151
|
Henfling M, Perren A, Schmitt AM, Saddig CM, Starke AA, Riedl RG, Versleijen-Jonkers YMH, Sprij-Mooij DM, Ramaekers FCS, Hofland L, Speel EJM. The IGF pathway is activated in insulinomas but downregulated in metastatic disease. Endocr Relat Cancer 2018; 25:ERC-18-0222. [PMID: 30021864 DOI: 10.1530/erc-18-0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/03/2023]
Abstract
Clinical and molecular studies have implicated epidermal growth factor receptor (EGFR), insulin-like growth factor (IGF) and target of rapamycin (mTOR) signaling pathways in the regulation of pancreatic neuroendocrine tumor (PanNET) growth. Interpretation and comparison of these studies is complex due to clinical and molecular tumor heterogeneity. We therefore focused in this study on insulinomas, which we examined for mRNA and protein expression of EGFR, IGF and mTOR signaling pathway components by quantitative real-time PCR (n=48) and immunohistochemistry (n=86). Findings were compared with normal pancreatic islets and correlated with histopathological data and clinical outcome. Insulinomas showed low EGFR and high IGF2 expression. IGFBP2, IGFBP3 and IGFBP6 mRNA levels were 2-4 folds higher than in islets. High protein expression of IGF2, IGF1R and INSR (in 51-92% of the tumors) and low to moderate expression of mTORC1 pathway proteins p-PS6k and p-4EBP1 (7-28% of the tumors) were observed. Correlations were found between 1) ERK1 mRNA expression and that of numerous IGF pathway genes, 2) p-ERK and IGF1R protein expression and 3) decrease of IGF pathway components and both metastatic disease and shorter 10 years disease free survival. In conclusion, our observations suggest that high expression of IGF signaling pathway components is a hallmark of insulinomas, but does not necessarily lead to increased mTOR signaling. Reduced expression of IGF pathway components may be an adverse prognostic factor in insulinomas.
Collapse
Affiliation(s)
- Mieke Henfling
- M Henfling, Genetics & Cell Biology, Maastricht University - Location Randwyck, Maastricht, Netherlands
| | - Aurel Perren
- A Perren, University of Bern, Institute of Pathology, Bern, Switzerland
| | - Anja Maria Schmitt
- A Schmitt, Department of Pathology, University of Bern, Bern, Switzerland
| | - Christiane M Saddig
- C Saddig, Insulinoma and GEP-Tumor Center Neuss-Düsseldorf, Klinik für Endokrine Chirurgie, Stadtische Kliniken Neuss Lukaskrankenhaus GmbH, Neuss, Germany
| | - Achim A Starke
- A Starke, Insulinoma and GEP-Tumor Center Neuss-Düsseldorf, Klinik für Endokrine Chirurgie, Stadtische Kliniken Neuss Lukaskrankenhaus GmbH, Neuss, Germany
| | - Robert G Riedl
- R Riedl, Pathology, Zuyderland Medisch Centrum Heerlen, Heerlen, Netherlands
| | | | - Diane M Sprij-Mooij
- D Sprij-Mooij, Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Frans C S Ramaekers
- F Ramaekers, Molecular Cell Biology, Maastricht University, Maastricht, Netherlands
| | - Leo Hofland
- L Hofland, Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Ernst-Jan M Speel
- E Speel, Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
152
|
Singh MK, Das BK, Choudhary S, Gupta D, Patil UK. Diabetes and hepatocellular carcinoma: A pathophysiological link and pharmacological management. Biomed Pharmacother 2018; 106:991-1002. [PMID: 30119271 DOI: 10.1016/j.biopha.2018.06.095] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 02/07/2023] Open
Abstract
Both diabetes mellitus (DM) and cancer are multifarious, dissimilar, and long-lasting, fatal diseases with a remarkable influence on health worldwide. DM is not only related to cardiovascular diseases, neuropathy, nephropathy, and retinopathy, but also related to a number of liver diseases such as nonalcoholic fatty liver disease, steatohepatitis, and liver cirrhosis. Recently, it is hypothesized that DM has a greater risk for many forms of cancer, such as breast, colorectal, endometrial, pancreatic, gallbladder, renal, and liver cancer including hepatocellular carcinoma (HCC). Both DM and cancer have many common risk factors, but the association between these two is poorly stated. Several epidemiologic studies have revealed the association between pathogenic and prognostic characteristics of DM and a higher incidence of HCC, thus representing DM as an independent risk factor for HCC development. The etiological and pathophysiological relationship between DM and HCC has been presented in this review by linking hyperglycemia, hyperinsulinemia, insulin resistance, and activation of insulin-like growth factor signaling pathways and pharmacological management of HCC associated with DM.
Collapse
Affiliation(s)
- Mandeep Kumar Singh
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Bhrigu Kumar Das
- Department of Pharmacology, K.L.E.U's College of Pharmacy, Hubballi, Karnataka, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi, India.
| | - Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India
| |
Collapse
|
153
|
Du J, Yu Y, Zhan J, Zhang H. Targeted Therapies Against Growth Factor Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1026:125-146. [PMID: 29282682 DOI: 10.1007/978-981-10-6020-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most prevalent female malignancy throughout the world. Conventional treatment strategies for breast cancer consist of chemotherapy, radiation, surgery, chemoradiation, hormone therapy, and targeted therapies. Among them, targeted therapies show advantages to reduce cost and toxicity for being possible for individualized treatments based on the intrinsic subtypes of breast cancer. With deeper understanding of key signaling pathways concerning tumor growth and survival, growth factor-controlled signaling pathways are frequently dysregulated in the development and progression of breast cancer. Thus, targeted therapies against growth factor-mediated signaling pathways have been shown to have promising efficacy in both preclinical animal models and human clinical trials. In this chapter, we will briefly introduce inhibitors and monoclonal antibodies that target the main growth factor-modulated scenarios including epidermal growth factor receptor (EGFR), transforming growth factor beta (TGF-β), insulin-like growth factor 1 receptor (IGF1R), and fibroblast growth factor receptor (FGFR) signaling pathways in breast cancer therapy.
