151
|
Zhang Y, Gao W, Li X. Vitamin E‑coated dialyzer alleviates erythrocyte deformability dysfunction in patients with end‑stage renal disease undergoing hemodialysis. Exp Ther Med 2022; 24:480. [PMID: 35761813 PMCID: PMC9214592 DOI: 10.3892/etm.2022.11407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with end-stage renal disease (ESRD) are characterized by augmented oxidative stress (OS) due to the imbalance between the generation of increased concentrations of oxidative molecules and decreased antioxidant capacity. Vitamin E-coated dialyzer membranes (VEMs) have previously been reported to alleviate the imbalance of redox metabolism in patients with ESRD undergoing hemodialysis (HD); however, their effect on the deformability of red blood cells (RBCs) remains unknown. In the present study, 48 patients with ESRD undergoing HD were enrolled and randomly assigned into two groups: HD with VEMs (VEM group; n=24) and HD with polysulfone dialyzer membranes (PM group; n=24), and another 24 healthy volunteers served as the control group. The present study investigated the morphological changes and deformability of RBCs in patients with ESRD and healthy volunteers. The concentration of serum vitamin E, the parameters of antioxidant stress and OS, and the degree of oxidative phosphorylation and clustering of anion exchanger 1 (Band 3) in RBCs were measured. The results obtained suggested that VEM treatment markedly ameliorated the abnormalities of RBC morphology and deformability in patients with ESRD undergoing HD. Mechanistic studies showed that VEM treatment led to a marked improvement in the concentration of serum vitamin E, which was positively associated with the restored antioxidant capacity, and decreased oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD. Taken together, the results of the present study have demonstrated that VEM treatment effectively restored the imbalance of redox metabolism, and improved the oxidative phosphorylation and clustering of Band 3 in RBCs of patients with ESRD undergoing HD via delivering vitamin E, which may alleviate the abnormal morphological and mechanical properties of RBCs. These findings are anticipated to be useful with respect to improving the nursing care and cure rate of patients with ESRD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Wei Gao
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| | - Xia Li
- Department of Blood Dialysis Room, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
152
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
153
|
Chong WT, Tan CP, Cheah YK, Lai OM. In-vitro and in-vivo evaluations of tocotrienol-rich nanoemulsified system on skin wound healing. PLoS One 2022; 17:e0267381. [PMID: 35613124 PMCID: PMC9132311 DOI: 10.1371/journal.pone.0267381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Proper wound healing is vital for the survival of higher organisms. Responses to skin injury can lead to complications such as scar formation that can affect the quality of life. In this study, keratinocytes migration (scratch assay) and zebrafish tail regeneration experiments were used to evaluate the wound healing effect of a tocotrienol-based nanoemulsified (NE) system against ascorbic acid and phosphate-buffered saline (PBS) as positive and negative controls, respectively. MTT assay provided a concentration range of 0.35–8.75 μg/ml of nanoemulsion that produced cell viability more than 100%. After 24 hours of treatment, the wound closure of keratinocytes were found to be significantly faster by 73.76%, 63.37% and 35.56%, respectively when treated with 3.50 μg/ml and 1.75 μg/ml of NE compared to the blank. The lethal concentration at 50% (LC50 value) obtained from acute and prolonged toxicity was almost similar, which was 4.6 mg/ml and 5.0 mg/ml, respectively. Growth of zebrafish tail regeneration treated with NE at a concentration of 2.5 mg/ml was significantly faster than the untreated zebrafish, which regenerated to 40% on the fifth day, more than 60% on the tenth day of treatment and fully recovered at the twentieth day. In conclusion, these results showed the potential of the tocotrienols-based nanoemulsified system in enhancing wound healing through accelerated wound closure.
Collapse
Affiliation(s)
- Wai Ting Chong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Oi Ming Lai
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Bioprocess Technology, Faculty Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
154
|
Rojo-Trejo MH, Robles-Osorio ML, Sabath E. Liposoluble vitamins A and E in kidney disease. World J Nephrol 2022; 11:96-104. [PMID: 35733655 PMCID: PMC9160709 DOI: 10.5527/wjn.v11.i3.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Kidney disease (KD) is characterized by the presence of elevated oxidative stress, and this is postulated as contributing to the high cardiovascular morbidity and mortality in these individuals. Chronic KD (CKD) is related to high grade inflammatory condition and pro-oxidative state that aggravates the progression of the disease by damaging primary podocytes. Liposoluble vitamins (vitamin A and E) are potent dietary antioxidants that have also anti-inflammatory and antiapoptotic functions. Vitamin deficits in CKD patients are a common issue, and multiple causes are related to them: Anorexia, dietary restrictions, food cooking methods, dialysis losses, gastrointestinal malabsorption, etc. The potential benefit of retinoic acid (RA) and α-tocopherol have been described in animal models and in some human clinical trials. This review provides an overview of RA and α tocopherol in KD.
Collapse
Affiliation(s)
| | | | - Ernesto Sabath
- Department of Renal Medicine, Nutrition School, Universidad Autónoma de Querétaro, Querétaro 76090, Mexico
| |
Collapse
|
155
|
de Oliveira LC, de Paula Faria D. Pharmacological Approaches to the Treatment of Dementia in Down Syndrome: A Systematic Review of Randomized Clinical Studies. Molecules 2022; 27:3244. [PMID: 35630721 PMCID: PMC9147973 DOI: 10.3390/molecules27103244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Down Syndrome (DS) is considered the most frequent form of Intellectual Disability, with important expressions of cognitive decline and early dementia. Studies on potential treatments for dementia in this population are still scarce. Thus, the current review aims to synthesize the different pharmacological approaches that already exist in the literature, which focus on improving the set of symptoms related to dementia in people with DS. A total of six studies were included, evaluating the application of supplemental antioxidant therapies, such as alpha-tocopherol; the use of acetylcholinesterase inhibitor drugs, such as donepezil; N-methyl-d-aspartate (NMDA) receptor antagonists, such as memantine; and the use of vitamin E and a fast-acting intranasal insulin. Two studies observed important positive changes related to some general functions in people with DS (referring to donepezil). In the majority of studies, the use of pharmacological therapies did not lead to improvement in the set of symptoms related to dementia, such as memory and general functionality, in the population with DS.
Collapse
Affiliation(s)
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil;
| |
Collapse
|
156
|
Galli F, Bonomini M, Bartolini D, Zatini L, Reboldi G, Marcantonini G, Gentile G, Sirolli V, Di Pietro N. Vitamin E (Alpha-Tocopherol) Metabolism and Nutrition in Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:989. [PMID: 35624853 PMCID: PMC9137556 DOI: 10.3390/antiox11050989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin E (alpha-tocopherol) is an essential micronutrient and fat-soluble antioxidant with proposed role in protecting tissues from uncontrolled lipid peroxidation. This vitamin has also important protein function and gene modulation effects. The metabolism of vitamin E depends on hepatic binding proteins that selectively retain food alpha-tocopherol for incorporation into nascent VLDL and tissue distribution together with esterified cholesterol and triglycerides. Chronic kidney disease (CKD) is a condition of oxidative stress and increased lipid peroxidation, that are associated with alterations of alpha-tocopherol metabolism and function. Specific changes have been reported for the levels of its enzymatic metabolites, including both short-chain and long-chain metabolites, the latter being endowed with regulatory functions on enzymatic and gene expression processes important for the metabolism of lipids and xenobiotics detoxification, as well as for the control of immune and inflammatory processes. Vitamin E therapy has been investigated in CKD using both oral vitamin E protocols and vitamin E-coated hemodialyzers, showing promising results in the secondary prevention of cardiovascular disease, as well as of immune and hematological complications. These therapeutic approaches are reviewed in the present article, together with a narrative excursus on the main findings indicating CKD as a condition of relative deficiency and impaired metabolism of vitamin E.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Mario Bonomini
- Department of Medicine and Aging, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (V.S.)
