151
|
Kleijer KTE, Schmeisser MJ, Krueger DD, Boeckers TM, Scheiffele P, Bourgeron T, Brose N, Burbach JPH. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology (Berl) 2014; 231:1037-62. [PMID: 24419271 DOI: 10.1007/s00213-013-3403-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 12/14/2013] [Indexed: 12/22/2022]
Abstract
RATIONALE The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. OBJECTIVE The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. METHOD Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. RESULTS The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. CONCLUSIONS ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.
Collapse
Affiliation(s)
- Kristel T E Kleijer
- Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3984 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Origin and loss of nested LRRTM/α-catenin genes during vertebrate evolution. PLoS One 2014; 9:e89910. [PMID: 24587117 PMCID: PMC3933685 DOI: 10.1371/journal.pone.0089910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/25/2014] [Indexed: 11/19/2022] Open
Abstract
Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) form in mammals a family of four postsynaptic adhesion proteins, which have been shown to bind neurexins and heparan sulphate proteoglycan (HSPG) glypican on the presynaptic side. Mutations in the genes encoding LRRTMs and neurexins are implicated in human cognitive disorders such as schizophrenia and autism. Our analysis shows that in most jawed vertebrates, lrrtm1, lrrtm2, and lrrtm3 genes are nested on opposite strands of large conserved intron of α-catenin genes ctnna2, ctnna1, and ctnna3, respectively. No lrrtm genes could be found in tunicates or lancelets, while two lrrtm genes are found in the lamprey genome, one of which is adjacent to a single ctnna homolog. Based on similar highly positive net charge of lamprey LRRTMs and the HSPG-binding LRRTM3 and LRRTM4 proteins, we speculate that the ancestral LRRTM might have bound HSPG before acquiring neurexins as binding partners. Our model suggests that lrrtm gene translocated into the large ctnna intron in early vertebrates, and that subsequent duplications resulted in three lrrtm/ctnna gene pairs present in most jawed vertebrates. However, we detected three prominent exceptions: (1) the lrrtm3/ctnna3 gene structure is absent in the ray-finned fish genomes, (2) the genomes of clawed frogs contain ctnna1 but lack the corresponding nested (lrrtm2) gene, and (3) contain lrrtm3 gene in the syntenic position but lack the corresponding host (ctnna3) gene. We identified several other protein-coding nested gene structures of which either the host or the nested gene has presumably been lost in the frog or chicken lineages. Interestingly, majority of these nested genes comprise LRR domains.
Collapse
|
153
|
Biesemann C, Grønborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA, Urlaub H, Jahn O, Brose N, Herzog E. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 2014; 33:157-70. [PMID: 24413018 DOI: 10.1002/embj.201386120] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease.
Collapse
Affiliation(s)
- Christoph Biesemann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry 2014; 4:e347. [PMID: 24448209 PMCID: PMC3905230 DOI: 10.1038/tp.2013.120] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 02/06/2023] Open
Abstract
Sleep is critical for normal brain function and mental health. However, the molecular mechanisms mediating the impact of sleep loss on both cognition and the sleep electroencephalogram remain mostly unknown. Acute sleep loss impacts brain gene expression broadly. These data contributed to current hypotheses regarding the role for sleep in metabolism, synaptic plasticity and neuroprotection. These changes in gene expression likely underlie increased sleep intensity following sleep deprivation (SD). Here we tested the hypothesis that epigenetic mechanisms coordinate the gene expression response driven by SD. We found that SD altered the cortical genome-wide distribution of two major epigenetic marks: DNA methylation and hydroxymethylation. DNA methylation differences were enriched in gene pathways involved in neuritogenesis and synaptic plasticity, whereas large changes (>4000 sites) in hydroxymethylation where observed in genes linked to cytoskeleton, signaling and neurotransmission, which closely matches SD-dependent changes in the transcriptome. Moreover, this epigenetic remodeling applied to elements previously linked to sleep need (for example, Arc and Egr1) and synaptic partners of Neuroligin-1 (Nlgn1; for example, Dlg4, Nrxn1 and Nlgn3), which we recently identified as a regulator of sleep intensity following SD. We show here that Nlgn1 mutant mice display an enhanced slow-wave slope during non-rapid eye movement sleep following SD but this mutation does not affect SD-dependent changes in gene expression, suggesting that the Nlgn pathway acts downstream to mechanisms triggering gene expression changes in SD. These data reveal that acute SD reprograms the epigenetic landscape, providing a unique molecular route by which sleep can impact brain function and health.