Collapse
Affiliation(s)
- Juan Du
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
154
|
Siregar P, Julen N, Hufnagl P, Mutter GL. Computational morphogenesis – Embryogenesis, cancer research and digital pathology. Biosystems 2018; 169-170:40-54. [DOI: 10.1016/j.biosystems.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 01/14/2023]
|
155
|
Huang J, Weng T, Ko J, Chen NY, Xiang Y, Volcik K, Han L, Blackburn MR, Lu X. Suppression of cleavage factor Im 25 promotes the proliferation of lung cancer cells through alternative polyadenylation. Biochem Biophys Res Commun 2018; 503:856-862. [PMID: 29928883 DOI: 10.1016/j.bbrc.2018.06.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a life-threatening disease that has a poor prognosis and low survival rate. Cleavage factor Im 25 (CFIm25) is a RNA-binding protein that if down-regulated causes 3'UTR shortening and thus promotes the transcript stability of target genes. It is not clear whether CFIm25 and alternative polyadenylation (APA) play a role during cancer development. The purpose of this study is to explore the role of CFIm25 in lung cancer cell proliferation. METHODS CFIm25 was knocked down in A549 cells. Western blots were carried out to determine the protein expression of CFIm25, insulin growth factor 1 receptor (IGF1R), CyclinD1 (CCND1) and TP53. Real-time qRT PCR was performed to determine the total transcript levels of CFIm25 targets and the normalized fold changes in their distal PAS (dPAS) usage. Immunofluorescence was carried out to check the expression of CFIm25, IGF1R and CCND1. Cell proliferation over time was determined using the WST-1 reagent. RESULTS The transcript levels of CCND1 and GSK3β were significantly increased and the dPAS usage of several oncogenes (IGF1R, CCND1 and GSK3β) were decreased after CFIm25 knockdown. The protein level of IGF1R was increased, and we detected increased percentage of CCND1 positive cells and cell proliferation over time in CFIm25 knockdown cells. In addition, the mRNA and APA analysis of IGF1R using patient RNA-seq data from the Cancer Genome Atlas indicated that IGF1R is shortened in both lung adenocarcinoma and lung squamous cell carcinoma compared to normal controls. CONCLUSIONS Our findings suggest that CFIm25 plays an important role in lung cancer cell proliferation through regulating the APA of oncogenes, including IGF1R, and promoting their protein expression.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Kelly Volcik
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX, USA
| | - Xiang Lu
- Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
156
|
Zhao C, Zeng Z, Qazvini NT, Yu X, Zhang R, Yan S, Shu Y, Zhu Y, Duan C, Bishop E, Lei J, Zhang W, Yang C, Wu K, Wu Y, An L, Huang S, Ji X, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, Ameer GA, Reid RR, He TC, Huang W. Thermoresponsive Citrate-Based Graphene Oxide Scaffold Enhances Bone Regeneration from BMP9-Stimulated Adipose-Derived Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2943-2955. [PMID: 30906855 PMCID: PMC6425978 DOI: 10.1021/acsbiomaterials.8b00179] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective bone tissue engineering is important to overcome the unmet clinical challenges as more than 1.6 million bone grafts are done annually in the United States. Successful bone tissue engineering needs minimally three critical constituents: osteoprogenitor cells, osteogenic factors, and osteoinductive/osteoconductive scaffolds. Osteogenic progenitors are derived from multipotent mesenchymal stem cells (MSCs), which can be prepared from numerous tissue sources, including adipose tissue. We previously showed that BMP9 is the most osteogenic BMP and induces robust bone formation of immortalized mouse adipose-derived MSCs entrapped in a citrate-based thermoresponsive hydrogel referred to as PPCNg. As graphene and its derivatives emerge as promising biomaterials, here we develop a novel thermosensitive and injectable hybrid material by combining graphene oxide (GO) with PPCNg (designated as GO-P) and characterize its ability to promote bone formation. We demonstrate that the thermoresponsive behavior of the hybrid material is maintained while effectively supporting MSC survival and proliferation. Furthermore, GO-P induces early bone-forming marker alkaline phosphatase (ALP) and potentiates BMP9-induced expression of osteogenic regulators and bone markers as well as angiogenic factor VEGF in MSCs. In vivo studies show BMP9-transduced MSCs entrapped in the GO-P scaffold form well-mineralized and highly vascularized trabecular bone. Thus, these results indicate that GO-P hybrid material may function as a new biocompatible, injectable scaffold with osteoinductive and osteoconductive activities for bone regeneration.
Collapse
Affiliation(s)
- Chen Zhao
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Nader Taheri Qazvini
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xinyi Yu
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yunxiao Zhu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Elliot Bishop
- Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, Illinois 60637, United States
| | - Jiayan Lei
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated University-Town Hospital of Chongqing Medical University, 55 Daxuecheng Zhonglu, Chongqing 401331, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Immunology and Microbiology, Beijing University of Chinese Medicine, 11 N. Third Ring Road E., Beijing 100029, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Shifeng Huang
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Cheng Gong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, 8 Daxue Road, Yichang 443002, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Wei Liu
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yixiao Feng
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, 35 Jianxin East Road, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, 139 Renmin Road, Changsha 410011, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Leonardo Oliveira
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Surgery, Feinberg School of Medicine, Northwestern University, 420 East Superior Street, Chicago, Illinois 60616, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, Illinois 60637, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Wei Huang
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
157
|
Boswell M, Boswell W, Lu Y, Savage M, Mazurek Z, Chang J, Muster J, Walter R. The transcriptional response of skin to fluorescent light exposure in viviparous (Xiphophorus) and oviparous (Danio, Oryzias) fishes. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:77-86. [PMID: 29017858 PMCID: PMC5889750 DOI: 10.1016/j.cbpc.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/14/2023]
Abstract
Differences in light sources are common in animal facilities and potentially can impact experimental results. Here, the potential impact of lighting differences on skin transcriptomes has been tested in three aquatic animal models commonly utilized in biomedical research, (Xiphophorus maculatus (platyfish), Oryzias latipes (medaka) and Danio rerio (zebrafish). Analysis of replicate comparative RNA-Seq data showed the transcriptional response to commonly utilized 4100K or "cool white" fluorescent light (FL) is much greater in platyfish and medaka than in zebrafish. FL induces genes associated with inflammatory and immune responses in both medaka and zebrafish; however, the platyfish exhibit suppression of genes involved with immune/inflammation, as well as genes associated with cell cycle progression. Furthermore, comparative analyses of gene expression data from platyfish UVB exposures, with medaka and zebrafish after exposure to 4100K FL, show comparable effects on the same stress pathways. We suggest the response to light is conserved, but that long-term adaptation to species specific environmental niches has resulted in a shifting of the wavelengths required to incite similar "genetic" responses in skin. We forward the hypothesis that the "genetic perception" of light may have evolved differently than ocular perception and suggest that light type (i.e., wavelengths emitted) is an important parameter to consider in experimental design.
Collapse
Affiliation(s)
- Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Zachary Mazurek
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Jordan Chang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Jeanot Muster
- Howard Hughes Medical Institute, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| | - Ronald Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
158
|
Wang F, Bank T, Malnassy G, Arteaga M, Shang N, Dalheim A, Ding X, Cotler SJ, Denning MF, Nishimura MI, Breslin P, Qiu W. Inhibition of insulin-like growth factor 1 receptor enhances the efficacy of sorafenib in inhibiting hepatocellular carcinoma cell growth and survival. Hepatol Commun 2018; 2:732-746. [PMID: 29881824 PMCID: PMC5983153 DOI: 10.1002/hep4.1181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common primary cancer and second largest cause of cancer-related death worldwide. The first-line oral chemotherapeutic agent sorafenib only increases survival in patients with advanced HCC by less than 3 months. Most patients with advanced HCC have shown limited response rates and survival benefits with sorafenib. Although sorafenib is an inhibitor of multiple kinases, including serine/threonine-protein kinase c-Raf, serine/threonine-protein kinase B-Raf, vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, and platelet-derived growth factor receptor β, HCC cells are able to escape from sorafenib treatment using other pathways that the drug insufficiently inhibits. The aim of this study was to identify and target survival and proliferation pathways that enable HCC to escape the antitumor activity of sorafenib. We found that insulin-like growth factor 1 receptor (IGF1R) remains activated in HCC cells treated with sorafenib. Knockdown of IGF1R sensitizes HCC cells to sorafenib treatment and decreases protein kinase B (AKT) activation. Overexpression of constitutively activated AKT reverses the effect of knockdown of IGF1R in sensitizing HCC cells to treatment with sorafenib. Further, we found that ceritinib, a drug approved by the U.S. Food and Drug Administration for treatment of non-small cell lung cancer, effectively inhibits the IGF1R/AKT pathway and enhances the inhibitory efficacy of sorafenib in human HCC cell growth and survival in vitro, in a xenograft mouse model and in the c-Met/β-catenin-driven HCC mouse model. Conclusion: Our study provides a biochemical basis for evaluation of a new combination treatment that includes IGF1R inhibitors, such as ceritinib and sorafenib, in patients with HCC. (Hepatology Communications 2018;2:732-746).
