151
|
McBain AJ, O'Neill CA, Amezquita A, Price LJ, Faust K, Tett A, Segata N, Swann JR, Smith AM, Murphy B, Hoptroff M, James G, Reddy Y, Dasgupta A, Ross T, Chapple IL, Wade WG, Fernandez-Piquer J. Consumer Safety Considerations of Skin and Oral Microbiome Perturbation. Clin Microbiol Rev 2019; 32:e00051-19. [PMID: 31366612 PMCID: PMC6750131 DOI: 10.1128/cmr.00051-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbiomes associated with human skin and the oral cavity are uniquely exposed to personal care regimes. Changes in the composition and activities of the microbial communities in these environments can be utilized to promote consumer health benefits, for example, by reducing the numbers, composition, or activities of microbes implicated in conditions such as acne, axillary odor, dandruff, and oral diseases. It is, however, important to ensure that innovative approaches for microbiome manipulation do not unsafely disrupt the microbiome or compromise health, and where major changes in the composition or activities of the microbiome may occur, these require evaluation to ensure that critical biological functions are unaffected. This article is based on a 2-day workshop held at SEAC Unilever, Sharnbrook, United Kingdom, involving 31 specialists in microbial risk assessment, skin and oral microbiome research, microbial ecology, bioinformatics, mathematical modeling, and immunology. The first day focused on understanding the potential implications of skin and oral microbiome perturbation, while approaches to characterize those perturbations were discussed during the second day. This article discusses the factors that the panel recommends be considered for personal care products that target the microbiomes of the skin and the oral cavity.
Collapse
Affiliation(s)
- Andrew J McBain
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Catherine A O'Neill
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Alejandro Amezquita
- Unilever, Safety & Environmental Assurance Centre (SEAC), Sharnbrook, United Kingdom
| | - Laura J Price
- Unilever, Safety & Environmental Assurance Centre (SEAC), Sharnbrook, United Kingdom
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium
| | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Jonathan R Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | - Tom Ross
- University of Tasmania, Hobart, Tasmania, Australia
| | - Iain L Chapple
- Periodontal Research Group, The University of Birmingham, Birmingham, United Kingdom
| | - William G Wade
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | | |
Collapse
|
152
|
Nambu T, Wang D, Mashimo C, Maruyama H, Kashiwagi K, Yoshikawa K, Yamamoto K, Okinaga T. Nitric Oxide Donor Modulates a Multispecies Oral Bacterial Community-An In Vitro Study. Microorganisms 2019; 7:microorganisms7090353. [PMID: 31540050 PMCID: PMC6780529 DOI: 10.3390/microorganisms7090353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
The deterioration of human oral microbiota is known to not only cause oral diseases but also to affect systemic health. Various environmental factors are thought to influence the disruption and restoration of the oral ecosystem. In this study, we focused on the effect of nitric oxide (NO) produced by denitrification and NO synthase enzymes on dental plaque microbiota. Interdental plaques collected from 10 subjects were exposed to NO donor sodium nitroprusside (SNP) and then cultured in a specialized growth medium. Depending on the concentration of exposed SNP, a decrease in α-diversity and a continuous change in β-diversity in the dental plaque community were shown by sequencing bacterial 16S rRNA genes. We also identified eight operational taxonomic units that were significantly altered by NO exposure. Among them, the exposure of NO donors to Fusobacterium nucleatum cells showed a decrease in survival rate consistent with the results of microbiota analysis. Meanwhile, in addition to NO tolerance, an increase in the tetrazolium salt-reducing activity of Campylobacter concisus cells was confirmed by exposure to SNP. This study provides an overview of how oral plaque microbiota shifts with exposure to NO and may contribute to the development of a method for adjusting the balance of the oral microbiome.
Collapse
Affiliation(s)
- Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Dan Wang
- Department of Operative Dentistry, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kosuke Kashiwagi
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
153
|
Wylie LJ, Park JW, Vanhatalo A, Kadach S, Black MI, Stoyanov Z, Schechter AN, Jones AM, Piknova B. Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and exercise. J Physiol 2019; 597:5565-5576. [PMID: 31350908 PMCID: PMC9358602 DOI: 10.1113/jp278076] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Rodent skeletal muscle contains a large store of nitrate that can be augmented by the consumption of dietary nitrate. This muscle nitrate reservoir has been found to be an important source of nitrite and nitric oxide (NO) via its reduction by tissue xanthine oxidoreductase. To explore if this pathway is also active in human skeletal muscle during exercise, and if it is sensitive to local nitrate availability, we assessed exercise-induced changes in muscle nitrate and nitrite concentrations in young healthy humans, under baseline conditions and following dietary nitrate consumption. We found that baseline nitrate and nitrite concentrations were far higher in muscle than in plasma (~4-fold and ~29-fold, respectively), and that the consumption of a single bolus of dietary nitrate (12.8 mmol) significantly elevated nitrate concentration in both plasma (~19-fold) and muscle (~5-fold). Consistent with these observations, and with previous suggestions of active muscle nitrate transport, we present western blot data to show significant expression of the active nitrate/nitrite transporter sialin in human skeletal muscle. Furthermore, we report an exercise-induced reduction in human muscle nitrate concentration (by ~39%), but only in the presence of an increased muscle nitrate store. Our results indicate that human skeletal muscle nitrate stores are sensitive to dietary nitrate intake and may contribute to NO generation during exercise. Together, these findings suggest that skeletal muscle plays an important role in the transport, storage and metabolism of nitrate in humans.
Collapse
Affiliation(s)
- Lee J. Wylie
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Ji Won Park
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| | - Anni Vanhatalo
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Stefan Kadach
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Matthew I. Black
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Zdravko Stoyanov
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Alan N. Schechter
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| | - Andrew M. Jones
- Sport and Health SciencesCollege of Life and Environmental SciencesSt Luke's CampusUniversity of Exeter Exeter EX1 2LU UK
| | - Barbora Piknova
- Molecular Medicine BranchNIDDKNational Institutes of Health Bethesda MD 20892–1822 USA
| |
Collapse
|
154
|
Broxterman RM, La Salle DT, Zhao J, Reese VR, Richardson RS, Trinity JD. Influence of dietary inorganic nitrate on blood pressure and vascular function in hypertension: prospective implications for adjunctive treatment. J Appl Physiol (1985) 2019; 127:1085-1094. [PMID: 31414959 DOI: 10.1152/japplphysiol.00371.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dietary inorganic nitrate (nitrate) is a promising adjunctive treatment to reduce blood pressure and improve vascular function in hypertension. However, it remains unknown if the efficacy of nitrate is dependent upon an elevated blood pressure or altered by medication in patients with hypertension. Therefore, blood pressure and vascular function, measured by passive leg movement (PLM) and flow-mediated dilation (FMD), were assessed following 3 days of placebo (nitrate-free beetroot juice) and nitrate (nitrate-rich beetroot juice) administration in 13 patients (age: 53 ± 12 yr) with hypertension taking antihypertensive medications (study 1) and in 14 patients (49 ± 13 yr) with hypertension not taking antihypertensive medications (study 2). In study 1, plasma nitrite concentration was greater for nitrate than placebo (341 ± 118 vs. 308 ± 123 nmol/L, P < 0.05), yet blood pressure and vascular function were unaltered. In study 2, plasma nitrite concentration was greater for nitrate than placebo (340 ± 102 vs. 295 ± 93 nmol/L, P < 0.01). Systolic (136 ± 16 vs. 141 ± 19 mmHg), diastolic (84 ± 13 vs. 88 ± 12 mmHg), and mean (101 ± 12 vs. 106 ± 13 mmHg) blood pressures were lower (P < 0.05), whereas the PLM change in leg vascular conductance (6.0 ± 3.0 vs. 5.1 ± 2.6 mL·min-1·mmHg-1) and FMD (6.1 ± 2.4% vs. 4.1 ± 2.7%) were greater (P < 0.05) for nitrate than placebo. The changes in systolic blood pressure (r = -0.60) and FMD (r = -0.48) induced by nitrate were inversely correlated (P < 0.05) to the respective baseline values obtained in the placebo condition. Thus, the efficacy of nitrate to improve blood pressure and vascular function in hypertension appears to be dependent on the degree of blood pressure elevation and vascular dysfunction and not antihypertensive medication status, per se.NEW & NOTEWORTHY Dietary nitrate (nitrate) is a promising intervention to improve blood pressure and vascular function in hypertension. We demonstrate that these beneficial effects of nitrate are inversely related to the baseline value in a continuous manner with no distinction between antihypertensive medication status. Thus, the efficacy of nitrate to improve blood pressure and vascular function in hypertension appears to be dependent on the degree of blood pressure elevation and vascular dysfunction and not antihypertensive mediation status.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jia Zhao
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Van R Reese
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Center on Aging, University of Utah, Salt Lake City, Utah
| |
Collapse
|
155
|
Zhurakivska K, Troiano G, Caponio VCA, Dioguardi M, Laino L, Maffione AB, Lo Muzio L. Do Changes in Oral Microbiota Correlate With Plasma Nitrite Response? A Systematic Review. Front Physiol 2019; 10:1029. [PMID: 31456696 PMCID: PMC6700760 DOI: 10.3389/fphys.2019.01029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/25/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Nitric Oxide (NO) has a role in immunitary defense, regulation of mucosal blood flow and mucus production, regulation of smooth muscle contraction, cerebral blood flow, glucose regulation, and mitochondrial function. NO can be synthetized endogenously through the L-arginine-NO pathway or it can be absorbed by the human intestine through the dietary intake. Most of the ingested NO is in the form of nitrate (NO3−). NO3− is a substrate of oral and intestinal microbiota and, at the end of the catabolic pathway, NO is released. Using antibacterial mouthwashes leads to an alteration of salivary NO3− metabolism, however, with unclear consequences on the circulating NO levels. The aim of this study is to perform a systematic review in order to elucidate if the alterations of oral microbiota lead to modifications in plasma NO content. Methods: Electronic databases were screened, using the following terms: [“oral bacteria” and (nitrate OR nitrite OR nitric)]. Clinical studies reporting NO3− and NO2− measurements in blood and their correlation to oral microbiota variations were included. We focused on the correlation between the changes in oral microbiota and plasma concentrations of nitrites (primary outcome). Subsequently, we investigated if modifications in oral microbiota could lead to changes in blood pressure and salivary NO2− concentration (secondary outcome). Results: Six studies, for a total of 82 participants were included in this review. In four studies, the use of mouthwash correlated to a reduction of plasma nitrite concentration (p < 0.05); Two studies did not find any difference in plasma nitrate or nitrite concentration. In five studies, a correlation between blood pressure (BP) changes and antibacterial mouthwashing emerged. Anyway, only three studies suggested a significant increase of systolic BP following mouthwashing compared with controls. Conclusions: Although, the role of oral bacteria has been unequivocally demonstrated in the regulation of salivary NO3− metabolism, their influence on plasma concentration of NO species remains ambiguous. Further studies with larger sample size are required in order to demonstrate if an alteration in oral microbiota composition may influence the blood content of NO3−/NO2−/NO and all the linked biological processes.