Collapse
|
155
|
Abstract
The study of synaptic plasticity and specifically LTP and LTD is one of the most active areas of research in neuroscience. In the last 25 years we have come a long way in our understanding of the mechanisms underlying synaptic plasticity. In 1988, AMPA and NMDA receptors were not even molecularly identified and we only had a simple model of the minimal requirements for the induction of plasticity. It is now clear that the modulation of the AMPA receptor function and membrane trafficking is critical for many forms of synaptic plasticity and a large number of proteins have been identified that regulate this complex process. Here we review the progress over the last two and a half decades and discuss the future challenges in the field.
Collapse
|
156
|
Lee H, Lee EJ, Song YS, Kim E. Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/γ-secretase. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130158. [PMID: 24298159 PMCID: PMC3843889 DOI: 10.1098/rstb.2013.0158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-term depression (LTD) reduces the functional strength of excitatory synapses through mechanisms that include the removal of AMPA glutamate receptors from the postsynaptic membrane. LTD induction is also known to result in structural changes at excitatory synapses, including the shrinkage of dendritic spines. Synaptic adhesion molecules are thought to contribute to the development, function and plasticity of neuronal synapses largely through their trans-synaptic adhesions. However, little is known about how synaptic adhesion molecules are altered during LTD. We report here that NGL-3 (netrin-G ligand-3), a postsynaptic adhesion molecule that trans-synaptically interacts with the LAR family of receptor tyrosine phosphatases and intracellularly with the postsynaptic scaffolding protein PSD-95, undergoes a proteolytic cleavage process. NGL-3 cleavage is induced by NMDA treatment in cultured neurons and low-frequency stimulation in brain slices and requires the activities of NMDA glutamate receptors, matrix metalloproteinases (MMPs) and presenilin/γ-secretase. These results suggest that NGL-3 is a novel substrate of MMPs and γ-secretase and that NGL-3 cleavage may regulate synaptic adhesion during LTD.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), , Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
157
|
Taft CE, Turrigiano GG. PSD-95 promotes the stabilization of young synaptic contacts. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130134. [PMID: 24298137 DOI: 10.1098/rstb.2013.0134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Maintaining a population of stable synaptic connections is probably of critical importance for the preservation of memories and functional circuitry, but the molecular dynamics that underlie synapse stabilization is poorly understood. Here, we use simultaneous time-lapse imaging of post synaptic density-95 (PSD-95) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to investigate the dynamics of protein composition at axodendritic (AD) contacts. Our data reveal that this composition is highly dynamic, with both proteins moving into and out of the same synapse independently, so that synapses cycle rapidly between states in which they are enriched for none, one or both proteins. We assessed how PSD-95 and CaMKII interact at stable and transient AD sites and found that both phospho-CaMKII and PSD-95 are present more often at stable than labile contacts. Finally, we found that synaptic contacts are more stable in older neurons, and this process can be mimicked in younger neurons by overexpression of PSD-95. Taken together, these data show that synaptic protein composition is highly variable over a time-scale of hours, and that PSD-95 is probably a key synaptic protein that promotes synapse stability.