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Thomas Bank
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Gregory Malnassy
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Maribel Arteaga
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Na Shang
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Annika Dalheim
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Xianzhong Ding
- Pathology Department, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Scott J. Cotler
- Department of Medicine, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Mitchell F. Denning
- Pathology Department, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Michael I. Nishimura
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Peter Breslin
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
- Department of Molecular/Cellular Physiology, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| | - Wei Qiu
- Department of Surgery and Oncology Institute, Stritch School of MedicineLoyola University ChicagoMaywoodIL
| |
Collapse
|
159
|
Koundouros N, Poulogiannis G. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer. Front Oncol 2018; 8:160. [PMID: 29868481 PMCID: PMC5968394 DOI: 10.3389/fonc.2018.00160] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Metabolic rewiring and the consequent production of reactive oxygen species (ROS) are necessary to promote tumorigenesis. At the nexus of these cellular processes is the aberrant regulation of oncogenic signaling cascades such as the phosphoinositide 3-kinase and AKT (PI3K/Akt) pathway, which is one of the most frequently dysregulated pathways in cancer. In this review, we examine the regulation of ROS metabolism in the context of PI3K-driven tumors with particular emphasis on four main areas of research. (1) Stimulation of ROS production through direct modulation of mitochondrial bioenergetics, activation of NADPH oxidases (NOXs), and metabolic byproducts associated with hyperactive PI3K/Akt signaling. (2) The induction of pro-tumorigenic signaling cascades by ROS as a consequence of phosphatase and tensin homolog and receptor tyrosine phosphatase redox-dependent inactivation. (3) The mechanisms through which PI3K/Akt activation confers a selective advantage to cancer cells by maintaining redox homeostasis. (4) Opportunities for therapeutically exploiting redox metabolism in PIK3CA mutant tumors and the potential for implementing novel combinatorial therapies to suppress tumor growth and overcome drug resistance. Further research focusing on the multi-faceted interactions between PI3K/Akt signaling and ROS metabolism will undoubtedly contribute to novel insights into the extensive pro-oncogenic effects of this pathway, and the identification of exploitable vulnerabilities for the treatment of hyperactive PI3K/Akt tumors.
Collapse
Affiliation(s)
- Nikos Koundouros
- Department of Cancer Biology, Institute of Cancer Research, London, United Kingdom.,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - George Poulogiannis
- Department of Cancer Biology, Institute of Cancer Research, London, United Kingdom.,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
160
|
Severi L, Losi L, Fonda S, Taddia L, Gozzi G, Marverti G, Magni F, Chinello C, Stella M, Sheouli J, Braicu EI, Genovese F, Lauriola A, Marraccini C, Gualandi A, D'Arca D, Ferrari S, Costi MP. Proteomic and Bioinformatic Studies for the Characterization of Response to Pemetrexed in Platinum Drug Resistant Ovarian Cancer. Front Pharmacol 2018; 9:454. [PMID: 29867465 PMCID: PMC5952181 DOI: 10.3389/fphar.2018.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.
Collapse
Affiliation(s)
- Leda Severi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Taddia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaia Gozzi
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Jalid Sheouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elena I Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Lauriola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Marraccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Gualandi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
161
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
162
|
Targeting the IGF1R Pathway in Breast Cancer Using Antisense lncRNA-Mediated Promoter cis Competition. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:105-117. [PMID: 30195750 PMCID: PMC6023958 DOI: 10.1016/j.omtn.2018.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Aberrant insulin-like growth factor I receptor (IGF1R) signaling pathway serves as a well-established target for cancer drug therapy. The intragenic antisense long noncoding RNA (lncRNA) IRAIN, a putative tumor suppressor, is downregulated in breast cancer cells, while IGF1R is overexpressed, leading to an abnormal IGF1R/IRAIN ratio that promotes tumor growth. To precisely target this pathway, we developed an “antisense lncRNA-mediated intragenic cis competition” (ALIC) approach to therapeutically correct the elevated IGF1R/IRAIN bias in breast cancer cells. We used CRISPR-Cas9 gene editing to target the weak promoter of IRAIN antisense lncRNA and showed that in targeted clones, intragenic activation of the antisense lncRNA potently competed in cis with the promoter of the IGF1R sense mRNA. Notably, the normalization of IGF1R/IRAIN transcription inhibited the IGF1R signaling pathway in breast cancer cells, decreasing cell proliferation, tumor sphere formation, migration, and invasion. Using “nuclear RNA reverse transcription-associated trap” sequencing, we uncovered an IRAIN lncRNA-specific interactome containing gene targets involved in cell metastasis, signaling pathways, and cell immortalization. These data suggest that aberrantly upregulated IGF1R in breast cancer cells can be precisely targeted by cis transcription competition, thus providing a useful strategy to target disease genes in the development of novel precision medicine therapies.
Collapse
|
163
|
Moazami M, Askari B. Effect of Six Months of Aerobic Exercise on Serum Levels of Insulin, Growth Hormone and Insulin-Like Growth Hormone 1 in Sedentary Obese Women. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
164
|
Yan S, Zhang R, Wu K, Cui J, Huang S, Ji X, An L, Yuan C, Gong C, Zhang L, Liu W, Feng Y, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Liu B, Haydon RC, Lee MJ, Reid RR, Wolf JM, Shi Q, Luu HH, He TC, Weng Y. Characterization of the essential role of bone morphogenetic protein 9 (BMP9) in osteogenic differentiation of mesenchymal stem cells (MSCs) through RNA interference. Genes Dis 2018; 5:172-184. [PMID: 30258947 PMCID: PMC6149187 DOI: 10.1016/j.gendis.2018.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells and capable of differentiating into multiple cell types including osteoblastic, chondrogenic and adipogenic lineages. We previously identified BMP9 as one of the most potent BMPs that induce osteoblastic differentiation of MSCs although exact molecular mechanism through which BMP9 regulates osteogenic differentiation remains to be fully understood. Here, we seek to develop a recombinant adenovirus system to optimally silence mouse BMP9 and then characterize the important role of BMP9 in osteogenic differentiation of MSCs. Using two different siRNA bioinformatic prediction programs, we design five siRNAs targeting mouse BMP9 (or simB9), which are expressed under the control of the converging H1 and U6 promoters in recombinant adenovirus vectors. We demonstrate that two of the five siRNAs, simB9-4 and simB9-7, exhibit the highest efficiency on silencing exogenous mouse BMP9 in MSCs. Furthermore, simB9-4 and simB9-7 act synergistically in inhibiting BMP9-induced expression of osteogenic markers, matrix mineralization and ectopic bone formation from MSCs. Thus, our findings demonstrate the important role of BMP9 in osteogenic differentiation of MSCs. The characterized simB9 siRNAs may be used as an important tool to investigate the molecular mechanism behind BMP9 osteogenic signaling. Our results also indicate that recombinant adenovirus-mediated expression of siRNAs is efficient and sustained, and thus may be used as an effective delivery vehicle of siRNA therapeutics.
Collapse
Affiliation(s)
- Shujuan Yan
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jing Cui
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Cheng Gong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Bo Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
165
|
Assessment of GSK1904529A as a promising anti-osteosarcoma agent. Oncotarget 2018; 8:49646-49654. [PMID: 28572530 PMCID: PMC5564795 DOI: 10.18632/oncotarget.17911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 01/20/2023] Open
Abstract
The insulin growth factor-I receptor (IGF1R) signaling is a key mechanism for osteosarcoma (OS) cell proliferation. GSK1904529A is a novel small molecule IGF1R kinase inhibitor. Its activity against OS cells was tested. In both established OS cell lines (Saos-2 and MG-63) and primary human OS cells, treatment with GSK1904529A (at nM concentrations) significantly inhibited cell proliferation. At the molecular level, GSK1904529A almost completely blocked IGF1R activation in OS cells, and inhibited downstream AKT-ERK activation. IGF1R silence by targeted shRNA also inhibited AKT-ERK activation and Saos-2 cell proliferation. Significantly, GSK1904529A was unable to further inhibit proliferation of IGF1R-silenced Saos-2 cells. In vivo, GSK1904529A administration orally inhibited Saos-2 tumor growth in nude mice. Together, these results suggest that targeting IGF1R by GSK1904529A inhibits OS cell growth in vitro and in vivo.