Collapse
Affiliation(s)
- Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
156
|
Reciprocal regulation of sulfite oxidation and nitrite reduction by mitochondrial sulfite oxidase. Nitric Oxide 2019; 89:22-31. [PMID: 31002874 DOI: 10.1016/j.niox.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
The oxygen-independent nitrate-nitrite-nitric oxide (NO) pathway is considered as a substantial source of NO in mammals. Dietary nitrate/nitrite are distributed throughout the body and reduced to NO by the action of various enzymes. The intermembrane spaced (IMS), molybdenum cofactor-dependent sulfite oxidase (SO) was shown to catalyze such a nitrite reduction. In this study we asked whether the primary function of SO - sulfite oxidation - and its novel function - nitrite reduction - impact each other. First, we utilized benzyl viologen as artificial electron donor to investigate steady state NO synthesis by SO and found fast (kcat = 14 s-1) nitrite reduction of SO full-length and its isolated molybdenum domain at pH 6.5. Next, we determined the impact of nitrite on pre-steady state kinetics in SO catalysis and identified nitrite as a pH-dependent inhibitor of SO reductive and oxidative half reaction. Finally, we report on the time-dependent formation of the paramagnetic Mo(V) species following nitrite reduction and demonstrate that sulfite inhibits nitrite reduction. In conclusion, we propose a pH-dependent reciprocal regulation of sulfite oxidation and nitrite reduction by each substrate, thus facilitating quick responses to hypoxia induced changes in the IMS, which may function in protecting the cell from reactive oxygen species production.
Collapse
|
157
|
Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose. Nitric Oxide 2019; 89:54-63. [DOI: 10.1016/j.niox.2019.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
|
158
|
Next Generation Sequencing Discoveries of the Nitrate-Responsive Oral Microbiome and Its Effect on Vascular Responses. J Clin Med 2019; 8:jcm8081110. [PMID: 31357429 PMCID: PMC6723919 DOI: 10.3390/jcm8081110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is a worldwide human condition which has multiple underlying contributing factors: one of these is long-term increased blood pressure—hypertension. Nitric oxide (NO) is a small nitrogenous radical species that has a number of physiological functions including vasodilation. It can be produced enzymatically through host nitric oxide synthases and by an alternative nitrate–nitrite–NO pathway from ingested inorganic nitrate. It was discovered that this route relies on the ability of the oral microbiota to reduce nitrate to nitrite and NO. Next generation sequencing has been used over the past two decades to gain deeper insight into the microbes involved, their location and the effect of their removal from the oral cavity. This review article presents this research and comments briefly on future directions.
Collapse
|
159
|
Bryan NS, Lefer DJ. Update on Gaseous Signaling Molecules Nitric Oxide and Hydrogen Sulfide: Strategies to Capture their Functional Activity for Human Therapeutics. Mol Pharmacol 2019; 96:109-114. [PMID: 31061006 PMCID: PMC6592147 DOI: 10.1124/mol.118.113910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/02/2019] [Indexed: 11/22/2022] Open
Abstract
Discovery of the production of gaseous molecules, such as nitric oxide and hydrogen sulfide, within the human body began a new concept in cellular signaling. Over the past 30 years, these molecules have been investigated and found to have extremely important beneficial effects in numerous chronic diseases. Gaseous signaling molecules that diffuse in three dimensions apparently contradict the selectivity and specificity afforded by normal ligand receptor binding and activation. This new concept has also created hurdles in the development of safe and efficacious drug therapy based on these molecules. Mechanisms involving formation of more stable intermediates and second messengers allow for new strategies for safe and effective delivery of these molecules for human disease. The purpose of this review is to highlight the biologic effects of nitric oxide and hydrogen sulfide, their seemingly indistinguishable effects, and how these molecules can be safely harnessed for drug development and precursors or substrates administered for human consumption through applied physiology.
Collapse
Affiliation(s)
- Nathan S Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (N.S.B.); and Louisiana State University School of Medicine, New Orleans, Louisiana (D.J.L.)
| | - David J Lefer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (N.S.B.); and Louisiana State University School of Medicine, New Orleans, Louisiana (D.J.L.)
| |
Collapse
|
160
|
Ashworth A, Cutler C, Farnham G, Liddle L, Burleigh M, Rodiles A, Sillitti C, Kiernan M, Moore M, Hickson M, Easton C, Bescos R. Dietary intake of inorganic nitrate in vegetarians and omnivores and its impact on blood pressure, resting metabolic rate and the oral microbiome. Free Radic Biol Med 2019; 138:63-72. [PMID: 31082507 DOI: 10.1016/j.freeradbiomed.2019.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Vegetarian diets are commonly associated with lower blood pressure levels. This has been related to greater consumption of inorganic nitrate, since vegetables are the main source of this anion. Dietary nitrate is reduced to nitrite by commensal bacteria in the mouth, which in turn leads to increased circulatory nitrite availability. Nitrite can form nitric oxide by several pathways promoting a reduction in the vascular tone and lower blood pressure. This study tested whether vegetarians have higher concentrations of nitrite in saliva and plasma, and lower blood pressure and resting metabolic rate (RMR), due to higher intakes of nitrate, compared to omnivores. Following a non-randomized, cross-over and single-blinded design we measured dietary nitrate intake, blood pressure and RMR in young and healthy vegetarians (n = 22) and omnivores (n = 19) with similar characteristics after using placebo or antibacterial mouthwash for a week to inhibit oral bacteria. Additionally, we analyzed salivary and plasma nitrate and nitrite concentrations, as well as the oral nitrate-reduction rate and oral microbiome in both groups. Dietary nitrate intake in vegetarians (97 ± 79 mg/day) was not statistically different (P > 0.05) to omnivores (78 ± 47 mg/day). Salivary and plasma nitrate and nitrite concentrations were similar after placebo mouthwash in both groups (P > 0.05). The oral nitrate-reducing capacity, abundance of oral bacterial species, blood pressure and RMR were also similar between vegetarians and omnivores (P > 0.05). Antibacterial mouthwash significantly decreased abundance of oral nitrate-reducing bacterial species in vegetarians (_16.9%; P < 0.001) and omnivores (_17.4%; P < 0.001), which in turn led to a significant reduction of the oral nitrate-reducing capacity in vegetarians (-78%; P < 0.001) and omnivores (-85%; P < 0.001). However, this did not lead to a significant increase in blood pressure and RMR in either groups (P > 0.05). These findings suggest that vegetarian diets may not alter nitrate and nitrite homeostasis, or the oral microbiome, compared to an omnivore diet. Additionally, inhibition of oral nitrite synthesis for a week with antibacterial mouthwash did not cause a significant raise in blood pressure and RMR in healthy, young individuals independent of diet.