Collapse
Affiliation(s)
- Christine E Taft
- Department of Biology, Brandeis University, , Waltham, MA 02454, USA
| | | |
Collapse
|
158
|
Frias CP, Wierenga CJ. Activity-dependent adaptations in inhibitory axons. Front Cell Neurosci 2013; 7:219. [PMID: 24312009 PMCID: PMC3836028 DOI: 10.3389/fncel.2013.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
Synaptic connections in our brains change continuously and throughout our lifetime. Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is maintained by various forms of homeostatic and activity-dependent adaptations, ensuring stable functioning of neuronal networks. In this review we summarize experimental evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well as in vivo. Axons form many presynaptic terminals, which are dynamic structures sharing presynaptic material along the axonal shaft. We discuss how internal (e.g., vesicle sharing) and external factors (e.g., binding of cell adhesion molecules or secreted factors) may affect the formation and plasticity of inhibitory synapses.
Collapse
Affiliation(s)
| | - Corette J. Wierenga
- Division of Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
159
|
Soler-Llavina GJ, Arstikaitis P, Morishita W, Ahmad M, Südhof TC, Malenka RC. Leucine-rich repeat transmembrane proteins are essential for maintenance of long-term potentiation. Neuron 2013; 79:439-46. [PMID: 23931994 DOI: 10.1016/j.neuron.2013.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 11/18/2022]
Abstract
Leucine-rich repeat transmembrane proteins (LRRTMs) are synaptic cell adhesion molecules that trigger excitatory synapse assembly in cultured neurons and influence synaptic function in vivo, but their role in synaptic plasticity is unknown. shRNA-mediated knockdown (KD) of LRRTM1 and LRRTM2 in vivo in CA1 pyramidal neurons of newborn mice blocked long-term potentiation (LTP) in acute hippocampal slices. Molecular replacement experiments revealed that the LRRTM2 extracellular domain is sufficient for LTP, probably because it mediates binding to neurexins (Nrxs). Examination of surface expression of endogenous AMPA receptors (AMPARs) in cultured neurons suggests that LRRTMs maintain newly delivered AMPARs at synapses after LTP induction. LRRTMs are also required for LTP of mature synapses on adult CA1 pyramidal neurons, indicating that the block of LTP in neonatal synapses by LRRTM1 and LRRTM2 KD is not due to impairment of synapse maturation.
Collapse
Affiliation(s)
- Gilberto J Soler-Llavina
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
160
|
Pettem KL, Yokomaku D, Luo L, Linhoff MW, Prasad T, Connor SA, Siddiqui TJ, Kawabe H, Chen F, Zhang L, Rudenko G, Wang YT, Brose N, Craig AM. The specific α-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development. Neuron 2013; 80:113-28. [PMID: 24094106 DOI: 10.1016/j.neuron.2013.07.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 01/05/2023]
Abstract
Perturbations of cell surface synapse-organizing proteins, particularly α-neurexins, contribute to neurodevelopmental and psychiatric disorders. From an unbiased screen, we identify calsyntenin-3 (alcadein-β) as a synapse-organizing protein unique in binding and recruiting α-neurexins, but not β-neurexins. Calsyntenin-3 is present in many pyramidal neurons throughout cortex and hippocampus but is most highly expressed in interneurons. The transmembrane form of calsyntenin-3 can trigger excitatory and inhibitory presynapse differentiation in contacting axons. However, calsyntenin-3-shed ectodomain, which represents about half the calsyntenin-3 pool in brain, suppresses the ability of multiple α-neurexin partners including neuroligin 2 and LRRTM2 to induce presynapse differentiation. Clstn3⁻/⁻ mice show reductions in excitatory and inhibitory synapse density by confocal and electron microscopy and corresponding deficits in synaptic transmission. These results identify calsyntenin-3 as an α-neurexin-specific binding partner required for normal functional GABAergic and glutamatergic synapse development.
