151
|
Ghorai S, Lin Y, Xia Y, Wink DJ, Lee D. Silver-Catalyzed Annulation of Arynes with Nitriles for Synthesis of Structurally Diverse Quinazolines. Org Lett 2019; 22:626-630. [PMID: 31887054 DOI: 10.1021/acs.orglett.9b04395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sourav Ghorai
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Yongjia Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Donald J. Wink
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
152
|
Secrieru A, O’Neill PM, Cristiano MLS. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules 2019; 25:molecules25010042. [PMID: 31877672 PMCID: PMC6982847 DOI: 10.3390/molecules25010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Pyrazoles are known as versatile scaffolds in organic synthesis and medicinal chemistry, often used as starting materials for the preparation of more complex heterocyclic systems with relevance in the pharmaceutical field. Pyrazoles are also interesting compounds from a structural viewpoint, mainly because they exhibit tautomerism. This phenomenon may influence their reactivity, with possible impact on the synthetic strategies where pyrazoles take part, as well as on the biological activities of targets bearing a pyrazole moiety, since a change in structure translates into changes in properties. Investigations of the structure of pyrazoles that unravel the tautomeric and conformational preferences are therefore of upmost relevance. 3(5)-Aminopyrazoles are largely explored as precursors in the synthesis of condensed heterocyclic systems, namely pyrazolo[1,5-a]pyrimidines. However, the information available in the literature concerning the structure and chemistry of 3(5)-aminopyrazoles is scarce and disperse. We provide a revision of data on the present subject, based on investigations using theoretical and experimental methods, together with the applications of the compounds in synthesis. It is expected that the combined information will contribute to a deeper understanding of structure/reactivity relationships in this class of heterocycles, with a positive impact in the design of synthetic methods, where they take part.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal;
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | | | - Maria Lurdes Santos Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal;
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800-953
| |
Collapse
|
153
|
Tang HJ, Xu YR, Wang XH, Zhao FL, Meng QG. The crystal structure of 5-bromo-2-(1-methyl-1 H-tetrazol-5-yl)pyridine, C 7H 6BrN 5. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C7H6BrN5, orthorhombic, Acam (no. 64; unconventional setting of Cmce formerly known as Cmca), a = 12.3735(8) Å, b = 20.8690(11) Å, c = 6.8385(6) Å, V = 1765.9(2) Å3, Z = 8, R
gt(F) = 0.0471, wR
ref(F
2) = 0.1152, T = 293(2) K.
Collapse
Affiliation(s)
- Hang-Jun Tang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| | - Yang-Rong Xu
- Laboratory of Computer-Aided Drug Design and Discovery , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , P.R. China
| | - Xiao-Hui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| | - Feng-Lan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| | - Qing-Guo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| |
Collapse
|
154
|
Relationship between electronic structures and antiplasmodial activities of xanthone derivatives: a 2D-QSAR approach. Struct Chem 2019. [DOI: 10.1007/s11224-019-01333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
155
|
Abstract
Arylglyoxals are important synthons that have been used in the construction of a diverse spectrum of compounds. The use of multicomponent approaches in organic synthesis due to its environmentally friendly nature is a step forward towards sustainability. This review will offer the reader insightful perspectives on the use of arylglyoxals for the synthesis of various heterocyclic compounds like pyrroles, pyrazoles, furans, imidazoles, indoles, oxazoles, pyridines, quinazolines, pyrans, etc using multicomponent approach.