Collapse
Affiliation(s)
- Ann Ashworth
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Craig Cutler
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Garry Farnham
- Peninsula Medical School, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Luke Liddle
- School of Social Sciences, Bishop Grosseteste University, Lincolnshire, LN1 3DY, UK; Institute for Clinical Exercise and Health Science, University of the West of Scotland, South Lanarkshire, G72 0LH, UK
| | - Mia Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, South Lanarkshire, G72 0LH, UK
| | - Ana Rodiles
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Carla Sillitti
- CNR-Institute for Agricultural and Forest Systems in the Mediterranean, Catania, 95128, Italy
| | - Michele Kiernan
- Peninsula Medical School, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Melanie Moore
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Mary Hickson
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, South Lanarkshire, G72 0LH, UK
| | - Raul Bescos
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
161
|
Konkel JE, O'Boyle C, Krishnan S. Distal Consequences of Oral Inflammation. Front Immunol 2019; 10:1403. [PMID: 31293577 PMCID: PMC6603141 DOI: 10.3389/fimmu.2019.01403] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is an incredibly prevalent chronic inflammatory disease, which results in the destruction of tooth supporting structures. However, in addition to causing tooth and alveolar bone loss, this oral inflammatory disease has been shown to contribute to disease states and inflammatory pathology at sites distant from the oral cavity. Epidemiological and experimental studies have linked periodontitis to the development and/or exacerbation of a plethora of other chronic diseases ranging from rheumatoid arthritis to Alzheimer's disease. Such studies highlight how the inflammatory status of the oral cavity can have a profound impact on systemic health. In this review we discuss the disease states impacted by periodontitis and explore potential mechanisms whereby oral inflammation could promote loss of homeostasis at distant sites.
Collapse
Affiliation(s)
- Joanne E. Konkel
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | - Conor O'Boyle
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Siddharth Krishnan
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| |
Collapse
|
162
|
Gordon JH, LaMonte MJ, Genco RJ, Zhao J, Li L, Hovey KM, Tsompana M, Buck MJ, Andrews CA, Mcskimming DI, Zheng W, Sun Y, Wactawski-Wende J. Is the Oral Microbiome Associated with Blood Pressure in Older Women? High Blood Press Cardiovasc Prev 2019; 26:217-225. [PMID: 31236901 DOI: 10.1007/s40292-019-00322-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION A possible role of the oral microbiome, specifically oral nitrate reducing flora, in blood pressure (BP) homeostasis, if proven etiologic in nature, could lead to novel mechanism-based therapy to improve hypertension prevention and control. AIM This cross-sectional study characterized and compared the oral microbiome between four study groups based on BP status among 446 postmenopausal women aged 53-82 years. METHODS Three study groups were not taking hypertension medication and were separated based on BP, as follows: normal BP (systolic < 120 and diastolic < 80; N = 179), elevated BP/Stage I hypertension (systolic 120-139 or diastolic 80-90; N = 106), Stage II hypertension (systolic > 140 or diastolic > 90; N = 42). The forth group consisted of anyone taking hypertension medications, regardless of BP (N = 119). Subgingival microbiome composition was determined using 16S rRNA sequencing with the Illumina MiSeq platform. Kruskal-Wallis tests were used to compare species-level relative abundance of bacterial operational taxonomic units across the four groups. RESULTS Sixty-five bacterial species demonstrated significant differences in relative abundance in women with elevated BP or using hypertension medication as compared to those with normal BP. After correction for multiple testing, two species, Prevotella oral (species 317) and Streptococcus oralis, remained significant and were lower in abundance among women taking antihypertension medications compared to those with normal BP (corrected P < 0.05). CONCLUSIONS These data provide novel description of oral subgingival bacteria grouped according to BP status. Additional larger studies including functional analysis and prospective designs will help further assess the potential role of the oral microbiome in BP regulation and hypertension.
Collapse
Affiliation(s)
- Joshua H Gordon
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Robert J Genco
- Department of Oral Biology, School of Dental Medicine, UB Microbiome Center, University at Buffalo, Buffalo, NY, USA
| | - Jiwei Zhao
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, USA
| | - Lu Li
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Maria Tsompana
- Department of Biochemistry, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michael J Buck
- Department of Biochemistry, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Christopher A Andrews
- Department of Ophthalmology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel I Mcskimming
- Genome Environment, and Microbiome Center of Excellence, University at Buffalo, Buffalo, NY, USA
| | - Wei Zheng
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|
163
|
Thomas B, Smallwood S, Cutler C, Bescos R. The oral nitrate-reducing capacity correlates with peak power output and peak oxygen uptake in healthy humans. Nitric Oxide 2019; 87:43-51. [PMID: 30853629 DOI: 10.1016/j.niox.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Interest in inorganic nitrate and nitrite has grown substantially over the past decade as research has revealed the role of these anions in enhancing nitric oxide (NO) availability through an oral pathway. Nitrite synthesis in the mouth seems to be an important mechanism to feed the circulatory system with this anion. This is interesting since greater plasma nitrite concentration has been associated with better fitness levels in humans, but this question has not been investigated in relation to salivary nitrite concentration. Additionally, no previous study has investigated the oral nitrate-reducing capacity in regards to peak oxygen uptake (VO2peak) or peak power output (Wpeak) in humans. Thus, the main goal of this study was to investigate whether salivary nitrite and nitrate concentration and the oral nitrate-reducing capacity were associated with VO2peak and Wpeak in healthy humans. Fifty individuals (22 females and 28 males; 38.8 ± 14.3 years/old; BMI = 22.8 ± 3.9) performed a graded exercise test on a cycle ergometer to assess their VO2peak and Wpeak. Unstimulated salivary samples were taken before and 20 min after exercise to measure nitrate/nitrite, pH and lactate. The oral nitrate-reducing capacity was also assessed in 25 subjects before and after exercise. Oral nitrate-reducing capacity was positively associated with Wpeak (rs = 0.64; P = 0.001) and the VO2peak (rs = 0.54; P = 0.005). Similar correlations were found when these variables were analysed after exercise. In addition, a significant decrease in salivary pH (pre: 7.28 ± 0.361; post-exercise: 7.16 ± 0.33; P = 0.003) accompanied by an increase of salivary lactate (pre: 0.17 ± 0.14 mmol/L; post-exercise: 0.48 ± 0.38; P < 0.001) was found after exercise. However, these changes did not have any impact on salivary nitrate/nitrite concentration and the oral nitrate-reducing capacity after exercise. In conclusion, this is the first evidence showing a link between the oral nitrate-reducing capacity and markers of aerobic fitness levels in healthy humans.
Collapse
Affiliation(s)
- B Thomas
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK
| | - S Smallwood
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK
| | - C Cutler
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK
| | - R Bescos
- School of Health Professions, Faculty of Health & Human Sciences, University of Plymouth, UK; Institute of Health & Community, University of Plymouth, UK.