Collapse
Affiliation(s)
- Katherine L Pettem
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
|
162
|
LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol 2013; 23:465-75. [DOI: 10.1016/j.tcb.2013.07.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 12/21/2022]
|
163
|
Jedlicka P, Vnencak M, Krueger DD, Jungenitz T, Brose N, Schwarzacher SW. Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Struct Funct 2013; 220:47-58. [DOI: 10.1007/s00429-013-0636-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
164
|
Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 2013; 154:75-88. [PMID: 23827676 DOI: 10.1016/j.cell.2013.05.060] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 12/28/2022]
Abstract
Neurexins are essential presynaptic cell adhesion molecules that are linked to schizophrenia and autism and are subject to extensive alternative splicing. Here, we used a genetic approach to test the physiological significance of neurexin alternative splicing. We generated knockin mice in which alternatively spliced sequence #4 (SS4) of neuexin-3 is constitutively included but can be selectively excised by cre-recombination. SS4 of neurexin-3 was chosen because it is highly regulated and controls neurexin binding to neuroligins, LRRTMs, and other ligands. Unexpectedly, constitutive inclusion of SS4 in presynaptic neurexin-3 decreased postsynaptic AMPA, but not NMDA receptor levels, and enhanced postsynaptic AMPA receptor endocytosis. Moreover, constitutive inclusion of SS4 in presynaptic neurexin-3 abrogated postsynaptic AMPA receptor recruitment during NMDA receptor-dependent LTP. These phenotypes were fully rescued by constitutive excision of SS4 in neurexin-3. Thus, alternative splicing of presynaptic neurexin-3 controls postsynaptic AMPA receptor trafficking, revealing an unanticipated alternative splicing mechanism for trans-synaptic regulation of synaptic strength and long-term plasticity.
Collapse
|
165
|
Almeida RG, Lyons DA. On the resemblance of synapse formation and CNS myelination. Neuroscience 2013; 276:98-108. [PMID: 24035825 DOI: 10.1016/j.neuroscience.2013.08.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.
Collapse
Affiliation(s)
- R G Almeida
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - D A Lyons
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
166
|
Hahn N, Geurten B, Gurvich A, Piepenbrock D, Kästner A, Zanini D, Xing G, Xie W, Göpfert MC, Ehrenreich H, Heinrich R. Monogenic heritable autism gene neuroligin impacts Drosophila social behaviour. Behav Brain Res 2013; 252:450-7. [DOI: 10.1016/j.bbr.2013.06.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/31/2013] [Accepted: 06/13/2013] [Indexed: 12/23/2022]
|
167
|
Identification of Mob2, a novel regulator of larval neuromuscular junction morphology, in natural populations of Drosophila melanogaster. Genetics 2013; 195:915-26. [PMID: 23979583 DOI: 10.1534/genetics.113.156562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although evolutionary changes must take place in neural connectivity and synaptic architecture as nervous systems become more complex, we lack understanding of the general principles and specific mechanisms by which these changes occur. Previously, we found that morphology of the larval neuromuscular junction (NMJ) varies extensively among different species of Drosophila but is relatively conserved within a species. To identify specific genes as candidates that might underlie phenotypic differences in NMJ morphology among Drosophila species, we performed a genetic analysis on one of two phenotypic variants we found among 20 natural isolates of Drosophila melanogaster. We discovered genetic polymorphisms for both positive and negative regulators of NMJ growth segregating within the variant line. Focusing on one subline, that displayed NMJ overgrowth, we mapped the phenotype to Mob2 [Monopolar spindle (Mps) one binding protein 2)], a gene encoding a Nuclear Dbf2 (Dumbbell formation 2)-Related (NDR) kinase activator. We confirmed this identification by transformation rescue experiments and showed that presynaptic expression of Mob2 is necessary and sufficient to regulate NMJ growth. Mob2 interacts in a dominant, dose-dependent manner with tricornered but not with warts, to cause NMJ overgrowth, suggesting that Mob2 specifically functions in combination with the former NDR kinase to regulate NMJ development. These results demonstrate the feasibility and utility of identifying genetic variants affecting NMJ morphology in natural populations of Drosophila. These variants can lead to discovery of new genes and molecular mechanisms that regulate NMJ development while also providing new information that can advance our understanding of mechanisms that underlie nervous system evolution.
