent alterations in the cytoskeleton, signaling pathways, and metabolism, all leading to a final alteration in gene expression. The results shown here demonstrate that the Nichoid influences the biological and genetic response of stem cells thorough specific alterations of cellular signaling. The characterization of these pathways elucidates the role of mechanical manipulation on stem cells, with possible implications in regenerative medicine applications.
Collapse
|
165
|
Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proc Natl Acad Sci U S A 2020; 117:23932-23941. [PMID: 32900951 DOI: 10.1073/pnas.2011243117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.
Collapse
|
166
|
Dai W, Xu Y, Mo S, Li Q, Yu J, Wang R, Ma Y, Ni Y, Xiang W, Han L, Zhang L, Cai S, Qin J, Chen WL, Jia W, Cai G. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies. Signal Transduct Target Ther 2020; 5:177. [PMID: 32873793 PMCID: PMC7463260 DOI: 10.1038/s41392-020-00220-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are usually characterized by hyperactive glucose metabolism, which can often lead to glucose scarcity; thus, alternative pathways to rewire cancer metabolism are required. Here, we demonstrated that GLUT3 was highly expressed in colorectal cancer (CRC) and negatively linked to CRC patient outcomes, whereas GLUT1 was not associated with CRC prognosis. Under glucose-limiting conditions, GLUT3 expedited CRC cell growth by accelerating glucose input and fuelling nucleotide synthesis. Notably, GLUT3 had a greater impact on cell growth than GLUT1 under glucose-limiting stress. Mechanistically, low-glucose stress dramatically upregulated GLUT3 via the AMPK/CREB1 pathway. Furthermore, high GLUT3 expression remarkably increased the sensitivity of CRC cells to treatment with vitamin C and vitamin C-containing regimens. Together, the results of this study highlight the importance of the AMPK/CREB1/GLUT3 pathway for CRC cells to withstand glucose-limiting stress and underscore the therapeutic potential of vitamin C in CRC with high GLUT3 expression.
Collapse
Affiliation(s)
- Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Yu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Ni
- The Children's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Wenqiang Xiang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyu Han
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Qin
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA. .,School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
167
|
Choi EH, Chun YS, Kim J, Ku SK, Jeon S, Park TS, Shim SM. Modulating lipid and glucose metabolism by glycosylated kaempferol rich roasted leaves of Lycium chinense via upregulating adiponectin and AMPK activation in obese mice-induced type 2 diabetes. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
168
|
Singh K, Jamshidi N, Zomer R, Piva TJ, Mantri N. Cannabinoids and Prostate Cancer: A Systematic Review of Animal Studies. Int J Mol Sci 2020; 21:E6265. [PMID: 32872551 PMCID: PMC7503992 DOI: 10.3390/ijms21176265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer is a major cause of death among men worldwide. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation, as well as potential anti-cancer agents. The aim of this review was to evaluate the effect of cannabinoids on in vivo prostate cancer models. The databases searched included PubMed, Embase, Scopus, and Web of Science from inception to August 2020. Articles reporting on the effect of cannabinoids on prostate cancer were deemed eligible. We identified six studies that were all found to be based on in vivo/xenograft animal models. Results: In PC3 and DU145 xenografts, WIN55,212-2 reduced cell proliferation in a dose-dependent manner. Furthermore, in LNCaP xenografts, WIN55,212-2 reduced cell proliferation by 66-69%. PM49, which is a synthetic cannabinoid quinone, was also found to result in a significant inhibition of tumor growth of up to 90% in xenograft models of LNCaP and 40% in xenograft models of PC3 cells, respectively. All studies have reported that the treatment of prostate cancers in in vivo/xenograft models with various cannabinoids decreased the size of the tumor, the outcomes of which depended on the dose and length of treatment. Within the limitation of these identified studies, cannabinoids were shown to reduce the size of prostate cancer tumors in animal models. However, further well-designed and controlled animal studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Kanika Singh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| | - Negar Jamshidi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia; (N.J.); (T.J.P.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, Western Australia 6005, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia; (N.J.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
169
|
Metformin Suppresses Development of the Echinococcus multilocularis Larval Stage by Targeting the TOR Pathway. Antimicrob Agents Chemother 2020; 64:AAC.01808-19. [PMID: 32540980 DOI: 10.1128/aac.01808-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Alveolar echinococcosis (AE) is a severe disease caused by the larval stage of the tapeworm Echinococcus multilocularis Current chemotherapeutic treatment options based on benzimidazoles are of limited effectiveness, which underlines the need to find new antiechinococcosis drugs. Metformin is an antihyperglycemic and antiproliferative agent that shows activity against the related parasite Echinococcus granulosus Hence, we assessed the in vitro and in vivo effects of the drug on E. multilocularis Metformin exerted significant dose-dependent killing effects on in vitro cultured parasite stem cells and protoscoleces and significantly reduced the dedifferentiation of protoscoleces into metacestodes. Likewise, oral administration of metformin (50 mg/kg of body weight/day for 8 weeks) was effective in achieving a significant reduction of parasite weight in a secondary murine AE model. Our results revealed mitochondrial membrane depolarization, activation of Em-AMPK, suppression of Em-TOR, and overexpression of Em-Atg8 in the germinal layer of metformin-treated metacestode vesicles. The opposite effects on the level of active Em-TOR in response to exogenous insulin and rapamycin suggest that Em-TOR is part of the parasite's insulin signaling pathway. Finally, the presence of the key lysosomal pathway components, through which metformin reportedly acts, was confirmed in the parasite by in silico assays. Taken together, these results introduce metformin as a promising candidate for AE treatment. Although our study highlights the importance of those direct mechanisms by which metformin reduces parasite viability, it does not necessarily preclude any additional systemic effects of the drug that might reduce parasite growth in vivo.