| |
Collapse
|
164
|
Copper water swishing. Br Dent J 2019; 226:718. [DOI: 10.1038/s41415-019-0381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
165
|
Affiliation(s)
- Nathan S. Bryan
- Department of Molecular and Human GeneticsBaylor College of Medicine One Baylor Plaza Alkek Building for Biomedical Research R-850 Houston TX 77030
| |
Collapse
|
166
|
Tribble GD, Angelov N, Weltman R, Wang BY, Eswaran SV, Gay IC, Parthasarathy K, Dao DHV, Richardson KN, Ismail NM, Sharina IG, Hyde ER, Ajami NJ, Petrosino JF, Bryan NS. Frequency of Tongue Cleaning Impacts the Human Tongue Microbiome Composition and Enterosalivary Circulation of Nitrate. Front Cell Infect Microbiol 2019; 9:39. [PMID: 30881924 PMCID: PMC6406172 DOI: 10.3389/fcimb.2019.00039] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/07/2019] [Indexed: 01/25/2023] Open
Abstract
The oral microbiome has the potential to provide an important symbiotic function in human blood pressure physiology by contributing to the generation of nitric oxide (NO), an essential cardiovascular signaling molecule. NO is produced by the human body via conversion of arginine to NO by endogenous nitric oxide synthase (eNOS) but eNOS activity varies by subject. Oral microbial communities are proposed to supplement host NO production by reducing dietary nitrate to nitrite via bacterial nitrate reductases. Unreduced dietary nitrate is delivered to the oral cavity in saliva, a physiological process termed the enterosalivary circulation of nitrate. Previous studies demonstrated that disruption of enterosalivary circulation via use of oral antiseptics resulted in increases in systolic blood pressure. These previous studies did not include detailed information on the oral health of enrolled subjects. Using 16S rRNA gene sequencing and analysis, we determined whether introduction of chlorhexidine antiseptic mouthwash for 1 week was associated with changes in tongue bacterial communities and resting systolic blood pressure in healthy normotensive individuals with documented oral hygiene behaviors and free of oral disease. Tongue cleaning frequency was a predictor of chlorhexidine-induced changes in systolic blood pressure and tongue microbiome composition. Twice-daily chlorhexidine usage was associated with a significant increase in systolic blood pressure after 1 week of use and recovery from use resulted in an enrichment in nitrate-reducing bacteria on the tongue. Individuals with relatively high levels of bacterial nitrite reductases had lower resting systolic blood pressure. These results further support the concept of a symbiotic oral microbiome contributing to human health via the enterosalivary nitrate-nitrite-NO pathway. These data suggest that management of the tongue microbiome by regular cleaning together with adequate dietary intake of nitrate provide an opportunity for the improvement of resting systolic blood pressure.
Collapse
Affiliation(s)
- Gena D. Tribble
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Robin Weltman
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Bing-Yan Wang
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Sridhar V. Eswaran
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Isabel C. Gay
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Kavitha Parthasarathy
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Doan-Hieu V. Dao
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Katherine N. Richardson
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Nadia M. Ismail
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Iraida G. Sharina
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center Houston, Houston, TX, United States
| | | | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, United States
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, United States
| | - Nathan S. Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
167
|
Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide 2019; 85:35-43. [PMID: 30716418 DOI: 10.1016/j.niox.2019.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is a multifactorial disease associated with impaired nitric oxide (NO) production and bioavailability. In this respect, restoring NO activity by using nitrite and nitrate has been considered a potential therapeutic strategy to treat hypertension. This possibility is justified by the understanding that both nitrite and nitrate may be recycled back to NO and also promote the generation of other bioactive species. This process involves a complex biological circuit known as the enterosalivary cycle of nitrate, where this anion is actively taken up by the salivary glands and converted to nitrite by nitrate-reducing bacteria in the oral cavity. Nitrite is then ingested and reduced to NO and other nitroso species under the acid conditions of the stomach, whereas reminiscent nitrite that escapes gastric reduction is absorbed systemically and can be converted into NO by nitrite-reductases in tissues. While there is no doubt that nitrite and nitrate exert antihypertensive effects, several agents can impair the blood pressure responses to these anions by disrupting the enterosalivary cycle of nitrate. These agents include dietary and smoking-derived thiocyanate, antiseptic mouthwash, proton pump inhibitors, ascorbate at high concentrations, and xanthine oxidoreductase inhibitors. In this article, we provide an overview of the physiological aspects of nitrite and nitrate bioactivation and the therapeutic potential of these anions in hypertension. We also discuss mechanisms by which agents counteracting the antihypertensive responses to nitrite and nitrate mediate their effects. These critical aspects should be taken into consideration when suggesting nitrate or nitrite-based therapies to patients.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
168
|
Liddle L, Burleigh MC, Monaghan C, Muggeridge DJ, Sculthorpe N, Pedlar CR, Butcher J, Henriquez FL, Easton C. Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: An assessment of the critical difference. Nitric Oxide 2019; 83:1-10. [DOI: 10.1016/j.niox.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/02/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023]
|
169
|
Oliveira-Paula GH, Tanus-Santos JE. Nitrite-stimulated Gastric Formation of S-nitrosothiols As An Antihypertensive Therapeutic Strategy. Curr Drug Targets 2019; 20:431-443. [DOI: 10.2174/1389450119666180816120816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
Hypertension is usually associated with deficient nitric oxide (NO) bioavailability, and therefore stimulating NO activity is an important antihypertensive strategy. Recently, many studies have shown that both nitrite and nitrate anions are not simple products of NO metabolism and indeed may be reduced back to NO. While enzymes with nitrite-reductase activity capable of generating NO from nitrite may contribute to antihypertensive effects of nitrite, another mechanism involving the generation of NO-related species in the stomach from nitrite has been validated. Under the acidic conditions of the stomach, nitrite generates NO-related species that form S-nitrosothiols. Conversely, drugs that increase gastric pH may impair the gastric formation of S-nitrosothiols, which may mediate antihypertensive effects of oral nitrite or nitrate. Therefore, it is now becoming clear that promoting gastric formation of S-nitrosothiols may result in effective antihypertensive responses, and this mechanism opens a window of opportunity in the therapy of hypertension. In this review, we discuss the recent studies supporting the gastric generation of S-nitrosothiols as a potential antihypertensive mechanism of oral nitrite. We also highlight some drugs that increase S-nitrosothiols bioavailability, which may also improve the responses to nitrite/nitrate therapy. This new approach may result in increased nitrosation of critical pharmacological receptors and enzymes involved in the pathogenesis of hypertension, which tend to respond less to their activators resulting in lower blood pressure.
Collapse
Affiliation(s)
- Gustavo H. Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
170
|
DeMartino AW, Kim‐Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176:228-245. [PMID: 30152056 PMCID: PMC6295445 DOI: 10.1111/bph.14484] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Inorganic nitrate (NO3 - ), nitrite (NO2 - ) and NO are nitrogenous species with a diverse and interconnected chemical biology. The formation of NO from nitrate and nitrite via a reductive 'nitrate-nitrite-NO' pathway and resulting in vasodilation is now an established complementary route to traditional NOS-derived vasodilation. Nitrate, found in our diet and abundant in mammalian tissues and circulation, is activated via reduction to nitrite predominantly by our commensal oral microbiome. The subsequent in vivo reduction of nitrite, a stable vascular reserve of NO, is facilitated by a number of haem-containing and molybdenum-cofactor proteins. NO generation from nitrite is enhanced during physiological and pathological hypoxia and in disease states involving ischaemia-reperfusion injury. As such, modulation of these NO vascular repositories via exogenously supplied nitrite and nitrate has been evaluated as a therapeutic approach in a number of diseases. Ultimately, the chemical biology of nitrate and nitrite is governed by local concentrations, reaction equilibrium constants, and the generation of transient intermediates, with kinetic rate constants modulated at differing physiological pH values and oxygen tensions. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
| | - Daniel B. Kim‐Shapiro
- Department of PhysicsWake Forest UniversityWinston‐SalemNCUSA
- Translational Science CenterWake Forest UniversityWinston‐SalemNCUSA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
171
|
Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med 2019; 285:2-18. [PMID: 30039620 DOI: 10.1111/joim.12818] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disorders including hypertension and associated renal disease are major health problems affecting more than 1.5 billion people worldwide. Apart from nonmodifiable factors such as ageing, family history and gender, both sedentary lifestyle and unhealthy dietary habits are considered as major risk factors. The disorders are interrelated suggesting common pathological pathways. Mechanistically, oxidative stress and compromised function of the nitric oxide synthase (NOS) system leading to endothelial dysfunction and reduction in nitric oxide (NO) bioavailability have been widely implicated and associated with development and progression of disease. New strategies that correct this redox imbalance and increase NO bioactivity may have major clinical implications. The inorganic anions, nitrate and nitrite, are endogenously formed by oxidization of NOS-derived NO, but there are also high amounts of nitrate in our daily diet. In this regard, accumulated evidence over the past two decades demonstrates that these anions can be recycled back to NO and other bioactive nitrogen oxides, thus offering an attractive alternative strategy for therapeutic exploitation. In this review, we describe how dietary stimulation of the nitrate-nitrite-NO pathway affects cardiovascular and renal functions in health and disease via modulation of oxidative stress and NO bioavailability. Clinical studies addressing potential effects on the renal system are still limited, but blood pressure-lowering effects of nitrate supplementation have been demonstrated in healthy and hypertensive subjects as well as in patients with chronic kidney disease. However, larger clinical studies are warranted to reveal whether chronic nitrate treatment can slow-down the progression of cardiorenal disease and associated complications.