Collapse
|
168
|
Woo J, Kwon SK, Nam J, Choi S, Takahashi H, Krueger D, Park J, Lee Y, Bae JY, Lee D, Ko J, Kim H, Kim MH, Bae YC, Chang S, Craig AM, Kim E. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. ACTA ACUST UNITED AC 2013; 201:929-44. [PMID: 23751499 PMCID: PMC3678166 DOI: 10.1083/jcb.201209132] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor- and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.
Collapse
Affiliation(s)
- Jooyeon Woo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 305-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Siddiqui T, Tari P, Connor S, Zhang P, Dobie F, She K, Kawabe H, Wang Y, Brose N, Craig A. An LRRTM4-HSPG Complex Mediates Excitatory Synapse Development on Dentate Gyrus Granule Cells. Neuron 2013; 79:680-95. [DOI: 10.1016/j.neuron.2013.06.029] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 01/24/2023]
|
170
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
171
|
Argyropoulos A, Gilby KL, Hill-Yardin EL. Studying autism in rodent models: reconciling endophenotypes with comorbidities. Front Hum Neurosci 2013; 7:417. [PMID: 23898259 PMCID: PMC3722572 DOI: 10.3389/fnhum.2013.00417] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/12/2013] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) patients commonly exhibit a variety of comorbid traits including seizures, anxiety, aggressive behavior, gastrointestinal problems, motor deficits, abnormal sensory processing, and sleep disturbances for which the cause is unknown. These features impact negatively on daily life and can exaggerate the effects of the core diagnostic traits (social communication deficits and repetitive behaviors). Studying endophenotypes relevant to both core and comorbid features of ASD in rodent models can provide insight into biological mechanisms underlying these disorders. Here we review the characterization of endophenotypes in a selection of environmental, genetic, and behavioral rodent models of ASD. In addition to exhibiting core ASD-like behaviors, each of these animal models display one or more endophenotypes relevant to comorbid features including altered sensory processing, seizure susceptibility, anxiety-like behavior, and disturbed motor functions, suggesting that these traits are indicators of altered biological pathways in ASD. However, the study of behaviors paralleling comorbid traits in animal models of ASD is an emerging field and further research is needed to assess altered gastrointestinal function, aggression, and disorders of sleep onset across models. Future studies should include investigation of these endophenotypes in order to advance our understanding of the etiology of this complex disorder.
Collapse
Affiliation(s)
- Andrew Argyropoulos
- Department of Medicine, The University of Melbourne , Parkville, VIC , Australia
| | | | | |
Collapse
|
172
|
Dolique T, Favereaux A, Roca-Lapirot O, Roques V, Léger C, Landry M, Nagy F. Unexpected association of the "inhibitory" neuroligin 2 with excitatory PSD95 in neuropathic pain. Pain 2013; 154:2529-2546. [PMID: 23891900 DOI: 10.1016/j.pain.2013.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
In the spinal nerve ligation (SNL) model of neuropathic pain, synaptic plasticity shifts the excitation/inhibition balance toward excitation in the spinal dorsal horn. We investigated the deregulation of the synaptogenic neuroligin (NL) molecules, whose NL1 and NL2 isoforms are primarily encountered at excitatory and inhibitory synapses, respectively. In the dorsal horn of SNL rats, NL2 was overexpressed whereas NL1 remained unchanged. In control animals, intrathecal injections of small interfering RNA (siRNA) targeting NL2 increased mechanical sensitivity, which confirmed the association of NL2 with inhibition. By contrast, siRNA application produced antinociceptive effects in SNL rats. Regarding NL partners, expression of the excitatory postsynaptic scaffolding protein PSD95 unexpectedly covaried with NL2 overexpression, and NL2/PSD95 protein interaction and colocalization increased. Expression of the inhibitory scaffolding protein gephyrin remained unchanged, indicating a partial change in NL2 postsynaptic partners in SNL rats. This phenomenon appears to be specific to the NL2(-) isoform. Our data showed unexpected upregulation and pronociceptive effects of the "inhibitory" NL2 in neuropathic pain, suggesting a functional shift of NL2 from inhibition to excitation that changed the synaptic ratio toward higher excitation.