Collapse
|
170
|
Phloretin Modulates Human Th17/Treg Cell Differentiation In Vitro via AMPK Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6267924. [PMID: 32802861 PMCID: PMC7411462 DOI: 10.1155/2020/6267924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
Objective We conducted studies to explore the effect of phloretin on glucose uptake, proliferation, and differentiation of human peripheral blood CD4+ T cells and investigated the mechanism of phloretin on inducing Th17/Treg development. Methods Naïve CD4+ T cells were purified from peripheral blood of healthy volunteers, stimulated with anti-CD3/CD28 antibodies, and polarized in vitro to generate Th17 or Treg cells. Glucose uptake, proliferation, cell cycle, protein expression (phospho-Stat3, phospho-Stat5), and Th17 and Treg cell numbers were analyzed by flow cytometry. AMP-activated protein kinase (AMPK) signaling was analyzed by western blot. Results and Discussion. Phloretin could inhibit the glucose uptake and proliferation of activated CD4+ T cells. The proliferation inhibition was due to the G0/G1 phase arrest. Phloretin decreased Th17 cell generation and phospho-Stat3 expression as well as increased Treg cell generation and phospho-Stat5 expression in the process of inducing Th17/Treg differentiation. The phosphorylation level of AMPK was significantly enhanced, while the phosphorylation level of mTOR was significantly decreased in activated CD4+ T cells under phloretin treatment. The AMPK signaling inhibitor compound C (Com C) could neutralize the effect of phloretin, while the agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) could impact the Th17/Treg balance similar to phloretin during Th17/Treg induction. Conclusion Our results suggest that phloretin can mediate the Th17/Treg balance by regulating metabolism via the AMPK signal pathway.
Collapse
|
171
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
172
|
Activation of AMP-Activated Protein Kinase by A769662 Ameliorates Sepsis-Induced Acute Lung Injury in Adult Mice. Shock 2020; 52:540-549. [PMID: 30562237 DOI: 10.1097/shk.0000000000001303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A serious consequence of sepsis is acute lung injury, whose severity is particularly impacted by the age of the patient. AMP-activated protein kinase (AMPK) is a crucial regulator of cellular metabolism, which controls mitochondrial biogenesis and autophagy. Here, we investigated the effect of pharmacological activation of AMPK with A769662 on lung injury by using a model that would preferably mimic the clinical condition of adult patients. Male C57BL/6 retired breeder mice (7-9 months old) were subjected to sepsis by cecal ligation and puncture (CLP). Mice received vehicle or A769662 (10 mg/kg) intraperitoneally at 1 h after CLP. At 6 h after CLP, vehicle-treated mice exhibited severe lung injury and elevation of plasma pro-inflammatory cytokines when compared with control mice. At molecular analysis, lung injury was associated with downregulation of AMPKα1/α2 catalytic subunits and reduced phosphorylation of AMPKβ1 regulatory subunit. Treatment with A769662 ameliorated lung architecture, reduced bacterial load in lung and blood, and attenuated plasma levels of interleukin-6. This protective effect was associated with nuclear phosphorylation of AMPKα1/α2 and AMPKβ1, increased nuclear expression of peroxisome proliferator-activated receptor γ co-activator-α and increased autophagy, as evaluated by the light-chain (LC)3B-I and LC3B-II content, without changes in sirtuin-1 cellular dynamics. Treatment with A769662 alone or in combination with the antimicrobial agent imipenem (25 mg/kg) increased survival rate (29% and 51%, respectively) when compared with vehicle treatment (10%) at 7 days after CLP. These data suggest that pharmacological activation of AMPK might be a beneficial approach for the treatment of sepsis in adult population.
Collapse
|
173
|
Wardle SL, Macnaughton LS, McGlory C, Witard OC, Dick JR, Whitfield PD, Ferrando AA, Wolfe RR, Kim I, Hamilton DL, Moran CN, Tipton KD, Galloway SDR. Human skeletal muscle metabolic responses to 6 days of high-fat overfeeding are associated with dietary n-3PUFA content and muscle oxidative capacity. Physiol Rep 2020; 8:e14529. [PMID: 32845565 PMCID: PMC7448800 DOI: 10.14814/phy2.14529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding human physiological responses to high-fat energy excess (HFEE) may help combat the development of metabolic disease. We aimed to investigate the impact of manipulating the n-3PUFA content of HFEE diets on whole-body and skeletal muscle markers of insulin sensitivity. Twenty healthy males were overfed (150% energy, 60% fat, 25% carbohydrate, 15% protein) for 6 d. One group (n = 10) received 10% of fat intake as n-3PUFA rich fish oil (HF-FO), and the other group consumed a mix of fats (HF-C). Oral glucose tolerance tests with stable isotope tracer infusions were conducted before, and following, HFEE, with muscle biopsies obtained in basal and insulin-stimulated states for measurement of membrane phospholipids, ceramides, mitochondrial enzyme activities, and PKB and AMPKα2 activity. Insulin sensitivity and glucose disposal did not change following HFEE, irrespective of group. Skeletal muscle ceramide content increased following HFEE (8.5 ± 1.2 to 12.1 ± 1.7 nmol/mg, p = .03), irrespective of group. No change in mitochondrial enzyme activity was observed following HFEE, but citrate synthase activity was inversely associated with the increase in the ceramide content (r=-0.52, p = .048). A time by group interaction was observed for PKB activity (p = .003), with increased activity following HFEE in HF-C (4.5 ± 13.0mU/mg) and decreased activity in HF-FO (-10.1 ± 20.7 mU/mg) following HFEE. Basal AMPKα2 activity increased in HF-FO (4.1 ± 0.6 to 5.3 ± 0.7mU/mg, p = .049), but did not change in HF-C (4.6 ± 0.7 to 3.8 ± 0.9mU/mg) following HFEE. We conclude that early skeletal muscle signaling responses to HFEE appear to be modified by dietary n-3PUFA content, but the potential impact on future development of metabolic disease needs exploring.
