151
|
The Costs of Living Together: Immune Responses to the Microbiota and Chronic Gut Inflammation. Appl Environ Microbiol 2019; 85:AEM.02147-18. [PMID: 30530709 DOI: 10.1128/aem.02147-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While the vertebrate microbiota is critical to the normal function of many host traits, hosts may expend a large amount of energy to constrain and interface with their microbiota via their immune system to avoid the high fitness costs associated with gut dysbiosis, pathobionts, and opportunistic pathogens. All jawed vertebrates share mucosal immunity dedicated to isolating the microbiota, and a breakdown of this system can result in chronic gut inflammation. In humans, chronic gut inflammation negatively affects growth and development. There is little information available on the prevalence of chronic gut inflammation in wild animals, but given that animals with different life histories emphasize different immune responses, it follows that wild animals may vary in their susceptibility to chronic gut inflammation, and most animals will experience signaling that can lead to this state. These can be top-down signals originating from sources like the central nervous system or bottom-up signals originating from changes in the gut microbiota. The sources of these signals might include stress, developmental transitions, food restriction, and dietary shifts. Here, we briefly discuss host-microbiota interactions from the perspective of life history theory and ecoimmunology, focusing on the mucosal immune system and chronic gut inflammation. We also include future directions for research and the tools necessary to investigate them.
Collapse
|
152
|
Mukherjee S, Laiakis EC, Fornace AJ, Amundson SA. Impact of inflammatory signaling on radiation biodosimetry: mouse model of inflammatory bowel disease. BMC Genomics 2019; 20:329. [PMID: 31046668 PMCID: PMC6498469 DOI: 10.1186/s12864-019-5689-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background Ionizing Radiation (IR) is a known pro-inflammatory agent and in the process of development of biomarkers for radiation biodosimetry, a chronic inflammatory disease condition could act as a confounding factor. Hence, it is important to develop radiation signatures that can distinguish between IR-induced inflammatory responses and pre-existing disease. In this study, we compared the gene expression response of a genetically modified mouse model of inflammatory bowel disease (Il10−/−) with that of a normal wild-type mouse to potentially develop transcriptomics-based biodosimetry markers that can predict radiation exposure in individuals regardless of pre-existing inflammatory condition. Results Wild-type (WT) and Il10−/− mice were exposed to whole body irradiation of 7 Gy X-rays. Gene expression responses were studied using high throughput whole genome microarrays in peripheral blood 24 h post-irradiation. Analysis resulted in identification of 1962 and 1844 genes differentially expressed (p < 0.001, FDR < 10%) after radiation exposure in Il10−/− and WT mice respectively. A set of 155 genes was also identified as differentially expressed between WT and Il10−/− mice at the baseline pre-irradiation level. Gene ontology analysis revealed that the 155 baseline differentially expressed genes were mainly involved in inflammatory response, glutathione metabolism and collagen deposition. Analysis of radiation responsive genes revealed that innate immune response and p53 signaling processes were strongly associated with up-regulated genes, whereas B-cell development process was found to be significant amongst downregulated genes in the two genotypes. However, specific immune response pathways like MHC based antigen presentation, interferon signaling and hepatic fibrosis were associated with radiation responsive genes in Il10−/− mice but not WT mice. Further analysis using the IPA prediction tool revealed significant differences in the predicted activation status of T-cell mediated signaling as well as regulators of inflammation between WT and Il10−/− after irradiation. Conclusions Using a mouse model we established that an inflammatory disease condition could affect the expression of many radiation responsive genes. Nevertheless, we identified a panel of genes that, regardless of disease condition, could predict radiation exposure. Our results highlight the need for consideration of pre-existing conditions in the population in the process of development of reliable biodosimetry markers. Electronic supplementary material The online version of this article (10.1186/s12864-019-5689-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanjay Mukherjee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC, 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC, 20057, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
153
|
Kumar V. A STING to inflammation and autoimmunity. J Leukoc Biol 2019; 106:171-185. [PMID: 30990921 DOI: 10.1002/jlb.4mir1018-397rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Various intracellular pattern recognition receptors (PRRs) recognize cytosolic pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Cyclic GMP-AMP synthase (cGAS), a cytosolic PRR, recognizes cytosolic nucleic acids including dsDNAs. The recognition of dsDNA by cGAS generates cyclic GMP-AMP (GAMP). The cGAMP is then recognized by STING generating type 1 IFNs and NF-κB-mediated generation of pro-inflammatory cytokines and molecules. Thus, cGAS-STING signaling mediated recognition of cytosolic dsDNA causing the induction of type 1 IFNs plays a crucial role in innate immunity against cytosolic pathogens, PAMPs, and DAMPs. The overactivation of this system may lead to the development of autoinflammation and autoimmune diseases. The article opens with the introduction of different PRRs involved in the intracellular recognition of dsDNA and gives a brief introduction of cGAS-STING signaling. The second section briefly describes cGAS as intracellular PRR required to recognize intracellular nucleic acids (dsDNA and CDNs) and the formation of cGAMP. The cGAMP acts as a second messenger to activate STING- and TANK-binding kinase 1-mediated generation of type 1 IFNs and the activation of NF-κB. The third section of the article describes the role of cGAS-STING signaling in the induction of autoinflammation and various autoimmune diseases. The subsequent fourth section describes both chemical compounds developed and the endogenous negative regulators of cGAS-STING signaling required for its regulation. Therapeutic targeting of cGAS-STING signaling could offer new ways to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
154
|
Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol 2019; 98:151041. [PMID: 31023504 DOI: 10.1016/j.ejcb.2019.04.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising alternative agents for the treatment of inflammatory disorders due to their immunomodulatory functions, and several clinical trials on MSC-based products are currently being conducted. In this review, we discuss recent progress made on the use of MSCs as immunomodulatory agents, developmental challenges posed by MSC-based therapy, and the strategies being used to overcome these challenges. In this context, current understanding of the mechanisms responsible for MSC interactions with the immune system and the molecular responses of MSCs to inflammatory signals are discussed. The immunosuppressive activities of MSCs are initiated by cell-to-cell contact and the release of immuno-regulatory molecules. By doing so, MSCs can inhibit the proliferation and function of T cells, natural killer cells, B cells, and dendritic cells, and can also increase the proliferation of regulatory T cells. However, various problems, such as low transplanted cell viability, poor homing and engraftment into injured tissues, MSC heterogeneity, and lack of adequate information on optimum MSC doses impede clinical applications. On the other hand, it has been shown that the immunomodulatory activities and viabilities of MSCs might be enhanced by 3D-cultured systems, genetic modifications, preconditioning, and targeted-delivery.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
155
|
Kravchenko I, Eberle L, Nesterkina M, Kobernik A. Anti-inflammatory and analgesic activity of ointment based on dense ginger extract (Zingiber officinale). JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Zingiber officinale (Zingiberaceae family) is traditionally used in alternative medicine to reduce pain from rheumatoid arthritis and osteoarthritis. Ginger is also often applied for stomach and chest pain, toothaches and as anti-inflammatory agent. The aim of this study is to investigate analgesic and anti-inflammatory activities of Z. officinale dense extract after its transdermal delivery using allyl isothiocyanate (AITC) induced model with further discussion of possible action mechanism of ginger phytoconstituents. Methods: Inflammation was induced by subplantar injection to the plantar fasciitis (aponeurosis) of the hind limb of rats using 30 µL AITC solution (100 µg/limb) in 1,2-propyleneglycol. The dynamics of changes of inflammatory process was evaluated before addition of the inflammation inducer and after 1, 2, 3, 4, 6 and 24 hours of its injection for measuring the volume and the thickness of affected limb. Analgesic activity of ointments with ginger extract was examined using the model of AITC-induced pain. Results: The most effective inhibition of the development of inflammation process was 0.025% ointment with ginger extract, and the highest anti-nociceptive effect was observed at the application of 0.05% ointment 10 minutes before pain inducer agent. Conclusion: Zingiber officinale dense extract was revealed to possess significant antinociceptive and anti-inflammatory actions after its transdermal delivery. Since the pharmacological effects of ginger extract have been investigated on AITC-induced model, we may suggest the vital role of phytoconstituents binding to TRPA1 and TRPV1 ion channels as possible mechanism of action.
