151
|
Kumar S, Mukherjee A, Dutta J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Synthesis, structure, and properties of N-2-hydroxylpropyl-3-trimethylammonium-O-carboxymethyl chitosan derivatives. Int J Biol Macromol 2020; 144:568-577. [DOI: 10.1016/j.ijbiomac.2019.12.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 12/14/2019] [Indexed: 01/10/2023]
|
153
|
Yadav M, Behera K, Chang YH, Chiu FC. Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging. Polymers (Basel) 2020; 12:E202. [PMID: 31941093 PMCID: PMC7023618 DOI: 10.3390/polym12010202] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, green composite films based on cellulose nanocrystal/chitosan (CNC/CS) were fabricated by solution casting. FTIR, XRD, SEM, and TEM characterizations were conducted to determine the structure and morphology of the prepared films. The addition of only 4 wt.% CNC in the CS film improved the tensile strength and Young's modulus by up to 39% and 78%, respectively. Depending on CNC content, the moisture absorption decreased by 34.1-24.2% and the water solubility decreased by 35.7-26.5% for the composite films compared with neat CS film. The water vapor permeation decreased from 3.83 × 10-11 to 2.41 × 10-11 gm-1 s-1Pa-1 in the CS-based films loaded with (0-8 wt.%) CNC. The water and UV barrier properties of the composite films showed better performance than those of neat CS film. Results suggested that CNC/CS nanocomposite films can be used as a sustainable packaging material in the food industry.
Collapse
Affiliation(s)
- Mithilesh Yadav
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Chemistry, Prof. Rajendra Singh Institute of Physical Sciences for Study and Research, V.B.S Purvanchal University Jaunpur, Siddikpur U.P. 222002, India
| | - Kartik Behera
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan;
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|
154
|
Du Z, Liu J, Zhang H, Chen Y, Wu X, Zhang Y, Li X, Zhang T, Xiao H, Liu B. l-Arginine/l-lysine functionalized chitosan–casein core–shell and pH-responsive nanoparticles: fabrication, characterization and bioavailability enhancement of hydrophobic and hydrophilic bioactive compounds. Food Funct 2020; 11:4638-4647. [DOI: 10.1039/d0fo00005a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study developed novel oral delivery systems for the encapsulation, protection, and controlled release of hydrophobic and hydrophilic bioactive compounds based on l-arginine- or l-lysine-functionalized chitosan–casein nanoparticles.
Collapse
|
155
|
Wu C, Li Y, Sun J, Lu Y, Tong C, Wang L, Yan Z, Pang J. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105245] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
156
|
Using cellulose nanofibers to reinforce polysaccharide films: Blending vs layer-by-layer casting. Carbohydr Polym 2020; 227:115264. [DOI: 10.1016/j.carbpol.2019.115264] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
|
157
|
Kwak HW, Lee H, Park S, Lee ME, Jin HJ. Chemical and physical reinforcement of hydrophilic gelatin film with di-aldehyde nanocellulose. Int J Biol Macromol 2019; 146:332-342. [PMID: 31899239 DOI: 10.1016/j.ijbiomac.2019.12.254] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/28/2019] [Accepted: 12/28/2019] [Indexed: 12/19/2022]
Abstract
Gelatin is a representative hydrophilic protein material with remarkable biocompatibility and biodegradability. From the aspect of materials processing, gelatin also has the advantage that its entire fabrication process can be performed in an aqueous solution. However, practical application of various gelatin materials-in particular gelatin films-has thus far been limited because of their weak mechanical properties and vulnerability under aqueous environments. To overcome these disadvantages, both physical reinforcement approaches and chemical cross-linking agents have been tested. However, little research has been done to make these two roles work at the same time. In this study, cellulose nanocrystals containing aldehyde groups were prepared via a periodate oxidation process and used for cross-linkable reinforcement of gelatin-based bio-composite films. The results revealed that the di-aldehyde cellulose nanocrystal (D-CNC) could react and covalently cross-link with the amine group of the gelatin molecules via Schiff base formation and compared with neat CNC. The gelatin bio-composite film reinforced with the prepared D-CNC exhibited excellent tensile properties and water resistance, and its mechanical and hydrophilic properties could be easily controlled by adjusting the D-CNC content and was greater than addition of same amount in CNC. Therefore, D-CNC will facilitate the widespread use of existing water-soluble polymers, especially natural hydrophilic proteins and can be used in conventional application fields such as the food, pharmaceutical, and biomedical industries.