Collapse
Affiliation(s)
- Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi, New Delhi, India
| |
Collapse
|
156
|
Novel indol-3-yl-thiosemicarbazone derivatives: Obtaining, evaluation of in vitro leishmanicidal activity and ultrastructural studies. Chem Biol Interact 2019; 315:108899. [PMID: 31738906 DOI: 10.1016/j.cbi.2019.108899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Parasitic diseases still represent serious public health problems, since the high and steady emergence of resistant strains is evident. Because parasitic infections are distributed predominantly in developing countries, less toxic, more efficient, safer and more accessible drugs have become desirable in the treatment of the infected population. This is the case of leishmaniasis, an infectious disease caused by a protozoan of the genus Leishmania sp., responsible for triggering pathological processes from the simplest to the most severe forms leading to high rates of morbidity and mortality throughout the world. In the search for new leishmanicidal drugs, the thiosemicarbazones and the indole fragments have been identified as promising structures for leishmanicidal activity. The present study proposes the synthesis and structural characterization of new indole-thiosemicarbazone derivatives (2a-j), in addition to performing in vitro evaluations through cytotoxicity assays using macrophages (J774) activity against forms of Leishmania infantum and Leishmania amazonensis promastigote as well as ultrastructural analyzes in promastigotes of L. infantum. Results show that the indole-thiosemicarbazone derivatives were obtained with yield values varying from 32.09 to 94.64%. In the evaluation of cytotoxicity, the indole-thiosemicarbazone compounds presented CC50 values between 53.23 and 357.97 μM. Concerning the evaluation against L. amazonensis promastigote forms, IC50 values ranged between 12.31 and > 481.52 μM, while the activity against L. infantum promastigotes obtained IC50 values between 4.36 and 23.35 μM. The compounds 2d and 2i tested against L. infantum were the most promising in the series, as they showed the lowest IC50 values: 5.60 and 4.36 respectively. The parasites treated with the compounds 2d and 2i showed several structural alterations, such as shrinkage of the cell body, shortening and loss of the flagellum, intense mitochondrial swelling and vacuolization of the cytoplasm leading the parasite to cellular unviability. Therefore, the indole-thiosemicarbazone compounds are promising because they yield considerable synthesis, have low cytotoxicity to mammalian cells and act as leishmanicidal agents.
Collapse
|
157
|
C. S. Pinheiro L, M. Feitosa L, O. Gandi M, F. Silveira F, Boechat N. The Development of Novel Compounds Against Malaria: Quinolines, Triazolpyridines, Pyrazolopyridines and Pyrazolopyrimidines. Molecules 2019; 24:molecules24224095. [PMID: 31766184 PMCID: PMC6891514 DOI: 10.3390/molecules24224095] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
Based on medicinal chemistry tools, new compounds for malaria treatment were designed. The scaffolds of the drugs used to treat malaria, such as chloroquine, primaquine, amodiaquine, mefloquine and sulfadoxine, were used as inspiration. We demonstrated the importance of quinoline and non-quinoline derivatives in vitro with activity against the W2 chloroquine-resistant (CQR) Plasmodium falciparum clone strain and in vivo against Plasmodium berghei-infected mouse model. Among the quinoline derivatives, new hybrids between chloroquine and sulfadoxine were designed, which gave rise to an important prototype that was more active than both chloroquine and sulfadoxine. Hybrids between chloroquine-atorvastatin and primaquine-atorvastatin were also synthesized and shown to be more potent than the parent drugs alone. Additionally, among the quinoline derivatives, new mefloquine derivatives were synthesized. Among the non-quinoline derivatives, we obtained excellent results with the triazolopyrimidine nucleus, which gave us prototype I that inspired the synthesis of new heterocycles. The pyrazolopyrimidine derivatives stood out as non-quinoline derivatives that are potent inhibitors of the P. falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. We also examined the pyrazolopyridine and pyrazolopyrimidine nuclei.
Collapse
Affiliation(s)
- Luiz C. S. Pinheiro
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
| | - Lívia M. Feitosa
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Marilia O. Gandi
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Flávia F. Silveira
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Química, PGQu Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Nubia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
- Programa de Pós-Graduação em Química, PGQu Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
- Correspondence: ; Tel.: +55-21-3977-2464
| |
Collapse
|
158
|