Collapse
Affiliation(s)
- Iryna Kravchenko
- Department of Pharmaceutical Chemistry, I.I. Mechnikov Odessa National University, Odessa, 65082, Ukraine
- Department of Organic and Pharmaceutical Technology of Odessa National Polytechnic University, 65044, Odessa, Ukraine
| | - Lidiya Eberle
- Department of Pharmaceutical Chemistry, I.I. Mechnikov Odessa National University, Odessa, 65082, Ukraine
| | - Mariia Nesterkina
- Department of Pharmaceutical Chemistry, I.I. Mechnikov Odessa National University, Odessa, 65082, Ukraine
- Department of Organic and Pharmaceutical Technology of Odessa National Polytechnic University, 65044, Odessa, Ukraine
| | - Alona Kobernik
- Department of Pharmaceutical Chemistry, I.I. Mechnikov Odessa National University, Odessa, 65082, Ukraine
| |
Collapse
|
156
|
Lee HR, Jo MK, Park KY, Jang YJ, Heo TH. Anti-TNF effect of combined pravastatin and cilostazol treatment in an in vivo mouse model. Immunopharmacol Immunotoxicol 2019; 41:179-184. [PMID: 30714456 DOI: 10.1080/08923973.2019.1569045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objectives: Pravastatin and cilostazol are used as lipid-lowering and antiplatelet agents, respectively. Regarding their well-known anti-inflammatory effects, the additive effect of the two drugs on anti-TNF functions has not yet been investigated. In the present investigation, the beneficial effect of combined pravastatin and cilostazol on their anti-TNF activities was assessed using an in vivo mouse model. Methods: Mice were pretreated with pravastatin and/or cilostazol (40 mg/kg of each), orally once two hour prior to an LPS (5 mg/kg, i.p.) challenge. One hour post challenge, blood and descending aorta were collected for serum TNF levels and immune cell infiltration analyses. For survival analysis, pravastatin and/or cilostazol (40 mg/kg of each) were administered 30 minutes prior to d-galactosamine administration (700 mg/kg, i.p.) and TNF (10 µg/kg, i.p.) challenge and mice survival was monitored. We also examined the effect of either drug or the combination of drugs on TNF-mediated MAPK and NF-κB signaling, using Western blot analysis. Results: Combined treatment of pravastatin and cilostazol significantly decreased serum TNF release and immune cell infiltration in the descending aorta following LPS administration, compared to each single treatment. Additionally, the combined drugs significantly decreased TNF-mediated mouse mortality and downregulated TNF-induced MAPK and NF-κB activation. Conclusions: These findings suggest that combined pravastatin and cilostazol is more effective for reducing TNF-driven inflammation through their anti-TNF activity than monotherapy.
Collapse
Affiliation(s)
- Hae-Ri Lee
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| | - Min-Kyung Jo
- b College of Pharmacy , ILAb, Inc., NP513, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Kyung-Yeon Park
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| | - You-Jin Jang
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| | - Tae-Hwe Heo
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| |
Collapse
|
157
|
Mehto S, Jena KK, Nath P, Chauhan S, Kolapalli SP, Das SK, Sahoo PK, Jain A, Taylor GA, Chauhan S. The Crohn's Disease Risk Factor IRGM Limits NLRP3 Inflammasome Activation by Impeding Its Assembly and by Mediating Its Selective Autophagy. Mol Cell 2019; 73:429-445.e7. [PMID: 30612879 PMCID: PMC6372082 DOI: 10.1016/j.molcel.2018.11.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
Abstract
Several large-scale genome-wide association studies genetically linked IRGM to Crohn’s disease and other inflammatory disorders in which the IRGM appears to have a protective function. However, the mechanism by which IRGM accomplishes this anti-inflammatory role remains unclear. Here, we reveal that IRGM/Irgm1 is a negative regulator of the NLRP3 inflammasome activation. We show that IRGM expression, which is increased by PAMPs, DAMPs, and microbes, can suppress the pro-inflammatory responses provoked by the same stimuli. IRGM/Irgm1 negatively regulates IL-1β maturation by suppressing the activation of the NLRP3 inflammasome. Mechanistically, we show that IRGM interacts with NLRP3 and ASC and hinders inflammasome assembly by blocking their oligomerization. Further, IRGM mediates selective autophagic degradation of NLRP3 and ASC. By suppressing inflammasome activation, IRGM/Irgm1 protects from pyroptosis and gut inflammation in a Crohn’s disease experimental mouse model. This study for the first time identifies the mechanism by which IRGM is protective against inflammatory disorders. IRGM negatively regulates NLRP3/ASC inflammasome activation IRGM obstructs NLRP3/ASC inflammasome assembly IRGM mediates selective autophagic degradation of NLRP3/ASC inflammasome Irgm1 by suppressing Nlrp3 inflammasome prevents gut inflammation in an IBD mouse model
Collapse
Affiliation(s)
- Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Parej Nath
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Swati Chauhan
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | | | - Saroj Kumar Das
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Pradyumna Kumar Sahoo
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Ashish Jain
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gregory A Taylor
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar 751023, India.
| |
Collapse
|
158
|
Raha S, Kim SM, Lee HJ, Lee SJ, Heo JD, Saralamma VVG, Ha SE, Kim EH, Mun SP, Kim GS. Essential oil from Korean Chamaecyparis obtusa leaf ameliorates respiratory activity in Sprague‑Dawley rats and exhibits protection from NF-κB-induced inflammation in WI38 fibroblast cells. Int J Mol Med 2019; 43:393-403. [PMID: 30387810 PMCID: PMC6257863 DOI: 10.3892/ijmm.2018.3966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
To date, Korean hinoki cypress (Chamaecyparis obtusa), has been widely used for household and commercial purposes. Although the medicinal efficacy of hinoki cypress essential oil has been observed, that of the essential oil‑derived terpenes, which exhibit a mechanism that acts against lung inflammation, remains to be fully elucidated. The present study investigated the anti‑inflammatory effect of hinoki cypress leaf extracted essential oil on lipopolysaccharide (LPS)‑stimulated WI38 fibroblast cells by inhibiting the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) pathway, which exhibited lung tissue protection through the olfactory administration of essential oil in Sprague‑Dawley rats. GC/MS analysis derived 24 terpenes from the essential oil. The morphological observations revealed that, upon LPS stimulation of WI38 fibroblast cells, inflammation was induced, whereas the condition of the cells reverted to normal in the essential oil extract pre‑treated group. The results of western blot analysis revealed the inhibition of inducible nitric oxide synthase, activation of cyclooxygnase‑2, and the degradation of cytosolic p65 and inhibitor of NF‑κB‑α in the LPS‑stimulated group. Additionally, confocal imaging of nuclei revealed the translocation of phosphorylated p65, which was recovered in the cytosol in the phytoncide essential oil pre‑treated group. Histopathological observation revealed that the alveolar capacity was enhanced in the essential oil olfactory administered rat group, compared with that in the normal rat group. These findings suggest that terpenes in essential oil from the Chamaecyparis obtusa leaf have therapeutic potential against respiratory inflammation‑related disease.