Collapse
|
166
|
Arcidiacono D, Dedja A, Giacometti C, Fassan M, Nucci D, Francia S, Fabris F, Zaramella A, Gallagher EJ, Cassaro M, Rugge M, LeRoith D, Alberti A, Realdon S. Hyperinsulinemia Promotes Esophageal Cancer Development in a Surgically-Induced Duodeno-Esophageal Reflux Murine Model. Int J Mol Sci 2018; 19:ijms19041198. [PMID: 29662006 PMCID: PMC5979452 DOI: 10.3390/ijms19041198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/10/2023] Open
Abstract
Hyperinsulinemia could have a role in the growing incidence of esophageal adenocarcinoma (EAC) and its pre-cancerous lesion, Barrett's Esophagus, a possible consequence of Gastro-Esophageal Reflux Disease. Obesity is known to mediate esophageal carcinogenesis through different mechanisms including insulin-resistance leading to hyperinsulinemia, which may mediate cancer progression via the insulin/insulin-like growth factor axis. We used the hyperinsulinemic non-obese FVB/N (Friend leukemia virus B strain) MKR (muscle (M)-IGF1R-lysine (K)-arginine (R) mouse model to evaluate the exclusive role of hyperinsulinemia in the pathogenesis of EAC related to duodeno-esophageal reflux. FVB/N wild-type (WT) and MKR mice underwent jejunum-esophageal anastomosis side-to end with the exclusion of the stomach. Thirty weeks after surgery, the esophagus was processed for histological, immunological and insulin/Insulin-like growth factor 1 (IGF1) signal transduction analyses. Most of the WT mice (63.1%) developed dysplasia, whereas most of the MKR mice (74.3%) developed squamous cell and adenosquamous carcinomas, both expressing Human Epidermal growth factor receptor 2 (HER2). Hyperinsulinemia significantly increased esophageal cancer incidence in the presence of duodenal-reflux. Insulin receptor (IR) and IGF1 receptor (IGF1R) were overexpressed in the hyperinsulinemic condition. IGF1R, through ERK1/2 mitogenic pattern activation, seems to be involved in cancer onset. Hyperinsulinemia-induced IGF1R and HER2 up-regulation could also increase the possibility of forming of IGF1R/HER2 heterodimers to support cell growth/proliferation/progression in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Diletta Arcidiacono
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| | - Arben Dedja
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Cinzia Giacometti
- Anatomic Pathology Unit, ULSS 6 Euganea, via Cosma, 1, Camposampiero, 35012 Padua, Italy.
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Daniele Nucci
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| | - Simona Francia
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Biomedical Sciences, University of Padua, via Bassi, 58/B, 35131, Padua, Italy.
| | - Federico Fabris
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Alice Zaramella
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Emily J Gallagher
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Mauro Cassaro
- Anatomic Pathology Unit, ULSS 6 Euganea, via Cosma, 1, Camposampiero, 35012 Padua, Italy.
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Derek LeRoith
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Alfredo Alberti
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| |
Collapse
|
167
|
Ambrogio C, Darbo E, Lee SW, Santamaría D. A putative role for Discoidin Domain Receptor 1 in cancer chemoresistance. Cell Adh Migr 2018; 12:394-397. [PMID: 29505315 DOI: 10.1080/19336918.2018.1445954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Discoidin Domain Receptor 1 (DDR1) receptor tyrosine kinase performs pleiotropic functions in the control of cell adhesion, proliferation, survival, migration, and invasion. Aberrant DDR1 function as a consequence of either mutations or increased expression has been associated with various human diseases including cancer. Pharmacological inhibition of DDR1 results in significant therapeutic benefit in several pre-clinical cancer models. Here, we discuss the potential implication of DDR1-dependent pro-survival functions in the development of cancer resistance to chemotherapeutic regimens and speculate on the molecular mechanisms that might mediate such important feature.
Collapse
Affiliation(s)
- Chiara Ambrogio
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Elodie Darbo
- b University of Bordeaux , INSERM U1218, ACTION Laboratory, Centre de Bioinformatique de Bordeaux (CBiB) , Bordeaux , France
| | - Sam W Lee
- c Cutaneous Biology Research Center , Massachusetts General Hospital and Harvard Medical School , Charlestown , MA , USA
| | - David Santamaría
- d University of Bordeaux , INSERM U1218, ACTION Laboratory, IECB , Pessac , France
| |
Collapse
|
168
|
Nuncia-Cantarero M, Martinez-Canales S, Andrés-Pretel F, Santpere G, Ocaña A, Galan-Moya EM. Functional transcriptomic annotation and protein-protein interaction network analysis identify NEK2, BIRC5, and TOP2A as potential targets in obese patients with luminal A breast cancer. Breast Cancer Res Treat 2018; 168:613-623. [PMID: 29330624 PMCID: PMC5842257 DOI: 10.1007/s10549-017-4652-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Although obesity is a risk factor for breast cancer, little effort has been made in the identification of druggable molecular alterations in obese-breast cancer patients. Tumors are controlled by their surrounding microenvironment, in which the adipose tissue is a main component. In this work, we intended to describe molecular alterations at a transcriptomic and protein-protein interaction (PPI) level between obese and non-obese patients. METHODS AND RESULTS Gene expression data of 269 primary breast tumors were compared between normal-weight (BMI < 25, n = 130) and obese (IMC > 30, n = 139) patients. No significant differences were found for the global breast cancer population. However, within the luminal A subtype, upregulation of 81 genes was observed in the obese group (FC ≥ 1.4). Next, we explored the association of these genes with patient outcome, observing that 39 were linked with detrimental outcome. Their PPI map formed highly compact cluster and functional annotation analyses showed that cell cycle, cell proliferation, cell differentiation, and cellular response to extracellular stimuli were the more altered functions. Combined analyses of genes within the described functions are correlated with poor outcome. PPI network analyses for each function were to search for druggable opportunities. We identified 16 potentially druggable candidates. Among them, NEK2, BIRC5, and TOP2A were also found to be amplified in breast cancer, suggesting that they could act as strategic players in the obese-deregulated transcriptome. CONCLUSION In summary, our in silico analysis describes molecular alterations of luminal A tumors and proposes a druggable PPI network in obese patients with potential for translation to the clinical practice.
Collapse
Affiliation(s)
- Miriam Nuncia-Cantarero
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha (UCLM), C/Almansa 14, 02008, Albacete, Spain
| | | | | | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Alberto Ocaña
- Translational Research Unit, University Hospital, Albacete, Spain
| | - Eva Maria Galan-Moya
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha (UCLM), C/Almansa 14, 02008, Albacete, Spain.
| |
Collapse
|
169
|
Zhang Q, Yang J, Bai J, Ren J. Reverse of non-small cell lung cancer drug resistance induced by cancer-associated fibroblasts via a paracrine pathway. Cancer Sci 2018; 109:944-955. [PMID: 29383798 PMCID: PMC5891180 DOI: 10.1111/cas.13520] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/13/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment orchestrates the sustained growth, metastasis and recurrence of cancer. As an indispensable component of the tumor microenvironment, cancer-associated fibroblasts (CAF) are considered as an essential synthetic machine producing various tumor components, leading to cancer sustained stemness, drug resistance and tumor recurrence. Here, we developed a sustainable primary culture of lung cancer cells fed with lung cancer-associated fibroblasts, resulting in enrichment and acquisition of drug resistance in cancer cells. Moreover, IGF2/AKT/Sox2/ABCB1 signaling activation in cancer cells was observed in the presence of CAF, which induces upregulation of P-glycoprotein expression and the drug resistance of non-small cell lung cancer cells. Our results demonstrated that CAF cells constitute a mechanism for cancer drug resistance. Thus, traditional chemotherapy combined with insulin-like growth factor 2 (IGF2) signaling inhibitor may present an innovative therapeutic strategy for non-small cell lung cancer therapy.