Ushakov PY, Khatuntseva EA, Nelyubina YV, Tabolin AA, Ioffe SL, Sukhorukov AY. Synthesis of Isoxazolines from Nitroalkanes
via
a [4+1]‐Annulation Strategy. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pavel Yu. Ushakov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University 119991 Leninskie gory, 1, str. 3 Moscow Russian Federation
| | - Elizaveta A. Khatuntseva
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds 119991 Vavilov str. 28 Moscow Russian Federation
| | - Andrey A. Tabolin
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
| | - Sema L. Ioffe
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
| | - Alexey Yu. Sukhorukov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
- D. Mendeleev University of Chemical Technology of Russia 125047 Miusskaya sq., 9 Moscow Russian Federation
- Plekhanov Russian University of Economics 117997 Stremyanny per. 36 Moscow Russian Federation
| |
Collapse
|
159
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
160
|
Khan MM, Shareef S, Saigal, Sahoo SC. A catalyst- and solvent-free protocol for the sustainable synthesis of fused 4 H-pyran derivatives. RSC Adv 2019; 9:26393-26401. [PMID: 35531009 PMCID: PMC9070424 DOI: 10.1039/c9ra04370e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
An efficient and cost-effective method was developed for the synthesis of two kinds of fused 4H-pyran derivatives, namely, dihydropyrano[2,3-c]pyrazole 4 and pyrano[3,2-c]chromenone 6. The reactions of 3-methyl-1-phenyl-5-pyrazolone/4-hydroxycoumarin with aromatic aldehydes and (E)-N-methyl-1-(methylthio)-2-nitroethenamine (NMSM), involving the Knoevenagel, Michael-addition, O-cyclization and elimination reactions under thermal heating, afforded the desired products. The synthesized compounds were characterized by standard spectroscopic techniques. Further, the structures of pyrazole-fused 4H-pyran 4a and coumarin-fused 4H-pyran 6b were confirmed by single-crystal XRD analysis. The short reaction time, good-to-excellent yields, elimination of the use of expensive, metallic and toxic catalysts or hazardous organic solvents and high atom-economy are some noteworthy features of this protocol. A practical and greener method for the synthesis of highly functionalized pyrazole and coumarin fused 4H-pyran derivatives by exploring NMSM under neat conditions at 110 °C is described.![]()
Collapse
Affiliation(s)
- Md Musawwer Khan
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | | | - Saigal
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - Subash C Sahoo
- Department of Chemistry, Center of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| |
Collapse
|
161
|
Zhu JN, Wang WK, Zhu Y, Hu YQ, Zhao SY. Cascade Functionalization of C(sp3)–Br/C(sp2)–H Bonds: Access to Fused Benzo[e]isoindole-1,3,5-trione via Visible-Light-Induced Reductive Radical Relay Strategy. Org Lett 2019; 21:6270-6274. [DOI: 10.1021/acs.orglett.9b02153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yuan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yin-Qiu Hu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
162
|
Guimarães DSM, de Sousa Luz LS, do Nascimento SB, Silva LR, de Miranda Martins NR, de Almeida HG, de Souza Reis V, Maluf SEC, Budu A, Marinho JA, Abramo C, Carmona AK, da Silva MG, da Silva GR, Kemmer VM, Butera AP, Ribeiro-Viana RM, Gazarini ML, Júnior CSN, Guimarães L, Dos Santos FV, de Castro WV, Viana GHR, de Brito CFA, de Pilla Varotti F. Improvement of antimalarial activity of a 3-alkylpiridine alkaloid analog by replacing the pyridine ring to a thiazole-containing heterocycle: Mode of action, mutagenicity profile, and Caco-2 cell-based permeability. Eur J Pharm Sci 2019; 138:105015. [PMID: 31344442 DOI: 10.1016/j.ejps.2019.105015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022]
Abstract
The development of new antimalarial drugs is urgent to overcome the spread of resistance to the current treatment. Herein we synthesized the compound 3, a hit-to‑lead optimization of a thiazole based on the most promising 3-alkylpyridine marine alkaloid analog. Compound 3 was tested against Plasmodium falciparum and has shown to be more potent than its precursor (IC50 values of 1.55 and 14.7 μM, respectively), with higher selectivity index (74.7) for noncancerous human cell line. This compound was not mutagenic and showed genotoxicity only at concentrations four-fold higher than its IC50. Compound 3 was tested in vivo against Plasmodium berghei NK65 strain and inhibited the development of parasite at 50 mg/kg. In silico and UV-vis approaches determined that compound 3 acts impairing hemozoin crystallization and confocal microscopy experiments corroborate these findings as the compound was capable of diminishing food vacuole acidity. The assay of uptake using human intestinal Caco-2 cell line showed that compound 3 is absorbed similarly to chloroquine, a standard antimalarial agent. Therefore, we present here compound 3 as a potent new lead antimalarial compound.