Collapse
Affiliation(s)
- Suchismita Raha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Ho Jeong Lee
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828
| | | | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Gyeongsang 52833
| | - Sung Phil Mun
- Department of Wood Science and Technology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University
| |
Collapse
|
159
|
Hwang JH, Ma JN, Park JH, Jung HW, Park YK. Anti-inflammatory and antioxidant effects of MOK, a polyherbal extract, on lipopolysaccharide‑stimulated RAW 264.7 macrophages. Int J Mol Med 2019; 43:26-36. [PMID: 30365058 PMCID: PMC6257867 DOI: 10.3892/ijmm.2018.3937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
MOK, a pharmacopuncture medicine consisting of 10 herbs, has a long history as treatment for various inflammatory conditions. To investigate the mechanisms of action of MOK, its anti‑inflammatory and antioxidative effects were assessed in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). RAW 264.7 cells were treated with different concentrations of MOK extract for 30 min prior to stimulation with or without LPS for the indicated times. Nitric oxide (NO) production was measured using Griess reagent, while the mRNA levels of inflammatory cytokines, tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6 and the antioxidant enzymes Mn superoxide dismutase and heme oxygenase‑1, were determined using reverse transcription‑polymerase chain reaction analysis. Western blotting was used to determine the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‑2, superoxide dismutase (SOD)2, catalase (CAT) and heme oxygenase‑1 (HO‑1), and the phosphorylation of mitogen‑activated protein kinases (MAPKs), including ERK1/2, JNK and p38. Western blotting and immunocytochemistry were used to observe the nuclear expression of nuclear factor (NF)‑κB p65. Additionally, reactive oxygen species (ROS) and prostaglandin (PG)E2 production were determined using the ROS assay and an enzyme immunoassay. With MOK treatment, there was a notable decrease in NO and PGE2 production induced by LPS in RAW 264.7 cells by downregulation of iNOS and COX‑2 mRNA and protein expression. Furthermore, with MOK treatment, there was a decrease in the mRNA expression levels of TNF‑α, IL‑1β and IL‑6, as well as in the phosphorylation of ERK, JNK and p38 MAPK, by blocking the nuclear translocation of NF‑κB p65 in LPS‑stimulated cells. In addition, MOK treatment led to an increase in the antioxidant enzymes SOD, CAT and HO‑1 in LPS‑stimulated cells, with a concomitant decrease in ROS generation. These results indicate that the inflammatory responses in activated macrophages are inhibited by MOK through downregulation of the transcription levels of inflammatory mediators and inhibition of the MAPK/NF‑κB pathway. Moreover, MOK protects against oxidative damage by upregulating the expression of antioxidant enzymes and generating ROS scavengers.
Collapse
Affiliation(s)
- Ji Hye Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120
| | - Jun Nan Ma
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Jong Hun Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, North Gyeongsang 38066, Republic of Korea
| |
Collapse
|
160
|
Moreno-Leiva GM, Álvarez-Zuñiga MÁ, Arias-Poblete LE. Una visión compleja sobre la etiología de las enfermedades. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n1.64840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A pesar de que el objetivo de las investigaciones en ciencias médicas es alcanzar un mayor conocimiento de cómo el cuerpo y su funcionamiento se relacionan con los patrones disfuncionales y cómo estos generan patologías, la mayoría de los esfuerzos se centran en preguntas usando datos cada vez más detallados. Sin embargo, podría ser posible abordar con éxito a los usuarios mediante una mirada más amplia de mecanismos corporales desde una perspectiva global y pensando en cómo las disfunciones o patologías pueden influir desencadenando otros problemas.El cuerpo se puede entender como un sistema o una red compleja en la que los patrones disfuncionales surgen de la interacción entre múltiples niveles físicos y funcionales. El logro de un mayor progreso con los usuarios dependerá, en lo fundamental, de las propiedades y relaciones de las patologías, disfunciones y herramientas que están disponibles o se deban desarrollar con el fin de estudiar los mecanismos de patología-disfunción.
Collapse
|
161
|
Lorenzo JM, Munekata PE, Putnik P, Kovačević DB, Muchenje V, Barba FJ. Sources, Chemistry, and Biological Potential of Ellagitannins and Ellagic Acid Derivatives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
162
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
163
|
Suh SS, Hong JM, Kim EJ, Jung SW, Chae H, Kim JE, Kim JH, Kim IC, Kim S. Antarctic freshwater microalga, Chloromonas reticulata, suppresses inflammation and carcinogenesis. Int J Med Sci 2019; 16:189-197. [PMID: 30745798 PMCID: PMC6367532 DOI: 10.7150/ijms.30647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation triggered by the innate immune system is a strategy to protect organisms from the risk of environmental infection. However, it has recently become clear that inflammation can cause a variety of human diseases, including cancer. In this study, we investigated the effects of an ethanol extract of the Antarctic freshwater microalgae, Chloromonas reticulata (ETCH), on inflammation and carcinogenesis in RAW 264.7 macrophages and HCT116 human colon cancer cells, respectively. ETCH exhibited significant anti-inflammatory activity through the dose-dependent modulation of major inflammatory markers such as COX-2, IL-6, iNOS, TNF-α, and NO production. For example, ETCH reduced LPS-induced upregulation of COX-2, IL-6, iNOS, and TNF- alpha mRNA levels, leading to a significant decrease in the levels of LPS-stimulated NO and IL-6 as well as TNF-alpha products. In contract, ETCH exhibited dose-dependent cytotoxic activity against HCT116 cells, yielding a profound reduction in the proliferation of the cancer cells. Furthermore, ETCH induced G2 phase cell cycle arrest by transcriptionally regulating of genes involved in G2 / M transition including p21 (CDKN1A), cyclin B1 (CCNB1), and CDK1; CDKN1A mRNA levels were upregulated in response to ETCH, whereas CCNB1 and CDK1 were downregulated. This study reports for the first time anti-inflammatory and anti-cancer effects of, C. reticulata and provides new insights into the molecular mechanisms of the linkage between inflammation and cancer.
Collapse
Affiliation(s)
- Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Muan 58554, Republic of Korea
| | - Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Eun Jae Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seung Won Jung
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | - Hyunsik Chae
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jung Eun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Pharmacy, Graduate School, Sungkyunkwan University, Suwan 16419, Republic of Korea
| | - Ji Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
164
|
Guivier E, Criscuolo F, Zahn S, Bellenger J, Galan M, Faivre B, Sorci G. Early life infection and host senescence. Exp Gerontol 2018; 114:19-26. [PMID: 30366039 DOI: 10.1016/j.exger.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/20/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
Advanced age is often associated with a chronic inflammatory status and inflammatory diseases. It has been suggested that exposure to infectious agents that stimulate the inflammatory response at early ages might have carry over effects in terms of accelerated senescence and increased mortality at late ages. However, not all pathogens and parasites have pro-inflammatory effects. In particular, parasitic nematodes have been shown to dampen the inflammatory response and to prevent or alleviate the symptoms of inflammatory diseases. We, therefore, tentatively predicted that early infection with a parasite that has anti-inflammatory properties might postpone aging. We tested this idea using the association between the nematode Heligmosomoides polygyrus and its rodent host. In addition to the infection with H. polygyrus, we also activated the systemic inflammatory response with an Escherichia coli LPS injection, to explore the effect of H. polygyrus under control and inflammatory conditions. In addition to lifespan, we also assessed several biomarkers of aging, once the infection had been cleared. We found that both treatments (H. polygyrus infection and LPS challenge) reduced longevity. Most of the biomarkers of aging were affected by the previous infection status, suggesting that mice exposed to the nematode had an accentuated senescent phenotype. These results show that infection with immunomodulatory parasites per se does not prolong host lifespan and rather support the view that infection in early life accelerates the rate of aging.
Collapse
Affiliation(s)
- Emmanuel Guivier
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France; Lipides Nutrition Cancer, INSERM UMR 866, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France; Laboratoire IMBE, Université Aix Marseille, Campus St Charles, 13001 Marseille, France.
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Jérôme Bellenger
- Laboratoire IMBE, Université Aix Marseille, Campus St Charles, 13001 Marseille, France.
| | - Maxime Galan
- Centre de Biologie pour la Gestion des Populations, 755 avenue du Campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez cedex, France.