Collapse
Affiliation(s)
- Sophie L. Wardle
- Physiology, Exercise and Nutrition Research GroupUniversity of StirlingStirlingUK
- Army Health and Performance Research, Army HeadquartersAndoverUK
| | - Lindsay S. Macnaughton
- Physiology, Exercise and Nutrition Research GroupUniversity of StirlingStirlingUK
- Sportscotland Institute of SportStirlingUK
| | - Chris McGlory
- Physiology, Exercise and Nutrition Research GroupUniversity of StirlingStirlingUK
- Queens UniversityKingstonOntarioCanada
| | - Oliver C. Witard
- Physiology, Exercise and Nutrition Research GroupUniversity of StirlingStirlingUK
- Centre for Human and Applied Physiological SciencesKing’s College LondonLondonUK
| | - James R. Dick
- Nutrition Group, Institute of AquacultureUniversity of StirlingStirlingUK
| | - Philip D. Whitfield
- Lipidomics Research Facility, Division of Biomedical SciencesUniversity of the Highlands and IslandsInvernessUK
| | - Arny A. Ferrando
- Department of Geriatrics, Center for Translational Research in Aging and LongevityDonald W. Reynolds Institute on AgingLittle RockARUSA
| | - Robert R Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and LongevityDonald W. Reynolds Institute on AgingLittle RockARUSA
| | - Il‐Young Kim
- Department of Geriatrics, Center for Translational Research in Aging and LongevityDonald W. Reynolds Institute on AgingLittle RockARUSA
| | - D. Lee Hamilton
- Physiology, Exercise and Nutrition Research GroupUniversity of StirlingStirlingUK
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition SciencesDeakin UniversityGeelongAustralia
| | - Colin N. Moran
- Physiology, Exercise and Nutrition Research GroupUniversity of StirlingStirlingUK
| | - Kevin D. Tipton
- Physiology, Exercise and Nutrition Research GroupUniversity of StirlingStirlingUK
- Department of Sport and Exercise Sciences, Faculty of Social Sciences and HealthDurham UniversityDurhamUK
| | | |
Collapse
|
174
|
Sukumaran A, Choi K, Dasgupta B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front Cell Dev Biol 2020; 8:671. [PMID: 32903688 PMCID: PMC7438746 DOI: 10.3389/fcell.2020.00671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Adenosine Monophosphate-activated Protein Kinase (AMPK) and the Mechanistic Target of Rapamycin (mTOR) are two evolutionarily conserved kinases that together regulate nearly every aspect of cellular and systemic metabolism. These two kinases sense cellular energy and nutrient levels that in turn are determined by environmental nutrient availability. Because AMPK and mTOR are kinases, the large majority of studies remained focused on downstream substrate phosphorylation by these two proteins, and how AMPK and mTOR regulate signaling and metabolism in normal and disease physiology through phosphorylation of their substrates. Compared to the wealth of information known about the signaling and metabolic pathways modulated by these two kinases, much less is known about how the transcription of AMPK and mTOR pathway genes themselves are regulated, and the extent to which AMPK and mTOR regulate gene expression to cause durable changes in phenotype. Acute modification of cellular systems can be achieved through phosphorylation, however, induction of chronic changes requires modulation of gene expression. In this review we will assemble evidence from published studies on transcriptional regulation by AMPK and mTOR and discuss about the putative transcription factors that regulate expression of AMPK and mTOR complex genes.
Collapse
Affiliation(s)
- Abitha Sukumaran
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
175
|
The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol 2020; 18:711-722. [PMID: 32728200 DOI: 10.1038/s41423-020-0501-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.
Collapse
|
176
|
Nie M, Lu Y, Zou C, Wang L, Zhang P, You F. Insight into AMPK regulation mechanism in vivo and in vitro: Responses to low temperatures in the olive flounder Paralichthys olivaceus. J Therm Biol 2020; 91:102640. [PMID: 32716881 DOI: 10.1016/j.jtherbio.2020.102640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The olive flounder, Paralichthys olivaceus, is a commercially important maricultured fish in China, Japan, and Korea. Low winter temperatures influence its survival and growth and affect the output of the aquaculture industry. Energy metabolism is essential for fish survival, and the central energy-regulating factor - 5'-AMP-activated protein kinase (AMPK) - plays an important role in responses to cold stress. However, the mechanism of AMPK pathway regulation in fish coping with cold stress remains poorly understood. In the present study, the expression of AMPK and its upstream (LKB1 and CaMKKβ) and downstream genes (SITR1, FOXO1A, and TFAM) in the brain, muscle, and heart was analyzed while the flounder was under cold stress (0.2 ± 0.2 °C). The results showed that low temperatures activated LKB1, CaMKKβ, and AMPK genes in the brain, and the activated AMPK induced expression of SITR1, FOXO1A, and TFAM. In the muscle tissue, the expression patterns of these genes presented a trend of initially decreasing and then increasing, and there was a delay in the response to low temperatures. At the cellular level, comparative analysis of the effects of the activator 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR) and inhibitor compound C of the AMPK pathway demonstrated that cold stress was similar to AICAR, which activated the AMPK pathway with hysteresis. Thus, the regulation mechanism of AMPK under cold stress was preliminarily analyzed. In general, AMPK was involved not only in responses to low temperatures but also in energy regulation under cold stress.
Collapse
Affiliation(s)
- Miaomiao Nie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunliang Lu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao. China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
177
|
Liu X, Feng S, Zhang XD, Li J, Zhang K, Wu M, Thorne RF. Non-coding RNAs, metabolic stress and adaptive mechanisms in cancer. Cancer Lett 2020; 491:60-69. [PMID: 32726612 DOI: 10.1016/j.canlet.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming in cancer describes the multifaceted alterations in metabolism that contribute to tumorigenesis. Major determinants of metabolic phenotypes are the changes in signalling pathways associated with oncogenic activation together with cues from the tumor microenvironment. Therein, depleted oxygen and nutrient levels elicit metabolic stress, requiring cancer cells to engage adaptive mechanisms. Non-coding RNAs (ncRNAs) act as regulatory elements within metabolic pathways and their widespread dysregulation in cancer contributes to altered metabolic phenotypes. Indeed, ncRNAs are the regulatory accomplices of many prominent effectors of metabolic reprogramming including c-MYC and HIFs that are activated by metabolic stress. By example, this review illustrates the range of ncRNAs mechanisms impacting these effectors throughout their DNA-RNA-protein lifecycle along with presenting the mechanistic roles of ncRNAs in adaptive responses to glucose, glutamine and lipid deprivation. We also discuss the facultative activation of metabolic enzymes by ncRNAs, a phenomenon which may reflect a broad but currently invisible level of metabolic regulation. Finally, the translational challenges associated with ncRNA discoveries are discussed, emphasizing the gaps in knowledge together with importance of understanding the molecular basis of ncRNA regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoying Liu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Jinming Li
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| | - Mian Wu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, China.