Collapse
Affiliation(s)
- M Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
172
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
173
|
Marsh PD. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Adv Dent Res 2018; 29:60-65. [PMID: 29355410 DOI: 10.1177/0022034517735295] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The oral microbiome is natural and has a symbiotic relationship with the host by delivering important benefits. In oral health, a dynamic balance is reached between the host, the environment, and the microbiome. However, the frequent intake of sugar and/or reductions in saliva flow results in extended periods of low pH in the biofilm, which disrupts this symbiotic relationship. Such conditions inhibit the growth of beneficial species and drive the selection of bacteria with an acid-producing/acid-tolerating phenotype, thereby increasing the risk of caries (dysbiosis). A more detailed understanding of the interdependencies and interactions that exist among the resident microbiota in dental biofilms, and an increased awareness of the relationship between the host and the oral microbiome, is providing new insights and fresh opportunities to promote symbiosis and prevent dysbiosis. These include modifying the oral microbiome (e.g., with prebiotics and probiotics), manipulating the oral environment to selectively favor the growth of beneficial species, and moderating the growth and metabolism of the biofilm to reduce the likelihood of dysbiosis. Evidence is provided to suggest that the regular provision of interventions that deliver small but relevant benefits, consistently over a prolonged period, can support the maintenance of a symbiotic oral microbiome.
Collapse
Affiliation(s)
- P D Marsh
- 1 Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
174
|
Wang L, Almeida LEF, Kamimura S, van der Meulen JH, Nagaraju K, Quezado M, Wakim P, Quezado ZMN. The role of nitrite in muscle function, susceptibility to contraction injury, and fatigability in sickle cell mice. Nitric Oxide 2018; 80:70-81. [PMID: 30114530 PMCID: PMC6186197 DOI: 10.1016/j.niox.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Sickle cell disease (SCD) patients can have limited exercise capacity and muscle dysfunction characterized by decreased force, atrophy, microvascular abnormalities, fiber distribution changes, and skeletal muscle energetics abnormalities. Growing evidence suggests that in SCD there is alteration in nitric oxide (NO) availability/signaling and that nitrate/nitrite can serve as a NO reservoir and enhance muscle performance. Here, we examined effects of nitrite on muscle strength, exercise capacity, and on contractile properties of fast-(extensor digitorum longus, EDL) and slow-twitch (soleus) muscles in SCD mice. Compared to controls, homozygotes (sickling) had decreased grip strength, impaired wheel running performance, and decreased muscle mass of fast-twitch, but not slow-twitch muscle. Nitrite treatment yielded increases in nitrite plasma levels in controls, heterozygotes, and homozygotes but decreases in muscle nitrite levels in heterozygotes and homozygotes. Regardless of genotype, nitrite yielded increases in grip strength, which were coupled with increases in specific force in EDL, but not in soleus muscle. Further, nitrite increased EDL, but not soleus, fatigability in all genotypes. Conversely, in controls, nitrite decreased, whereas in homozygotes, it increased EDL susceptibility to contraction-induced injury. Interestingly, nitrite yielded no changes in distances ran on the running wheel. These differential effects of nitrite in fast- and slow-twitch muscles suggest that its ergogenic effects would be observed in high-intensity/short exercises as found with grip force increases but no changes on wheel running distances. Further, the differential effects of nitrite in homozygotes and control animals suggests that sickling mice, which have altered NO availability/signaling, handle nitrite differently than do control animals.
Collapse
Affiliation(s)
- Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation and Center for Neuroscience Research, Children's Research Institute, Washington, DC, 20010, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jack H van der Meulen
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
175
|
Kapil V, Rathod KS, Khambata RS, Bahra M, Velmurugan S, Purba A, S Watson D, Barnes MR, Wade WG, Ahluwalia A. Sex differences in the nitrate-nitrite-NO • pathway: Role of oral nitrate-reducing bacteria. Free Radic Biol Med 2018; 126:113-121. [PMID: 30031863 DOI: 10.1016/j.freeradbiomed.2018.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023]
Abstract
Oral reduction of nitrate to nitrite is dependent on the oral microbiome and is the first step of an alternative mammalian pathway to produce nitric oxide in humans. Preliminary evidence suggests important sex differences in this pathway. We prospectively investigated sex-differences following inorganic nitrate supplementation on nitrate/nitrite levels and vascular function, and separately examined sex differences in oral nitrate reduction, and oral microbiota by 16S rRNA profiling. At baseline, females exhibit higher nitrite levels in all biological matrices despite similar nitrate levels to males. Following inorganic nitrate supplementation, plasma nitrite was increased to a significantly greater extent in females than in males and pulse wave velocity was only reduced in females. Females exhibited higher oral bacterial nitrate-reducing activity at baseline and after nitrate supplementation. Despite these differences, there were no differences in the composition of either the total salivary microbiota or those oral taxa with nitrate reductase genes. Our results demonstrate that females have augmented oral nitrate reduction that contributes to higher nitrite levels at baseline and also after inorganic nitrate supplementation, however this was not associated with differences in microbial composition (clinicaltrials.gov: NCT01583803).
Collapse
Affiliation(s)
- Vikas Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Krishnaraj S Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Manpreet Bahra
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shanti Velmurugan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amandeep Purba
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - David S Watson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - William G Wade
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
176
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
177
|
Vanhatalo A, Blackwell JR, L'Heureux JE, Williams DW, Smith A, van der Giezen M, Winyard PG, Kelly J, Jones AM. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic Biol Med 2018; 124:21-30. [PMID: 29807159 PMCID: PMC6191927 DOI: 10.1016/j.freeradbiomed.2018.05.078] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/19/2018] [Accepted: 05/21/2018] [Indexed: 11/24/2022]
Abstract
Imbalances in the oral microbial community have been associated with reduced cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to health is the nitrate (NO3-)-nitrite (NO2-)-nitric oxide (NO) pathway, which relies on oral bacteria to reduce NO3- to NO2-. NO (generated from both NO2- and L-arginine) regulates vascular endothelial function and therefore blood pressure (BP). By sequencing bacterial 16S rRNA genes we examined the relationships between the oral microbiome and physiological indices of NO bioavailability and possible changes in these variables following 10 days of NO3- (12 mmol/d) and placebo supplementation in young (18-22 yrs) and old (70-79 yrs) normotensive humans (n = 18). NO3- supplementation altered the salivary microbiome compared to placebo by increasing the relative abundance of Proteobacteria (+225%) and decreasing the relative abundance of Bacteroidetes (-46%; P < 0.05). After NO3-supplementation the relative abundances of Rothia (+127%) and Neisseria (+351%) were greater, and Prevotella (-60%) and Veillonella (-65%) were lower than in the placebo condition (all P < 0.05). NO3- supplementation increased plasma concentration of NO2- and reduced systemic blood pressure in old (70-79 yrs), but not young (18-22 yrs), participants. High abundances of Rothia and Neisseria and low abundances of Prevotella and Veillonella were correlated with greater increases in plasma [NO2-] in response to NO3- supplementation. The current findings indicate that the oral microbiome is malleable to change with increased dietary intake of inorganic NO3-, and that diet-induced changes in the oral microbial community are related to indices of NO homeostasis and vascular health in vivo.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK.
| | - Jamie R Blackwell
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Joanna E L'Heureux
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | | | - Ann Smith
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XY UK
| | - Mark van der Giezen
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Paul G Winyard
- University of Exeter Medical School, University of Exeter, Exeter EX1 1TE, UK
| | - James Kelly
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Andrew M Jones
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| |
Collapse
|
178
|
Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: A randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide 2018; 80:37-44. [PMID: 30099096 DOI: 10.1016/j.niox.2018.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022]
Abstract
Chronic hypertension in pregnancy is associated with significant adverse pregnancy outcomes, increasing the risk of pre-eclampsia, fetal growth restriction and preterm birth. Dietary nitrate, abundant in green leafy vegetables and beetroot, is reduced in vivo to nitrite and subsequently nitric oxide, and has been demonstrated to lower blood pressure, improve vascular compliance and enhance blood flow in non-pregnant humans and animals. The primary aims of this study were to determine the acceptability and efficacy of dietary nitrate supplementation, in the form of beetroot juice, to lower blood pressure in hypertensive pregnant women. In this double-blind, placebo-controlled feasibility trial, 40 pregnant women received either daily nitrate supplementation (70 mL beetroot juice, n = 20) or placebo (70 mL nitrate-depleted beetroot juice, n = 20) for 8 days. Blood pressure, cardiovascular function and uteroplacental blood flow was assessed at baseline and following acute (3 h) and prolonged (8 days) supplementation. Plasma and salivary samples were collected for analysis of nitrate and nitrite concentrations and acceptability of this dietary intervention was assessed based on questionnaire feedback. Dietary nitrate significantly increased plasma and salivary nitrate/nitrite concentrations compared with placebo juice (p < 0.001), with marked variation between women. Compared with placebo, there was no overall reduction in blood pressure in the nitrate-treated group; however there was a highly significant correlation between changes in plasma nitrite concentrations and changes in diastolic blood pressure in the nitrate-treated arm only (r = -0.6481; p = 0.0042). Beetroot juice supplementation was an acceptable dietary intervention to 97% of women. This trial confirms acceptability and potential efficacy of dietary nitrate supplementation in pregnant women. Conversion of nitrate to nitrite critically involves oral bacterial nitrate reductase activities. We speculate that differences in efficacy of nitrate supplementation relate to differences in the oral microbiome, which will be investigated in future studies.