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France.
| |
Collapse
|
165
|
Gül A. Dynamics of Inflammatory Response in Autoinflammatory Disorders: Autonomous and Hyperinflammatory States. Front Immunol 2018; 9:2422. [PMID: 30386349 PMCID: PMC6200036 DOI: 10.3389/fimmu.2018.02422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022] Open
Abstract
Autoinflammatory diseases were originally defined as a group of monogenic disorders associated with seemingly unprovoked inflammatory episodes mediated mainly by the innate immune system and without direct involvement of adaptive immunity. The renewed concept encompasses a larger group of disorders including multifactorial diseases, which share the same inflammatory and clinical features with the monogenic disorders. Coining of the “auto” prefix to these inflammatory diseases suggests a constitutively active and self-augmenting innate immune response, but only a subgroup of them including cryopyrin-associated periodic syndrome (CAPS), associated with dominantly inherited gain-of-function NLRP3 variants, fits well with the definition of the “autonomous” inflammatory conditions. However, the “autoinflammation” concept also includes another group of disorders characterized by episodes of exaggerated inflammatory response only when challenged by certain triggers. The dynamics of this latter group can be better defined as a “hyperinflammatory” state, which shares similar characteristics with the innate memory or trained immunity. Differentiation of “autonomous” and “hyperinflammatory” states of autoinflammatory disorders can provide additional insights to understand their pathogenesis and develop better management strategies since both conditions may have different inflammatory dynamics affecting the severity and frequency of clinical findings and treatment responses.
Collapse
Affiliation(s)
- Ahmet Gül
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
166
|
Li L, Guo J, Wang Y, Xiong X, Tao H, Li J, Jia Y, Hu H, Zhang J. A Broad-Spectrum ROS-Eliminating Material for Prevention of Inflammation and Drug-Induced Organ Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800781. [PMID: 30356945 PMCID: PMC6193162 DOI: 10.1002/advs.201800781] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/22/2018] [Indexed: 05/12/2023]
Abstract
Despite the great potential of numerous antioxidants for pharmacotherapy of diseases associated with inflammation and oxidative stress, many challenges remain for their clinical translation. Herein, a superoxidase dismutase/catalase-mimetic material based on Tempol and phenylboronic acid pinacol ester simultaneously conjugated β-cyclodextrin (abbreviated as TPCD), which is capable of eliminating a broad spectrum of reactive oxygen species (ROS), is reported. TPCD can be easily synthesized by sequentially conjugating two functional moieties onto a β-cyclodextrin scaffold. The thus developed pharmacologically active material may be easily produced into antioxidant and anti-inflammatory nanoparticles, with tunable size. TPCD nanoparticles (TPCD NP) effectively protect macrophages from oxidative stress-induced apoptosis in vitro. Consistently, TPCD NP shows superior efficacies in three murine models of inflammatory diseases, with respect to attenuating inflammatory responses and mitigating oxidative stress. TPCD NP can also protect mice from drug-induced organ toxicity. Besides the passive targeting effect, the broad spectrum ROS-scavenging capability contributes to the therapeutic benefits of TPCD NP. Importantly, in vitro and in vivo preliminary experiments demonstrate the good safety profile of TPCD NP. Consequently, TPCD in its native and nanoparticle forms can be further developed as efficacious and safe therapies for treatment of inflammation and oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Lanlan Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Jiawei Guo
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Yuquan Wang
- Department of CardiologySouthwest HospitalThird Military Medical UniversityChongqing400038China
- Department of CardiologyAffiliated Hospital of North Sichuan Medical CollegeNanchong637000Sichuan ProvinceChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Hui Tao
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Jin Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Yi Jia
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| | - Houyuan Hu
- Department of CardiologySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical UniversityChongqing400038China
| |
Collapse
|
167
|
NLRP3 inflammasome activation in inflammaging. Semin Immunol 2018; 40:61-73. [PMID: 30268598 DOI: 10.1016/j.smim.2018.09.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The process of aging is associated with the appearance of low-grade subclinical inflammation, termed inflammaging, that can accelerate age-related diseases. In Western societies the age-related inflammatory response can additionally be aggravated by an inflammatory response related to modern lifestyles and excess calorie consumption, a pathophysiologic inflammatory response that was coined metaflammation. Here, we summarize the current knowledge of mechanisms that drive both of these processes and focus our discussion the emerging concept that a key innate immune pathway, the NLRP3 inflammasome, is centrally involved in the recognition of triggers that appear during physiological aging and during metabolic stress. We further discuss how these processes are involved in the pathogenesis of common age-related pathologies and highlight potential strategies by which the detrimental inflammatory responses could be pharmacologically addressed.
Collapse
|
168
|
Paulis G. Inflammatory mechanisms and oxidative stress in prostatitis: the possible role of antioxidant therapy. Res Rep Urol 2018; 10:75-87. [PMID: 30271757 PMCID: PMC6149977 DOI: 10.2147/rru.s170400] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article focuses on the role that oxidative stress plays in chronic prostatitis, not only with respect to the known impact on symptoms and fertility but also especially in relation to possible prostate cancer development. Prostatitis is the most common urologic disease in adult males younger than 50 years and the third most common urologic diagnosis in males older than 50 years. If the germ-causing acute prostatitis is not eliminated, the inflammatory process becomes chronic. Persistent inflammation causes ongoing production of large quantities of pro-inflammatory cytokines and both oxygen and nitrogen reactive species, with consequent activation of transcription factor nuclear factor-kappa B (NF-κB) and genes encoding for further production of pro-inflammatory cytokines, chemotactic factors, and growth factors. Confirming the role of oxidative stress in chronic prostatitis, several studies have demonstrated the presence of oxidative stress markers in the genital secretions of patients suffering from the disease. Antioxidants can therefore play an essential role in the treatment of chronic bacterial and non-bacterial prostatitis; in the case of bacterial inflammation, they can be associated with antibiotic therapy. Moreover, due to their anti-inflammatory properties, antioxidants hinder the progression of inflammation and the possible development of prostate cancer.
Collapse
Affiliation(s)
- Gianni Paulis
- Andrology Center, Villa Benedetta Clinic, Rome, Italy,
- Department of Uro-Andrology, Castelfidardo Medical Team, Rome, Italy,
| |
Collapse
|
169
|
Peptides as Therapeutic Agents for Inflammatory-Related Diseases. Int J Mol Sci 2018; 19:ijms19092714. [PMID: 30208640 PMCID: PMC6163503 DOI: 10.3390/ijms19092714] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a physiological mechanism used by organisms to defend themselves against infection, restoring homeostasis in damaged tissues. It represents the starting point of several chronic diseases such as asthma, skin disorders, cancer, cardiovascular syndrome, arthritis, and neurological diseases. An increasing number of studies highlight the over-expression of inflammatory molecules such as oxidants, cytokines, chemokines, matrix metalloproteinases, and transcription factors into damaged tissues. The treatment of inflammatory disorders is usually linked to the use of unspecific small molecule drugs that can cause undesired side effects. Recently, many efforts are directed to develop alternative and more selective anti-inflammatory therapies, several of them imply the use of peptides. Indeed, peptides demonstrated as elected lead compounds toward several targets for their high specificity as well as recent and innovative synthetic strategies. Several endogenous peptides identified during inflammatory responses showed anti-inflammatory activities by inhibiting, reducing, and/or modulating the expression and activity of mediators. This review aims to discuss the potentialities and therapeutic use of peptides as anti-inflammatory agents in the treatment of different inflammation-related diseases and to explore the importance of peptide-based therapies.