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Environmental & Life Sciences, University of Newcastle, NSW, Australia.
| |
Collapse
|
178
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
179
|
Humpton T, Vousden KH. Taking up the reins of power: metabolic functions of p53. J Mol Cell Biol 2020; 11:610-614. [PMID: 31282931 PMCID: PMC6736434 DOI: 10.1093/jmcb/mjz065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
|
180
|
Smith HJ, Sharma A, Mair WB. Metabolic Communication and Healthy Aging: Where Should We Focus Our Energy? Dev Cell 2020; 54:196-211. [PMID: 32619405 DOI: 10.1016/j.devcel.2020.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 02/09/2023]
Abstract
Aging is associated with a loss of metabolic homeostasis and plasticity, which is causally linked to multiple age-onset pathologies. The majority of the interventions-genetic, dietary, and pharmacological-that have been found to slow aging and protect against age-related disease in various organisms do so by targeting central metabolic pathways. However, targeting metabolic pathways chronically and ubiquitously makes it difficult to define the downstream effects responsible for lifespan extension and often results in negative effects on growth and health, limiting therapeutic potential. Insight into how metabolic signals are relayed between tissues, cells, and organelles opens up new avenues to target metabolic regulators locally rather than globally for healthy aging. In this review, we discuss the pro-longevity effects of targeting metabolic pathways in specific tissues and how these interventions communicate with distal cells to modulate aging. These studies may be crucial in designing interventions that promote longevity without negative health consequences.
Collapse
Affiliation(s)
- Hannah J Smith
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Arpit Sharma
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - William B Mair
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.
| |
Collapse
|
181
|
Zimmermann HR, Yang W, Kasica NP, Zhou X, Wang X, Beckelman BC, Lee J, Furdui CM, Keene CD, Ma T. Brain-specific repression of AMPKα1 alleviates pathophysiology in Alzheimer's model mice. J Clin Invest 2020; 130:3511-3527. [PMID: 32213711 PMCID: PMC7324210 DOI: 10.1172/jci133982] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
AMPK is a key regulator at the molecular level for maintaining energy metabolism homeostasis. Mammalian AMPK is a heterotrimeric complex, and its catalytic α subunit exists in 2 isoforms: AMPKα1 and AMPKα2. Recent studies suggest a role of AMPKα overactivation in Alzheimer's disease-associated (AD-associated) synaptic failure. However, whether AD-associated dementia can be improved by targeting AMPK remains unclear, and roles of AMPKα isoforms in AD pathophysiology are not understood. Here, we showed distinct disruption of hippocampal AMPKα isoform expression patterns in postmortem human AD patients and AD model mice. We further investigated the effects of brain- and isoform-specific AMPKα repression on AD pathophysiology. We found that repression of AMPKα1 alleviated cognitive deficits and synaptic failure displayed in 2 separate lines of AD model mice. In contrast, AMPKα2 suppression did not alter AD pathophysiology. Using unbiased mass spectrometry-based proteomics analysis, we identified distinct patterns of protein expression associated with specific AMPKα isoform suppression in AD model mice. Further, AD-associated hyperphosphorylation of eukaryotic elongation factor 2 (eEF2) was blunted with selective AMPKα1 inhibition. Our findings reveal isoform-specific roles of AMPKα in AD pathophysiology, thus providing insights into potential therapeutic strategies for AD and related dementia syndromes.
Collapse
Affiliation(s)
| | | | | | | | - Xin Wang
- Gerontology and Geriatric Medicine and
| | | | - Jingyun Lee
- Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Cristina M. Furdui
- Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Tao Ma
- Gerontology and Geriatric Medicine and
- Department of Physiology and Pharmacology and
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
182
|
Lee JS, Wang RX, Goldberg MS, Clifford GP, Kao DJ, Colgan SP. Microbiota-Sourced Purines Support Wound Healing and Mucous Barrier Function. iScience 2020; 23:101226. [PMID: 32554188 PMCID: PMC7303675 DOI: 10.1016/j.isci.2020.101226] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
The intestinal mucosa requires high levels of nucleotides for energy procurement, proliferation, and innate immunity. This need for nucleotide substrates substantially increases during injury, infection, and wound healing. In the present studies, we profile potential sources of purine nucleotides in murine mucosal tissue. This work reveals the gut microbiota as a prominent source of exogenous purines and that such microbiota-sourced purines (MSPs) are available to the intestinal mucosa. The MSPs are utilized for nucleotide genesis and promote energy balance. Further analyses reveal that colitic tissues lacking MSPs are proliferatively stunted, with notable energetic and endoplasmic reticulum stress to the detriment of mucous barrier integrity. Purine reconstitution either directly or through colonization of germ-free/antibiotic-treated mice with MSP-sufficient E. coli alleviates such deficits, establishing MSP as a critical source of substrate for tissue metabolism, wound healing, and mucous barrier sterile integrity.
Collapse
Affiliation(s)
- J Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Ruth X Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Matthew S Goldberg
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Garrett P Clifford
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Daniel J Kao
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA.