Collapse
|
179
|
Schmitter T, Fiebich BL, Fischer JT, Gajfulin M, Larsson N, Rose T, Goetz MR. Ex vivo anti-inflammatory effects of probiotics for periodontal health. J Oral Microbiol 2018; 10:1502027. [PMID: 30057719 PMCID: PMC6060379 DOI: 10.1080/20002297.2018.1502027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Probiotic bacteria with anti-inflammatory properties have the potential to be of therapeutic benefit in gingivitis. Objective: To evaluate the effects of potential probiotic strains on inflammatory mediators involved in early gingivitis using an ex vivo inflammation model. Methods: Strains were screened in viable and attenuated forms for effects on bacterial lipopolysaccharide (LPS)-stimulated release of interleukins (IL)-1β, -6 and -8, tumor necrosis factor-α, prostaglandin E2 and 8-isoprostane from human primary monocytes, and then, if anti-inflammatory effects were shown, on IL-1β-stimulated release of inflammatory mediators from primary gingival fibroblasts. Lead strains were evaluated for optimal dosing, batch-to-batch variation and functional consistency in toothpaste. Results: Twenty-one of 73 strains showed anti-inflammatory effects in monocytes; of which, seven showed effects in both viable and attenuated forms. Seven of 14 strains showed effects in fibroblasts. Strains Lactobacillus paracasei LPc-G110(SYBIO-15) and Lactobacillus plantarum GOS42(SYBIO-41) induced statistically significant dose-dependent reductions in the release of multiple inflammatory mediators from monocytes, which were consistent across batches. Viable L. paracasei LPc-G110 tooth paste significantly reduced IL-6, IL-8 and prostaglandin E2 release from monocytes versus placebo. Conclusion: Strains L. paracasei LPc-G110 and L. plantarum GOS42 have potential for use as probiotics in oral care products to reduce gingival inflammation.
Collapse
|
180
|
Demmer RT. Invited Commentary: The Microbiome and Population Health-Considerations for Enhancing Study Design and Data Analysis in Observational and Interventional Epidemiology. Am J Epidemiol 2018; 187:1291-1294. [PMID: 29617920 PMCID: PMC5982788 DOI: 10.1093/aje/kwy063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Measurement and characterization of the human microbiome in large population-based human studies has recently become a reality secondary to technological advances in high-throughput DNA sequencing. These advances bring new challenges and knowledge gaps for study planning, data analysis, and interpretation that are novel to large-scale epidemiologic studies. In this issue of the Journal, Sinha et al. (Am J Epidemiol. 2018;187(6):1282-1290) have provided data with which to inform statistical power and sample size requirements for microbiome studies in population-based settings. This work serves as a helpful starting point for study planning while also serving as a springboard for discussion regarding additional considerations for improving microbiome research. This commentary emphasizes the importance of selecting microbiome metrics appropriate for the biological hypothesis under investigation, as well as the need for new analytical tools that can better capitalize on the unique yet rich information contained in microbiome data sets.
Collapse
Affiliation(s)
- Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
181
|
Bondonno CP, Blekkenhorst LC, Liu AH, Bondonno NP, Ward NC, Croft KD, Hodgson JM. Vegetable-derived bioactive nitrate and cardiovascular health. Mol Aspects Med 2018; 61:83-91. [DOI: 10.1016/j.mam.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
182
|
Kocoloski GM, Crecelius AR. Effects of Single-Dose Dietary Nitrate on Oxygen Consumption During and After Maximal and Submaximal Exercise in Healthy Humans: A Pilot Study. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2018; 11:214-225. [PMID: 29795728 PMCID: PMC5955288 DOI: 10.70252/revt7470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Dietary nitrate (NO3-) has been shown to reduce oxygen consumption (VO2) during moderate to high-intensity (e.g. time to fatigue, time trials) exercise and often in trained athletes. However, less is known regarding prolonged exercise and the potential impact of NO3- on post-exercise excess oxygen consumption (EPOC), particularly in untrained individuals, who may have different metabolic goals during exercise than trained individuals. We tested the hypothesis that acute nitrate supplementation in the form of beet root juice will significantly decrease both VO2 during maximal exercise and EPOC in both maximal and submaximal exercise trials. Eight young, moderately active, healthy males (age: 24.8±1.4 years, body mass index: 23.7±0.4 kg/m2; VO2max: 34.2±3.9 ml/kg/min) performed step-wise maximal cycle exercise (n=4) and prolonged submaximal cycle exercise (n=6) (45 min; 38±2% of max work rate) in control (anti-bacterial mouthwash) and acute NO3- supplemented conditions [70ml concentrated beet root juice (0.4g NO3-), 2 hrs prior to exercise] on separate occasions. Measurements of VO2 (indirect calorimetry), arterial blood pressure (MAP; sphygmomanometry), and heart rate (HR; ECG) were made before, during, and following exercise bouts. NO3- reduced MAP at rest ~1-3mmHg. However, NO3- had no impact on VO2 during maximal (VO2max, Ctrl: 34.2±3.9 ml/kg/min vs NO3-: 31.7±4.4 ml/kg/min), submaximal exercise (average of min 25-45, Ctrl: 24.6±2.4 ml/kg/min vs NO3-: 26.8±3.3 ml/kg/min) or EPOC (area under the curve, Ctrl: 0.57±0.24 L vs NO3-: 0.66±0.16 L). Thus, while NO3- supplementation may have performance benefits in elite athletes exercising at high intensities, in recreationally active males, there appears to be little impact on changes in VO2 due to maximal or submaximal prolonged exercise.
Collapse
Affiliation(s)
| | - Anne R Crecelius
- Department of Health and Sport Science, University of Dayton, Dayton, OH, USA
| |
Collapse
|
183
|
Organ uptake and release of inorganic nitrate and nitrite in the pig. Nitric Oxide 2018; 75:16-26. [DOI: 10.1016/j.niox.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 11/20/2022]
|
184
|
Blekkenhorst LC, Bondonno NP, Liu AH, Ward NC, Prince RL, Lewis JR, Devine A, Croft KD, Hodgson JM, Bondonno CP. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am J Clin Nutr 2018; 107:504-522. [PMID: 29635489 DOI: 10.1093/ajcn/nqx046] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Dietary nitrate is an important source of nitric oxide (NO), a molecule critical for cardiovascular health. Nitrate is sequentially reduced to NO through an enterosalivary nitrate-nitrite-NO pathway that involves the oral microbiome. This pathway is considered an important adjunct pathway to the classical l-arginine-NO synthase pathway. Objective The objective of this study was to systematically assess the evidence for dietary nitrate intake and improved cardiovascular health from both human and animal studies. Design A systematic literature search was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by using key search terms in Medline and EMBASE databases and defined inclusion and exclusion criteria. Results Thirty-seven articles on humans and 14 articles on animals were included from 12,541 screened references. Data on the effects of dietary nitrate on blood pressure, endothelial function, ischemic reperfusion injury, arterial stiffness, platelet function, and cerebral blood flow in both human and animal models were identified. Beneficial effects of nitrate on vascular health have predominantly been observed in healthy human populations, whereas effects in populations at risk of cardiovascular disease are less clear. Few studies have investigated the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. In animal studies, there is evidence that nitrate improves blood pressure and endothelial function, particularly in animal models with reduced NO bioavailability. Nitrate dose seems to be a critical factor because there is evidence of cross-talk between the 2 pathways of NO production. Conclusions Evidence for a beneficial effect in humans at risk of cardiovascular disease is limited. Furthermore, there is a need to investigate the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. Further animal studies are required to elucidate the mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Alex H Liu
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kevin D Croft
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Catherine P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
185
|
|
186
|
Abstract
For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare.