| | - Desirée Bartolini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Linda Zatini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Gianpaolo Reboldi
- Department of Medicine and Surgery, Centro di Ricerca Clinica e Traslazionale, CERICLET, University of Perugia, 06126 Perugia, Italy;
| | - Giada Marcantonini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Giorgio Gentile
- Royal Cornwall Hospitals, NHS Trust, Cornwall, Truro TR1 3LJ, UK;
- Department of Nephrology, University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Vittorio Sirolli
- Department of Medicine and Aging, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (V.S.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
157
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
158
|
Amevor FK, Cui Z, Du X, Feng J, Shu G, Ning Z, Xu D, Deng X, Song W, Wu Y, Cao X, Wei S, He J, Kong F, Du X, Tian Y, Karikari B, Li D, Wang Y, Zhang Y, Zhu Q, Zhao X. Synergy of Dietary Quercetin and Vitamin E Improves Cecal Microbiota and Its Metabolite Profile in Aged Breeder Hens. Front Microbiol 2022; 13:851459. [PMID: 35656004 PMCID: PMC9152675 DOI: 10.3389/fmicb.2022.851459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
In the present study, the synergistic effects of quercetin (Q) and vitamin E (E) on cecal microbiota composition and function, as well as the microbial metabolic profile in aged breeder hens were investigated. A total of 400 (65 weeks old) Tianfu breeder hens were randomly allotted to four experimental groups (four replicates per group). The birds were fed diets containing quercetin at 0.4 g/kg, vitamin E (0.2 g/kg), quercetin and vitamin E (QE; 0.4 g/kg and 0.2 g/kg), and a basal diet for a period of 10 wks. After the 10 week experimental period, the cecal contents of 8 aged breeder hens per group were sampled aseptically and subjected to high-throughput 16S rRNA gene sequencing and untargeted metabolomic analysis. The results showed that the relative abundances of phyla Bacteroidota, Firmicutes, and Actinobacteriota were the most prominent among all the dietary groups. Compared to the control group, the relative abundance of the families Bifidobacteriaceae, Lachnospiraceae, Tannerellaceae, Mathonobacteriaceae, Barnesiellaceae, and Prevotellaceae were enriched in the QE group; and Bacteroidaceae, Desulfovibrionaceae, Peptotostretococcaceae, and Fusobacteriaceae were enriched in the Q group, whereas those of Lactobacillaceae, Veillonellaceae, Ruminococcaceae, Akkermansiaceae, and Rikenellaceae were enriched in the E group compared to the control group. Untargeted metabolomics analyses revealed that Q, E, and QE modified the abundance of several metabolites in prominent pathways including ubiquinone and other terpenoid-quinone biosynthesis, regulation of actin cytoskeleton, insulin secretion, pancreatic secretion, nicotine addiction, and metabolism of xenobiotics by cytochrome P450. Furthermore, key cecal microbiota, significantly correlated with important metabolites, for example, (S)-equol positively correlated with Alistipes and Chlamydia in E_vs_C, and negatively correlated with Olsenella, Paraprevotella, and Mucispirillum but, a contrary trend was observed with Parabacteroides in QE_vs_C. This study establishes that the synergy of quercetin and vitamin E alters the cecal microbial composition and metabolite profile in aged breeder hens, which lays a foundation for chicken improvement programs.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry, Tibet Autonomous Region, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Weizhen Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Benjamin Karikari
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Nanjing Agricultural University, Nanjing, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
159
|
Xin J, Jiang X, Ben S, Yuan Q, Su L, Zhang Z, Christiani DC, Du M, Wang M. Association between circulating vitamin E and ten common cancers: evidence from large-scale Mendelian randomization analysis and a longitudinal cohort study. BMC Med 2022; 20:168. [PMID: 35538486 PMCID: PMC9092790 DOI: 10.1186/s12916-022-02366-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The association between vitamin E and cancer risk has been widely investigated by observational studies, but the findings remain inconclusive. Here, we aimed to evaluate the causal effect of circulating vitamin E on the risk of ten common cancers, including bladder, breast, colorectal, esophagus, lung, oral and pharynx, ovarian, pancreatic, prostate, and kidney cancer. METHODS A Mendelian randomization (MR) analytic framework was applied to data from a cancer-specific genome-wide association study (GWAS) comprising a total of 297,699 cancer cases and 304,736 controls of European ancestry. Three genetic instrumental variables associated with circulating vitamin E were selected. Summary statistic-based methods of inverse variance weighting (IVW) and likelihood-based approach, as well as the individual genotyping-based method of genetic risk score (GRS) were used. Multivariable IVW analysis was further performed to control for potential confounding effects. Furthermore, the UK Biobank cohort was used as external validation, supporting 355,543 European participants (incident cases ranged from 437 for ovarian cancer to 4882 for prostate cancer) for GRS-based estimation of circulating vitamin E, accompanied by a one-sample MR analysis of dietary vitamin E intake underlying the time-to-event analytic framework. RESULTS Specific to cancer GWAS, we found that circulating vitamin E was significantly associated with increased bladder cancer risk (odds ratios [OR]IVW = 6.23, PIVW = 3.05×10-3) but decreased breast cancer risk (ORIVW = 0.68, PIVW = 8.19×10-3); however, the significance of breast cancer was dampened (Pmultivariable IVW > 0.05) in the subsequent multivariable MR analysis. In the validation stage of the UK Biobank cohort, we did not replicate convincing causal effects of genetically predicted circulating vitamin E concentrations and dietary vitamin E intake on the risk of ten cancers. CONCLUSIONS This large-scale population study upon data from cancer-specific GWAS and a longitudinal biobank cohort indicates plausible non-causal associations between circulating vitamin E and ten common cancers in the European populations. Further studies regarding ancestral diversity are warranted to validate such causal associations.
Collapse
Affiliation(s)
- Junyi Xin
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Xia Jiang
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Qianyu Yuan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China. .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
160
|
Oluwole DO, Coleman L, Buchanan W, Chen T, La Ragione RM, Liu LX. Antibiotics-Free Compounds for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14051021. [PMID: 35631606 PMCID: PMC9143489 DOI: 10.3390/pharmaceutics14051021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
The rapid rise in the health burden associated with chronic wounds is of great concern to policymakers, academia, and industry. This could be attributed to the devastating implications of this condition, and specifically, chronic wounds which have been linked to invasive microbial infections affecting patients' quality of life. Unfortunately, antibiotics are not always helpful due to their poor penetration of bacterial biofilms and the emergence of antimicrobial resistance. Hence, there is an urgent need to explore antibiotics-free compounds/formulations with proven or potential antimicrobial, anti-inflammatory, antioxidant, and wound healing efficacy. The mechanism of antibiotics-free compounds is thought to include the disruption of the bacteria cell structure, preventing cell division, membrane porins, motility, and the formation of a biofilm. Furthermore, some of these compounds foster tissue regeneration by modulating growth factor expression. In this review article, the focus is placed on a number of non-antibiotic compounds possessing some of the aforementioned pharmacological and physiological activities. Specific interest is given to Aloevera, curcumin, cinnamaldehyde, polyhexanide, retinoids, ascorbate, tocochromanols, and chitosan. These compounds (when alone or in formulation with other biologically active molecules) could be a dependable alternative in the management or prevention of chronic wounds.
Collapse
Affiliation(s)
- David O. Oluwole
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
- Correspondence: (D.O.O.); (L.X.L.)
| | - Lucy Coleman
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
| | | | - Tao Chen
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
| | - Roberto M. La Ragione
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Lian X. Liu
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
- Correspondence: (D.O.O.); (L.X.L.)