Collapse
Affiliation(s)
- Hyo Won Kwak
- Department of Forest Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| | - Hohyun Lee
- Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Subong Park
- Fisheries Engineering Division, National Institute of Fisheries Science, 216, Gijang-haeanro, Gijang-eup, Gijang-gun, Busan 46083, South Korea
| | - Min Eui Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, South Korea
| | - Hyoung-Joon Jin
- Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| |
Collapse
|
158
|
Jamróz E, Kopel P, Tkaczewska J, Dordevic D, Jancikova S, Kulawik P, Milosavljevic V, Dolezelikova K, Smerkova K, Svec P, Adam V. Nanocomposite Furcellaran Films-the Influence of Nanofillers on Functional Properties of Furcellaran Films and Effect on Linseed Oil Preservation. Polymers (Basel) 2019; 11:E2046. [PMID: 31835441 PMCID: PMC6960603 DOI: 10.3390/polym11122046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Nanocomposite films that were based on furcellaran (FUR) and nanofillers (carbon quantum dots (CQDs), maghemite nanoparticles (MAN), and graphene oxide (GO)) were obtained by the casting method. The microstructure, as well as the structural, physical, mechanical, antimicrobial, and antioxidant properties of the films was investigated. The incorporation of MAN and GO remarkably increased the tensile strength of furcellaran films. However, the water content, solubility, and elongation at break were significantly reduced by the addition of the nanofillers. Moreover, furcellaran films containing the nanofillers exhibited potent free radical scavenging ability. FUR films with CQDs showed an inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli. The nanocomposite films were used to cover transparent glass containers to study the potential UV-blocking properties in an oil oxidation test and compare with tinted glass. The samples were irradiated for 30 min. with UV-B and then analyzed for oxidation markers (peroxide value, free fatty acids, malondialdehyde content, and degradation of carotenoids). The test showed that covering the transparent glass with MAN films was as effective in inhibiting the oxidation as the use of tinted glass, while the GO and CQDs films did not inhibit oxidation. It can be concluded that the active nanocomposite films can be used as a desirable material for food packaging.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
- Faculty of Electrical Engineering and Communication, Department of Microelectronics, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka 122 Street, PL-30-149 Cracow, Poland; (J.T.); (P.K.)
| | - Dani Dordevic
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, CZ-612 42 Brno, Czech Republic; (D.D.); (S.J.)
- Department of Technology and Organization of Public Catering, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia
| | - Simona Jancikova
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, CZ-612 42 Brno, Czech Republic; (D.D.); (S.J.)
| | - Piotr Kulawik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka 122 Street, PL-30-149 Cracow, Poland; (J.T.); (P.K.)
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
159
|
Bandyopadhyay S, Saha N, Brodnjak UV, Sáha P. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
160
|
Wahid F, Wang FP, Xie YY, Chu LQ, Jia SR, Duan YX, Zhang L, Zhong C. Reusable ternary PVA films containing bacterial cellulose fibers and ε-polylysine with improved mechanical and antibacterial properties. Colloids Surf B Biointerfaces 2019; 183:110486. [DOI: 10.1016/j.colsurfb.2019.110486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022]
|
161
|
Qin Y, Liu Y, Yuan L, Yong H, Liu J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
162
|
Sun J, Du Y, Ma J, Li Y, Wang L, Lu Y, Zou J, Pang J, Wu C. Transparent bionanocomposite films based on konjac glucomannan, chitosan, and TEMPO-oxidized chitin nanocrystals with enhanced mechanical and barrier properties. Int J Biol Macromol 2019; 138:866-873. [DOI: 10.1016/j.ijbiomac.2019.07.170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022]
|
163
|
Synthesis and characterization of modified chitosan membranes for applications in electrochemical capacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
164
|
Wu C, Sun J, Zheng P, Kang X, Chen M, Li Y, Ge Y, Hu Y, Pang J. Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydr Polym 2019; 222:115006. [DOI: 10.1016/j.carbpol.2019.115006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
|
165
|