Collapse
|
170
|
Copland DA, Theodoropoulou S, Liu J, Dick AD. A Perspective of AMD Through the Eyes of Immunology. ACTA ACUST UNITED AC 2018; 59:AMD83-AMD92. [DOI: 10.1167/iovs.18-23893] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A. Copland
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
| | - Sofia Theodoropoulou
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
| | - Jian Liu
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
- University College London–Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
171
|
Bagchi A, Batten AJ, Levin M, Allen KN, Fitzgerald ML, Hückstädt LA, Costa DP, Buys ES, Hindle AG. Intrinsic anti-inflammatory properties in the serum of two species of deep-diving seal. ACTA ACUST UNITED AC 2018; 221:jeb.178491. [PMID: 29748216 DOI: 10.1242/jeb.178491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022]
Abstract
Weddell and elephant seals are deep-diving mammals, which rely on lung collapse to limit nitrogen absorption and prevent decompression injury. Repeated collapse and re-expansion exposes the lungs to multiple stressors, including ischemia-reperfusion, alveolar shear stress and inflammation. There is no evidence, however, that diving damages pulmonary function in these species. To investigate potential protective strategies in deep-diving seals, we examined the inflammatory response of seal whole blood exposed to lipopolysaccharide (LPS), a potent endotoxin. Interleukin-6 (IL6) cytokine production elicited by LPS exposure was 50 to 500 times lower in blood of healthy northern elephant seals and Weddell seals compared with that of healthy human blood. In contrast to the ∼6× increased production of IL6 protein from LPS-exposed Weddell seal whole blood, isolated Weddell seal peripheral blood mononuclear cells, under standard cell culture conditions using medium supplemented with fetal bovine serum (FBS), produced a robust LPS response (∼300×). Induction of Il6 mRNA expression as well as production of IL6, IL8, IL10, KC-like and TNFα were reduced by substituting FBS with an equivalent amount of autologous seal serum. Weddell seal serum also attenuated the inflammatory response of RAW 267.4 mouse macrophage cells exposed to LPS. Cortisol level and the addition of serum lipids did not impact the cytokine response in cultured cells. These data suggest that seal serum possesses anti-inflammatory properties, which may protect deep divers from naturally occurring inflammatory challenges such as dive-induced hypoxia-reoxygenation and lung collapse.
Collapse
Affiliation(s)
- Aranya Bagchi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Annabelle J Batten
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, USA
| | - Kaitlin N Allen
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Department of Integrative Biology, University of California Berkeley, Valley Life Sciences Building 5043, Berkeley, CA 94720, USA
| | - Michael L Fitzgerald
- Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Luis A Hückstädt
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
172
|
Mak KK, Tan JJ, Marappan P, Balijepalli MK, Choudhury H, Ramamurthy S, Pichika MR. Galangin’s potential as a functional food ingredient. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
173
|
Sanz J, Randolph HE, Barreiro LB. Genetic and evolutionary determinants of human population variation in immune responses. Curr Opin Genet Dev 2018; 53:28-35. [PMID: 29960896 DOI: 10.1016/j.gde.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Humans display remarkable immune response variation when exposed to identical immune challenges. However, our understanding of the genetic, evolutionary, and environmental factors that impact this inter-individual and inter-population immune response heterogeneity is still in its early days. In this review, we discuss three fundamental questions concerning the recent evolution of the human immune system: the degree to which individuals from different populations vary in their innate immune responses, the genetic variants accounting for such differences, and the evolutionary mechanisms that led to the establishment of these variants in modern human populations. We also discuss how past selective events might have contributed to the uneven distribution of immune-related disorders across populations.
Collapse
Affiliation(s)
- Joaquin Sanz
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada; Department of Genetics, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Haley E Randolph
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada; Department of Genetics, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
174
|
Rožman P. The potential of non-myeloablative heterochronous autologous hematopoietic stem cell transplantation for extending a healthy life span. GeroScience 2018; 40:221-242. [PMID: 29948868 PMCID: PMC6060192 DOI: 10.1007/s11357-018-0027-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex multifactorial process, a prominent component being the senescence of the immune system. Consequently, immune-related diseases develop, including atherosclerosis, cancer, and life-threatening infections, which impact on health and longevity. Rejuvenating the aged immune system could mitigate these diseases, thereby contributing to longevity and health. Currently, an appealing option for rejuvenating the immune system is heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow/peripheral blood stem cells are collected during the youth of an individual, cryopreserved, and re-infused when he or she has reached an older age. After infusion, young hematopoietic stem cells can reconstitute the compromised immune system and improve immune function. Several studies using animal models have achieved substantial extension of the life span of animals treated with haHSCT. Therefore, haHSCT could be regarded as a potential procedure for preventing age-related immune defects and extending healthy longevity. In this review, the pros, cons, and future feasibility of this approach are discussed.
Collapse
Affiliation(s)
- Primož Rožman
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000, Ljubljana, Slovenia.
| |
Collapse
|
175
|
Laudanski K, Zawadka M, Polosak J, Modi J, DiMeglio M, Gutsche J, Szeto WY, Puzianowska-Kuznicka M. Acquired immunological imbalance after surgery with cardiopulmonary bypass due to epigenetic over-activation of PU.1/M-CSF. J Transl Med 2018; 16:143. [PMID: 29801457 PMCID: PMC5970449 DOI: 10.1186/s12967-018-1518-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Background It has been shown that severe insult to the immune system may trigger prolonged macrophage characteristics associated with excessive release of monocyte colony stimulating factor (M-CSF). However, it is unclear how persistent is the macrophage-like characteristics in circulating monocytes (MO). In this study, 20 patients who underwent non-emergent cardiopulmonary bypass had their monocytes characterized before surgery and 3 months after surgery. Methods We assessed the macrophage characteristics of MO using cytokine production, surface marker expression, an ability to stimulate T cells, and methylation of the promoter region of the gene encoding PU.1, a critical component to M-CSF production. MO function as well as activation and differentiation potential were longitudinally assessed. Results At 3 months after cardiopulmonary bypass, monocytes exhibited increased expression of MRP8, transforming growth factor-β/latency-associated peptide, suppressor of cytokine signaling 3 while phagocytic properties were increased. Concomitantly, we observed a decreased expression of CD86, a decreased ability to form regulatory dendritic cells, and a diminished ability to stimulate T cells. These characteristics were accompanied by a persistent increase in the secretion of M-CSF, over-activation of PU.1, and decreased methylation of the PU.1 promoter region. Serum levels of C-reactive protein and anti-cytomegalovirus IgG antibody titers were also elevated in some patients at 3 months after surgery. Conclusions We concluded that at 3 months after cardiopulmonary bypass, monocytes continued to express a new macrophage-like milieu that was associated with the persistent activation of the PU.1/M-CSF pathway.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology, University of Pennsylvania, Philadelphia, PA, 19146, USA.
| | - Mateusz Zawadka
- Department of Anesthesiology, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Warsaw, 02-106, Poland
| | - Jaymin Modi
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA
| | - Matthew DiMeglio
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA
| | - Jacob Gutsche
- Department of Anesthesiology, University of Pennsylvania, Philadelphia, PA, 19146, USA
| | - Wilson Y Szeto
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA, 19146, USA
| | | |
Collapse
|
176
|
Sisti F, Wang S, Brandt SL, Glosson-Byers N, Mayo LD, Son YM, Sturgeon S, Filgueiras L, Jancar S, Wong H, Dela Cruz CS, Andrews N, Alves-Filho JC, Cunha FQ, Serezani CH. Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis. Sci Signal 2018; 11:11/528/eaai9085. [PMID: 29717063 DOI: 10.1126/scisignal.aai9085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased PTEN expression in leukocytes. Myeloid-specific Pten deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN-mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.