Collapse
Affiliation(s)
- Tiphaine Dolique
- CNRS, UMR5297, IINS, F-33077 Bordeaux, France Université de Bordeaux, F-33077 Bordeaux, France Inserm, U862, Neurocentre Magendie, F-33077 Bordeaux, France Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), QC H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
173
|
Krueger DD, Brose N. Evidence for a common endocannabinoid-related pathomechanism in autism spectrum disorders. Neuron 2013; 78:408-10. [PMID: 23664608 DOI: 10.1016/j.neuron.2013.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this issue of Neuron, Földy et al. (2013) report that endocannabinoid-mediated signaling at inhibitory synapses is dysregulated in mouse models of autism-associated Neuroligin-3 mutations. These findings carry implications regarding the pathophysiology of autism spectrum disorders and the development of treatment strategies.
Collapse
Affiliation(s)
- Dilja D Krueger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | | |
Collapse
|
174
|
Shi L, Chang X, Zhang P, Coba MP, Lu W, Wang K. The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells. Hum Mol Genet 2013; 22:3749-60. [PMID: 23710042 DOI: 10.1093/hmg/ddt226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Lingling Shi
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
175
|
Thalhammer A, Cingolani LA. Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology 2013; 78:23-30. [PMID: 23542441 DOI: 10.1016/j.neuropharm.2013.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 11/19/2022]
Abstract
At synapses, pre- and post-synaptic cells get in direct contact with each other via cell adhesion molecules (CAMs). Several CAMs have been identified at the neuromuscular junction and at central synapses, where they regulate synaptic strength, by recruiting scaffolding proteins, neurotransmitter receptors and synaptic vesicles in response to the binding of counter-receptors across the synaptic cleft. Many synapses are also surrounded by astrocytic processes and embedded in conspicuous extracellular matrix (ECM). It is now widely recognized that astrocytes play a central role in regulating the synaptic machinery by exchanging information with the neuronal elements via diffusible molecules and direct physical interactions; this has lead to the concept of the 'tri-partite synapse'. More recently, the term 'tetra-partite synapse' has been introduced to underlie the importance of ECM in shaping synaptic function by mediating interaction and signaling between neurons and astrocytes. Here, we will review how this integrated view of the synapse can help us understand homeostatic synaptic plasticity at the neuromuscular junction and in the central nervous system. We will explore how synaptic CAMs regulate two forms of homeostatic plasticity: (i) postsynaptic scaling of synaptic currents to counteract changes in neuronal network activity and (ii) the compensatory modulation of presynaptic neurotransmitter release in response to changes in postsynaptic efficacy. We will discuss recent findings on activity-dependent trans-synaptic signaling events and the role of cell adhesion in the feedback control of network activity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
176
|
Panagopoulos VN, Trull TJ, Glowinski AL, Lynskey MT, Heath AC, Agrawal A, Henders AK, Wallace L, Todorov AA, Madden PA, Moore E, Degenhardt L, Martin NG, Montgomery GW, Nelson EC. Examining the association of NRXN3 SNPs with borderline personality disorder phenotypes in heroin dependent cases and socio-economically disadvantaged controls. Drug Alcohol Depend 2013; 128:187-93. [PMID: 23245376 PMCID: PMC3832348 DOI: 10.1016/j.drugalcdep.2012.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Borderline personality disorder (BPD) and substance use disorders frequently co-occur; their dual presence predicts poor prognosis. The genetic underpinnings of BPD have not been well-characterized and could offer insight into comorbidity. The current report focuses on the association of neurexin 3 (NRXN3) single nucleotide polymorphisms (SNPs) with BPD symptoms in heroin dependent cases and controls. METHODS The sample of the Comorbidity and Trauma Study, a genetic association study of heroin dependence, consists of Australian heroin dependent cases ascertained from opioid replacement therapy clinics and controls ascertained in nearby economically disadvantaged neighborhoods. The assessment included a screening instrument for BPD, used previously in Australian population surveys. Genotypic and BPD phenotypic data were available for 1439 cases and 507 controls. We examined the association of 1430 candidate gene SNPs with BPD phenotypes. RESULTS One or more NRXN3 SNPs were nominally associated with all BPD phenotypes; however, none met the conservative significance threshold we employed to correct for multiple testing. The most strongly associated SNPs included rs10144398 with identity disturbance (p=4.9×10(-5)) and rs10151731 with affective instability (p=8.8×10(-5)). The strongest association with screening positive for BPD was found for the NRXN3 SNP, rs10083466 (p=.0013). Neither the correlation of BPD phenotypes nor the linkage disequilibrium relationships of the SNPs account for the number of observed associations involving NRXN3 SNPs. CONCLUSIONS Our findings provide intriguing preliminary evidence for the association of NRXN3 with BPD phenotypes. The strongest associations were found for traits (i.e., affective instability; identity disturbance) also observed with other disorders.