Wu C, Sun J, Chen M, Ge Y, Ma J, Hu Y, Pang J, Yan Z. Effect of oxidized chitin nanocrystals and curcumin into chitosan films for seafood freshness monitoring. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
166
|
Azeredo HMC, Otoni CG, Corrêa DS, Assis OBG, Moura MR, Mattoso LHC. Nanostructured Antimicrobials in Food Packaging—Recent Advances. Biotechnol J 2019; 14:e1900068. [DOI: 10.1002/biot.201900068] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Henriette M. C. Azeredo
- Embrapa Agroindústria Tropical Fortaleza Ceará Brazil
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| | - Caio G. Otoni
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
- Institute of ChemistryUniversity of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Daniel S. Corrêa
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| | - Odílio B. G. Assis
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| | - Márcia R. Moura
- Department of Physics and ChemistryFaculty of EngineeringSão Paulo State University Júlio de Mesquita Filho (UNESP) Ilha Solteira São Paulo Brazil
| | - Luiz Henrique C. Mattoso
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA)Embrapa Instrumentação São Carlos São Paulo Brazil
| |
Collapse
|
167
|
Mosconi G, Stragliotto MF, Slenk W, Valenti LE, Giacomelli CE, Strumia MC, Gomez CG. Original antifouling strategy: Polypropylene films modified with chitosan‐coated silver nanoparticles. J Appl Polym Sci 2019. [DOI: 10.1002/app.48448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giuliana Mosconi
- Departamento de Química OrgánicaUniversidad Nacional de Córdoba, Facultad de Ciencias Químicas (5000) Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) (5000) Córdoba Argentina
| | - María Fernanda Stragliotto
- Departamento de Química OrgánicaUniversidad Nacional de Córdoba, Facultad de Ciencias Químicas (5000) Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) (5000) Córdoba Argentina
| | - Walter Slenk
- Departamento de Química OrgánicaUniversidad Nacional de Córdoba, Facultad de Ciencias Químicas (5000) Córdoba Argentina
| | - Laura E. Valenti
- Departamento de FisicoquímicaUniversidad Nacional de Córdoba, Facultad de Ciencias Químicas (5000) Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Fisicoquímica de Córdoba (INFIQC) (5000) Córdoba Argentina
| | - Carla E. Giacomelli
- Departamento de FisicoquímicaUniversidad Nacional de Córdoba, Facultad de Ciencias Químicas (5000) Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Fisicoquímica de Córdoba (INFIQC) (5000) Córdoba Argentina
| | - Miriam C. Strumia
- Departamento de Química OrgánicaUniversidad Nacional de Córdoba, Facultad de Ciencias Químicas (5000) Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) (5000) Córdoba Argentina
| | - Cesar G. Gomez
- Departamento de Química OrgánicaUniversidad Nacional de Córdoba, Facultad de Ciencias Químicas (5000) Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) (5000) Córdoba Argentina
| |
Collapse
|
168
|
Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: Morphological, thermal, antimicrobial and release properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110115. [PMID: 31546384 DOI: 10.1016/j.msec.2019.110115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
This research has revealed the promising, green and one-pot approach for fabrication of antimicrobial nanohybrids based on organic nanofibers including cellulose (CNF), chitosan (CHNF), and lignocellulose (LCNF) nanofibers impregnated with silver nanoparticles (AgNPs). Lythrum salicaria extract was used as a reducing agent as well as a capping agent. Formation of the spherical AgNPs ranging between 45 and 65 nm was proved by UV-Vis spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Biomaterials supported AgNPs were characterized and compared for their morphological, thermal, release, and antimicrobial properties. The considerable influence of the phenolic compounds of L.salicaria extract on the synthesis and uniform distribution of AgNPs on nanofibers was confirmed by field emission electron microscopy (FE-SEM). Energy dispersive X-ray spectroscopy (EDX) and ICP-OES analysis of nanohybrids, reflected a high loading capacity for LCNF and also CHNF in contrast to CNF. The release of AgNPs from LCNF substrate was lower than other nanofibers but the order of antimicrobial activity of nanohybrids against E.coli and S.aureus was as this: CHNF ˃ LCNF ˃ CNF. Generally, this research suggested that the efficiency of CHNF and LCNF as immobilizing support of AgNPs is higher than CNF and L.salicaria extract was proposed as a high potential reducing and capping agent.