| |
Collapse
|
161
|
Arunachalam K, Sreeja PS, Yang X. The Antioxidant Properties of Mushroom Polysaccharides can Potentially Mitigate Oxidative Stress, Beta-Cell Dysfunction and Insulin Resistance. Front Pharmacol 2022; 13:874474. [PMID: 35600869 PMCID: PMC9117613 DOI: 10.3389/fphar.2022.874474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetes mellitus is a prevalent metabolic and endocrine illness affecting people all over the world and is of serious health and financial concern. Antidiabetic medicine delivered through pharmacotherapy, including synthetic antidiabetic drugs, are known to have several negative effects. Fortunately, several natural polysaccharides have antidiabetic properties, and the use of these polysaccharides as adjuncts to conventional therapy is becoming more common, particularly in underdeveloped nations. Oxidative stress has a critical role in the development of diabetes mellitus (DM). The review of current literature presented here focusses, therefore, on the antioxidant properties of mushroom polysaccharides used in the management of diabetic complications, and discusses whether these antioxidant properties contribute to the deactivation of the oxidative stress-related signalling pathways, and to the amelioration of β-cell dysfunction and insulin resistance. In this study, we conducted a systematic review of the relevant information concerning the antioxidant and antidiabetic effects of mushrooms from electronic databases, such as PubMed, Scopus or Google Scholar, for the period 1994 to 2021. In total, 104 different polysaccharides from mushrooms have been found to have antidiabetic effects. Most of the literature on mushroom polysaccharides has demonstrated the beneficial effects of these polysaccharides on reactive oxygen and nitrogen species (RONS) levels. This review discuss the effects of these polysaccharides on hyperglycemia and other alternative antioxidant therapies for diabetic complications through their applications and limits, in order to gain a better understanding of how they can be used to treat DM. Preclinical and phytochemical investigations have found that most of the active polysaccharides extracted from mushrooms have antioxidant activity, reducing oxidative stress and preventing the development of DM. Further research is necessary to confirm whether mushroom polysaccharides can effectively alleviate hyperglycemia, and the mechanisms by which they do this, and to investigate whether these polysaccharides might be utilized as a complementary therapy for the prevention and management of DM in the future.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
162
|
Rychter AM, Hryhorowicz S, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity – a narrative review. Clin Nutr 2022; 41:1557-1565. [PMID: 35667272 DOI: 10.1016/j.clnu.2022.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
|
163
|
Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
164
|
Vassilopoulou E, Guibas GV, Papadopoulos NG. Mediterranean-Type Diets as a Protective Factor for Asthma and Atopy. Nutrients 2022; 14:1825. [PMID: 35565792 PMCID: PMC9105881 DOI: 10.3390/nu14091825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
We are currently riding the second wave of the allergy epidemic, which is ongoing in affluent societies, but now also affecting developing countries. This increase in the prevalence of atopy/asthma in the Western world has coincided with a rapid improvement in living conditions and radical changes in lifestyle, suggesting that this upward trend in allergic manifestations may be associated with cultural and environmental factors. Diet is a prominent environmental exposure that has undergone major changes, with a substantial increase in the consumption of processed foods, all across the globe. On this basis, the potential effects of dietary habits on atopy and asthma have been researched rigorously, but even with a considerable body of evidence, clear associations are far from established. Many factors converge to obscure the potential relationship, including methodological, pathophysiological and cultural differences. To date, the most commonly researched, and highly promising, candidate for exerting a protective effect is the so-called Mediterranean diet (MedDi). This dietary pattern has been the subject of investigation since the mid twentieth century, and the evidence regarding its beneficial health effects is overwhelming, although data on a correlation between MedDi and the incidence and severity of asthma and atopy are inconclusive. As the prevalence of asthma appears to be lower in some Mediterranean populations, it can be speculated that the MedDi dietary pattern could indeed have a place in a preventive strategy for asthma/atopy. This is a review of the current evidence of the associations between the constituents of the MedDi and asthma/atopy, with emphasis on the pathophysiological links between MedDi and disease outcomes and the research pitfalls and methodological caveats which may hinder identification of causality. MedDi, as a dietary pattern, rather than short-term supplementation or excessive focus on single nutrient effects, may be a rational option for preventive intervention against atopy and asthma.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - George V. Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK;
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Nikolaos G. Papadopoulos
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Thivon and Levadias 1, 11527 Athens, Greece
| |
Collapse
|
165
|
Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:1721. [PMID: 35565689 PMCID: PMC9103900 DOI: 10.3390/nu14091721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Winthana Kusirisin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Boonsong Kasempitakpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Nipon Sermpanich
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Bow Tinpovong
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Nuttinee Salee
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Kovit Pattanapanyasat
- Office of Research and Development, Faculty of Medicine and Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
166
|
Maghalian M, Hasanzadeh R, Mirghafourvand M. The effect of oral vitamin E and omega-3 alone and in combination on menopausal hot flushes: A systematic review and meta-analysis. Post Reprod Health 2022; 28:93-106. [PMID: 35445622 DOI: 10.1177/20533691221083196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This systematic review was conducted to investigate the effects of vitamin E and omega-3 used alone and in combination on the frequency and intensity of hot flushes (primary outcomes) and adverse effects (secondary outcome) in menopausal women. English and Persian databases were searched until March 18, 2021. The quality of the published papers was evaluated using Cochrane Handbook and the meta-analysis was conducted in RevMan 5.3. Heterogeneity was assessed using I2. In cases with substantial heterogeneity, a random effects model was used instead of a fixed effects model. A total of 387 papers were obtained from the databases. Finally, 10 papers with a sample size of 1100 participants entered the systematic review and a meta-analysis was conducted on nine of them. The results of the meta-analysis of two studies indicated that using vitamin E and omega-3 in combination significantly reduced the intensity of hot flushes compared to the placebo (mean difference (MD): -0.35; 95% CI: -0.48 to -0.21). The mean frequency (MD: -0.50; 95% CI: -1.58 to 0.58) and intensity (SMD: -0.61; 95% CI: -1.50 to 0.29) of hot flushes in the omega-3 group and the frequency of hot flushes (SMD: -0.21; 95% CI: -0.47 to 0.04) in the vitamin E group showed no significant differences with the placebo. No serious adverse effects were reported in the studies. Given the low number of RCTs, more clinical trials with larger sample size are required.
Collapse
Affiliation(s)
- Mahsa Maghalian
- Student Research Committee, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Hasanzadeh
- Department of Midwifery, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Faculty of Nursing & Midwifery, 48432Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Family Health, Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
167
|
Palmitessa OD, Durante M, Somma A, Mita G, D’Imperio M, Serio F, Santamaria P. Nutraceutical Profile of "Carosello" ( Cucumis melo L.) Grown in an Out-of-Season Cycle under LEDs. Antioxidants (Basel) 2022; 11:777. [PMID: 35453463 PMCID: PMC9026761 DOI: 10.3390/antiox11040777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The world population is projected to increase to 9.9 billion by 2050 and, to ensure food security and quality, agriculture must sustainably multiply production, increase the nutritional value of fruit and vegetables, and preserve genetic variability. In this work, an Apulian landrace of Cucumis melo L. called "Carosello leccese" was grown in a greenhouse with a soilless technique under light-emitting diodes (LEDs) used as supplementary light system. The obtained results showed that "Carosello leccese" contains up to 71.0 mg·g-1 dried weight (DW) of potassium and several bioactive compounds important for human health such as methyl gallate (35.58 µg·g-1 DW), α-tocopherol (10.12 µg·g-1 DW), and β-carotene (up to 9.29 µg·g-1 DW under LEDs). In fact, methyl gallate has antioxidative and antiviral effects in vitro and in vivo, tocopherols are well recognized for their effective inhibition of lipid oxidation in foods and biological systems and carotenoids are known to be very efficient physical and chemical quenchers of singlet oxygen. Finally, it was demonstrated that the LEDs' supplementary light did not negatively influence the biochemical profile of the peponids, confirming that it can be considered a valid technique to enhance horticultural production without reducing the content of the bioactive compounds of the fruits.
Collapse
Affiliation(s)
- Onofrio Davide Palmitessa
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (O.D.P.); (A.S.); (P.S.)
| | - Miriana Durante
- Institute of Sciences of Food Production, National Research Council of Italy, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Annalisa Somma
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (O.D.P.); (A.S.); (P.S.)
| | - Giovanni Mita
- Institute of Sciences of Food Production, National Research Council of Italy, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Massimiliano D’Imperio
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy;
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy;
| | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (O.D.P.); (A.S.); (P.S.)
| |
Collapse
|
168
|
Khalili L, A-Elgadir TME, Mallick AK, El Enshasy HA, Sayyed RZ. Nuts as a Part of Dietary Strategy to Improve Metabolic Biomarkers: A Narrative Review. Front Nutr 2022; 9:881843. [PMID: 35425791 PMCID: PMC9001892 DOI: 10.3389/fnut.2022.881843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Nuts are in the spotlight because of their association with improved health outcomes. We aimed to summarize the findings of previous studies to evaluate the impact of nuts consumption on glycaemic and lipid profile, inflammation, and oxidative stress. Methods Electronic searches for observational and intervention studies were undertaken in PubMed, Embase, Web of Science, and Science Direct until 2022 for searching the studies aiming the application of different types of nuts and the beneficial effects of nuts in improving glycemia, dyslipidemia, inflammation, and oxidative stress. Results Results from 56 interventional, 9 narrative and 3 systematic reviews, and 12 meta-analysis studies, aiming at the evaluating beneficial effects of different types of nuts on metabolic markers, showed that nut consumption could improve metabolic markers, including glycaemic factors, lipid profile, and inflammatory and oxidative stress parameters in both healthy and individuals with metabolic disorders in a type-, dose- and duration-dependent manner. According to their unique nutrient components, nuts can be known as a part of a healthy diet, resulting in improved metabolic biomarkers. Conclusion Considering the efficacy of nuts in improving metabolic markers, incorporation of, incorporating nuts the effectiveness of nuts in improving metabolic markers, incorporating nuts in the diet may prevent the incidence or aggravation of chronic metabolic diseases. Considering the health benefits of the nuts' components, including essential micronutrients, if consumed in the appropriate dose and duration to provide the necessary amount of effective micronutrients to improve health, we will see an improvement in metabolic factors. At the same time, more research is required to determine the optimal type, dose, and duration of nut intervention with regards to metabolic control and reducing the risk of developing metabolic disorders.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ayaz Khurram Mallick
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hesham Ali El Enshasy
- Insitute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
- City of Scientific Research and Technology Applications (SRTA), Alexandria, Egypt
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science, and Commerce College, Shahada, India
| |
Collapse
|
169
|
Metabolomic analysis of serum alpha-tocopherol among men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Eur J Clin Nutr 2022; 76:1254-1265. [PMID: 35322169 PMCID: PMC9444878 DOI: 10.1038/s41430-022-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES The role of vitamin E in chronic disease risk remains incompletely understood, particularly in an un-supplemented state, and evidence is sparse regarding the biological actions and pathways involved in its influence on health outcomes. Identifying vitamin-E-associated metabolites through agnostic metabolomics analyses can contribute to elucidating the specific associations and disease etiology. This study aims to investigate the association between circulating metabolites and serum α-tocopherol concentration in an un-supplemented state. SUBJECTS/METHODS Metabolomic analysis of 4,294 male participants was conducted based on pre-supplementation fasting serum in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. The associations between 1,791 known metabolites measured by ultra-high-performance LC-MS/GC-MS and HPLC-determined α-tocopherol concentration were estimated using multivariable linear regression. Differences in metabolite levels per unit difference in α-tocopherol concentration were calculated as standardized β-coefficients and standard errors. RESULTS A total of 252 metabolites were associated with serum α-tocopherol at the Bonferroni-corrected p value (p < 2.79 × 10-5). Most of these metabolites were of lipid and amino acid origin, with the respective subclasses of dicarboxylic fatty acids, and valine, leucine, and isoleucine metabolism, being highly represented. Among lipids, the strongest signals were observed for linoleoyl-arachidonoyl-glycerol (18:2/20:4)[2](β = 0.149; p = 8.65 × 10-146) and sphingomyelin (D18:2/18:1) (β = 0.035; p = 1.36 × 10-30). For amino acids, the strongest signals were aminoadipic acid (β = 0.021; p = 5.01 × 10-13) and l-leucine (β = 0.007; p = 1.05 × 10-12). CONCLUSIONS The large number of metabolites, particularly lipid and amino acid compounds associated with serum α-tocopherol provide leads regarding potential mechanisms through which vitamin E influences human health, including its role in cardiovascular disease and cancer.