Collapse
Affiliation(s)
- Flavia Sisti
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Soujuan Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie L Brandt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole Glosson-Byers
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lindsey D Mayo
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Young Min Son
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah Sturgeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Luciano Filgueiras
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Sonia Jancar
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Hector Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Charles S Dela Cruz
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nathaniel Andrews
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - C Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. .,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
177
|
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Natural selection is an important influence on human genetic variation. Because immune and inflammatory function genes are enriched for signals of positive selection, the prevalence of rheumatic disease-risk alleles seen in different populations is partially the result of differing selective pressures (eg, due to pathogens). This review summarizes the genetic regions associated with susceptibility to different rheumatic diseases and concomitant evidence for natural selection, including known agents of selection exerting selective pressure in these regions.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
178
|
Etchegoyen M, Nobile MH, Baez F, Posesorski B, González J, Lago N, Milei J, Otero-Losada M. Metabolic Syndrome and Neuroprotection. Front Neurosci 2018; 12:196. [PMID: 29731703 PMCID: PMC5919958 DOI: 10.3389/fnins.2018.00196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction: Over the years the prevalence of metabolic syndrome (MetS) has drastically increased in developing countries as a major byproduct of industrialization. Many factors, such as the consumption of high-calorie diets and a sedentary lifestyle, bolster the spread of this disorder. Undoubtedly, the massive and still increasing incidence of MetS places this epidemic as an important public health issue. Hereon we revisit another outlook of MetS beyond its classical association with cardiovascular disease (CVD) and Diabetes Mellitus Type 2 (DM2), for MetS also poses a risk factor for the nervous tissue and threatens neuronal function. First, we revise a few essential concepts of MetS pathophysiology. Second, we explore some neuroprotective approaches in MetS pertaining brain hypoxia. The articles chosen for this review range from the years 1989 until 2017; the selection criteria was based on those providing data and exploratory information on MetS as well as those that studied innovative therapeutic approaches. Pathophysiology: The characteristically impaired metabolic pathways of MetS lead to hyperglycemia, insulin resistance (IR), inflammation, and hypoxia, all closely associated with an overall pro-oxidative status. Oxidative stress is well-known to cause the wreckage of cellular structures and tissue architecture. Alteration of the redox homeostasis and oxidative stress alter the macromolecular array of DNA, lipids, and proteins, in turn disrupting the biochemical pathways necessary for normal cell function. Neuroprotection: Different neuroprotective strategies are discussed involving lifestyle changes, medication aimed to mitigate MetS cardinal symptoms, and treatments targeted toward reducing oxidative stress. It is well-known that the routine practice of physical exercise, aerobic activity in particular, and a complete and well-balanced nutrition are key factors to prevent MetS. Nevertheless, pharmacological control of MetS as a whole and pertaining hypertension, dyslipidemia, and endothelial injury contribute to neuronal health improvement. Conclusion: The development of MetS has risen as a risk factor for neurological disorders. The therapeutic strategies include multidisciplinary approaches directed to address different pathological pathways all in concert.
Collapse
Affiliation(s)
- Melisa Etchegoyen
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mariana H Nobile
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco Baez
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Barbara Posesorski
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian González
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Néstor Lago
- Institute of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - José Milei
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
179
|
Marongiu F, Serra M, Laconi E. Development versus Evolution in Cancer Biology. Trends Cancer 2018; 4:342-348. [PMID: 29709258 DOI: 10.1016/j.trecan.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023]
Abstract
The terms 'development' and 'evolution' are both used to describe the unfolding of the carcinogenic process. However, there is increasing awareness of an essential difference in the meanings of these two terms with reference to cancer. We discuss evidence suggesting that the concepts of development and evolution are both pertinent to the description of carcinogenesis; however, they appropriately apply to distinct phases of a multistep process. Such a distinction bears important implications for the study and management of cancer.
Collapse
Affiliation(s)
- Fabio Marongiu
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Monica Serra
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Ezio Laconi
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| |
Collapse
|
180
|
Aller MA, Arias N, Martínez V, Vergara P, Arias J. The gestational power of mast cells in the injured tissue. Inflamm Res 2017; 67:111-116. [PMID: 29101413 DOI: 10.1007/s00011-017-1108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/26/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022] Open
Abstract
The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e., coelomic-amniotic and trophoblastic-vitelline. Moreover, mast cells would favor the production of a gastrulation-like process, which in certain tissues and organs would induce the regeneration of the injured tissue. Therefore, the engraftment of mesenchymal stem cells and mast cells, both with an extra-embryonic regenerative phenotype, would achieve a blastema, from the repaired and regenerated injured tissue, rather than by fibrosis, which is commonly made through wound-healing.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
| | - Natalia Arias
- UCL Division of Medicine, Institute for Liver and Digestive Health, Rowland Hill Street, London, NW32PF, UK.,INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Veterinary School, Autonoma University of Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Veterinary School, Autonoma University of Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Biomedical Research Center for Hepatic and Digestive Illnesses (CIBERehd), Carlos II Health Institute, Barcelona, Spain
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain
| |
Collapse
|
181
|
Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem 2017; 243:373-381. [PMID: 29146352 DOI: 10.1016/j.foodchem.2017.09.149] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
Mushrooms have been used extensively, owing to their nutritional and medicinal value, for thousands of years. Modern research confirms the therapeutic effect of traditionally used species. Inflammation is a natural response of the immune system to damaging factors, e.g. physical, chemical and pathogenic. Deficiencies of antioxidants, vitamins, and microelements, as well as physiological processes, such as aging, can affect the body's ability to resolve inflammation. Mushrooms are rich in anti-inflammatory components, such as polysaccharides, phenolic and indolic compounds, mycosteroids, fatty acids, carotenoids, vitamins, and biometals. Metabolites from mushrooms of the Basidiomycota taxon possess antioxidant, anticancer, and most significantly, anti-inflammatory properties. Recent reports indicate that edible mushroom extracts exhibit favourable therapeutic and health-promoting benefits, particularly in relation to diseases associated with inflammation. In all certainty, edible mushrooms can be referred to as a "superfood" and are recommended as a valuable constituent of the daily diet.
Collapse
Affiliation(s)
- Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Agata Grzywacz-Kisielewska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
182
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
183
|
Gallo A, Vukic D, Michalík D, O’Connell MA, Keegan LP. ADAR RNA editing in human disease; more to it than meets the I. Hum Genet 2017; 136:1265-1278. [DOI: 10.1007/s00439-017-1837-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
|
184
|
Lepreux S, Villeneuve J, Dewitte A, Bérard AM, Desmoulière A, Ripoche J. CD40 signaling and hepatic steatosis: Unanticipated links. Clin Res Hepatol Gastroenterol 2017; 41:357-369. [PMID: 27989689 DOI: 10.1016/j.clinre.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Obesity predisposes to an increased risk of nonalcoholic fatty liver disease (NAFLD). Hepatic steatosis is the key pathological feature of NAFLD and has emerged as a metabolic disorder in which innate and adaptive arms of the immune response play a central role in disease pathogenesis. Recent studies have revealed unexpected relationships between CD40 signaling and hepatic steatosis in high fat diet rodent models. CD154, the ligand of CD40, is a mediator of inflammation and controls several critical events of innate and adaptive immune responses. In the light of these reports, we discuss potential links between CD40 signaling and hepatic steatosis in NAFLD.
Collapse
Affiliation(s)
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Antoine Dewitte
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, 33600 Pessac, France
| | - Annie M Bérard
- Service de Biochimie, CHU de Bordeaux, 33000 Bordeaux, France
| | | | - Jean Ripoche
- INSERM U1026, Université de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
185
|
Sorci G, Lippens C, Léchenault C, Faivre B. Benefits of immune protection versus immunopathology costs: A synthesis from cytokine KO models. INFECTION GENETICS AND EVOLUTION 2017; 54:491-495. [PMID: 28818622 DOI: 10.1016/j.meegid.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
The inflammatory response can produce damage to host tissues and in several infectious diseases the most severe symptoms are due to immunopathology rather than a direct effect of pathogen multiplication. One hypothesis for the persistence of inflammatory damage posits that the benefits of protection towards infection outweigh the costs. We used data on knocked-out (KO) cytokine models [and the corresponding wild-type (WT) controls] to test this hypothesis. We computed differences in pathogen load and host survival between WT and KO and divided them by the WT values. Using this ratio provides an internal control for variation in pathogen species, host strain, pathogen dose, and inoculation route. We predicted that i) if mortality is essentially due to immunopathology, there should be a loose association between pathogen load and host survival; ii) if mortality is essentially due to pathogen proliferation, we expect a tight association between pathogen load and host survival. The results provide strong support to this latter hypothesis. In 85% of WT - KO comparisons (n=126), an increase in pathogen load was associated with an increase in host mortality, and a decrease in pathogen load was associated with a decrease in host mortality. Overall, these findings are in agreement with the idea that immunopathology persists because immune protection confers immediate benefits in terms of infection clearance.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France.