| |
Collapse
|
183
|
Wang X, Zimmermann HR, Ma T. Therapeutic Potential of AMP-Activated Protein Kinase in Alzheimer's Disease. J Alzheimers Dis 2020; 68:33-38. [PMID: 30776001 DOI: 10.3233/jad-181043] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently there is no cure or effective disease-modifying therapy for Alzheimer's disease (AD), the most common form of dementia that is becoming a global threat to public health. It is important to develop novel therapeutic strategies targeting AD pathophysiology particularly synaptic failure and cognitive impairments. Recent studies revealed several molecular signaling pathways potentially linked to brain pathology and synaptic failure in AD, including AMP-activated protein kinase (AMPK), a master kinase that plays a central role in the maintenance of cellular energy homeostasis. Particularly, hyperactive AMPK via phosphorylation has been linked to AD-associated synaptic plasticity impairments, indicating suppression of AMPK activity might be beneficial for cognitive deficiency in AD. In this review, we will discuss how targeting dysregulation of AMPK signaling could be a feasible therapeutic approach for AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Helena R Zimmermann
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
184
|
Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S. The AMP-Activated Protein Kinase Plays a Role in Antioxidant Defense and Regulation of Vascular Inflammation. Antioxidants (Basel) 2020; 9:antiox9060525. [PMID: 32560060 PMCID: PMC7346208 DOI: 10.3390/antiox9060525] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases represent the leading cause of global deaths and life years spent with a severe disability. Endothelial dysfunction and vascular oxidative stress are early precursors of atherosclerotic processes in the vascular wall, all of which are hallmarks in the development of cardiovascular diseases and predictors of future cardiovascular events. There is growing evidence that inflammatory processes represent a major trigger for endothelial dysfunction, vascular oxidative stress and atherosclerosis and clinical data identified inflammation as a cardiovascular risk factor on its own. AMP-activated protein kinase (AMPK) is a central enzyme of cellular energy balance and metabolism that has been shown to confer cardio-protection and antioxidant defense which thereby contributes to vascular health. Interestingly, AMPK is also redox-regulated itself. We have previously shown that AMPK largely contributes to a healthy endothelium, confers potent antioxidant effects and prevents arterial hypertension. Recently, we provided deep mechanistic insights into the role of AMPK in cardiovascular protection and redox homeostasis by studies on arterial hypertension in endothelial and myelomonocytic cell-specific AMPK knockout (Cadh5CrexAMPKfl/fl and LysMCrexAMPKfl/fl) mice. Using these cell-specific knockout mice, we revealed the potent anti-inflammatory properties of AMPK representing the molecular basis of the antihypertensive effects of AMPK. Here, we discuss our own findings in the context of literature data with respect to the anti-inflammatory and antioxidant effects of AMPK in the specific setting of arterial hypertension as well as cardiovascular diseases in general.
Collapse
Affiliation(s)
- Thomas Jansen
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Miroslava Kvandová
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
- Correspondence: (A.D.); (S.K.-S); Tel.: +49-(0)6131-176280 (A.D.); Fax: +49-(0)6131-176293 (A.D.)
| | - Paul Stamm
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Katie Frenis
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Eberhard Schulz
- Department of Cardiology, Allgemeines Krankenhaus Celle, 29223 Celle, Germany;
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Correspondence: (A.D.); (S.K.-S); Tel.: +49-(0)6131-176280 (A.D.); Fax: +49-(0)6131-176293 (A.D.)
| |
Collapse
|
185
|
Lin X, Wei M, Song F, Xue DI, Wang Y. N-acetylcysteine (NAC) Attenuating Apoptosis and Autophagy in RAW264.7 Cells in Response to Incubation with Mycolic Acid from Bovine Mycobacterium tuberculosis Complex. Pol J Microbiol 2020; 69:223-229. [PMID: 32548987 PMCID: PMC7324858 DOI: 10.33073/pjm-2020-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023] Open
Abstract
Bovine tuberculosis is an airborne infectious disease caused by organisms of the Mycobacterium tuberculosis (MTB) complex. Mycolic acid (MA) is the main lipid component of the cell membrane of MTB. It is non-enzymatically reduced by NAD(P)H and further produces reactive oxygen species (ROS), which can cause oxidative stress in human cells. N-acetylcysteine (NAC) is a synthetic precursor of glutathione (GSH) and exhibits anti-ROS activity. However, the underlying mechanisms of its protective properties remain uncertain. Herein, after pre-incubation of RAW264.7 cells with NAC, the factors associated with apoptosis and autophagy were measured. Mechanistically, NAC could reduce MA-induced expression of pro-apoptotic and pro-autophagy proteins. At the mRNA level, NAC can inhibit AMPK and activate mTOR expression. The results indicate that NAC might regulate autophagy in RAW264.7 cells through the AMPK/mTOR pathway. To further prove the effect of NAC on MA, ICR mice were used to evaluate the lung injury. Hematoxylin-eosin (HE) staining was performed on the lung. The results show that NAC could reduce cell injury induced by MA. In conclusion, our research showed that NAC attenuates apoptosis and autophagy in response to incubation with mycolic acid. Bovine tuberculosis is an airborne infectious disease caused by organisms of the Mycobacterium tuberculosis (MTB) complex. Mycolic acid (MA) is the main lipid component of the cell membrane of MTB. It is non-enzymatically reduced by NAD(P)H and further produces reactive oxygen species (ROS), which can cause oxidative stress in human cells. N-acetylcysteine (NAC) is a synthetic precursor of glutathione (GSH) and exhibits anti-ROS activity. However, the underlying mechanisms of its protective properties remain uncertain. Herein, after pre-incubation of RAW264.7 cells with NAC, the factors associated with apoptosis and autophagy were measured. Mechanistically, NAC could reduce MA-induced expression of pro-apoptotic and pro-autophagy proteins. At the mRNA level, NAC can inhibit AMPK and activate mTOR expression. The results indicate that NAC might regulate autophagy in RAW264.7 cells through the AMPK/mTOR pathway. To further prove the effect of NAC on MA, ICR mice were used to evaluate the lung injury. Hematoxylin-eosin (HE) staining was performed on the lung. The results show that NAC could reduce cell injury induced by MA. In conclusion, our research showed that NAC attenuates apoptosis and autophagy in response to incubation with mycolic acid.
Collapse
Affiliation(s)
- Xue Lin
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - Mengmeng Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - Fuyang Song
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - D I Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western , Ningxia University , Yinchuan, Ningxia , China ; College of Life Science , Ningxia University , Yinchuan, Ningxia , China
| |
Collapse
|
186
|
Peterzan MA, Lewis AJM, Neubauer S, Rider OJ. Non-invasive investigation of myocardial energetics in cardiac disease using 31P magnetic resonance spectroscopy. Cardiovasc Diagn Ther 2020; 10:625-635. [PMID: 32695642 DOI: 10.21037/cdt-20-275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac metabolism and function are intrinsically linked. High-energy phosphates occupy a central and obligate position in cardiac metabolism, coupling oxygen and substrate fuel delivery to the myocardium with external work. This insight underlies the widespread clinical use of ischaemia testing. However, other deficits in high-energy phosphate metabolism (not secondary to supply-demand mismatch of oxygen and substrate fuels) may also be documented, and are of particular interest when found in the context of structural heart disease. This review introduces the scope of deficits in high-energy phosphate metabolism that may be observed in the myocardium, how to assess for them, and how they might be interpreted.