Collapse
Affiliation(s)
- Quanhui Zhang
- Department of Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junping Yang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Bai
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
170
|
Dhatwalia SK, Kumar M, Dhawan DK. Role of EGCG in Containing the Progression of Lung Tumorigenesis - A Multistage Targeting Approach. Nutr Cancer 2018; 70:334-349. [PMID: 29570987 DOI: 10.1080/01635581.2018.1445762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is a prominent form among various types of cancers, irrespective of the sex worldwide. Treatment of lung cancer involves the intensive phase of chemotherapy/radiotherapy which is associated with high rate of adverse events. There is a need of safe and reliable treatment/adjunctive therapy to apprehend the cancer by reducing the undesirable outcome of primary therapy. Epigallocatechin-3-gallate (EGCG), which is a potent antioxidant and anticancer compound extracted from the plant camellia sinensis has proved to be a novel agent to control or reduce lung tumorigenesis by affecting the signaling molecules of cell cycle regulation and apoptotic pathways. In vitro studies have revealed that EGCG can contain carcinogenesis by altering the molecules involved in multiple signal transduction pathways like ERK, VEGF, COX2, NEAT, Ras-GTPase, and kinases. The animal studies have also demonstrated effectiveness of EGCG by inhibiting various molecular pathways which include AKT, NFkB, MAPK, Bcl/Bax, DNMT1, and HIF-1α. Various attempts have been made to see the adjunctive role of EGCG in human lung cancer. Phase I/II clinical studies have recommended that EGCG is quite safe and effective in providing protection against cancer. In this review, we will discuss the role of EGCG and its molecular mechanisms in lung carcinogenesis.
Collapse
Affiliation(s)
| | | | - Devinder K Dhawan
- a Department of Biophysics , Panjab University , Chandigarh , India.,c Nuclear Medicine, Panjab University , Chandigarh , India
| |
Collapse
|
171
|
Hussmann D, Madsen AT, Jakobsen KR, Luo Y, Sorensen BS, Nielsen AL. IGF1R depletion facilitates MET-amplification as mechanism of acquired resistance to erlotinib in HCC827 NSCLC cells. Oncotarget 2018; 8:33300-33315. [PMID: 28418902 PMCID: PMC5464869 DOI: 10.18632/oncotarget.16350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
EGFR-mutated non-small cell lung cancer patients experience relapse within 1-2 years of treatment with EGFR-inhibitors, such as erlotinib. Multiple resistance mechanisms have been identified including secondary EGFR-mutations, MET-amplification, and epithelial-mesenchymal transition (EMT). Previous studies have indicated a role of Insulin-like growth factor 1 receptor (IGF1R) in acquired resistance to EGFR-directed drugs as well as in EMT. In the present study, we have investigated the involvement of IGF1R in acquired high-dose erlotinib resistance in the EGFR-mutated lung adenocarcinoma cell line HCC827. We observed that IGF1R was upregulated in the immediate response to erlotinib and hyperactivated in erlotinib resistant HCC827 cells. Resistant cells additionally acquired features of EMT, whereas MET-amplification and secondary EGFR-mutations were absent. Using CRISPR/Cas9, we generated a HCC827(IGFR1-/-) cell line and subsequently investigated resistance development in response to high-dose erlotinib. Interestingly, HCC827(IGFR1-/-) cells were now observed to specifically amplify the MET gene. Additionally, we observed a reduced level of mesenchymal markers in HCC827(IGFR1-/-) indicating an intrinsic enhanced epithelial signature compared to HCC827 cells. In conclusion, our data show that IGF1R have an important role in defining selected resistance mechanisms in response to high doses of erlotinib.
Collapse
Affiliation(s)
- Dianna Hussmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Tranberg Madsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Raaby Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
172
|
Huang R, Gu W, Sun B, Gao L. Identification of COL4A1 as a potential gene conferring trastuzumab resistance in gastric cancer based on bioinformatics analysis. Mol Med Rep 2018; 17:6387-6396. [PMID: 29512712 PMCID: PMC5928613 DOI: 10.3892/mmr.2018.8664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
Trastuzumab, the first targeted antibody against human epidermal growth factor receptor 2 (HER2), has been used to treat gastric cancer patients with HER2 overexpression. However, trastuzumab resistance often occurs following an initial period of benefits, and the underlying mechanisms remain largely unclear. The present study revealed that collagen type IV α1 chain (COL4A1), whose expression is upregulated in gastric cancer tissues and trastuzumab-resistant gastric cancer cells, may potentially confer trastuzumab resistance in gastric cancer. By performing bioinformatics analysis of 2 microarray datasets, the present study initially identified COL4A1, overexpressed in gastric cancer tissues and trastuzumab-resistant gastric cancer cells, as a potential candidate for inducing trastuzumab resistance. The drug resistance function of COL4A1 in gastric cancer was then validated by performing protein/gene interactions and biological process annotation analyses, and further validated by analyzing the functionality of microRNAs that target COL4A1 mRNA. Collectively, these data indicated that COL4A1 may confer trastuzumab resistance in gastric cancer.
Collapse
Affiliation(s)
- Ru Huang
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wenchao Gu
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Bin Sun
- Department of Pharmacy, No. 210 Hospital of PLA, Dalian, Liaoning 116000, P.R. China
| | - Lei Gao
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
173
|
Dogan Turacli I, Umudum H, Pampal A, Candar T, Kavasoglu L, Sari Y. Do MCF7 cells cope with metformin treatment under energetic stress in low glucose conditions? Mol Biol Rep 2018; 45:195-201. [PMID: 29397517 DOI: 10.1007/s11033-018-4152-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
There is a growing body of evidence about metformin being effective in cancer therapy. Despite controversies about the ways of its effectiveness, several ongoing clinical trials are evaluating the drug when used as an adjuvant or a neo-adjuvant agent. We aimed to investigate metformin's effects on proliferation, metastasis, and hormone receptor expressions in breast cancer cell line MCF-7 incubated in two different glucose conditions. MCF-7 cells were incubated in high or low glucose media and treated with various doses of metformin. The cell viability was studied using MTT test. The Ki-67, estrogen and progesterone receptor expression were evaluated by ICC and galectin-3 expression was evaluated by ELISA or spectrophotometrically. The cell viability following consecutive metformin doses in either glucose condition for 24 and 48 h represented a significant decrease when compared to control. The proliferation detected in low glucose medium following metformin at doses < 20 mM was found significantly decreased when compared to high glucose medium at 48 h. In terms of galectin-3 levels, the increase in high glucose medium treated with metformin and the decrease in low glucose medium were found statistically significant when compared to control. Progesterone receptor staining demonstrated a significant increase in low glucose medium. Our findings represent better outcomes for cancer lines incubated in low glucose medium treated with metformin in terms of viability, receptor expression and metastatic activity, and highlight the potential benefit of metformin especially in restraining the cancer cell's ability to cope energetic stress in low glucose conditions.
Collapse
Affiliation(s)
| | - Haldun Umudum
- Department of Pathology, Ufuk University, Ankara, Turkey
| | - Arzu Pampal
- Department of Pediatrics Surgery, Ufuk University, Ankara, Turkey
| | - Tuba Candar
- Department of Medical Biochemistry, Ufuk University, Ankara, Turkey
| | | | - Yaren Sari
- Faculty of Medicine, Ufuk University, Ankara, Turkey
| |
Collapse
|
174
|
Kinnersley B, Houlston RS, Bondy ML. Genome-Wide Association Studies in Glioma. Cancer Epidemiol Biomarkers Prev 2018; 27:418-428. [PMID: 29382702 DOI: 10.1158/1055-9965.epi-17-1080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/23/2023] Open
Abstract
Since the first reports in 2009, genome-wide association studies (GWAS) have been successful in identifying germline variants associated with glioma susceptibility. In this review, we describe a chronological history of glioma GWAS, culminating in the most recent study comprising 12,496 cases and 18,190 controls. We additionally summarize associations at the 27 glioma-risk SNPs that have been reported so far. Future efforts are likely to be principally focused on assessing association of germline-risk SNPs with particular molecular subgroups of glioma, as well as investigating the functional basis of the risk loci in tumor formation. These ongoing studies will be important to maximize the impact of research into glioma susceptibility, both in terms of insight into tumor etiology as well as opportunities for clinical translation. Cancer Epidemiol Biomarkers Prev; 27(4); 418-28. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Melissa L Bondy
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
175
|
Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies LG, Weyer-Czernilofsky U, Bogenrieder T, Schmid M, Mielgo A. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene 2018; 37:2022-2036. [PMID: 29367764 PMCID: PMC5895608 DOI: 10.1038/s41388-017-0115-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/15/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation.