Collapse
|
187
|
Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol 2018; 102:1-10. [DOI: 10.1016/j.vph.2017.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/08/2023]
|
188
|
Rosenbæk JB, Hornstrup BG, Jørgensen AN, Mortensen J, Pedersen EB, Bech JN. Effects of sodium nitrite on renal function and blood pressure in hypertensive vs. healthy study participants: a randomized, placebo-controlled, crossover study. J Hypertens 2018; 36:666-679. [PMID: 29065098 DOI: 10.1097/hjh.0000000000001598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Nitric oxide is a key player in regulating vascular tone. Impaired endothelial nitric oxide synthesis plays an important role in hypertension. Replenishing of nitric oxide by sodium nitrite (NaNO2) has not been investigated in patients with essential hypertension (EHT). We aimed to determine the effects of NaNO2 on blood pressure (BP) and renal sodium and water regulation in patients with EHT compared with healthy control study participants (CON). METHODS In a placebo-controlled, crossover study, we infused 240 μg NaNO2/kg/h or isotonic saline for 2 h in 14 EHT and 14 CON. During infusion, we measured changes in brachial and central BP, free water clearance, fractional sodium excretion, and urinary excretion rate of γ-subunit of the epithelial sodium channel (U-ENaCγ), and aquaporin-2 (U-AQP2). RESULTS Placebo-adjusted brachial SBP decreased 18 mmHg (P < 0.001) during NaNO2 infusion in EHT and 12 mmHg (P < 0.001) in CON (Pbetween = 0.024). Brachial DBP and central SBP decreased equally in both groups during NaNO2. In EHT, we found a decrease in U-ENaCγ during NaNO2 infusion. In both groups, we observed a decrease in fractional sodium excretion, free water clearance, and U-AQP2 during NaNO2 infusion. CONCLUSION This study demonstrated an augmented BP-lowering effect of NaNO2 in patients with EHT. We observed an antinatriuretic and antidiuretic effect of NaNO2 in both groups, and a decrease in U-ENaCγ, solely in EHT. In both groups, we detected a nonvasopressin mediated decrease in U-AQP2, which is most likely compensatory to the decline in diuresis.
Collapse
Affiliation(s)
- Jeppe B Rosenbæk
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Bodil G Hornstrup
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Andreas N Jørgensen
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Jesper Mortensen
- Department of Nuclear Medicine, Regional Hospital West Jutland, Denmark
| | - Erling B Pedersen
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Jesper N Bech
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| |
Collapse
|
189
|
Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol 2018; 314:H195-H212. [DOI: 10.1152/ajpheart.00414.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral consumption of inorganic nitrate, which is abundant in green leafy vegetables and roots, has been shown to increase circulating plasma nitrite concentration, which can be converted to nitric oxide in low oxygen conditions. The associated beneficial physiological effects include a reduction in blood pressure, modification of platelet aggregation, and increases in limb blood flow. There have been numerous studies of nitrate supplementation in healthy recreational and competitive athletes; however, the ergogenic benefits are currently unclear due to a variety of factors including small sample sizes, different dosing regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial fitness levels, and the types of exercise tests used. In clinical populations, the study results seem more promising, particularly in patients with cardiovascular diseases who typically present with disruptions in the ability to transport oxygen from the atmosphere to working tissues and reduced exercise tolerance. Many of these disease-related, physiological maladaptations, including endothelial dysfunction, increased reactive oxygen species, reduced tissue perfusion, and muscle mitochondrial dysfunction, have been previously identified as potential targets for nitric oxide restorative effects. This review is the first of its kind to outline the current evidence for inorganic nitrate supplementation as a therapeutic intervention to restore exercise tolerance and improve quality of life in patients with cardiovascular diseases. We summarize the factors that appear to limit or maximize its effectiveness and present a case for why it may be more effective in patients with cardiovascular disease than as ergogenic aid in healthy populations.
Collapse
Affiliation(s)
- Mary N. Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Luke C. McIlvenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Christopher J. Neil
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Jason D. Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
190
|
Influence of dietary nitrate food forms on nitrate metabolism and blood pressure in healthy normotensive adults. Nitric Oxide 2018; 72:66-74. [DOI: 10.1016/j.niox.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/31/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
|
191
|
Thomas DD, Corey C, Hickok J, Wang Y, Shiva S. Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide. Redox Biol 2017; 15:277-283. [PMID: 29304478 PMCID: PMC5975210 DOI: 10.1016/j.redox.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 01/09/2023] Open
Abstract
Nitrite represents an endocrine reserve of bioavailable nitric oxide (NO) that mediates a number of physiological responses including conferral of cytoprotection after ischemia/reperfusion (I/R). It has long been known that nitrite can react with non-heme iron to form dinitrosyliron complexes (DNIC). However, it remains unclear how quickly nitrite-dependent DNIC form in vivo, whether formation kinetics differ from that of NO-dependent DNIC, and whether DNIC play a role in the cytoprotective effects of nitrite. Here we demonstrate that chronic but not acute nitrite supplementation increases DNIC concentration in the liver and kidney of mice. Although DNIC have been purported to have antioxidant properties, we show that the accumulation of DNIC in vivo is not associated with nitrite-dependent cytoprotection after hepatic I/R. Further, our data in an isolated mitochondrial model of anoxia/reoxygenation show that while NO and nitrite demonstrate similar S-nitrosothiol formation kinetics, DNIC formation is significantly greater with NO and associated with mitochondrial dysfunction as well as inhibition of aconitase activity. These data are the first to directly compare mitochondrial DNIC formation by NO and nitrite. This study suggests that nitrite-dependent DNIC formation is a physiological consequence of dietary nitrite. The data presented herein implicate mitochondrial DNIC formation as a potential mechanism underlying the differential cytoprotective effects of nitrite and NO after I/R, and suggest that DNIC formation is potentially responsible for the cytotoxic effects observed at high NO concentrations. Dietary nitrite results in DNIC formation in many tissues, most notably the liver. Nitrite-dependent DNIC accumulate within the mitochondrion. NO generates greater DNIC formation in the mitochondrion than nitrite. At high concentrations of NO DNIC formation is associated with mitochondrial injury.
Collapse
Affiliation(s)
- Douglas D Thomas
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA.
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Jason Hickok
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA
| | - Yinna Wang
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
192
|
|
193
|
Varadharaj S, Kelly OJ, Khayat RN, Kumar PS, Ahmed N, Zweier JL. Role of Dietary Antioxidants in the Preservation of Vascular Function and the Modulation of Health and Disease. Front Cardiovasc Med 2017; 4:64. [PMID: 29164133 PMCID: PMC5671956 DOI: 10.3389/fcvm.2017.00064] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases.
Collapse
Affiliation(s)
- Saradhadevi Varadharaj
- Abbott Nutrition, Columbus, OH, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | | | - Rami N Khayat
- The Sleep Heart Program, Division of Pulmonary Critical Care and Sleep, Columbus, OH, United States
| | - Purnima S Kumar
- College of Dentistry, The Ohio State University, Columbus, OH, United States
| | | | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
194
|
Mitsui T, Harasawa R. The effects of essential oil, povidone-iodine, and chlorhexidine mouthwash on salivary nitrate/nitrite and nitrate-reducing bacteria. J Oral Sci 2017; 59:597-601. [PMID: 29093281 DOI: 10.2334/josnusd.16-0593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dietary nitrate is reduced to nitrite and nitric oxide by microbial flora, and this activity is beneficial to vascular health. It has been reported that this bacterial process is inhibited by chlorhexidine mouthwash, although the effects of other products are largely unknown. This study examined the effects of several treatments on salivary nitrate/nitrite and nitrate-reducing bacteria. Twelve university staff and students performed mouth-washing with water (control), essential oil, 0.35% povidone-iodine, or 0.0025% chlorhexidine and then ate 100 g lettuce (110 mg nitrate content), followed by collection of saliva and tongue bacteria at the baseline, and 1, 5, and 10 h thereafter. The individual treatments were separated by an interval of one week. Salivary nitrate/nitrite was measured by the calorimetric method, and a representative nitrate-reducing bacterial species, Veillonella dispar, was detected and semi-quantified using a polymerase chain reaction (PCR) assay. Significant increases in salivary nitrate/nitrite were observed for all treatments (all P < 0.05). The PCR assay showed that water, essential oil, and povidone-iodine mouthwash had little effect, whereas V. dispar DNA bands were markedly inhibited after washing with chlorhexidine. These results suggest that essential oil and povidone-iodine mouthwash have little effect on oral nitrate-reducing activity. Salivary nitrite production was not reduced by chlorhexidine, but the fainter band of V. dispar DNA suggests that longer daily use might blunt this nitrate-reducing activity.