Collapse
|
170
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
171
|
The Effect of Antioxidant Added to Preservation Solution on the Protection of Kidneys before Transplantation. Int J Mol Sci 2022; 23:ijms23063141. [PMID: 35328560 PMCID: PMC8954097 DOI: 10.3390/ijms23063141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemia–reperfusion injury is a key clinical problem of transplantology. Current achievements in optimizing organ rinse solutions and storage techniques have significantly influenced the degree of graft damage and its survival after transplantation. In recent years, intensive research has been carried out to maintain the viability of tissues and organs outside the integral environment of the body. Innovative solutions for improving the biochemical functions of the stored organ have been developed. The article discusses directions for modifying preservation solutions with antioxidants. Clinical and experimental studies aimed at optimizing these fluids, as well as perfusion and organ preservation techniques, are presented.
Collapse
|
172
|
Md Amin NA, Sheikh Abdul Kadir SH, Arshad AH, Abdul Aziz N, Abdul Nasir NA, Ab Latip N. Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases? Molecules 2022; 27:molecules27061896. [PMID: 35335260 PMCID: PMC8955126 DOI: 10.3390/molecules27061896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin E is known as an essential vitamin, and many studies had demonstrated the importance of vitamin E throughout the reproductive process, such as miscarriage, premature birth, preeclampsia, and intrauterine growth restriction, which could be caused by a lack of vitamin E during pregnancy. Its potent antioxidant properties can counteract the oxidative stress induced by oxygen free radicals and imbalance of oxidative-antioxidant levels, hence it may play a role in maintaining the normal function of the female reproductive system. Despite the fact that vitamin E is acknowledged as the substance needed for reproduction, its beneficial effects on female fertility, gynaecological health, and diseases are still poorly understood and lacking. Therefore, the goal of this paper is to provide a summary of the known roles of vitamin E supplementation in women for gynaecological health and reproductive-related diseases, as well as its future perspective.
Collapse
Affiliation(s)
- Nur Amira Md Amin
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Correspondence:
| | - Akmal Hisyam Arshad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Norhaslinda Abdul Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Nurul Alimah Abdul Nasir
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
| | - Normala Ab Latip
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia;
| |
Collapse
|
173
|
Lawrence WR, Lim JE, Huang J, Weinstein SJ, Mӓnnistӧ S, Albanes D. A 28-year prospective analysis of serum vitamin E, vitamin E-related genetic variation and risk of prostate cancer. Prostate Cancer Prostatic Dis 2022; 25:553-560. [PMID: 35197557 PMCID: PMC9391251 DOI: 10.1038/s41391-022-00511-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
Objective: Investigate the relationship between serum α-tocopherol concentration and long-term risk of prostate cancer, and evaluate the interaction with vitamin E–related genetic variants and their polygenic risk score (PRS). Methods: We conducted a biochemical analysis of 29 102 male Finnish smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Serum α-tocopherol was measured at baseline using high-performance liquid chromatography, and 2 724 prostate cancer cases were identified during 28 years of follow-up. Cox proportional hazards models examined whether serum α-tocopherol concentrations were associated with prostate cancer risk. Among 8 383 participants, three SNPs related to vitamin E status (rs964184, rs2108622, and rs11057830) were examined to determine whether they modified the relationship between serum α-tocopherol concentrations and prostate cancer risk, both individually and as a PRS using logistic regression models. Results: No association was observed between serum α-tocopherol and prostate cancer risk (fifth quintile (Q5) versus Q1 hazard ratio (HR)=0.87, 95% confidence interval (95% CI) 0.75, 1.02; p-trend=0.57). Though no interactions were seen by population characteristics, high α-tocopherol concentration was associated with reduced prostate cancer risk among the trial α-tocopherol supplementation group (Q5 quintile versus Q1 HR=0.79, 95% CI 0.64, 0.99). Finally, no associated interaction between the three SNPs or their PRS and prostate cancer risk was observed. Conclusion: Although there was a weak inverse association between α-tocopherol concentration and prostate cancer risk over nearly three decades, our findings suggest that men receiving the trial α-tocopherol supplementation who had higher baseline serum α-tocopherol concentration experienced reduced prostate cancer risk. Vitamin E–related genotypes did not modify the serum α-tocopherol-prostate cancer risk association.
Collapse
Affiliation(s)
- Wayne R Lawrence
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jung-Eun Lim
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiaqi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Satu Mӓnnistӧ
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
174
|
Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr Rev Food Sci Food Saf 2022; 21:964-998. [PMID: 35181987 DOI: 10.1111/1541-4337.12924] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, β-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, β-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| | - YuanFa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| |
Collapse
|
175
|
Tocotrienol in Pre-Eclampsia Prevention: A Mechanistic Analysis in Relation to the Pathophysiological Framework. Cells 2022; 11:cells11040614. [PMID: 35203265 PMCID: PMC8870475 DOI: 10.3390/cells11040614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of pre-eclampsia involves two major pathways, namely systemic oxidative stress and subsequent generalised inflammatory response, which eventually culminates in endothelial cell injury and the syndrome of pre-eclampsia with multi-organ dysfunction. Aspirin has been used to reduce the risk of pre-eclampsia, but it only possesses anti-inflammatory properties without any antioxidant effect. Hence, it can only partially alleviate the problem. Tocotrienols are a unique form of vitamin E with strong antioxidant and anti-inflammatory properties that can be exploited as a preventive agent for pre-eclampsia. Many preclinical models showed that tocotrienol can also prevent hypertension and ischaemic/reperfusion injury, which are the two main features in pre-eclampsia. This review explores the mechanism of action of tocotrienol in relation to the pathophysiology of pre-eclampsia. In conclusion, the study provides sufficient justification for the establishment of a large clinical trial to thoroughly assess the capability of tocotrienol in preventing pre-eclampsia.
Collapse
|
176
|
Wang H, Yan W, Sun Y, Yang CS. δ-Tocotrienol is the most potent vitamin E form in inhibiting prostate cancer cell growth and inhibits prostate carcinogenesis in Ptenp-/- mice. Cancer Prev Res (Phila) 2022; 15:233-245. [PMID: 35144931 DOI: 10.1158/1940-6207.capr-21-0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
Abstract
Vitamin E compounds, consisting of α, β, γ, and δ forms of tocopherols and tocotrienols, display different cancer preventive activities in experimental models. Tocotrienols may have higher potential for clinical use due to their lower effective doses in laboratory studies. However, most studies on tocotrienols have been carried out using cancer cell lines. Strong data from animal studies may encourage the use of tocotrienols for human cancer prevention research. To examine the cancer inhibitory activity of different vitamin E forms, we first investigated their inhibitory activities of different vitamin E forms in prostate cancer cell lines. We found that δ-tocotrienol (δT3) was the most effective form in inhibiting cell growth at equivalent doses. Because of this in vitro potency, δT3 was further studied using prostate specific Pten-/- (Ptenp-/-) mice. We found that 0.05% δT3 in diet reduced prostate adenocarcinoma multiplicity by 32.7%, featuring increased apoptosis and reduced cell proliferation. The inhibitory effect of 0.05% δT3 in diet was similar to that of 0.2% δ-tocopherol (δT) in diet reported previously. Our further study on the δT3-induced transcriptome changes indicated that δT3 inhibited genes in blood vessel development in the prostate of Ptenp-/- mice, which was confirmed by immunohistochemistry. Together, our results demonstrate that δT3 effectively inhibits the development of prostate adenocarcinoma in Ptenp-/- mice, which involves inhibition of proliferation and angiogenesis and promotion of apoptosis.