Collapse
Affiliation(s)
- Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Almudena Santos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fiona Campbell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Carlos Figueiredo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Dean Hammond
- Department of Physiology, University of Liverpool, Liverpool, UK
| | - Lesley G Ellies
- Department of Pathology, University of California San Diego, La Jolla, USA
| | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG Medicine and Translational Research, Vienna, Austria.,Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
176
|
Mentoor I, Engelbrecht AM, van Jaarsveld PJ, Nell T. Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Front Endocrinol (Lausanne) 2018; 9:758. [PMID: 30619088 PMCID: PMC6297254 DOI: 10.3389/fendo.2018.00758] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Excess adipose tissue is a hallmark of an overweight and/or obese state as well as a primary risk factor for breast cancer development and progression. In an overweight/obese state adipose tissue becomes dysfunctional due to rapid hypertrophy, hyperplasia, and immune cell infiltration which is associated with sustained low-grade inflammation originating from dysfunctional adipokine synthesis. Evidence also supports the role of excess adipose tissue (overweight/obesity) as a casual factor for the development of chemotherapeutic drug resistance. Obesity-mediated effects/modifications may contribute to chemotherapeutic drug resistance by altering drug pharmacokinetics, inducing chronic inflammation, as well as altering tumor-associated adipocyte adipokine secretion. Adipocytes in the breast tumor microenvironment enhance breast tumor cell survival and decrease the efficacy of chemotherapeutic agents, resulting in chemotherapeutic resistance. A well-know chemotherapeutic agent, doxorubicin, has shown to negatively impact adipose tissue homeostasis, affecting adipose tissue/adipocyte functionality and storage. Here, it is implied that doxorubicin disrupts adipose tissue homeostasis affecting the functionality of adipose tissue/adipocytes. Although evidence on the effects of doxorubicin on adipose tissue/adipocytes under obesogenic conditions are lacking, this narrative review explores the potential role of obesity in breast cancer progression and treatment resistance with inflammation as an underlying mechanism.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Theo Nell
| |
Collapse
|
177
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
178
|
CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget 2017; 8:111847-111865. [PMID: 29340096 PMCID: PMC5762364 DOI: 10.18632/oncotarget.22915] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.
Collapse
|
179
|
Lenz G, Hamilton A, Geng S, Hong T, Kalkum M, Momand J, Kane SE, Huss JM. t-Darpp Activates IGF-1R Signaling to Regulate Glucose Metabolism in Trastuzumab-Resistant Breast Cancer Cells. Clin Cancer Res 2017; 24:1216-1226. [PMID: 29180608 DOI: 10.1158/1078-0432.ccr-17-0824] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/31/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Increased glycolysis and glucose dependence is a hallmark of malignancy that enables tumors to maximize cell proliferation. In HER2+ cancers, an increase in glycolytic capacity is associated with trastuzumab resistance. IGF-1R activation and t-Darpp overexpression both confer trastuzumab resistance in breast cancer. We therefore investigated a role for IGF-1R and t-Darpp in regulating glycolytic capacity in HER2+ breast cancers.Experimental Design: We examined the relationship between t-Darpp and IGF-1R expression in breast tumors and their respective relationships with patient survival. To assess t-Darpp's metabolic effects, we used the Seahorse flux analyzer to measure glucose metabolism in trastuzumab-resistant SK-BR-3 cells (SK.HerR) that have high endogenous t-Darpp levels and SK.tDrp cells that stably overexpress exogenous t-Darpp. To investigate t-Darpp's mechanism of action, we evaluated t-Darpp:IGF-1R complexes by coimmunoprecipitation and proximity ligation assays. We used pathway-specific inhibitors to study the dependence of t-Darpp effects on IGF-1R signaling. We used siRNA knockdown to determine whether glucose reliance in SK.HerR cells was mediated by t-Darpp.Results: In breast tumors, PPP1R1B mRNA levels were inversely correlated with IGF-1R mRNA levels and directly associated with shorter overall survival. t-Darpp overexpression was sufficient to increase glucose metabolism in SK.tDrp cells and essential for the glycolytic phenotype of SK.HerR cells. Recombinant t-Darpp stimulated glucose uptake, glycolysis, and IGF-1R-Akt signaling in SK-BR-3 cells. Finally, t-Darpp stimulated IGF-1R heterodimerization with ErbB receptors and required IGF-1R signaling to confer its metabolic effects.Conclusions: t-Darpp activates IGF-1R signaling through heterodimerization with EGFR and HER2 to stimulate glycolysis and confer trastuzumab resistance. Clin Cancer Res; 24(5); 1216-26. ©2017 AACR.
Collapse
Affiliation(s)
- Gal Lenz
- Department of Cancer Biology, City of Hope, Duarte, California.
| | - Angelica Hamilton
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, California
| | - Shuhui Geng
- Department of Cancer Biology, City of Hope, Duarte, California
| | - Teresa Hong
- Department of Immunology, City of Hope, Duarte, California
| | - Markus Kalkum
- Department of Immunology, City of Hope, Duarte, California
| | - Jamil Momand
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California
| | - Susan E Kane
- Department of Cancer Biology, City of Hope, Duarte, California
| | - Janice M Huss
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, California
| |
Collapse
|
180
|
Davaadelger B, Perez RE, Zhou Y, Duan L, Gitelis S, Maki CG. The IGF-1R/AKT pathway has opposing effects on Nutlin-3a-induced apoptosis. Cancer Biol Ther 2017; 18:895-903. [PMID: 28696156 DOI: 10.1080/15384047.2017.1345397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nutlin-3a is a small molecule MDM2 antagonist and potent activator of wild-type p53. Nutlin-3a disrupts MDM2 binding to p53, thus increasing p53 levels and allowing p53 to inhibit proliferation or induce cell death. Factors that control sensitivity to Nutlin-3a-induced apoptosis are incompletely understood. In this study we isolated cisplatin-resistant clones from MHM cells, an MDM2-amplified and p53 wild-type osteosarcoma cell line. Cisplatin resistance in these clones resulted in part from heightened activation of the IGF-1R/AKT pathway. Interestingly, these cisplatin resistant clones showed hyper-sensitivity to Nutlin-3a induced apoptosis. Increased Nutlin-3a sensitivity was associated with reduced authophagy flux and a greater increase in p53 levels in response to Nutlin-3a treatment. IGF-1R and AKT inhibitors further increased apoptosis by Nutlin-3a in parental MHM cells and the cisplatin-resistant clones, confirming IGF-1R/AKT signaling promotes apoptosis resistance. However, IGF-1R and AKT inhibitors also reduced p53 accumulation in Nutlin-3a treated cells and increased autophagy flux, which we showed can promote apoptosis resistance. We conclude the IGF-1R/AKT pathway has opposing effects on Nutlin-3a-induced apoptosis. First, it can inhibit apoptosis, consistent with its well-established role as a survival-signaling pathway. Second, it can enhance Nutlin-3a induced apoptosis through a combination of maintaining p53 levels and inhibiting pro-survival autophagy.
Collapse
Affiliation(s)
- Batzaya Davaadelger
- a Department of Cell and Molecular Medicine , Rush University Medical Center , Chicago , IL , USA
| | - Ricardo E Perez
- a Department of Cell and Molecular Medicine , Rush University Medical Center , Chicago , IL , USA
| | - Yalu Zhou
- a Department of Cell and Molecular Medicine , Rush University Medical Center , Chicago , IL , USA
| | - Lei Duan
- a Department of Cell and Molecular Medicine , Rush University Medical Center , Chicago , IL , USA
| | - Steven Gitelis
- b Department of Orthopedic Oncology, Department of Orthopedic Surgery , Rush University Medical Center , Chicago , IL , USA
| | - Carl G Maki
- a Department of Cell and Molecular Medicine , Rush University Medical Center , Chicago , IL , USA
| |
Collapse
|
181
|
Beck M, Schirmacher P, Singer S. Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. J Hepatol 2017; 67:1051-1061. [PMID: 28673770 DOI: 10.1016/j.jhep.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephan Singer
- European Molecular Biology Laboratory, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Germany.