Collapse
Affiliation(s)
- Takahiro Mitsui
- Department of Home Economics, Faculty of Education, Iwate University
| | | |
Collapse
|
195
|
Performance and Health Benefits of Dietary Nitrate Supplementation in Older Adults: A Systematic Review. Nutrients 2017; 9:nu9111171. [PMID: 29077028 PMCID: PMC5707643 DOI: 10.3390/nu9111171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022] Open
Abstract
Supplementation with nitrate (NO3−)-rich beetroot juice has been shown to improve exercise performance and cardiovascular (CV) responses, due to an increased nitric oxide (NO) availability. However, it is unclear whether these benefits are greater in older adults who have an age-related decrease in NO and higher risk of disease. This systematic review examines 12 randomised, crossover, control trials, investigating food-based NO3− supplementation in older adults and its potential benefits on physiological and cognitive performances, and CV, cerebrovascular and metabolic health. Four studies found improvements in physiological performance (time to exhaustion) following dietary NO3− supplementation in older adults. Benefits on cognitive performance were unclear. Six studies reported improvements in CV health (blood pressure and blood flow), while six found no improvement. One study showed improvements in cerebrovascular health and two found no improvement in metabolic health. The current literature indicates positive effects of dietary NO3− supplementation in older adults on physiological performance, with some evidence indicating benefits on cardiovascular and cerebrovascular health. Effects on cognitive performance were mixed and studies on metabolic health indicated no benefit. However, there has been limited research conducted on the effects of dietary NO3− supplementation in older adults, thus, further study, utilising a randomised, double-blind, control trial design, is warranted.
Collapse
|
196
|
Impact of mitochondrial nitrite reductase on hemodynamics and myocardial contractility. Sci Rep 2017; 7:12092. [PMID: 28935964 PMCID: PMC5608763 DOI: 10.1038/s41598-017-11531-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/22/2017] [Indexed: 01/11/2023] Open
Abstract
Inorganic nitrite (NO2−) can be reduced back to nitric oxide (NO) by several heme proteins called nitrite reductases (NR) which affect both the vascular tonus and hemodynamics. The objective of this study was to clarify the impact of several NRs on the regulation of hemodynamics, for which hemodynamic parameters such as heart rate, blood pressure, arterial stiffness, peripheral resistance and myocardial contractility were characterized by pulse wave analysis. We have demonstrated that NO2− reduced to NO in RBCs predominantly influences the heart rate, while myoglobin (Mb) and mitochondria-derived NO regulates arterial stiffness, peripheral resistance and myocardial contractility. Using ex vivo on-line NO-detection, we showed that Mb is the strongest NR occurring in heart, which operates sufficiently only at very low oxygen levels. In contrast, mitochondrial NR operates under both hypoxia and normoxia. Additional experiments with cardiomyocytes suggested that only mitochondria-derived generation of NO regulates cGMP levels mediating the contractility of cardiomyocytes. Our data suggest that a network of NRs is involved in NO2− mediated regulation of hemodynamics. Oxygen tension and hematocrit define the activity of specific NRs.
Collapse
|
197
|
Joshipura KJ, Muñoz-Torres FJ, Morou-Bermudez E, Patel RP. Over-the-counter mouthwash use and risk of pre-diabetes/diabetes. Nitric Oxide 2017; 71:14-20. [PMID: 28939409 DOI: 10.1016/j.niox.2017.09.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/31/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
AIMS Over-the-counter mouthwash comprises part of routine oral care for many; however, potential adverse effects of the long-term daily use have not been evaluated. Most mouthwash contain antibacterial ingredients, which could impact oral microbes critical for nitric oxide formation, and in turn predispose to metabolic disorders including diabetes. Our aim was to evaluate longitudinally the association between baseline over-the-counter mouthwash use and development of pre-diabetes/diabetes over a 3-year follow-up. MATERIALS AND METHODS The San Juan Overweight Adults Longitudinal Study (SOALS) recruited 1206 overweight/obese individuals, aged 40-65, and free of diabetes and major cardiovascular diseases; 945 with complete follow-up data were included in the analyses. We used Poisson regression models adjusting for baseline age, sex, smoking, physical activity, waist circumference, alcohol consumption, pre-hypertension/hypertension status; time between visits was included in the models as an offset. RESULTS Many participants (43%) used mouthwash at least once daily and 22% at least twice daily. Participants using mouthwash ≥ twice daily at baseline, had a significantly elevated risk of pre-diabetes/diabetes compared to less frequent users (multivariate IRR = 1.55, 95% CI: 1.21-1.99), or non-users of mouthwash (multivariate IRR = 1.49; 95% CI: 1.13-1.95). The effect estimates were similar after adding income, education, oral hygiene, oral conditions, sleep breathing disorders, diet (processed meat, fruit, and vegetable intake), medications, HOMA-IR, fasting glucose, 2hr post load glucose or CRP to the multivariate models. Both associations were also significant among never-smokers and obese individuals. Mouthwash use lower than twice daily showed no association, suggesting a threshold effect at twice or more daily. CONCLUSIONS Frequent regular use of over-the-counter mouthwash was associated with increased risk of developing pre-diabetes/diabetes in this population.
Collapse
Affiliation(s)
- Kaumudi J Joshipura
- Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, PR, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Francisco J Muñoz-Torres
- Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, PR, USA
| | | | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
198
|
Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide 2017; 70:9-24. [PMID: 28804022 DOI: 10.1016/j.niox.2017.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of obesity is increasing worldwide and type 2 diabetes to date is the most devastating complication of obesity. Decreased nitric oxide bioavailability is a feature of obesity and diabetes that links these two pathologies. Nitric oxide is synthesized both by nitric oxide synthase enzymes from l-arginine and nitric oxide synthase-independent from nitrate/nitrite. Nitric oxide production from nitrate/nitrite could potentially be used for nutrition-based therapy in obesity and diabetes. Nitric oxide deficiency also contributes to pathogeneses of cardiovascular disease and hypertension, which are associated with obesity and diabetes. This review summarizes pathways for nitric oxide production and focuses on the anti-diabetic and anti-obesity effects of the nitrate-nitrite-nitric oxide pathway. In addition to increasing nitric oxide production, nitrate and nitrite reduce oxidative stress, increase adipose tissue browning, have favorable effects on nitric oxide synthase expression, and increase insulin secretion, all effects that are potentially promising for management of obesity and diabetes. Based on current data, it could be suggested that amplifying the nitrate-nitrite-nitric oxide pathway is a diet-based strategy for increasing nitric oxide bioavailability and the management of these two interlinked conditions. Adding nitrate/nitrite to drugs that are currently used for managing diabetes (e.g. metformin) and possibly anti-obesity drugs may also enhance their efficacy.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
199
|
Abstract
Even though the oral microbiome is one of the most complex sites on the body it is an excellent model for narrow‐spectrum antimicrobial therapy. Current research indicates that disruption of the microbiome leads to a dysbiotic environment allowing for the overgrowth of pathogenic species and the onset of oral diseases. The gram‐negative colonizer, Porphyromonas gingivalis has long been considered a key player in the initiation of periodontitis and Streptococcus mutans has been linked to dental caries. With antibiotic research still on the decline, new strategies are greatly needed to combat infectious diseases. By targeting key pathogens, it may be possible to treat oral infections while allowing for the recolonization of the beneficial, healthy flora. In this review, we examine unique strategies to specifically target periodontal pathogens and address what is needed for the success of these approaches in the microbiome era.
Collapse
Affiliation(s)
- V N Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - P Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
200
|
Chimenos-Küstner E, Giovannoni ML, Schemel-Suárez M. Dysbiosis as a determinant factor of systemic and oral pathology: importance of microbiome. Med Clin (Barc) 2017; 149:305-309. [PMID: 28669517 DOI: 10.1016/j.medcli.2017.05.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 12/12/2022]
Abstract
Advances in genetic and epigenetic studies modified some concepts of health and disease that had been kept intact for decades. In this respect, in the last few years, microorganisms that have evolved with superior life forms for millions of years have taken an increased prominence. The genes of organisms and their microbiota constitute a microbiome that intervenes in health maintenance. The oral cavity is inhabited by a variety of microorganisms, their control aids in stabilising oral and systemic disease. The objective of this article is to update some concepts related to oral microbiome and its correlation with general and oral health.
Collapse
Affiliation(s)
- Eduardo Chimenos-Küstner
- Estomatología, Docencia Titular de Medicina Bucal, Departamento de Odontoestomatología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona, España.
| | - María Laura Giovannoni
- Odontología, Dociencia Asociada de Ergonomía, Departamento de Odontoestomatología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona, España
| | - Mayra Schemel-Suárez
- Odontología, Máster en Medicina Bucal, Departamento de Odontoestomatología, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona, España
| |
Collapse
|