Collapse
Affiliation(s)
| | - Letícia Silveira de Sousa Luz
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Sara Batista do Nascimento
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Lorena Rabelo Silva
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Natália Rezende de Miranda Martins
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil
| | - Heloísa Gonçalves de Almeida
- Universidade Federal de São João del-Rei, Campus Dom Bosco, 74 Dom Helvécio Square, São João del Rei, MG 36301-160, Brazil
| | - Vitória de Souza Reis
- Universidade Federal de São João del-Rei, Campus Dom Bosco, 74 Dom Helvécio Square, São João del Rei, MG 36301-160, Brazil
| | - Sarah El Chamy Maluf
- Universidade Federal de São Paulo, Departamento de Biofísica, 669 Pedro de Toledo Street, São Paulo, SP 04039-032, Brazil
| | - Alexandre Budu
- Universidade Federal de São Paulo, Departamento de Biofísica, 669 Pedro de Toledo Street, São Paulo, SP 04039-032, Brazil.
| | - Juliane Aparecida Marinho
- Núcleo de Pesquisas em Parasitologia, Universidade Federal de Juiz de Fora, José Lourenço Kelmer Street, Juiz de Fora, MG 36036-900, Brazil
| | - Clarice Abramo
- Núcleo de Pesquisas em Parasitologia, Universidade Federal de Juiz de Fora, José Lourenço Kelmer Street, Juiz de Fora, MG 36036-900, Brazil.
| | - Adriana Karaoglanovic Carmona
- Universidade Federal de São Paulo, Departamento de Biofísica, 669 Pedro de Toledo Street, São Paulo, SP 04039-032, Brazil.
| | - Marina Goulart da Silva
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | - Gisele Rodrigues da Silva
- Universidade Federal de Ouro Preto, Departamento de Farmácia, Campus Morro do Cruzeiro, w/n, Bauxita, Ouro Preto, MG 35400-000, Brazil.
| | - Victor Matheus Kemmer
- Universidade Estadual de Londrina, Departamento de Química, Londrina, PR 86057-970, Brazil
| | - Anna Paola Butera
- Universidade Estadual de Londrina, Departamento de Química, Londrina, PR 86057-970, Brazil.
| | - Renato Márcio Ribeiro-Viana
- Universidade Tecnológica Federal do Paraná, Departamento Acadêmico de Química (DAQUI), Londrina, PR, 6036-370, Brazil.
| | - Marcos Leoni Gazarini
- Universidade Federal de São Paulo, Departamento de Biociências, 136 Silva Jardim Street, Santos, SP 11015-020, Brazil.
| | | | - Luciana Guimarães
- Universidade Federal de São João del-Rei, Campus Dom Bosco, 74 Dom Helvécio Square, São João del Rei, MG 36301-160, Brazil
| | - Fabio Vieira Dos Santos
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | - Whocely Victor de Castro
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | - Gustavo Henrique Ribeiro Viana
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| | | | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei - Campus Centro Oeste, 400 Sebastião Gonçalves Coelho Street, Divinópolis, MG 35501-296, Brazil.
| |
Collapse
|
163
|
Tiwari MK, Yadav DK, Chaudhary S. Recent Developments in Natural Product Inspired Synthetic 1,2,4- Trioxolanes (Ozonides): An Unusual Entry into Antimalarial Chemotherapy. Curr Top Med Chem 2019; 19:831-846. [DOI: 10.2174/1568026619666190412104042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
Abstract
According to WHO “World health statistics 2018”, malaria alongside acute respiratory infections
and diarrhoea, is one of the major infectious disease causing children’s death in between the
age of 1-5 years. Similarly, according to another report (2016) malaria accounts for approximately
3.14% of the total disease burden worldwide. Although malaria has been widely eradicated in many
parts of the world, the global number of cases continues to rise due to the rapid spread of malaria parasites
that are resistant to antimalarial drugs. Artemisinin (8), a major breakthrough in the antimalarial
chemotherapy was isolated from the plant Artemisia annua in 1972. Its semi-synthetic derivatives such
as artemether (9), arteether (10), and artesunic acid (11) are quite effective against multi-drug resistant
malaria strains and are currently the drug of choice for the treatment of malaria. Inspite of exhibiting
excellent antimalarial activity by artemisinin (8) and its derivatives, parallel programmes for the discovery
of novel natural and synthetic peroxides were also the area of investigation of medicinal chemists
all over the world. In these continuous efforts of extensive research, natural ozonide (1,2,4-
trioxolane) was isolated from Adiantum monochlamys (Pteridaceae) and Oleandra wallichii (Davalliaceae)
in 1976. These naturally occurring stable ozonides inspired chemists to investigate this novel
class for antimalarial chemotherapy. The first identification of unusually stable synthetic antimalarial
1,2,4-trioxolanes was reported in 1992. Thus, an unusual entry of ozonides in the field of antimalarial
chemotherapy had occurred in the early nineties. This review highlights the recent advancements and
historical developments observed during the past 42 years (1976-2018) focusing mainly on important
ventures of the antimalarial 1,2,4-trioxolanes (ozonides).