Collapse
Affiliation(s)
- Mark A Peterzan
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J M Lewis
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
187
|
Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim Biophys Acta Rev Cancer 2020; 1874:188379. [PMID: 32439311 DOI: 10.1016/j.bbcan.2020.188379] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most ubiquitous type of neoplasms among women worldwide. Molecular aberrations associated with breast development and progressions have been extensively investigated in recent years. An AMP-activated kinase (AMPK) initially identified as a cellular energy sensor that plays a crucial role in cellular energy homeostasis. Intensive research over the last decade about the molecular mechanisms of AMPK has demonstrated that AMPK mediated diverse biological functions are achieved through phosphorylation and regulation of multiple downstream signaling molecules in normal tissue. Downregulation of AMPK activity or decreased level involved in the promotion of breast tumorigenesis, and thus activation of AMPK found to oppose tumor progression. In this review, we epitomize the recent advances in exploring the tumor suppressor function of AMPK pathways. Besides, we discuss the developments in the area of AMPK activator and its molecular mechanisms for breast cancer treatment.
Collapse
|
188
|
Evans AM, Hardie DG. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Int J Mol Sci 2020; 21:ijms21103518. [PMID: 32429235 PMCID: PMC7279029 DOI: 10.3390/ijms21103518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- A. Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
- Correspondence:
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| |
Collapse
|
189
|
IMPAD1 functions as mitochondrial electron transport inhibitor that prevents ROS production and promotes lung cancer metastasis through the AMPK-Notch1-HEY1 pathway. Cancer Lett 2020; 485:27-37. [PMID: 32417395 DOI: 10.1016/j.canlet.2020.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment (TME) and metabolic reprogramming have been implicated in cancer development and progression. However, the link between TME, metabolism, and cancer progression in lung cancer is unclear. In the present study, we identified IMPAD1 from the conditioned medium of highly invasive CL1-5. High expression of IMPAD1 was associated with a poorer clinical phenotype in lung cancer patients, with reduced survival and increased lymph node metastasis. Knockdown of IMPAD1 significantly inhibited migration/invasion abilities and metastasis in vitro and in vivo. Upregulation of IMPAD1 and subsequent accumulation of AMP in cells increased the pAMPK, leading to Notch1 and HEY1 upregulation. As AMP is an ADORA1 agonist, treatment with ADORA1 inhibitor reduced the expression of pAMPK and HEY1 expression in IMPAD1-overexpressing cells. IMPAD1 caused mitochondria dysfunction by inhibiting mitochondrial Complex I activity, which reduced mitochondrial ROS levels and activated the AMPK-HEY1 pathway. Collectively this study supports the multipotent role of IMPAD1 in promotion of lung cancer metastasis by simultaneously increasing AMP levels, inhibition of Complex I activity to decrease ROS levels, thereby activating AMPK-Notch1-HEY1 signaling, and providing an alternative metabolic pathway in energy stress conditions.
Collapse
|
190
|
Laski J, Singha B, Wang X, Valdés YR, Collins O, Shepherd TG. Activated CAMKKβ-AMPK signaling promotes autophagy in a spheroid model of ovarian tumour metastasis. J Ovarian Res 2020; 13:58. [PMID: 32393385 PMCID: PMC7216359 DOI: 10.1186/s13048-020-00660-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Background A hallmark of epithelial ovarian cancer (EOC) metastasis is the process of spheroid formation, whereby tumour cells aggregate into 3D structures while in suspension in the peritoneal cavity. EOC spheroids are subjected to bioenergetic stress, thereby activating AMP-activated protein kinase (AMPK) signaling to enter a metabolically quiescent state, which can facilitate cell survival under nutrient-limiting conditions. Independently, we have also demonstrated that EOC spheroids induce autophagy, a process that degrades and recycles intracellular components to restore energy and metabolites. Herein, we sought to examine whether AMPK controls autophagy induction as a cell survival mechanism in EOC spheroids. Results We observed a co-ordinate increase in phosphorylated AMPK and the autophagy marker LC3-II during EOC spheroid formation. Reduced AMPK expression by siRNA-mediated knockdown of PRKAA1 and PRKAA2 blocked autophagic flux in EOC spheroids as visualized by fluorescence microscopy using the mCherry-eGFP-LC3B reporter. A complementary approach using pharmacologic agents Compound C and CAMKKβ inhibitor STO-609 to inhibit AMPK activity both yielded a potent blockade of autophagic flux as well. However, direct activation of AMPK in EOC cells using oligomycin and metformin was insufficient to induce autophagy. STO-609 treatment of EOC spheroids resulted in reduced viability in 7 out of 9 cell lines, but with no observed effect in non-malignant FT190 cell spheroids. Conclusions Our results support the premise that CAMKKβ-mediated AMPK activity is required, at least in part, to regulate autophagy induction in EOC spheroids and support cell viability in this in vitro model of EOC metastasis.
Collapse
Affiliation(s)
- Jeremi Laski
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada.,Departments of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Bipradeb Singha
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada.,Departments of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Xu Wang
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada.,West China School of Medicine, Chengdu, Sichuan, China
| | - Yudith Ramos Valdés
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada
| | - Olga Collins
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada. .,Departments of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Departments of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Departments of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,London Regional Cancer Program, 790 Commissioners Rd. E., Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
191
|
Jaidee R, Kongpetch S, Senggunprai L, Prawan A, Kukongviriyapan U, Kukongviriyapan V. Phenformin inhibits proliferation, invasion, and angiogenesis of cholangiocarcinoma cells via AMPK-mTOR and HIF-1A pathways. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1681-1690. [PMID: 32383028 DOI: 10.1007/s00210-020-01885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023]
Abstract
Phenformin (Phen), a potent activator of AMPK, is effective against some resistant cancers. This study evaluated the inhibition of proliferation, migration, invasion, and angiogenesis by Phen in aggressive cancer cells and investigated the underlying mechanism of the inhibition. Cholangiocarcinoma (CCA) KKU-156 and KKU-452 cells were used in this study. The results showed that Phen suppressed cell proliferation and induced apoptosis in both cells. Phen suppressed migration and invasion of cancer cells in wound healing and transwell chamber assays, respectively. The effects were associated with depletions of glutathione (GSH) and decreased glutathione redox ratio which represents cellular redox state. The redox stress was linked with the loss of mitochondrial transmembrane potential, as evaluated by JC-1 assay. The effect of Phen on angiogenesis was performed using HUVEC cultured cells. Phen alone did not affect tube formation of HUVEC cells. However, conditioned media from CCA cell cultures treated with Phen suppressed the tube-like structure formation. The antitumor effect of Phen was associated with AMPK activation and suppression of mTOR phosphorylation, HIF-1A, and VEGF protein expression. In conclusion, Phen inhibits cell proliferation, migration, invasion, and angiogenesis probably through AMPK-mTOR and HIF-1A-VEGF pathways. Phen may be repurposed as chemoprevention of cancer.