Collapse
Affiliation(s)
| | - Timothy J. Trull
- Department of Psychological Sciences, University of Missouri, 219 Psychology Building, 200 South 7th Street, Columbia, MO 65211, USA
| | - Anne L. Glowinski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Michael T. Lynskey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Anjali K. Henders
- Queensland Institute of Medical Research, Royal Brisbane Hospital Post Office, Brisbane, Queensland 4029, Australia
| | - Leanne Wallace
- Queensland Institute of Medical Research, Royal Brisbane Hospital Post Office, Brisbane, Queensland 4029, Australia
| | - Alexandre A. Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Pamela A.F. Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Elizabeth Moore
- New South Wales Health, Justice Health & Forensic Mental Health Network, Suite 302, Level 2, Westfield Office Tower, 152 Bunnerong Road, Pagewood, NSW 2036, Australia
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW2052, Australia,Centre for Health Policy, Programs and Economics, School of Population Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas G. Martin
- Queensland Institute of Medical Research, Royal Brisbane Hospital Post Office, Brisbane, Queensland 4029, Australia
| | - Grant W. Montgomery
- Queensland Institute of Medical Research, Royal Brisbane Hospital Post Office, Brisbane, Queensland 4029, Australia
| | - Elliot C. Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
177
|
|
178
|
Pettem KL, Yokomaku D, Takahashi H, Ge Y, Craig AM. Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development. ACTA ACUST UNITED AC 2013; 200:321-36. [PMID: 23358245 PMCID: PMC3563690 DOI: 10.1083/jcb.201206028] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rare variants in MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors), including multiple protein-truncating deletions, are linked to autism and schizophrenia, but the function of these genes is poorly understood. Here, we show that MDGA1 and MDGA2 bound to neuroligin-2 inhibitory synapse-organizing protein, also implicated in neurodevelopmental disorders. MDGA1 inhibited the synapse-promoting activity of neuroligin-2, without altering neuroligin-2 surface trafficking, by inhibiting interaction of neuroligin-2 with neurexin. MDGA binding and suppression of synaptogenic activity was selective for neuroligin-2 and not neuroligin-1 excitatory synapse organizer. Overexpression of MDGA1 in cultured rat hippocampal neurons reduced inhibitory synapse density without altering excitatory synapse density. Furthermore, RNAi-mediated knockdown of MDGA1 selectively increased inhibitory but not excitatory synapse density. These results identify MDGA1 as one of few identified negative regulators of synapse development with a unique selectivity for inhibitory synapses. These results also place MDGAs in the neurexin-neuroligin synaptic pathway implicated in neurodevelopmental disorders and support the idea that an imbalance between inhibitory and excitatory synapses may contribute to these disorders.