Collapse
Affiliation(s)
- Hong Wang
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| | - William Yan
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| | - Yuhai Sun
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| | - Chung S Yang
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| |
Collapse
|
177
|
Kolnik S, Corry K, Hildahl K, Filteau J, White O, Brandon O, Farid L, Shearlock A, Moralejo D, Juul SE, Nance EA, Wood TR. Vitamin E Decreases Cytotoxicity and Mitigates Inflammatory and Oxidative Stress Responses in a Ferret Organotypic Brain Slice Model of Neonatal Hypoxia-Ischemia. Dev Neurosci 2022; 44:233-245. [PMID: 35134797 DOI: 10.1159/000522485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
The gyrencephalic ferret brain is an excellent model in which to study hypoxia-ischemia (HI), a significant contributor to neurological injury in neonates. Vitamin E, an essential fat-soluble antioxidant, reduces oxidative stress and inflammation in both animal models and neonates. The aim of this study was to assess the effects of Vitamin E after oxygen glucose deprivation (OGD) in an organotypic ferret brain slice model of neonatal HI. We hypothesized that Vitamin E would decrease cytotoxicity, inflammation, and oxidative stress in OGD-exposed brain slices. Term-equivalent ferrets were sacrificed at postnatal (P) day 21-23 and 300µM whole hemisphere brain slices were obtained. During a 24h rest period, slices were cultured in either non-treated control conditions or with Erastin, a promotor of oxidative stress. Slices were then exposed to 2h of OGD followed by Vitamin E (25-100 IU/kg), Erastin (10µM) or Ferrostatin (1µM), an inhibitor of ferroptosis. Relative cytotoxicity was determined using an LDH assay, cell death was quantified via nuclear propidium iodide (PI) staining, oxidative stress was quantified via cellular GSH (glutathione) levels and target genes responsive to oxidative stress and inflammation were evaluated by qRT-PCR. OGD increased cytotoxicity, which was significantly reduced by treatment with Vitamin E. Vitamin E also preserved GSH after OGD and decreased amplification of certain markers of oxidative stress (CHAC1, SLC7A11) and inflammation (TNF-alpha, IL-8). Vitamin E remained protective after pretreatment with Erastin and was more protective than Ferrostatin, presumably due to its added anti-inflammatory properties. Results from the ferret whole hemisphere OGD model support the premise that Vitamin E neuroprotection is mediated by restoring GSH and acutely decreasing inflammation and oxidative stress after neonatal HI brain injury.
Collapse
Affiliation(s)
- Sarah Kolnik
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - Kylie Corry
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - Kate Hildahl
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Jeremy Filteau
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Olivia White
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - Olivia Brandon
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - Lily Farid
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - AnnaMarie Shearlock
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - Daniel Moralejo
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
| | - Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| |
Collapse
|
178
|
Jiang Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med 2022; 179:375-387. [PMID: 34785321 PMCID: PMC9018116 DOI: 10.1016/j.freeradbiomed.2021.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Natural forms of vitamin E comprise four tocopherols and four tocotrienols. During the last twenty years, there have been breakthroughs in our understanding of vitamin E metabolism and biological activities of vitamin E metabolites. Research has established that tocopherols and tocotrienols are metabolized via ω-hydroxylase (CYP4F2)-initiated side chain oxidation to form 13'-hydroxychromanol and 13'-carobyxychromanol (13'-COOH). 13'-COOHs are further metabolized via β-oxidation and sulfation to intermediate carboxychromanols, terminal metabolite carboxyethyl-hydroxychroman (CEHC), and sulfated analogs. Animal and human studies show that γ-, δ-tocopherol and tocotrienols are more extensively metabolized than α-tocopherol (αT), as indicated by higher formation of CEHCs and 13'-COOHs from non-αT forms than those from αT. 13'-COOHs are shown to be inhibitors of cyclooxygenase-1/-2 and 5-lipoxygenase and much stronger than CEHCs for these activities. 13'-COOHs inhibit cancer cell growth, modulate cellular lipids and activate peroxisome proliferator-activated receptor-γ and pregnane X receptor. Consistent with mechanistic findings, αT-13'-COOH or δTE-13'-COOH, respective metabolites of αT or δ-tocotrienol, show anti-inflammatory and cancer-preventive effects, modulates the gut microbiota and prevents β-amyloid formation in mice. Therefore, 13'-COOHs are a new class of bioactive compounds with anti-inflammatory and anti-cancer activities and potentially capable of modulating lipid and drug metabolism. Based on the existing evidence, this author proposes that metabolites may contribute to disease-preventing effects of γ-, δ-tocopherol and tocotrienols. The role of metabolites in αT's actions may be somewhat limited considering controlled metabolism of αT because of its association with tocopherol-transport protein and less catabolism by CYP4F2 than other vitamin E forms.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| |
Collapse
|
179
|
Elosaily AH, Mahrous EA, Salama AA, Salama AM, Elzalabani SM. Composition, anti‐inflammatory, and antioxidant activities of avocado oil obtained from Duke and Fuerte cultivars. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed H. Elosaily
- Department of Pharmacognosy, Faculty of Pharmacy Ahram Canadian University Giza Egypt
| | - Engy A. Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
| | - Abeer A. Salama
- Pharmacology Department National Research Center Dokki Egypt
| | - Ahmed M. Salama
- Department of Pharmacognosy, Faculty of Pharmacy Ahram Canadian University Giza Egypt
| | | |
Collapse
|
180
|
Physicochemical properties and stability of nanoemulsions containing Clinacanthus nutans extract for postherpetic neuralgia. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
181
|
Aremu AO, Moyo M. Health benefits and biological activities of spiny monkey orange (Strychnos spinosa Lam.): An African indigenous fruit tree. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114704. [PMID: 34601082 DOI: 10.1016/j.jep.2021.114704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spiny monkey orange (Strychnos spinosa Lam.) is an African endemic fruit tree that is widely consumed by humans and animals for its nutritional value. In folk medicine, different parts of S. spinosa are widely used for the management of the health and well-being of humans and livestock. AIM We provide a critical appraisal on the ethnobotanical uses, nutritional and pytochemical as well as the biological activities of S. spinosa. METHODS Articles were mined from online databases such as Google Scholar, PubMed, Science Direct, SciELO and SpringerLink. We captured research outputs that aligned with the scope of the review. RESULTS Strychnos spinosa remains a commonly consumed fruit due to its high nutritional (e.g. carbohydrates, crude protein and fats) content and energy. In folk medicine, different parts of S. spinosa are prescribed as remedy for diverse medical conditions especially for treating malaria, diabetes, snakebites, skin-related conditions and sexually transmitted infections in humans as well as sleeping sickness in livestock. Together with essential oils, more than 25 compounds have been profiled using Gas chromatography-mass spectrometry (GC-MS), and approximately 45 compounds have been isolated and structurally elucidated using diverse spectroscopic techniques such as UV-visible, Infrared (IR), Nuclear Magnetic Resonance (NMR) and mass spectroscopy (MS). Strychnos spinosa exerts varying degrees of biological activities against different microorganisms (bacteria and fungi) and parasites (plasmodia, trypanosomes and ticks) responsible for many diseases in humans and livestock. Furthermore, low to moderate enzyme-inhibitory effects of S. spinosa extracts suggest its ability to mitigate pains, inflammations and diabetics as well as snakebite venom. Increasing evidence from the in vivo studies support the use of the plant as a popular remedy for managing diabetics in folk medicine. The low cytotoxic effect of the plant extracts against different cell lines could be an indication of its relative safety. CONCLUSION Strychnos spinosa exhibits various health-promoting benefits due to its diverse nutritional and phytochemical constituents. Given that the majority of the existing evidence on these aforementioned therapeutic properties and safety are in vitro-based, the clinical significance of these results remain limited.