| |
Collapse
|
182
|
De Araújo RF, Pessoa JB, Cruz LJ, Chan AB, De Castro Miguel E, Cavalcante RS, Brito GAC, Silva HFO, Gasparotto LHS, Guedes PMM, Araújo AA. Apoptosis in human liver carcinoma caused by gold nanoparticles in combination with carvedilol is mediated via modulation of MAPK/Akt/mTOR pathway and EGFR/FAAD proteins. Int J Oncol 2017; 52:189-200. [PMID: 29115423 DOI: 10.3892/ijo.2017.4179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
In cancers, apoptosis signaling pathways and cell survival and growth pathways responsible for resistance to conventional treatments, such as Pi3K/Akt/mTOR and mitogen-activated protein kinase (MAPK) become dysregulated. Recently, alternative treatments to promote tumor cell death have become important. The present study reports on the antitumor and cytoprotective action of gold nanoparticles (GNPs) and carvedilol in combination and in isolated application. Apoptosis was analyzed by FITC/propidium iodide staining flow cytometry; caspase-3, caspase-8, Bcl-2 and MAPK/ERK activity by immunofluorescence microscopy; gene expression of proteins related to cell death as Akt, mTOR, EGFR, MDR1, survivin, FADD and Apaf, by the real-time PCR; and western blot analysis for MAPK/ERK, Akt and mTOR. Oxidative stress evaluation was performed by reduced glutathione (GSH) and malondialdehyde (MDA) levels. Intracellular GNPs targets were identified by transmission electron microscopy. After exposure to a combination of GNPs (6.25 µg/ml) and carvedilol (3 µM), death as promoted by apoptosis was detected using flow cytometry, for expression of pro-apoptotic proteins FADD, caspase-3, caspase-8 and sub-regulation of anti-apoptotic MAPK/ERK, Akt, mTOR, EGFR and MDR1 resistance. Non-tumor cell cytoprotection with GSH elevation and MDA reduction levels was detected. GNPs were identified within the cell near to the nucleus when combined with carvedilol. The combination of GNP and carvedilol promoted downregulation of anti-apoptotic and drug resistance genes, over-regulation of pro-apoptotic proteins in tumor cells, as well as cytoprotection of non-tumor cells with reduction of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Raimundo F De Araújo
- Department of Morphology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Jonas B Pessoa
- Post Graduation Programme in Structural and Functional Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, 2333 CL Leiden, The Netherlands
| | - Alan B Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | | | - Rômulo S Cavalcante
- Post Graduation Programme in Health Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Gerly Anne C Brito
- Department of Morphology/Postgraduate Program in Morphology/UFC, Fortaleza, CE, Brazil
| | - Heloiza Fernada O Silva
- Group of Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Luiz H S Gasparotto
- Group of Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Paulo M M Guedes
- Department of Parasitology and Microbiology and Post Graduation Program in Parasitary Biology, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Aurigena A Araújo
- Department of Biophysics and Pharmacology, Post Graduation Programme in Public Health, Post Graduation Programme in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| |
Collapse
|
183
|
Zhang Z, Lei B, Wu H, Zhang X, Zheng N. Tumor suppressive role of miR-194-5p in glioblastoma multiforme. Mol Med Rep 2017; 16:9317-9322. [PMID: 29152664 PMCID: PMC5779985 DOI: 10.3892/mmr.2017.7826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is defined by the World Health Organization as the most aggressive form of grade IV glioma, characterized by unrestrained cellular proliferation. microRNAs (miRs) serve important roles in the pathogenesis of GBM. However, the function of miR-194-5p in GBM remains unknown. In the present study, the miR-194-5p levels in GBM tissues and cells were evaluated using the reverse transcription-quantitative polymerase chain reaction. Cellular proliferation was tested by MTT analysis. Cellular apoptosis was analyzed by fluorescence-activated cell sorting. The protein level of insulin-like growth factor 1 receptor, the target gene of miR-194-5p, was evaluated by western blotting. The interaction between miR-194-5p and the target gene was confirmed by the dual-luciferase reporter assay. It was demonstrated that miR-194-5p inhibited cell growth and promoted apoptosis. In conclusion, the results of the present study indicated the tumor suppressive role of miR-194-5p.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Bo Lei
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Honggang Wu
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Xiaoli Zhang
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| | - Niandong Zheng
- Department of Neurosurgery, The People's Hospital of Leshan City, Leshan, Sichuan 614000, P.R. China
| |
Collapse
|
184
|
Venkatachalam S, Mettler E, Fottner C, Miederer M, Kaina B, Weber MM. The impact of the IGF-1 system of cancer cells on radiation response - An in vitro study. Clin Transl Radiat Oncol 2017; 7:1-8. [PMID: 29594222 PMCID: PMC5862664 DOI: 10.1016/j.ctro.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Overexpression of the insulin-like growth factor-1 receptor (IGF-1R) is associated with increased cell proliferation, differentiation, transformation, and tumorigenicity. Additionally, signaling involved in the resistance of cancer cells to radiotherapy originates from IGF-1R. The purpose of this study was to investigate the role of the IGF-1 system in the radiation response and further evaluate its effect on the expression of DNA repair pathway genes. Methods To inhibit the IGF-1 system, we stably transfected the Caco-2 cell line to express a kinase-deficient IGF-1R mutant. We then studied the effects of this mutation on cell growth, the response to radiation, and clonogenic survival, as well as using a cell viability assay to examine DNA damage and repair. Finally, we performed immunofluorescence for γ-H2AX to examine double-strand DNA breaks and evaluated the expression of 84 key genes involved in DNA repair with a real-time PCR array. Results Mutant IGF-1R cells exhibited significantly blunted cell growth and viability, compared to wild-type cells, as well as reduced clonogenic survival after γ-irradiation. However, mutant IGF-1R cells did not show any significant delays in the repair of radiation-induced DNA double-strand breaks. Furthermore, expression of mutant IGF-1R significantly down-regulated the mRNA levels of BRCA2, a major protein involved in homologous recombination DNA repair. Conclusion These results indicate that blocking the IGF-1R-mediated signaling cascade, through the expression of a kinase-deficient IGF-1R mutant, reduces cell growth and sensitizes cancer cells to ionizing radiation. Therefore, the IGF-1R system could be a potential target to enhance radio-sensitivity and the efficacy of cancer treatments.
Collapse
Key Words
- BAX, BCL-2-associated X
- BCL-2, B-cell lymphoma 2
- BRCA2
- Caco-2-KR4, IGF-1R/KR clone number 4
- Colorectal carcinmoma
- Dominant negative mutant
- HRR, homologous recombination repair
- IGF-1R, insulin-like growth factor 1 receptor
- IGF-1R/KR, kinase-deficient IGF-1R
- IRS-1, insulin receptor substrate 1
- Insulin-like growth factor-1 receptor
- MVP, major vault protein
- NHEJ, non-homologous end joining
- PTEN, phosphatase and tensin homolog
- RAD 51
- Radiosensitivity
- SF, surviving fractions
Collapse
Affiliation(s)
| | - Esther Mettler
- Department of Endocrinology and Metabolic Diseases, University Medical Center, Mainz, Germany
- Corresponding author.
| | - Christian Fottner
- Department of Endocrinology and Metabolic Diseases, University Medical Center, Mainz, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Medical Center, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Matthias M. Weber
- Department of Endocrinology and Metabolic Diseases, University Medical Center, Mainz, Germany
| |
Collapse
|
185
|
Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Target Oncol 2017; 12:571-597. [PMID: 28815409 PMCID: PMC5610669 DOI: 10.1007/s11523-017-0514-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.
Collapse
Affiliation(s)
- Aaron Simpson
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria.