Collapse
|
169
|
Xie D, Liu Q, Xu D, Ren D, Wu X. Graphene oxide–polyoctahedral silsesquioxane–chitosan composite films with improved mechanical and water‐vapor‐transport properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.47748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dongmei Xie
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
| | - Qin Liu
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
| | - Dan Xu
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
- College of Food Science, Food Storage and Logistics Research CenterSouthwest University Chongqing 400700 People's Republic of China
| | - Dan Ren
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
- College of Food Science, Food Storage and Logistics Research CenterSouthwest University Chongqing 400700 People's Republic of China
| | - Xiyu Wu
- College of Food ScienceSouthwest University Chongqing 400700 People's Republic of China
- College of Food Science, Food Storage and Logistics Research CenterSouthwest University Chongqing 400700 People's Republic of China
| |
Collapse
|
170
|
Cazón P, Vázquez M, Velazquez G. Composite Films with UV-Barrier Properties of Bacterial Cellulose with Glycerol and Poly(vinyl alcohol): Puncture Properties, Solubility, and Swelling Degree. Biomacromolecules 2019; 20:3115-3125. [PMID: 31274284 DOI: 10.1021/acs.biomac.9b00704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to develop composite films based on bacterial cellulose, glycerol, and poly(vinyl alcohol) with improved optical and mechanical properties and good UV-barrier property. The interaction among the compounds was analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry, and differential scanning calorimetry. The mechanical properties (toughness, burst strength, and distance to burst), solubility, water adsorption, and light barrier properties of the composite films were evaluated. Polynomial models obtained allowed us to predict the behavior of these properties. Poly(vinyl alcohol) showed a reinforcing effect on the bacterial cellulose matrix, while glycerol showed a noticeable plasticizing behavior. The bacterial cellulose-based composites showed toughness values ranging from 0.22 to 2.60 MJ/m3. The burst strength values obtained ranged between 43.74 and 2105.52 g. The distance to burst ranged from 0.39 to 4.94 mm. The film solubility on water ranged from 9.37 to 31.65%, and the water retention ranged from 78.26 to 364.78%. Glycerol decreased the transmittance in the UV region, improving the UV-barrier properties of the films, while poly(vinyl alcohol) improved the transparency and opacity values of the samples. The transmittance in the UV regions (A, B, and C) ranged from 1 to 48.51%, increasing with the poly(vinyl alcohol) concentration.
Collapse
Affiliation(s)
- Patricia Cazón
- Instituto Politécnico Nacional , CICATA unidad Querétaro , Cerro Blanco No. 141. Colinas del Cimatario , Querétaro 76090 , Mexico.,Department of Analytical Chemistry, Faculty of Veterinary , University of Santiago de Compostela , 27002 Lugo , Spain
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary , University of Santiago de Compostela , 27002 Lugo , Spain
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional , CICATA unidad Querétaro , Cerro Blanco No. 141. Colinas del Cimatario , Querétaro 76090 , Mexico
| |
Collapse
|
171
|
Wu C, Sun J, Lu Y, Wu T, Pang J, Hu Y. In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int J Biol Macromol 2019; 132:385-392. [DOI: 10.1016/j.ijbiomac.2019.03.133] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
|
172
|
Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122409] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Worldwide, millions of tons of crustaceans are produced every year and consumed as protein-rich seafood. However, the shells of the crustaceans and other non-edible parts constituting about half of the body mass are usually discarded as waste. These discarded crustacean shells are a prominent source of polysaccharide (chitin) and protein. Chitosan is a de-acetylated form of chitin obtained from the crustacean waste that has attracted attention for applications in food, biomedical, and paint industries due to its characteristic properties, like solubility in weak acids, film-forming ability, pH-sensitivity, biodegradability, and biocompatibility. We present an overview of the application of chitosan in composite coatings for applications in food, paint, and water treatment. In the context of food industries, the main focus is on fabrication and application of chitosan-based composite films and coatings for prolonging the post-harvest life of fruits and vegetables, whereas anti-corrosion and self-healing properties are the main properties considered for antifouling applications in paints in this review.