Collapse
Affiliation(s)
- Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, North West Province, South Africa; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa.
| | - Mack Moyo
- Department of Horticulture, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
182
|
Antioxidation, Anti-Inflammation, and Regulation of SRD5A Gene Expression of Oryza sativa cv. Bue Bang 3 CMU Husk and Bran Extracts as Androgenetic Alopecia Molecular Treatment Substances. PLANTS 2022; 11:plants11030330. [PMID: 35161311 PMCID: PMC8840328 DOI: 10.3390/plants11030330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Androgenetic alopecia (AGA), a hair loss disorder, is a genetic predisposition to sensitive androgens, inflammation, and oxidative stress. Unfortunately, current treatments with synthetic medicines contain a restricted mechanism along with side effects, whereas the bioactive constituents of plant extracts are multifunctional, with fewer side effects. The massive amounts of rice husk and bran are agricultural wastes that may cause pollution and environmental problems. Owing to these rationales, the local rice variety, Bue Bang 3 CMU (BB3CMU), which is grown in northern Thailand, was evaluated for the valuable utilization of rice by-products, husk (BB3CMU-H) and bran (BB3CMU-RB) extracts, for AGA treatment regarding antioxidant, anti-inflammatory, anti-androgenic activities, and the characterization of bioactive compounds. Our study verified that BB3CMU-H had the highest level of polyphenols, contributing to its greater antioxidant activity. Conversely, BB3CMU-RB was the predominant source of tocopherols, resulting in better anti-androgenic activities regarding the downregulation of steroid 5α-reductase genes (SRD5A). Notably, anti-inflammation via the attenuation of nitric oxide productions was observed in BB3CMU-H (0.06 ± 0.13 μM) and BB3CMU-RB (0.13 ± 0.01 μM), which were significantly comparable to diclofenac sodium salt (0.13 ± 0.19 μM). Therefore, the combination of BB3CMU-H and BB3CMU-RB could be utilized in cosmeceutical and pharmaceutical applications for AGA patients.
Collapse
|
183
|
Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare (Basel) 2022; 10:healthcare10020186. [PMID: 35206801 PMCID: PMC8872051 DOI: 10.3390/healthcare10020186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Factors influencing brain function and cognitive performance can be critical to athletic performance of esports athletes. This review aims to discuss the potential beneficial effects of micronutrients, i.e., vitamins, minerals and biologically active substances on cognitive functions of e-athletes. Minerals (iodine, zinc, iron, magnesium) and vitamins (B vitamins, vitamins E, D, and C) are significant factors that positively influence cognitive functions. Prevention of deficiencies of the listed ingredients and regular examinations can support cognitive processes. The beneficial effects of caffeine, creatine, and probiotics have been documented so far. There are many plant products, herbal extracts, or phytonutrients that have been shown to affect precognitive activity, but more research is needed. Beetroot juice and nootropics can also be essential nutrients for cognitive performance. For the sake of players’ eyesight, it would be useful to use lutein, which, in addition to improving vision and protecting against eye diseases, can also affect cognitive functions. In supporting the physical and mental abilities of e-athletes the base is a well-balanced diet with adequate hydration. There is a lack of sufficient evidence that has investigated the relationship between dietary effects and improved performance in esports. Therefore, there is a need for randomized controlled trials involving esports players.
Collapse
|
184
|
Physiological Effects of Bioactive Compounds Derived from Whole Grains on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases are a global health burden with an increasing prevalence. In addition, various metabolic diseases, such as obesity, diabetes, and hypertension are associated with a higher risk of cardiovascular diseases. Dietary strategies based on healthy foods have been suggested for the prevention or improvement of cardiovascular and metabolic diseases. Grains are the most widely consumed food worldwide, and the preventive effects of whole grains (e.g., oats, barley, and buckwheat) on metabolic diseases have been reported. The germ and bran of grains are rich in compounds, including phytochemicals, vitamins, minerals, and dietary fiber, and these compounds are effective in preventing and improving cardiovascular and metabolic diseases. Thus, this review describes the characteristics and functions of bioactive ingredients in whole grains, focusing on mechanisms by which polyphenols, antioxidants, and dietary fiber contribute to cardiovascular and metabolic diseases, based on preclinical and clinical studies. There is clear evidence for the broad preventive and therapeutic effects of whole grains, supporting the value of early dietary intervention.
Collapse
|
185
|
Yao N, Yan S, Li X, Wang L, Hu W, Li B, Cui W. Reply to the 'Comment on "The association between carotenoids and subjects with overweight or obesity: a systematic review and meta-analysis"' by N. Shokri-mashhadi and S. Saadat, Food Funct., 2021, 12, DOI: 10.1039/D1FO01617B. Food Funct 2022; 13:454-458. [PMID: 34907413 DOI: 10.1039/d1fo02621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we re-emphasize the purpose of our meta-analysis of the associations between carotenoids and subjects with excess body weight (Yao et al., 2021) and address some of the points raised in the commentary by Nafiseh Shokri-mashhadi and Saeed Saadat. The commentary focused on the methodological faults of our published meta-analysis research-but the research was rigorously conducted and scientifically sound, following strictly the relevant requirements of the Cochrane guidelines. Therefore, in the current reply, we included an elaboration and thorough discussion of the search strategy, inclusion and exclusion criteria, and tests of heterogeneity for the discussed meta-analysis in light of the comments made in the commentary. In conclusion, we believe that our study has made an essential contribution to the investigation of the significance of carotenoids in people with excess body weight.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Ling Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Wenyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| |
Collapse
|
186
|
Zhen W, Liu Y, Shao Y, Ma Y, Wu Y, Guo F, Abbas W, Guo Y, Wang Z. Yeast β-Glucan Altered Intestinal Microbiome and Metabolome in Older Hens. Front Microbiol 2022; 12:766878. [PMID: 34975793 PMCID: PMC8718749 DOI: 10.3389/fmicb.2021.766878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
The prebiotics- and probiotics-mediated positive modulation of the gut microbiota composition is considered a useful approach to improve gut health and food safety in chickens. This study explored the effects of yeast β-glucan (YG) supplementation on intestinal microbiome and metabolites profiles as well as mucosal immunity in older hens. A total of 256 43-week-old hens were randomly assigned to two treatments, with 0 and 200 mg/kg of YG. Results revealed YG-induced downregulation of toll-like receptors (TLRs) and cytokine gene expression in the ileum without any effect on the intestinal barrier. 16S rRNA analysis claimed that YG altered α- and β-diversity and enriched the relative abundance of class Bacilli, orders Lactobacillales and Enterobacteriales, families Lactobacillaceae and Enterobacteriaceae, genera Lactobacillus and Escherichia–Shigella, and species uncultured bacterium-Lactobacillus. Significant downregulation of cutin and suberin, wax biosynthesis, atrazine degradation, vitamin B6 metabolism, phosphotransferase system (PTS), steroid degradation, biosynthesis of unsaturated fatty acids, aminobenzoate degradation and quorum sensing and upregulation of ascorbate and aldarate metabolism, C5-branched dibasic acid metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, steroid biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, sesquiterpenoid and triterpenoid biosynthesis, lysine degradation, and ubiquinone and other terpenoid-quinone biosyntheses were observed in YG-treated hens, as substantiated by the findings of untargeted metabolomics analysis. Overall, YG manifests prebiotic properties by altering gut microbiome and metabolite profiles and can downregulate the intestinal mucosal immune response of breeder hens.