Collapse
Affiliation(s)
- Rattanaporn Jaidee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
192
|
Pan Q, Lu X, Zhao C, Liao S, Chen X, Guo F, Yang C, Liu HF. Metformin: the updated protective property in kidney disease. Aging (Albany NY) 2020; 12:8742-8759. [PMID: 32364526 PMCID: PMC7244070 DOI: 10.18632/aging.103095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Metformin is a frontline hypoglycemic agent, which is mainly prescribed to manage type 2 diabetes mellitus with obesity. Emerging evidence suggests that metformin also exerts protective effects against various kidney diseases. Some postulate that kidney disease is actually a metabolic disease, accompanied by nonresolving pathophysiologic pathways controlling oxidative stress, endoplasmic reticulum stress, inflammation, lipotoxicity, fibrosis, and senescence, as well as insufficient host defense mechanisms such as AMP-activated protein kinase (AMPK) signaling and autophagy. Metformin may interfere with these pathways by orchestrating AMPK signaling and AMPK-independent pathways to protect the kidneys from injury. Furthermore, the United States Food and Drug Administration declared metformin is safe for patients with mild or moderate kidney impairment in 2016, assuaging some conservative attitudes about metformin management in patients with renal insufficiency and broadening the scope of research on the renal protective effects of metformin. This review focuses on the molecular mechanisms by which metformin imparts renal protection and its potential in the treatment of various kidney diseases.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
193
|
Nabil M, El Demellawy MA, Mahmoud MF, Mahmoud AAA. Prolonged overnutrition with fructose or fat induces metabolic derangements in rats by disrupting the crosstalk between the hypothalamus and periphery: Possible amelioration with fenofibrate. Eur J Pharmacol 2020; 879:173136. [PMID: 32360834 DOI: 10.1016/j.ejphar.2020.173136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/15/2022]
Abstract
Metabolic Syndrome (MetS) increases the risk of developing type 2 diabetes mellitus and cardiovascular complications. The crosstalk between the hypothalamus and periphery is vital for regulating food intake and energy homeostasis. However, it is impaired during MetS. The present study aimed to compare the distinct central and peripheral metabolic derangements induced by a high-fructose drink or high-fat diet, as well as the possible intervention by fenofibrate. Rats were divided into five groups: standard chow diet (SCD) group, high-fructose group (FR), high-fat group (HF), FR plus fenofibrate group (FR-F), and HF plus fenofibrate group (HF-F). FR and HF groups showed hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia, steatosis, and adipocyte hypertrophy. This was associated with elevated circulating levels of proinflammatory cytokines and free fatty acids (FFAs). The latter mediators are involved in the hypothalamic inflammation and dysregulation of signaling cascades that control food intake and glucose homeostasis. The effects were more pronounced in the HF group than FR group, which were matched with the observed higher levels of plasma FFAs and cytokines. Fenofibrate administration improved not only the peripheral metabolic disturbances, but also the central disturbances associated with insulin resistance induced by FR or HF diet. This study sheds light on the pivotal role of the hypothalamus in diet-induced MetS. Furthermore, the study suggests the utmost importance of developing a standardized model of metabolic syndrome in place of the great diversity between available models, which can induce different effects and negatively impact the validity of prospective studies.
Collapse
Affiliation(s)
- Mohamed Nabil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Maha A El Demellawy
- Department of Medical Biotechnology, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
194
|
Yeh YT, Lu TJ, Lian GT, Lung MC, Lee YL, Chiang AN, Hsieh SC. Chinese olive (Canarium album L.) fruit regulates glucose utilization by activating AMP-activated protein kinase. FASEB J 2020; 34:7866-7884. [PMID: 32333610 DOI: 10.1096/fj.201902494rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Abstract
A growing body of evidence demonstrates obesity-induced insulin resistance is associated with the development of metabolic diseases. This study was designed to investigate ethyl acetate fraction of Chinese olive fruit extract (CO-EtOAc)-mediated attenuation of obesity and hyperglycemia in a mouse model. About 60% HFD-fed mice were treated intragastrically with CO-EtOAc for last 6 weeks, and body weight, blood biochemical parameters as well as hepatic inflammation response were investigated. Our results showed that CO-EtOAc treatment significantly reduced the formation of hepatic lipid droplets, body weight gain, blood glucose, and improved serum biochemical parameters in HFD-induced obese and insulin resistant mice. We further explored the molecular mechanism underlying the blood glucose modulating effect of CO-EtOAc using L6 myotubes model. We conclude that CO-EtOAc effectively increases the glycogen content and glucose uptake by stimulating the membrane translocation of glucose transporter 4. In addition, CO-EtOAc depolarizes the mitochondrial membrane and decreases the mitochondrial oxygen consumption, which may result in AMPK activation and the consequent mitochondrial fission. This study shows that CO-EtOAc prevents the development of obesity in mice fed with HFD and is also capable of stimulating glucose uptake. The possible mechanism might be due to the effects of CO-EtOAc on activation of AMPK and promotion of mitochondrial fission.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, USA
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ting Lian
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Meng-Chuan Lung
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Lee
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
195
|
The AMPK-PP2A axis in insect fat body is activated by 20-hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate. Proc Natl Acad Sci U S A 2020; 117:9292-9301. [PMID: 32277029 DOI: 10.1073/pnas.2000963117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.