Collapse
|
173
|
Guo Y, Chen X, Yang F, Wang T, Ni M, Chen Y, Yang F, Huang D, Fu C, Wang S. Preparation and Characterization of Chitosan-Based Ternary Blend Edible Films with Efficient Antimicrobial Activities for Food Packaging Applications. J Food Sci 2019; 84:1411-1419. [PMID: 31132162 DOI: 10.1111/1750-3841.14650] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
To improve the mechanical and antibacterial properties of chitosan (CS) films, a ternary blend edible film was prepared by incorporating CS, gelatin (GE), and natural cinnamon essential oil (CEo). Scanning electron microscopy (SEM), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy, and X-ray diffraction were performed to evaluate the films. The mechanical properties, light transmission, thermal stability, hydrophilicity, and antibacterial activity of the films were also determined. The results confirmed all of the films exhibited excellent UV protection with low transparency at 600 nm. Compared with the CS films, the ternary composite film (CSGEo film, containing CS, GE, and CEo) had a higher elongation at break but a lower tensile strength. SEM images revealed that all films had smooth surfaces, although some obvious differences between CS and CSGEo films were observed by AFM. Additionally, the incorporation of GE and CEo to the films enhanced their thermal stability and contact angle, but decreased their crystallinity and wettability. The antimicrobial activity results showed that CSGEo films had excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, for which the antibacterial rate exceeded 98%. The minimum inhibitory concentrations of the CSGEo solution against E. coli and S. aureus were both 52.06 µg/mL, and the minimal bactericidal concentrations were 104.12 and 52.06 µg/mL, respectively. These results suggest that CSGEo films possess good mechanical and antibacterial properties, and therefore, their application in the food packaging industry is promising. PRACTICAL APPLICATION: The main raw materials of the edible films developed in this study are aquatic by-products, so the films are edible and biodegradable. The addition of gelatin and CEo improved the UV barrier and thermal properties but decreased the crystallinity and hydrophilicity of the films, making them suitable for use as packaging materials. CEo-incorporated films exhibited excellent mechanical properties and antibacterial activity and can, therefore, be used in the food packaging industry.
Collapse
Affiliation(s)
- Yajing Guo
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| | - Xinghang Chen
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| | - Fujia Yang
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| | - Teng Wang
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| | - Minglong Ni
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Yuansheng Chen
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| | - Fei Yang
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Da Huang
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| | - Caili Fu
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| | - Shaoyun Wang
- College of Bioscience and Biotechnology, Fuzhou Univ., Fuzhou, 350108, China
| |
Collapse
|
174
|
Shah A, Ali Buabeid M, Arafa ESA, Hussain I, Li L, Murtaza G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharm 2019; 564:22-38. [PMID: 31002933 DOI: 10.1016/j.ijpharm.2019.04.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
AIM The current study reports the development and evaluation of chitosan-sericin-silver nanocomposite (CSSN) films without and with moxifloxacin (Mox). METHODOLOGY The film preparation method involved the in-situ synthesis of silver nanoparticles within the chitosan-sericin colloidal composite followed by preparation into a film by solvent casting technique. In-situ formation and the particle size analysis of the silver nanoparticles was performed via UV-Visible and zeta-size spectrometer. The prepared films were tested for swelling ratio, contents uniformity, in-vitro Mox release, and permeation analysis. The morphological (SEM), elemental (EDX), spectral (FT-IR), structural (XRD), and thermal (TGA and DSC) properties of the composites were also inspected. The antibacterial activity of the CSSN films was performed against seven pathogenic bacterial strains including five ATCC and two clinical strains. The potential wound healing activity of the composite films was evaluated on burn wound model induced in Sprague Dawley male rats. RESULTS The prepared films displayed good swelling profile with a sustained in-vitro Mox release and permeation profile; attaining maximum of 78.57% (CSSM3) release and 55.05% (CSSM1) permeation (CSSM1) in 24 h. The prepared films, particularly the Mox-loaded CSSN films displayed a promising antibacterial activity against all the tested strains with the activity being highest against MRSA (clinical isolates). The prepared films indicated a remarkable wound healing applications with successful fibrosis, collagen reorganization, neovascularization, and mild epidermal regeneration after 7 days of treatment with no silver ions detection in animal's blood. CONCLUSION The obtained findings strongly suggest the use of the prepared novel composite dressing for wound care applications.