Collapse
Affiliation(s)
- Wenrui Zhen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuanyuan Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
187
|
Inami K, Minami H, Hayashi T, Okayama Y, Mochizuki M. Synthesis and Radical Scavenging Activity of Substituted Dihydrobenzofuran-5-ols. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
188
|
Jiang Q, Im S, Wagner JG, Hernandez ML, Peden DB. Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radic Biol Med 2022; 178:347-359. [PMID: 34896589 PMCID: PMC8826491 DOI: 10.1016/j.freeradbiomed.2021.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
γ-Tocopherol (γT) is a major form of vitamin E in the US diet and the second most abundant vitamin E in the blood and tissues, while α-tocopherol (αT) is the predominant vitamin E in tissues. During the last >25 years, research has revealed that γT has unique antioxidant and anti-inflammatory activities relevant to disease prevention compared to αT. While both compounds are potent lipophilic antioxidants, γT but not αT can trap reactive nitrogen species by forming 5-nitro-γT, and appears to show superior protection of mitochondrial function. γT inhibits ionophore-stimulated leukotrienes by blocking 5-lipoxygenase (5-LOX) translocation in leukocytes, decreases cyclooxygenase-2 (COX-2)-catalyzed prostaglandins in macrophages and blocks the growth of cancer cells but not healthy cells. For these activities, γT is stronger than αT. Moreover, γT is more extensively metabolized than αT via cytochrome P-450 (CYP4F2)-initiated side-chain oxidation, which leads to formation of metabolites including 13'-carboxychromanol (13'-COOH) and carboxyethyl-hydroxychroman (γ-CEHC). 13'-COOH and γ-CEHC are shown to be the predominant metabolites found in feces and urine, respectively. Interestingly, γ-CEHC has natriuretic activity and 13'-COOH inhibits both COX-1/-2 and 5-LOX activity. Consistent with these mechanistic findings of γT and metabolites, studies show that supplementation of γT mitigates inflammation and disease symptoms in animal models with induced inflammation, asthma and cancer. In addition, supplementation of γT decreased inflammation markers in patients with kidney diseases and mild asthma. These observations support that γT may be useful against inflammation-associated diseases.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| | - Suji Im
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, USA
| | - Michelle L Hernandez
- Division of Allergy & Immunology, University of North Carolina School of Medicine, USA
| | - David B Peden
- Division of Allergy & Immunology, University of North Carolina School of Medicine, USA
| |
Collapse
|
189
|
Abstract
Vitamins are essential micronutrients with key roles in many biological pathways relevant to sepsis. Some of these relevant biological mechanisms include antioxidant and anti-inflammatory effects, protein and hormone synthesis, energy generation, and regulation of gene transcription. Moreover, relative vitamin deficiencies in plasma are common during sepsis and vitamin therapy has been associated with improved outcomes in some adult and pediatric studies. High-dose intravenous vitamin C has been the vitamin therapy most extensively studied in adult patients with sepsis and septic shock. This includes three randomized control trials (RCTs) as monotherapy with a total of 219 patients showing significant reduction in organ dysfunction and lower mortality when compared to placebo, and five RCTs as a combination therapy with thiamine and hydrocortisone with a total of 1134 patients showing no difference in clinical outcomes. Likewise, the evidence for the role of other vitamins in sepsis remains mixed. In this narrative review, we present the preclinical, clinical, and safety evidence of the most studied vitamins in sepsis, including vitamin C, thiamine (i.e., vitamin B1), and vitamin D. We also present the relevant evidence of the other vitamins that have been studied in sepsis and critical illness in both children and adults, including vitamins A, B2, B6, B12, and E. IMPACT: Vitamins are key effectors in many biological processes relevant to sepsis. We present the preclinical, clinical, and safety evidence of the most studied vitamins in pediatric sepsis. Designing response-adaptive platform trials may help fill in knowledge gaps regarding vitamin use for critical illness and association with clinical outcomes.
Collapse
|
190
|
Rizwana N, Agarwal V, Nune M. Antioxidant for Neurological Diseases and Neurotrauma and Bioengineering Approaches. Antioxidants (Basel) 2021; 11:72. [PMID: 35052576 PMCID: PMC8773039 DOI: 10.3390/antiox11010072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Antioxidants are a class of molecules with an innate affinity to neutralize reactive oxygen species (ROS), which are known to cause oxidative stress. Oxidative stress has been associated with a wide range of diseases mediated by physiological damage to the cells. ROS play both beneficial and detrimental roles in human physiology depending on their overall concentration. ROS are an inevitable byproduct of the normal functioning of cells, which are produced as a result of the mitochondrial respiration process. Since the establishment of the detrimental effect of oxidative stress in neurological disorders and neurotrauma, there has been growing interest in exploring antioxidants to rescue remaining or surviving cells and reverse the neurological damage. In this review, we present the survey of different antioxidants studied in neurological applications including neurotrauma. We also delve into bioengineering approaches developed to deliver antioxidants to improve their cellular uptake in neurological applications.
Collapse
Affiliation(s)
- Nasera Rizwana
- Manipal Institute of Regenerative Medicine (MIRM), Bengaluru, Manipal Academy of Higher Education (MAHE), Manipal 576104, India;
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine (MIRM), Bengaluru, Manipal Academy of Higher Education (MAHE), Manipal 576104, India;
| |
Collapse
|
191
|
Vitamin E supplementation reduces stress levels from orthodontic force in Wistar rats ( Rattus norvegicus). Saudi Dent J 2021; 33:912-916. [PMID: 34938033 PMCID: PMC8665176 DOI: 10.1016/j.sdentj.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/12/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background Orthodontic tooth movement is mediated by the inflammation process. Inflammation induces pain and increases the level of cortisol hormone as it triggers stress. The aim of this research was to observe the effects of vitamin E (VE) supplementation in reducing stress levels from orthodontic force in Wistar rats (Rattus norvegicus). Methods Wistar rats (n = 56) were divided into two groups: group 1 as the control group, and group 2 as the experimental group (VE group). VE supplemented for 14 days prior application of the separator as an orthodontic force. Each group was divided into four subgroups (n = 7), corresponding to the duration in days that force was applied, i.e., 0, 1, 3, and 7 days. Stress were measured by cortisol levels, and inflammation were measured by interleukin-1 beta (IL-1β) levels in blood plasma. Results The VE group had lower cortisol levels than the control group, and significant found on days 3 and 7 (p = 0.026 and p = 0.037). The cortisol level in the VE group decreased faster, beginning on day 1, whilst the control group occurred on day 3. Statistical analysis of IL-1β levels found insignificant differences between the two groups. Conclusion Vitamin E helps reduce stress caused by orthodontic force due to tooth movement.
Collapse
|
192
|
Sumida Y, Yoneda M, Seko Y, Takahashi H, Hara N, Fujii H, Itoh Y, Yoneda M, Nakajima A, Okanoue T. Role of vitamin E in the treatment of non-alcoholic steatohepatitis. Free Radic Biol Med 2021; 177:391-403. [PMID: 34715296 DOI: 10.1016/j.freeradbiomed.2021.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD), can progress to cirrhosis, hepatocellular carcinoma (HCC), and hepatic failure/liver transplantation. Indeed, NASH will soon be the leading cause of HCC and liver transplantation. Lifestyle intervention represents the cornerstone of NASH treatment, but it is difficult to sustain. However, no pharmacotherapies for NASH have been approved. Oxidative stress has been implicated as one of the key factors in the pathogenesis of NASH. Systematic reviews with meta-analyses have confirmed that vitamin E reduces transaminase activities and may resolve NASH histopathology without improving hepatic fibrosis. However, vitamin E is not recommended for the treatment of NASH in diabetes, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis. Nevertheless, vitamin E supplementation may improve clinical outcomes in patients with NASH and bridging fibrosis or cirrhosis. Further studies are warranted to confirm such effects of vitamin E and that it would reduce overall mortality/morbidity without increasing the incidence of cardiovascular events. Future clinical trials of the use of vitamin E in combination with other anti-fibrotic agents may demonstrate an additive or synergistic therapeutic effect. Vitamin E is the first-line pharmacotherapy for NASH, according to the consensus of global academic societies.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | - Nagisa Hara
- Liver Center, Saga University Hospital, Saga, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
193
|
Brigelius-Flohé R. Vitamin E research: Past, now and future. Free Radic Biol Med 2021; 177:381-390. [PMID: 34756995 DOI: 10.1016/j.freeradbiomed.2021.10.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
The early history of vitamin E from its discovery by Herbert M. Evans and Katharine J. S. Bishop in 1922 up to its chemical synthesis by Paul Karrer and coworkers in 1938 and the development of the concept that vitamin E acts as an antioxidant in vivo are recalled. Some more recent results shedding doubt on this hypothesis are reviewed. They comprise influence of vitamin E on enzyme activities, signaling cascades, gene expression and bio-membrane structure. The overall conclusion is that our knowledge of the vitamin's mechanism of action still remains fragmentary. The metabolism of tocopherols and tocotrienols is presented and discussed in respect to bioactivity of the metabolites, interference with drug metabolism and the future design of clinical trials. Some strategies are recommended how to reach the final goal: the identification of the primary vitamin E target(s) and the analysis of the downstream events up to the physiological phenomena.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition Potsdam Rehbrücke, Arthur-Scheunert-Alle 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
194
|
Traber MG, Head B. Vitamin E: How much is enough, too much and why! Free Radic Biol Med 2021; 177:212-225. [PMID: 34699937 DOI: 10.1016/j.freeradbiomed.2021.10.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
α-Tocopherol (α-T) is a required dietary nutrient for humans and thus is a vitamin. This narrative review focuses on vitamin E structures, functions, biological determinants and its deficiency symptoms in humans. The mechanisms for the preferential α-T tissue enrichment in the human body include the α-T transfer protein (TTPA) and the preferential metabolism of non-α-T forms. Potential new α-T biomarkers, pharmacokinetic data, and whether there are better approaches to evaluate and set the α-T dietary requirement are discussed. Finally, the possible role of α-T supplements in delay of chronic diseases and the evaluation of vitamin E safety are considered.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, USA.