Collapse
Affiliation(s)
- Mohit K. Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur-302017, India
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon city, 406-799, Korea
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur-302017, India
| |
Collapse
|
164
|
Zhang J, Wang S, Ba Y, Xu Z. Tetrazole hybrids with potential anticancer activity. Eur J Med Chem 2019; 178:341-351. [PMID: 31200236 DOI: 10.1016/j.ejmech.2019.05.071] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Cancer is one of the main causes of death throughout the world. The anticancer agents are indispensable for the treatment of various cancers, but most of them currently on the market are not specific, resulting in series of side effects of chemotherapy. Moreover, the emergency of drug-resistance towards cancers has already increased up to alarming level in the recent decades. Therefore, it's imperative to develop novel anticancer candidates with excellent activity against both drug-susceptible and drug-resistant cancers, and low toxicity as well. Tetrazole is the bioisoster of carboxylic acid, and its derivatives demonstrated promising anticancer activity. Hybridization of tetrazole with other anticancer pharmacophores may provide novel candidates with anticancer potency. The present review described the anticancer activity of tetrazole hybrids, and the structure-activity relationship (SAR) is also discussed to provide an insight for rational designs of tetrazole anticancer candidates with higher efficiency.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China.
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
165
|
Synthesis of 1H-3-{4-[(3-Dimethylaminopropyl)aminomethyl]phenyl}-2-phenylindole and Evaluation of Its Antiprotozoal Activity. MOLBANK 2019. [DOI: 10.3390/m1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
1H-3-{4-[(3-Dimethylaminopropyl)aminomethyl]phenyl}-2-phenylindole was synthesized via a multi-step pathway starting from 2-iodoaniline. Structure characterization of this new indole compound was achieved by 1H-NMR, 13C-NMR and ESI-MS spectral analysis. The title compound was screened in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Biological results showed antiparasitic activity with IC50 values in the μM range.
Collapse
|
166
|
Wang SQ, Wang YF, Xu Z. Tetrazole hybrids and their antifungal activities. Eur J Med Chem 2019; 170:225-234. [DOI: 10.1016/j.ejmech.2019.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|
167
|
Luthra T, Nayak AK, Bose S, Chakrabarti S, Gupta A, Sen S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur J Med Chem 2019; 168:11-27. [DOI: 10.1016/j.ejmech.2019.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/27/2023]
|
168
|
Rani A, Anand A, Kumar K, Kumar V. Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin Drug Discov 2019; 14:249-288. [DOI: 10.1080/17460441.2019.1573812] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Kewal Kumar
- Department of Applied Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
169
|
Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem 2019; 166:206-223. [PMID: 30711831 DOI: 10.1016/j.ejmech.2019.01.047] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
Malaria, caused by protozoan parasites of the genus Plasmodium especially by the most prevalent parasite Plasmodium falciparum, represents one of the most devastating and common infectious disease globally. Nearly half of the world population is under the risk of being infected, and more than 200 million new clinical cases with around half a million deaths occur annually. Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance, so it's imperative to develop new antimalarials with great potency against both drug-susceptible and drug-resistant malaria. Triazoles, bearing a five-membered heterocyclic ring with three nitrogen atoms, exhibit promising in vitro antiplasmodial and in vivo antimalarial activities. Moreover, several triazole-based drugs have already used in clinics for the treatment of various diseases, demonstrating the excellent pharmaceutical profiles. Therefore, triazole derivatives have the potential for clinical deployment in the control and eradication of malaria. This review covers the recent advances of triazole derivatives especially triazole hybrids as potential antimalarials. The structure-activity relationship is also discussed to provide an insight for rational designs of more efficient antimalarial candidates.