Collapse
Affiliation(s)
- Katherine L Pettem
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | | | | | | | | |
Collapse
|
179
|
Lee K, Kim Y, Lee SJ, Qiang Y, Lee D, Lee HW, Kim H, Je HS, Südhof TC, Ko J. MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development. Proc Natl Acad Sci U S A 2013; 110:336-41. [PMID: 23248271 PMCID: PMC3538197 DOI: 10.1073/pnas.1219987110] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The MAM domain-containing GPI anchor proteins MDGA1 and MDGA2 are Ig superfamily adhesion molecules composed of six IG domains, a fibronectin III domain, a MAM domain, and a GPI anchor. MDGAs contribute to the radial migration and positioning of a subset of cortical neurons during early neural development. However, MDGAs continue to be expressed in postnatal brain, and their functions during postnatal neural development remain unknown. Here, we demonstrate that MDGAs specifically and with a nanomolar affinity bind to neuroligin-2, a cell-adhesion molecule of inhibitory synapses, but do not bind detectably to neuroligin-1 or neuroligin-3. We observed no cell adhesion between cells expressing neuroligin-2 and MDGA1, suggesting a cis interaction. Importantly, RNAi-mediated knockdown of MDGAs increased the abundance of inhibitory but not excitatory synapses in a neuroligin-2-dependent manner. Conversely, overexpression of MDGA1 decreased the numbers of functional inhibitory synapses. Likewise, coexpression of both MDGA1 and neuroligin-2 reduced the synaptogenic capacity of neuroligin-2 in an artificial synapse-formation assay by abolishing the ability of neuroligin-2 to form an adhesion complex with neurexins. Taken together, our data suggest that MDGAs inhibit the activity of neuroligin-2 in controlling the function of inhibitory synapses and that MDGAs do so by binding to neuroligin-2.
Collapse
Affiliation(s)
- Kangduk Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Yoonji Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Sung-Jin Lee
- Department of Molecular and Cellular Physiology and
| | - Yuan Qiang
- Program in Neuroscience and Behavioral Disorders, DUKE-National University of Singapore Graduate Medical School, Singapore, Republic of Singapore 169857
| | - Dongmin Lee
- Department of Anatomy and Neuroscience, Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea; and
| | - Hyun Woo Lee
- Department of Anatomy and Neuroscience, Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea; and
| | - Hyun Kim
- Department of Anatomy and Neuroscience, Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea; and
| | - H. Shawn Je
- Program in Neuroscience and Behavioral Disorders, DUKE-National University of Singapore Graduate Medical School, Singapore, Republic of Singapore 169857
- Department of Physiology, National University of Singapore, Singapore, Republic of Singapore 117597
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
180
|
Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci U S A 2012; 110:725-30. [PMID: 23269831 DOI: 10.1073/pnas.1214718110] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite the pivotal functions of the NMDA receptor (NMDAR) for neural circuit development and synaptic plasticity, the molecular mechanisms underlying the dynamics of NMDAR trafficking are poorly understood. The cell adhesion molecule neuroligin-1 (NL1) modifies NMDAR-dependent synaptic transmission and synaptic plasticity, but it is unclear whether NL1 controls synaptic accumulation or function of the receptors. Here, we provide evidence that NL1 regulates the abundance of NMDARs at postsynaptic sites. This function relies on extracellular, NL1 isoform-specific sequences that facilitate biochemical interactions between NL1 and the NMDAR GluN1 subunit. Our work uncovers NL1 isoform-specific cis-interactions with ionotropic glutamate receptors as a key mechanism for controlling synaptic properties.
Collapse
|
181
|
Zeidan A, Ziv NE. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses. PLoS One 2012; 7:e42314. [PMID: 22860111 PMCID: PMC3409177 DOI: 10.1371/journal.pone.0042314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
Neuroligins (Nlgns) are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT) littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.
Collapse
Affiliation(s)
- Adel Zeidan
- Department of Physiology and Biophysics and Rappaport Institute, Technion Faculty of Medicine, and Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Haifa, Israel
| | - Noam E. Ziv
- Department of Physiology and Biophysics and Rappaport Institute, Technion Faculty of Medicine, and Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Haifa, Israel
- * E-mail:
| |
Collapse
|