Collapse
Affiliation(s)
- Aamna Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Manal Ali Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Izhar Hussain
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Lihong Li
- Department of Acupuncture, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| |
Collapse
|
175
|
Jamróz E, Kulawik P, Kopel P. The Effect of Nanofillers on the Functional Properties of Biopolymer-based Films: A Review. Polymers (Basel) 2019; 11:E675. [PMID: 31013855 PMCID: PMC6523406 DOI: 10.3390/polym11040675] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Waste from non-degradable plastics is becoming an increasingly serious problem. Therefore, more and more research focuses on the development of materials with biodegradable properties. Bio-polymers are excellent raw materials for the production of such materials. Bio-based biopolymer films reinforced with nanostructures have become an interesting area of research. Nanocomposite films are a group of materials that mainly consist of bio-based natural (e.g., chitosan, starch) and synthetic (e.g., poly(lactic acid)) polymers and nanofillers (clay, organic, inorganic, or carbon nanostructures), with different properties. The interaction between environmentally friendly biopolymers and nanofillers leads to the improved functionality of nanocomposite materials. Depending on the properties of nanofillers, new or improved properties of nanocomposites can be obtained such as: barrier properties, improved mechanical strength, antimicrobial, and antioxidant properties or thermal stability. This review compiles information about biopolymers used as the matrix for the films with nanofillers as the active agents. Particular emphasis has been placed on the influence of nanofillers on functional properties of biopolymer films and their possible use within the food industry and food packaging systems. The possible applications of those nanocomposite films within other industries (medicine, drug and chemical industry, tissue engineering) is also briefly summarized.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
176
|
Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers (Basel) 2019; 11:polym11040658. [PMID: 30974908 PMCID: PMC6523815 DOI: 10.3390/polym11040658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
Interest in nanocellulose obtained from natural resources has grown, mainly due to the characteristics that these materials provide when incorporated in biodegradable films as an alternative for the improvement of the properties of nanocomposites. The main purpose of this work was to investigate the effect of the incorporation of nanocellulose obtained from different fibers (corncob, corn husk, coconut shell, and wheat bran) into the chitosan/glycerol films. The nanocellulose were obtained through acid hydrolysis. The properties of the different nanobiocomposites were comparatively evaluated, including their barrier and mechanical properties. The nanocrystals obtained for coconut shell (CS), corn husk (CH), and corncob (CC) presented a length/diameter ratio of 40.18, 40.86, and 32.19, respectively. Wheat bran (WB) was not considered an interesting source of nanocrystals, which may be justified due to the low percentage of cellulose. Significant differences were observed in the properties of the films studied. The water activity varied from 0.601 (WB Film) to 0.658 (CH Film) and the moisture content from 15.13 (CS Film) to 20.86 (WB Film). The highest values for tensile strength were presented for CC (11.43 MPa) and CS (11.38 MPa) films, and this propriety was significantly increased by nanocellulose addition. The results showed that the source of the nanocrystal determined the properties of the chitosan/glycerol films.
Collapse
|
177
|
Cao TL, Song KB. Active gum karaya/Cloisite Na+ nanocomposite films containing cinnamaldehyde. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
178
|
Cazón P, Velázquez G, Vázquez M. Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydr Polym 2019; 216:72-85. [PMID: 31047084 DOI: 10.1016/j.carbpol.2019.03.093] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/18/2023]
Abstract
Bacterial cellulose (BC) produced by Komagataeibacter xylinus is a biomaterial with a unique three-dimensional structure. To improve the mechanical properties and reinforce the BC films, they were immersed in polyvinyl alcohol (0-4%) and chitosan (0-1%) baths. Moisture content, mechanical properties and water vapour permeability were measured to assess the effect of polyvinyl alcohol and chitosan. The morphology, optical, structural and thermal properties were evaluated by scanning electron microscopy, spectral analysis, thermogravimetry and differential scanning calorimetry. Results showed that moisture content was significantly affected by the chitosan presence. Tensile strength values in the 20.76-41.65 MPa range were similar to those of synthetic polymer films. Percentage of elongation ranged from 2.28 to 21.82% and Young's modulus ranged from 1043.88 to 2247.82 MPa. The water vapour permeability (1.47 × 10-11-3.40 × 10-11 g/m s Pa) decreased with the addition of polyvinyl alcohol. The developed films own UV light barrier properties and optimal visual appearance.
Collapse
Affiliation(s)
- Patricia Cazón
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Cerro Blanco No. 141, Colinas del Cimatario, Querétaro 76090, Mexico; Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Gonzalo Velázquez
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Cerro Blanco No. 141, Colinas del Cimatario, Querétaro 76090, Mexico.