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Clothilde Léchenault
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
186
|
Giuliani C, Pirazzini C, Delledonne M, Xumerle L, Descombes P, Marquis J, Mengozzi G, Monti D, Bellizzi D, Passarino G, Luiselli D, Franceschi C, Garagnani P. Centenarians as extreme phenotypes: An ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mech Ageing Dev 2017; 165:195-201. [DOI: 10.1016/j.mad.2017.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
187
|
Abstract
Immunity is a high-cost, high-benefit trait that defends against pathogens and noxious stimuli but whose overactivation can result in immunopathologies and sometimes even death. Because many immune parameters oscillate rhythmically with the time of day, the circadian clock has emerged as an important gatekeeper for reducing immunity-associated costs, which, in turn, enhances organismal fitness. This is mediated by interactions between extrinsic environmental cues and the intrinsic oscillators of immune cells, which together optimize immune responses throughout the circadian cycle. The elucidation of these clock-controlled immunomodulatory mechanisms might uncover new approaches for treating infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kevin Man
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Andrew Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA. .,Departments of Physiology and Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
188
|
Ahmadzai MM, Broadbent D, Occhiuto C, Yang C, Das R, Subramanian H. Canonical and Noncanonical Signaling Roles of β-Arrestins in Inflammation and Immunity. Adv Immunol 2017; 136:279-313. [PMID: 28950948 DOI: 10.1016/bs.ai.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
β-Arrestins are a highly conserved family of cytosolic adaptor proteins that contribute to many immune functions by orchestrating the desensitization and internalization of cell-surface G protein-coupled receptors (GPCRs) via well-studied canonical interactions. In cells of the innate and adaptive immune system, β-arrestins also subserve a parallel but less understood role in which they propagate, rather than terminate, intracellular signal transduction cascades. Because β-arrestins are promiscuous in their binding, they are capable of interacting with several different GPCRs and downstream effectors; in doing so, they vastly expand the repertoire of cellular responses evoked by agonist binding and the scope of responses that may contribute to inflammation during infectious and sterile insults. In this chapter, we attempt to provide an overview of the canonical and noncanonical roles of β-arrestins in inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Canchai Yang
- Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
189
|
|
190
|
Alvarado-Vazquez PA, Bernal L, Paige CA, Grosick RL, Moracho Vilrriales C, Ferreira DW, Ulecia-Morón C, Romero-Sandoval EA. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions. Immunobiology 2017; 222:900-912. [PMID: 28545809 DOI: 10.1016/j.imbio.2017.05.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/21/2017] [Accepted: 05/14/2017] [Indexed: 02/05/2023]
Abstract
M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive and practical approach for inflammatory conditions that could lead to persistent pain, i.e. major surgeries, burns, rheumatoid arthritis, etc.
Collapse
Affiliation(s)
- Perla Abigail Alvarado-Vazquez
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA
| | - Laura Bernal
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Systems' Biology, School of Medicine, University of Alcala Campus Universitario - C/19, Carretera Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
| | - Candler A Paige
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Brain and Behavioral Sciences, Systems Neuroscience, University of Texas at Dallas, 800W Campbell Road, Richardson, TX 75080, USA
| | - Rachel L Grosick
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA
| | - Carolina Moracho Vilrriales
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA
| | - David Wilson Ferreira
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Pharmacology, Ribeirao Preto Medical School - University of Sao Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto SP 14049-900, Brazil
| | - Cristina Ulecia-Morón
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Pharmacology, Faculty of Medicine, University Complutense. Pza. Ramón y Cajal, s/n, Ciudad Universitaria., 28040 Madrid, Spain
| | - E Alfonso Romero-Sandoval
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| |
Collapse
|
191
|
Lu XJ, Chen Q, Rong YJ, Chen F, Chen J. CXCR3.1 and CXCR3.2 Differentially Contribute to Macrophage Polarization in Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2017; 198:4692-4706. [PMID: 28500070 DOI: 10.4049/jimmunol.1700101] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 12/29/2022]
Abstract
The study of multiple copies of chemokine receptor genes in various teleosts has long appealed to investigators seeking to understand the evolution of the immune system. The CXCR CXCR3 gene has two isoforms, CXCR3.1 and CXCR3.2, which are both expressed in macrophages. The distinct roles of teleost CXCR3s have not been identified previously. In this article, we found that CXCR3.1 and CXCR3.2 differentially contributed to macrophage polarization in the teleosts: ayu (Plecoglossus altivelis), grass carp (Ctenopharyngodon idella), and spotted green pufferfish (Tetraodon nigroviridis). In ayu macrophages, the P. altivelis CXCR3.1 (PaCXCR3.1) gene was constitutively expressed, whereas the P. altivelis CXCR3.2 (PaCXCR3.2) gene was induced postinfection with Escherichia coli Upon E. coli infection, PaCXCR3.1+ and PaCXCR3.2+ macrophages showed an M1 and an M2 phenotype, respectively. CXCL9-11-like proteins mediated M1 and M2 polarization by interacting with the PaCXCR3.1 and PaCXCR3.2 proteins on macrophages, respectively. The transcription factors P. altivelis STAT1 and P. altivelis STAT3 were activated in PaCXCR3.1+ and PaCXCR3.2+ macrophages, respectively. Furthermore, the prognosis of septic ayu adoptively transferred with PaCXCR3.2+ macrophages was improved. Our data reveal a previously unknown mechanism for macrophage polarization, suggesting that redundant genes may regulate crucial functions in the teleost immune system.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Ye-Jing Rong
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Feng Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
192
|
Mercken EM, Capri M, Carboneau BA, Conte M, Heidler J, Santoro A, Martin-Montalvo A, Gonzalez-Freire M, Khraiwesh H, González-Reyes JA, Moaddel R, Zhang Y, Becker KG, Villalba JM, Mattison JA, Wittig I, Franceschi C, de Cabo R. Conserved and species-specific molecular denominators in mammalian skeletal muscle aging. NPJ Aging Mech Dis 2017. [PMID: 28649426 PMCID: PMC5460213 DOI: 10.1038/s41514-017-0009-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process. Aging is a complex phenomenon involving functional declines in multiple physiological systems with the passage of time. Focusing on skeletal muscle, a group of international scientists identified pathways involved in healthspan and by determining global gene expression profiles across species they exposed common mechanisms fundamental to the aging process. Their experimental design involved comparative analysis of mice, rats, rhesus monkeys and humans, targeting three key time points during their respective lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species in an age-influenced manner. The identification of conserved pathways reveals molecular mechanisms intrinsic to health and survival, whereas the unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.