Collapse
|
196
|
Liu Z, Zhou X, Wang J, Yu F, Feng X, Huang Q, Liao D, Li X, Zhan Q, Liu Y, Yang Q, Jin X, Xia J. Association of AMPK Pathway-Related Gene Polymorphisms with Symptomatic Intracranial Atherosclerotic Stenosis in a Chinese Han Population. Genet Test Mol Biomarkers 2020; 24:230-238. [PMID: 32267777 DOI: 10.1089/gtmb.2019.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Recently, AMP-activated protein kinase (AMPK) signaling was confirmed to be intimately associated with atherosclerosis. Evidence indicates that genetic susceptibility plays an important role in the etiology of symptomatic intracranial atherosclerotic stenosis (sICAS), however few genes have been pinpointed being etiologically associated. This study investigated possible links between single nucleotide polymorphisms (SNPs) of AMPK-related genes and sICAS in Han Chinese subjects. Methods: Target gene sequencing was carried out in 400 sICAS Han Chinese patients and 1007 healthy controls for 11 AMPK pathway-related genes. Chi-squared testing and multiple logistic regression in dominant, recessive, and additive models were used to evaluate the association between SNPs and risk of sICAS. Bonferroni corrections were performed with a p < (0.05/44 = 0.0011) as statistically significant. Further subgroup data analyses was conducted using chi-squared or t-tests. Results: There were 44 common variants of 11 candidate genes distributed differently between sICAS patients and healthy controls, among which the INSR rs78312382 SNP remained significant even after a Bonferroni correction. Logistic regression analysis showed that rs78312382 was significantly associated with the risk of sICAS in both dominant and additive models (pBonferroni = 7.874e-5 and 0.000506, respectively), with the A allele being much more prevalent in the sICAS group (p = 0.000404). Conclusions: Variants of the INSR rs7831282 locus may play an important role in the development of sICAS among the Han Chinese with the A allele being a risk factor and a potential biomarker for this illness.
Collapse
Affiliation(s)
- Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoqing Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyan Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qidong Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Jin
- Department of Intensive Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
197
|
Li E, Hou B, Gao Q, Xu Y, Zhang C, Liu X, Jiang X, Che Y. Disulfide Cleavage in a Dimeric Epipolythiodioxopiperazine Natural Product Diminishes Its Apoptosis-Inducing Effect but Enhances Autophagy in Tumor Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:601-609. [PMID: 31944123 DOI: 10.1021/acs.jnatprod.9b00994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gliocladicillin C (3) is a cytotoxic epipolythiodioxopiperazine (ETP) isolated from the Ophiocordyceps-associated fungus Clonostachys rogersoniana. Although the disulfides/polysulfides in ETPs are believed to account for their cytotoxicity, and 11'-deoxyverticillin A was demonstrated to induce apoptosis and autophagy, how they mediate apoptosis and autophagy remained unknown. Here, we revealed that 3 activated caspase-dependent apoptosis and autophagy in human tumor cells, while the prepared disulfide-cleavage product failed to induce reactive oxygen species production and PARP cleavage, but further enhanced the autophagic flux compared to 3. Gliocladicillin C and its derivative also increased the phosphorylation of AMP-activated protein kinase and stimulated autophagy by affecting the glycolytic pathway. These results demonstrated that the disulfides played an essential role in inducing apoptosis, but not autophagy.
Collapse
Affiliation(s)
- Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Bolin Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Caining Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
198
|
Huet C, Boudaba N, Guigas B, Viollet B, Foretz M. Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents. J Biol Chem 2020; 295:5836-5849. [PMID: 32184359 DOI: 10.1074/jbc.ra119.010244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver.
Collapse
Affiliation(s)
- Camille Huet
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Nadia Boudaba
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| |
Collapse
|
199
|
Dohmen M, Krieg S, Agalaridis G, Zhu X, Shehata SN, Pfeiffenberger E, Amelang J, Bütepage M, Buerova E, Pfaff CM, Chanda D, Geley S, Preisinger C, Sakamoto K, Lüscher B, Neumann D, Vervoorts J. AMPK-dependent activation of the Cyclin Y/CDK16 complex controls autophagy. Nat Commun 2020; 11:1032. [PMID: 32098961 PMCID: PMC7042329 DOI: 10.1038/s41467-020-14812-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a master sensor of the cellular energy status that is crucial for the adaptive response to limited energy availability. AMPK is implicated in the regulation of many cellular processes, including autophagy. However, the precise mechanisms by which AMPK controls these processes and the identities of relevant substrates are not fully understood. Using protein microarrays, we identify Cyclin Y as an AMPK substrate that is phosphorylated at Serine 326 (S326) both in vitro and in cells. Phosphorylation of Cyclin Y at S326 promotes its interaction with the Cyclin-dependent kinase 16 (CDK16), thereby stimulating its catalytic activity. When expressed in cells, Cyclin Y/CDK16 is sufficient to promote autophagy. Moreover, Cyclin Y/CDK16 is necessary for efficient AMPK-dependent activation of autophagy. This functional interaction is mediated by AMPK phosphorylating S326 of Cyclin Y. Collectively, we define Cyclin Y/CDK16 as downstream effector of AMPK for inducing autophagy.
Collapse
Affiliation(s)
- Marc Dohmen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- Center for Translational & Clinical Research Aachen (CTC-A), Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Georgios Agalaridis
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Xiaoqing Zhu
- CARIM School for Cardiovascular Diseases, Maastricht University, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | | | - Elisabeth Pfeiffenberger
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jan Amelang
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Elena Buerova
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Carolina M Pfaff
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- AstraZeneca GmbH, Tinsdaler Weg 183, 22880, Wedel, Germany
| | - Dipanjan Chanda
- CARIM School for Cardiovascular Diseases, Maastricht University, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Center for Clinical Research (IZKF) Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Kei Sakamoto
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Dietbert Neumann
- CARIM School for Cardiovascular Diseases, Maastricht University, P.O. box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Pathology, University Medical Center Maastricht, 6229 HX, Maastricht, The Netherlands.
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
200
|
Chauhan AS, Zhuang L, Gan B. Spatial control of AMPK signaling at subcellular compartments. Crit Rev Biochem Mol Biol 2020; 55:17-32. [PMID: 32069425 DOI: 10.1080/10409238.2020.1727840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson UT, Houston, TX, USA
| |
Collapse
|