Collapse
|
170
|
Saigal S, Khan S, Rahman H, Shafiullah S, Khan MM. NitroketeneN,S-acetals: synergistic building blocks for the synthesis of heterocycles. RSC Adv 2019; 9:14477-14502. [PMID: 35519324 PMCID: PMC9064196 DOI: 10.1039/c9ra00630c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 01/28/2023] Open
Abstract
The development of novel heterocyclic compounds from simple and easily accessible starting components is of significant importance in medicinal chemistry. Due to the presence of active chromophores and potent pharmacological activities, nitroketene N,S-acetals have emerged as a fascinating building block in organic synthesis. The synergistic skeleton of these acetals and the presence of electron-donating as well as electron-withdrawing groups lead to the generation of distinctive structural features and are highly useful for building diverse heterocyclic rings. This review highlights the preparation of different nitroketene N,S-acetals and their applications in the synthesis of diverse heterocyclic compounds. This review highlights the synthesis of several kinds of nitroketene N,S-acetals and their applications in the synthesis of different kinds of heterocyclic compounds.![]()
Collapse
Affiliation(s)
- Saigal Saigal
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Sarfaraz Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Habibur Rahman
- Department of General Studies
- Jubail Industrial College
- Jubail
- Saudi Arabia
| | | | | |
Collapse
|
171
|
Eddahmi M, Moura NMM, Bouissane L, Gamouh A, Faustino MAF, Cavaleiro JAS, Paz FAA, Mendes RF, Lodeiro C, Santos SM, Neves MGPMS, Rakib EM. New nitroindazolylacetonitriles: efficient synthetic accessviavicarious nucleophilic substitution and tautomeric switching mediated by anions. NEW J CHEM 2019. [DOI: 10.1039/c9nj02807b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient synthesis of newN-methylnitroindazolylacetonitriles and their ability to switch between tautomeric forms in the presence of anionic species.
Collapse
|
172
|
Hu G, Wang C, Xin X, Li S, Li Z, Zhao Y, Gong P. Design, synthesis and biological evaluation of novel 2,4-diaminopyrimidine derivatives as potent antitumor agents. NEW J CHEM 2019. [DOI: 10.1039/c9nj02154j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two series of 2-aminopyrimidine derivatives possessing triazolopiperazine or 1,4,8-triazaspiro[4.5]decan-3-one scaffolds were designed, synthesized and evaluated for their biological activity.
Collapse
Affiliation(s)
- Gang Hu
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Chu Wang
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xin Xin
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Shuaikang Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zefei Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
173
|
Kumari A, Karnatak M, Singh D, Shankar R, Jat JL, Sharma S, Yadav D, Shrivastava R, Verma VP. Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem 2018; 163:804-829. [PMID: 30579122 DOI: 10.1016/j.ejmech.2018.12.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 11/17/2022]
Abstract
Human malaria, one of the most striking, reemerging infectious diseases, is caused by several types of Plasmodium parasites. Whilst advances have been made in lowering the numbers of cases and deaths, it is clear that a strategy based solely on disease control year on year, without reducing transmission and ultimately eradicating the parasite, is unsustainable. Natural products have served as a template for the design and development of antimalarial drugs currently in the clinic or in the development phase. Artemisinin combine potent, rapid antimalarial activity with a wide therapeutic index and an absence of clinically important resistance. The alkylating ability of artemisinin and its semi-synthetic analogues toward heme related to their antimalarial efficacy are underlined. Although impressive results have already been achieved in malaria research, more systematization and concentration of efforts are required if real breakthroughs are to be made. This review will concisely cover the clinical, preclinical antimalarial and current updates in artemisinin based antimalarial drugs. Diverse classes of semi-synthetic analogs of artemisinin reported in the last decade have also been extensively studied. The experience gained in this respect is discussed.
Collapse
Affiliation(s)
- Akriti Kumari
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Davinder Singh
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Ravi Shankar
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Jawahar L Jat
- Department of Applied Chemistry, BabaSaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar Raebareli Road, Lucknow, 226025, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Dinesh Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur, 303007, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India.
| |
Collapse
|
174
|
Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur J Med Chem 2018; 163:404-412. [PMID: 30530192 DOI: 10.1016/j.ejmech.2018.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
Tetrazole, a bioisostere of the carboxylic acid group, can replace the carboxyl group in drugs to increase the lipophilicity, bioavailability and reduce side effects. Tetrazole derivatives possess a broad-spectrum of biological properties including anti-tubercular and anti-malarial activities, and some tetrazole-based compounds have already been used in clinics for the treatment of various diseases. Therefore, tetrazole is an important pharmacophore in the development of new drugs. This review covers the recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents, and the structure-activity relationship is also discussed for the further rational design of tetrazole derivatives.
Collapse
|