Collapse
Affiliation(s)
- Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Bethany A Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Juliana Heidler
- Functional Proteomics, SFB815 Core Unit, Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, 40126 Bologna, Italy
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Husam Khraiwesh
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - Ruin Moaddel
- Bioanalytical and Drug Development Unit, National institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus Rabanales Edificio Severo Ochoa, 3ª planta, 14014 Córdoba, Spain
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Poolesville, MD 20837 USA
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| |
Collapse
|
193
|
Boisseaux P, Noury P, Thomas H, Garric J. Immune responses in the aquatic gastropod Lymnaea stagnalis under short-term exposure to pharmaceuticals of concern for immune systems: Diclofenac, cyclophosphamide and cyclosporine A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:358-366. [PMID: 28189777 DOI: 10.1016/j.ecoenv.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
This is a pioneering study in the ecotoxicological assessment of immunotoxic effects of the three selected drugs of concern to a freshwater gastropod species. Lymnaea stagnalis was exposed in the laboratory for 3 days to three drugs used for immune systems: diclofenac (nonsteroidal anti-inflammatory drug), cyclophosphamide (anti-cancer immunosuppressive drug) or cyclosporine A (anti-xenograft immunosuppressive drug). Exposure ranges included environmental realistic (1-10μgL-1) and therapeutic concentrations (100-1000μgL-1). At the end of exposure times, the immune parameters of individual snails were measured: hemocyte density and viability, hemocyte phagocytosis capacity and hemocyte-related oxidative activities (basal and NADPH-oxidase stimulated with zymosan particles). Diclofenac and cyclosporine A induced immune responses, although the effects were not strong. No immunosuppression was observed. Such subtle immunomodulations bring further interrogations regarding their long-term immunotoxicity and possible resulting tradeoffs with life-history traits. On the other hand, the prodrug cyclophosphamide did not induce significant immune responses. Since metabolism pathways differ greatly between vertebrates and invertebrates, this study also suggests that relevant vertebrate metabolites should be included in the immunotoxicity assessment of pharmaceuticals in non-target invertebrate species. Finally, the possible interactive effects of these pharmaceuticals sharing similar modes of action or effects features should also be explored.
Collapse
Affiliation(s)
- P Boisseaux
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France
| | - P Noury
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France
| | - H Thomas
- LIttoral ENvironnement et Sociétés (LIENSs) - UMR 7266, Avenue Michel Crépeau, 17 042 La Rochelle, France
| | - J Garric
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, 69616 Villeurbanne, Cedex, France.
| |
Collapse
|
194
|
Antonelli M, Kushner I. It's time to redefine inflammation. FASEB J 2017; 31:1787-1791. [PMID: 28179421 DOI: 10.1096/fj.201601326r] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Inflammation has been defined for many years as the response to tissue injury and infection. We are now forced to reconsider this definition by the avalanche of reports that molecules and cells associated with inflammation are activated or expressed in high concentration in a large variety of states in the absence of tissue injury or infection. Modest increases in concentration of C-reactive protein, a circulating marker of inflammation, have been reported to be associated with an astounding number of conditions and lifestyles felt to be associated with poor health; these conditions represent or reflect minor metabolic stresses. In recent years we have learned that inflammation is triggered by sentinel cells that monitor for tissue stress and malfunction-deviations from optimal homeostasis-and that molecules that participate in the inflammatory process play a role in restoring normal homeostasis. Accordingly, we suggest that inflammation be redefined as the innate immune response to potentially harmful stimuli such as pathogens, injury, and metabolic stress.-Antonelli, M., Kushner, I. It's time to redefine inflammation.
Collapse
Affiliation(s)
- Maria Antonelli
- Division of Rheumatology, Case Western Reserve University at MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Irving Kushner
- Division of Rheumatology, Case Western Reserve University at MetroHealth Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
195
|
Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, Ganio EA, Fragiadakis GK, Spitzer MH, Douchet I, Daburon S, Moreau JF, Nolan GP, Blanco P, Déchanet-Merville J, Dekker CL, Jojic V, Kuo CJ, Davis MM, Faustin B. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 2017; 23:174-184. [PMID: 28092664 DOI: 10.1038/nm.4267] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N4-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Department of Systems Biology, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Junlei Chang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Lydia Lartigue
- INSERM U916 VINCO, Institut Bergonié, Bordeaux Cedex, France
| | - Christopher R Bolen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - François Haddad
- Institute of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Brice Gaudilliere
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward A Ganio
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Gabriela K Fragiadakis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Isabelle Douchet
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | - Sophie Daburon
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Patrick Blanco
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| | | | - Cornelia L Dekker
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California, USA
| | - Vladimir Jojic
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin Faustin
- CIRID, UMR CNRS 5164, Université Bordeaux 2, Bordeaux Cedex, France
| |
Collapse
|
196
|
Daschner A. An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS. Front Immunol 2017; 7:672. [PMID: 28119688 PMCID: PMC5220099 DOI: 10.3389/fimmu.2016.00672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/20/2016] [Indexed: 01/20/2023] Open
Abstract
Among potential environmental harmful factors, fungi deserve special consideration. Their intrinsic ability to actively germinate or infect host tissues might determine a prominent trigger in host defense mechanisms. With the appearance of fungi in evolutionary history, other organisms had to evolve strategies to recognize and cope with them. Existing controversies around dampness and mold hypersensitivity syndrome (DMHS) can be due to the great variability of clinical symptoms but also of possible eliciting factors associated with mold and dampness. An hypothesis is presented, where an evolutionary analysis of the different response patterns seen in DMHS is able to explain the existing variability of disease patterns. Classical interpretation of immune responses and symptoms are addressed within the field of pathophysiology. The presented evolutionary analysis seeks for the ultimate causes of the vast array of symptoms in DMHS. Symptoms can be interpreted as induced by direct (toxic) actions of spores, mycotoxins, or other fungal metabolites, or on the other side by the host-initiated response, which aims to counterbalance and fight off potentially deleterious effects or fungal infection. Further, individual susceptibility of immune reactions can confer an exaggerated response, and magnified symptoms are then explained in terms of immunopathology. IgE-mediated allergy fits well in this scenario, where individuals with an atopic predisposition suffer from an exaggerated response to mold exposure, but studies addressing why such responses have evolved and if they could be advantageous are scarce. Human history is plenty of plagues and diseases connected with mold exposure, which could explain vulnerability to mold allergy. Likewise, multiorgan symptoms in DMHS are analyzed for its possible adaptive role not only in the defense of an active infection, but also as evolved mechanisms for avoidance of potentially harmful environments in an evolutionary past or present setting.
Collapse
Affiliation(s)
- Alvaro Daschner
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Servicio de Alergia, Madrid, Spain
| |
Collapse
|
197
|
Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. Cell 2016; 167:657-669.e21. [PMID: 27768889 DOI: 10.1016/j.cell.2016.09.025] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
Abstract
Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.
Collapse
|
198
|
Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS, Teixeira L, Thompson B, Dionne MS, Wood W, Reis e Sousa C. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 2016; 5:e19662. [PMID: 27871362 PMCID: PMC5138034 DOI: 10.7554/elife.19662] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Naren Srinivasan
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Oliver Gordon
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Susan Ahrens
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Franz
- Department of Biochemistry, Biomedical Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Safia Deddouche
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - David Phillips
- Genomics-Equipment Park, The Francis Crick Institute, London, United Kingdom
| | - Ali A Yunus
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | | | | | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marc S Dionne
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
199
|
Schaffner W, Gravenstein S, Hopkins RH, Jernigan DB. Reinvigorating Influenza Prevention in US Adults Aged 65 Years and Older. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2016. [DOI: 10.1097/ipc.0000000000000462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
200
|
Graves JL, Reiber C, Thanukos A, Hurtado M, Wolpaw T. Evolutionary Science as a Method to Facilitate Higher Level Thinking and Reasoning in Medical Training. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:358-368. [PMID: 27744353 PMCID: PMC5101907 DOI: 10.1093/emph/eow029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022]
Abstract
Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. To facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus, we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes. Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training.
Collapse
Affiliation(s)
- Joseph L Graves
- Joint School for Nanoscience & Nanoengineering, North Carolina A&T State University & UNC Greensboro, 2907 E. Gate City Blvd, Greensboro, NC
| | - Chris Reiber
- Department of Anthropology, Binghamton University, PO Box 6000, Binghamton, NY 13902-6000
| | - Anna Thanukos
- University of California Museum of Paleontology, 1101 Valley Sciences Building, Berkeley, CA 94720-4780
| | - Magdalena Hurtado
- Department of Anthropology, Arizona State University, Tempe, AZ 85281
| | - Terry Wolpaw
- Penn State Health, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| |
Collapse
|