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
179
|
Liang J, Wang R, Chen R. The Impact of Cross-linking Mode on the Physical and Antimicrobial Properties of a Chitosan/Bacterial Cellulose Composite. Polymers (Basel) 2019; 11:polym11030491. [PMID: 30960475 PMCID: PMC6474070 DOI: 10.3390/polym11030491] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The bacteriostatic performance of a chitosan film is closely related to its ionic and physical properties, which are significantly influenced by the mode of cross-linking. In the current work, chitosan with or without bacterial cellulose was cross-linked with borate, tripolyphosphate, or the mixture of borate and tripolyphosphate, and the composite films were obtained by a casting of dispersion. Mechanical measurements indicated that different modes of cross-linking led to varying degrees of film strength and elongation increases, while the films treated with the borate and tripolyphosphate mixture showed the best performance. Meanwhile, changes in the fractured sectional images showed a densified texture induced by cross-linkers, especially for the borate and tripolyphosphate mixture. Measurements of Fourier transform infrared showed the enhanced interaction between the matrix polymers treated by borate, confirmed by a slight increase in the glass transitional temperature and a higher surface hydrophobicity. However, the reduced antimicrobial efficiency of composite films against E. coli, B. cinerea, and S. cerevisiae was obtained in cross-linked films compared with chitosan/bacterial cellulose films, indicating that the impact on the antimicrobial function of chitosan is a noteworthy issue for cross-linking.
Collapse
Affiliation(s)
- Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300222, China.
- College of Packaging and Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China.
| | - Rui Wang
- College of Packaging and Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China.
| | - Ruipeng Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300222, China.
| |
Collapse
|
180
|
Wu C, Zhu Y, Wu T, Wang L, Yuan Y, Chen J, Hu Y, Pang J. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem 2019; 288:139-145. [PMID: 30902273 DOI: 10.1016/j.foodchem.2019.03.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/24/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Curcumin loaded mesoporous silica nanoparticle (SBA-15) was incorporated into chitosan (CS) film to improve the functional properties of pure CS film. Curcumin was loaded into SBA-15 (SBA-15-Cur) through a rotavapor method. The structural properties of SBA-15-Cur were characterised in detail by small-angle X-ray scattering, fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy and N2 adsorption-desorption analyses. The CS/SBA-15-Cur bionanocomposite film was prepared by solvent casting. The mechanical properties of the bionanocomposite film were improved by the addition of the SBA-15-Cur nanofiller, as revealed by the FT-IR analysis of the biocomposite film. However, the water vapour permeability of the films was not significantly influenced by the filler. Release studies suggested that the CS/SBA-15-Cur bionanocomposite film exhibited pH-responsive and sustained release behaviour of curcumin. The CS/SBA-15-Cur film demonstrated efficient antimicrobial activity against Staphylococcus aureus and Escherichia coli. These data indicated that the CS/SBA-15-Cur bionanocomposite film could be a promising active food packaging material.
Collapse
Affiliation(s)
- Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 6068502, Japan
| | - Tiantian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Yuan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jicheng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaqin Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
181
|
Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00007] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
182
|
Sothornvit R. Nanostructured materials for food packaging systems: new functional properties. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
183
|
Kulawik P, Jamróz E, Özogul F. Chitosan for Seafood Processing and Preservation. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
184
|
Ye S, He S, Su C, Jiang L, Wen Y, Zhu Z, Shao W. Morphological, Release and Antibacterial Performances of Amoxicillin-Loaded Cellulose Aerogels. Molecules 2018; 23:E2082. [PMID: 30127283 PMCID: PMC6222812 DOI: 10.3390/molecules23082082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
Cellulose has been widely used in the biomedical field. In this study, novel cellulose aerogels were firstly prepared in a NaOH-based solvent system by a facile casting method. Then amoxicillin was successfully loaded into cellulose aerogels with different loadings. The morphology and structure of the cellulose aerogels were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The drug release and antibacterial activities were also evaluated. The drug release results showed that cellulose aerogels have controlled amoxicillin release performance. In vitro antibacterial assay demonstrated that the cellulose aerogels exhibited excellent antibacterial activity with the amoxicillin dose-dependent activity. Therefore, the developed cellulose aerogels display controlled release behavior and efficient antibacterial performance, thus confirming their potential for biomedical applications.
Collapse
Affiliation(s)
- Shan Ye
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shu He
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chen Su
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lei Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanyi Wen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhongjie Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wei Shao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Lab for the Chemistry & Utilization for Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|