| | - Brian Head
- Linus Pauling Institute, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
195
|
Rubini E, Minacori M, Paglia G, Macone A, Chichiarelli S, Altieri F, Eufemi M. Tomato and Olive Bioactive Compounds: A Natural Shield against the Cellular Effects Induced by β-Hexachlorocyclohexane-Activated Signaling Pathways. Molecules 2021; 26:molecules26237135. [PMID: 34885717 PMCID: PMC8658925 DOI: 10.3390/molecules26237135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
The β-isomer of hexachlorocyclohexane (β-HCH) is a globally widespread pollutant that embodies all the physicochemical characteristics of organochlorine pesticides, constituting an environmental risk factor for a wide range of noncommunicable diseases. Previous in vitro studies from our group disclosed the carcinogenic potential of β-HCH, which contributes to neoplastic transformation by means of multifaceted intracellular mechanisms. Considering the positive evidence regarding the protective role of natural bioactive compounds against pollution-induced toxicity, micronutrients from olive and tomato endowed with the capability of modulating β-HCH cellular targets were tested. For this purpose, the solution obtained from a patented food supplement (No. EP2851080A1), referred to as Tomato and Olive Bioactive Compounds (TOBC), was administered to the androgen-sensitive prostate cancer cells LNCaP and different biochemical and cellular assays were performed to evaluate its efficiency. TOBC shows a dose-dependent significant chemoprotection by contrasting β-HCH-induced intracellular responses such as STAT3 and AhR activation, disruption of AR signaling, antiapoptotic and proliferative activity, and increase in ROS production and DNA damage. These experimental outcomes identified TOBC as a suitable functional food to be included in a diet regimen aimed at defending cells from β-HCH negative effects, recommending the development of tailored enriched formulations for exposed individuals.
Collapse
Affiliation(s)
- Elisabetta Rubini
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (M.M.); (G.P.); (A.M.); (S.C.); (M.E.)
- Enrico ed Enrica Sovena Foundation, 00199 Rome, Italy
- Fondazione Federico Calabresi Onlus, 00186 Rome, Italy
| | - Marco Minacori
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (M.M.); (G.P.); (A.M.); (S.C.); (M.E.)
| | - Giuliano Paglia
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (M.M.); (G.P.); (A.M.); (S.C.); (M.E.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (M.M.); (G.P.); (A.M.); (S.C.); (M.E.)
| | - Silvia Chichiarelli
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (M.M.); (G.P.); (A.M.); (S.C.); (M.E.)
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (M.M.); (G.P.); (A.M.); (S.C.); (M.E.)
- Correspondence:
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (M.M.); (G.P.); (A.M.); (S.C.); (M.E.)
| |
Collapse
|
196
|
Fatima R, Yasin MS, Anwar H, Ullah I, Shehzad W, Murtaza I, Ali T. Vitamin E boosted the protective potential of Aloe vera in CCl4-treated rats. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00932-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
197
|
Wang C, Wang N, Li N, Yu Q, Wang F. Combined Effects of Resveratrol and Vitamin E From Peanut Seeds and Sprouts on Colorectal Cancer Cells. Front Pharmacol 2021; 12:760919. [PMID: 34803703 PMCID: PMC8595107 DOI: 10.3389/fphar.2021.760919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (RES) and Vitamin E (VE) are anti-cancer active ingredients with relatively high content in peanut seeds and sprouts. This study aimed to determine the synergistic inhibitory effect of RES and VE on colorectal cancer. Using 5-FU as a positive drug control, the effect of RES combined with VE on HCT-8 cells was determined, and cell viability was detected using the cell-counting kit 8 (CCK8) method. Cell morphology changes were observed using optical microscopy. Cell migration ability was evaluated by the scratch test, while cell colonies were determined by the cloning test formation ability. Apoptosis status was assessed by flow cytometry and nuclear staining by DAPI, and the expression level of apoptosis-related proteins was determined by western blotting. Compared with the single component group, the RES combined with VE group significantly inhibited the growth and proliferation of HCT-8 intestinal cancer cells in vitro. The RES combined with VE group had a greater impact on cell morphology changes and cell colony formation and significantly reduced cell migration ability and intestinal cancer cell apoptosis (p < 0.05). Additionally, combined treatment with RES and VE significantly upregulated the expression of pro-apoptotic proteins BAX, caspase-3, caspase-8, and caspase-9, and downregulated the expression of anti-apoptotic protein BCL-2, compared to the single component treatment. RES combined with VE is effective in promoting intestinal cancer cell apoptosis. This study demonstrated the significant positive synergy of RES and VE on HCT-8 cells, providing a new perspective for more effective use of RES.
Collapse
Affiliation(s)
- Chunfeng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Zhengzhou Nutrition and Health Food Laboratory, Zhengzhou, China
| | - Na Wang
- Zhengzhou Nutrition and Health Food Laboratory, Zhengzhou, China.,School of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Na Li
- School of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qiuying Yu
- Zhengzhou Nutrition and Health Food Laboratory, Zhengzhou, China.,School of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Fangyu Wang
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
198
|
Jordan AC, Perry CGR, Cheng AJ. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic Biol Med 2021; 176:189-202. [PMID: 34560246 DOI: 10.1016/j.freeradbiomed.2021.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.
Collapse
Affiliation(s)
- Adam C Jordan
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada.
| |
Collapse
|
199
|
Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radic Biol Med 2021; 176:1-15. [PMID: 34481937 DOI: 10.1016/j.freeradbiomed.2021.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids are oxidized in vivo by multiple oxidizing species with different properties, some by regulated manner to produce physiological mediators, while others by random mechanisms to give detrimental products. Vitamin E plays an important role as a physiologically essential antioxidant to inhibit unregulated lipid peroxidation by scavenging lipid peroxyl radicals to break chain propagation independent of the type of free radicals which induce chain initiation. Kinetic data suggest that vitamin E does not act as an efficient scavenger of nitrogen dioxide radical, carbonate anion radical, and hypochlorite. The analysis of regio- and stereo-isomer distribution of the lipid oxidation products shows that, apart from lipid oxidation by CYP enzymes, the free radical-mediated lipid peroxidation is the major pathway of lipid oxidation taking place in humans. Compared with healthy subjects, the levels of racemic and trans,trans-hydro (pero)xyoctadecadienoates, specific biomarker of free radical lipid oxidation, are elevated in the plasma of patients including atherosclerosis and non-alcoholic fatty liver diseases. α-Tocopherol acts as a major antioxidant, while γ-tocopherol scavenges nitrogen dioxide radical, which induces lipid peroxidation, nitration of aromatic compounds and unsaturated fatty acids, and isomerization of cis-fatty acids to trans-fatty acids. It is essential to appreciate that the antioxidant effects of vitamin E depend on the nature of both oxidants and substrates being oxidized. Vitamin E, together with other antioxidants such as vitamin C, contributes to the inhibition of detrimental oxidation of biological molecules and thereby to the maintenance of human health and prevention of diseases.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, 153-8904, Japan.
| |
Collapse
|
200
|
Dou Y, Xia W, Mason AS, Huang D, Sun X, Fan H, Xiao Y. Developing functional markers for vitamin E biosynthesis in oil palm. PLoS One 2021; 16:e0259684. [PMID: 34797841 PMCID: PMC8604351 DOI: 10.1371/journal.pone.0259684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022] Open
Abstract
Vitamin E is essential for human health and plays positive roles in anti-oxidation. Previously, we detected large variation in vitamin E content among 161 oil palm accessions. In this study, twenty oil palm accessions with distinct variation in vitamin E contents (171.30 to 1 258.50 ppm) were selected for genetic variation analysis and developing functional markers associated with vitamin E contents. Thirty-seven homologous genes in oil palm belonging to vitamin E biosynthesis pathway were identified via BLASTP analysis, the lengths of which ranged from 426 to 25 717 bp (average 7 089 bp). Multiplex PCR sequencing for the 37 genes found 1 703 SNPs and 85 indels among the 20 oil palm accessions, with 226 SNPs locating in the coding regions. Clustering analysis for these polymorphic loci showed that the 20 oil palm accessions could be divided into five groups. Among these groups, group I included eight oil palm accessions whose vitamin E content (mean value: 893.50 ppm) was far higher than other groups (mean value 256.29 to 532.94 ppm). Correlation analysis between the markers and vitamin E traits showed that 134 SNP and 7 indel markers were significantly (p < 0.05) related with total vitamin E content. Among these functional markers, the indel EgTMT-1-24 was highly correlated with variation in vitamin E content, especially tocotrienol content. Our study identified a number of candidate function associated markers and provided clues for further research into molecular breeding for high vitamin E content oil palm.
Collapse
Affiliation(s)
- Yajing Dou
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Wei Xia
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
| | - Annaliese S. Mason
- Plant Breeding Department, The University of Bonn, Bonn, North Rhine-Westphalia, Germany
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Haikuo Fan
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, P.R. China
- * E-mail: ,
| |
Collapse
|