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
186
|
Barbhuiya MA, Mirando AC, Simons BW, Lemtiri-Chlieh G, Green JJ, Popel AS, Pandey NB, Tran PT. Therapeutic potential of an anti-angiogenic multimodal biomimetic peptide in hepatocellular carcinoma. Oncotarget 2017; 8:101520-101534. [PMID: 29254183 PMCID: PMC5731893 DOI: 10.18632/oncotarget.21148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Due to inadequate screening methods and the common coexistence of limited functional liver reserves, curative treatment options are limited. Liver transplantation is the only curative treatment modality for early HCC. There are multidisciplinary treatment options like ablative treatments, radiation and systemic therapy available for more advanced patients or those that are inoperable. Treatment resistance and progression is inevitable for these HCC patients. Newer therapeutics need to be explored for better management of HCC. HCC is a hypervascular tumor and many pro-angiogenic proteins are found significantly overexpressed in HCC. Here we explored the therapeutic potential of the anti-angiogenic, anti-lymphangiogenic, and directly anti-tumorigenic biomimetic collagen IV-derived peptide developed by our group. Human HCC cell lines HuH7, Hep3b and HepG2 showed significant disruption of cell adhesion and migration upon treatment with the peptide. Consistent with previously described multimodal inhibitory properties, the peptide was found to inhibit both c-Met and IGF1R signaling in HepG2 cells and blocked HepG2 conditioned media stimulation of microvascular endothelial cell (MEC) tube formation. Furthermore, the peptide treatment of mouse HepG2 tumor xenografts significantly inhibited growth relative to untreated controls. The peptide was also found to improve the survival of autochthonous Myc-induced HCC in a transgenic mouse model. Mechanistically, we found that the peptide treatment reduced microvascular density in the autochthonous liver tumors with increased apoptosis. This study shows the promising therapeutic potential of our biomimetic peptide in the treatment of HCC.
Collapse
Affiliation(s)
- Mustafa A Barbhuiya
- Department of Radiation Oncology and Molecular and Radiation Sciences, Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian W Simons
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Centre and Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ghali Lemtiri-Chlieh
- Department of Radiation Oncology and Molecular and Radiation Sciences, Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular and Radiation Sciences, Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Centre and Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
187
|
Lev A, Lulla AR, Wagner J, Ralff MD, Kiehl JB, Zhou Y, Benes CH, Prabhu VV, Oster W, Astsaturov I, Dicker DT, El-Deiry WS. Anti-pancreatic cancer activity of ONC212 involves the unfolded protein response (UPR) and is reduced by IGF1-R and GRP78/BIP. Oncotarget 2017; 8:81776-81793. [PMID: 29137221 PMCID: PMC5669847 DOI: 10.18632/oncotarget.20819] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is chemo-resistant and metastasizes early with an overall five-year survival of ∼8.2%. First-in-class imipridone ONC201 is a small molecule in clinical trials with anti-cancer activity. ONC212, a fluorinated-ONC201 analogue, shows preclinical efficacy in melanoma and hepatocellular-cancer models. We investigated efficacy of ONC201 and ONC212 against pancreatic cancer cell lines (N=16 including 9 PDX-cell lines). We demonstrate ONC212 efficacy in 4 in-vivo models including ONC201-resistant tumors. ONC212 is active in pancreatic cancer as single agent or in combination with 5-fluorouracil, irinotecan, oxaliplatin or RTK inhibitor crizotinib. Based on upregulation of pro-survival IGF1-R in some tumors, we found an active combination of ONC212 with inhibitor AG1024, including in vivo. We show a rationale for targeting pancreatic cancer using ONC212 combined with targeting the unfolded-protein response and ER chaperones such as GRP78/BIP. Our results lay the foundation to test imipridones, anti-cancer agents, in pancreatic cancer, that is refractory to most drugs.
Collapse
Affiliation(s)
- Avital Lev
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Amriti R Lulla
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jessica Wagner
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Marie D Ralff
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Joshua B Kiehl
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Biostatistics Department, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | | - Igor Astsaturov
- Department of Hematology/Oncology, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David T Dicker
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wafik S El-Deiry
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
188
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
189
|
Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression. Int J Mol Sci 2017; 18:ijms18091921. [PMID: 28880250 PMCID: PMC5618570 DOI: 10.3390/ijms18091921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022] Open
Abstract
The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic network of proteins that modulate several biological processes such as development, cell growth, metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration, cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer.
Collapse
|
190
|
Bennouna J. Update on afatinib-based combination regimens for the treatment of EGFR mutation-positive non-small-cell lung cancer. Future Oncol 2017; 13:1829-1833. [DOI: 10.2217/fon-2017-0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jaafar Bennouna
- Department of Pneumology, Thoracic Oncology, University Hospital – Nantes, France
| |
Collapse
|
191
|
Vyse S, McCarthy F, Broncel M, Paul A, Wong JP, Bhamra A, Huang PH. Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib. J Proteomics 2017; 170:130-140. [PMID: 28842319 PMCID: PMC5673060 DOI: 10.1016/j.jprot.2017.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. Significance Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways. Phosphoproteins in the insulin and IGF-1R pathways are upregulated in dasatinib resistant cells. Less than 10% of the phosphoproteome is altered in acquired drug-resistant A204 cells. Both dasatinib and pazopanib resistant A204 cells are vulnerable to HSP90 inhibition.
Collapse
Affiliation(s)
- Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Frank McCarthy
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Malgorzata Broncel
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Angela Paul
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jocelyn P Wong
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Amandeep Bhamra
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
192
|
Hasegawa T, Adachi R, Iwakata H, Takeno T, Sato K, Sakamaki T. ErbB2 signaling epigenetically suppresses microRNA-205 transcription via Ras/Raf/MEK/ERK pathway in breast cancer. FEBS Open Bio 2017; 7:1154-1165. [PMID: 28781955 PMCID: PMC5537069 DOI: 10.1002/2211-5463.12256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/05/2017] [Accepted: 05/25/2017] [Indexed: 01/28/2023] Open
Abstract
We previously reported that microRNA-205 (miR-205) is downregulated by overexpression of the receptor tyrosine kinase ErbB2 and that ectopic transfection of miR-205 precursor decreases ErbB2 tumorigenicity in soft agar. In this study, we further analyzed the regulatory mechanisms linking ErbB2 overexpression and miR-205 downregulation. In ErbB2-overexpressing breast epithelial cells, miR-205 expression was significantly increased by treatment with MEK inhibitor U0126 or PD98059, Raf-1 inhibitor ZM-336372, and ERK inhibitor SCH772984, but PI3K inhibitor LY294002 and p38 MAPK inhibitor SB203580 had no effect. We established breast epithelial cells overexpressing RafCAAX, a constitutively active form of Raf-1, and showed that overexpression of RafCAAX dramatically reduced miR-205 expression. In RafCAAX-overexpressing cells, miR-205 expression was also significantly increased by SCH772984. Moreover, miR-205 expression was significantly increased by treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine and expression of several DNMT family members was increased in both ErbB2- and RafCAAX-overexpressing cells. DNA methylation analysis by bisulfite sequencing revealed that the putative miR-205 promoters were predominantly hypermethylated in both ErbB2- and RafCAAX-overexpressing cells. Reporter activity of the putative miR-205 promoters was reduced in both ErbB2-overexpressing and RafCAAX-overexpressing cells. Together, these findings indicate that ErbB2 signaling epigenetically suppresses miR-205 transcription via the Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Takuya Hasegawa
- Department of Public Health Faculty of Pharmaceutical Sciences Niigata University of Pharmacy and Applied Life Sciences Japan
| | - Ryohei Adachi
- Department of Public Health Faculty of Pharmaceutical Sciences Niigata University of Pharmacy and Applied Life Sciences Japan
| | - Hitoshi Iwakata
- Department of Public Health Faculty of Pharmaceutical Sciences Niigata University of Pharmacy and Applied Life Sciences Japan
| | - Takayoshi Takeno
- Department of Public Health Faculty of Pharmaceutical Sciences Niigata University of Pharmacy and Applied Life Sciences Japan
| | - Koji Sato
- Department of Public Health Faculty of Pharmaceutical Sciences Niigata University of Pharmacy and Applied Life Sciences Japan
| | - Toshiyuki Sakamaki
- Department of Public Health Faculty of Pharmaceutical Sciences Niigata University of Pharmacy and Applied Life Sciences Japan
| |
Collapse
|
193
|
Solingapuram Sai KK, Prabhakaran J, Sattiraju A, Mann JJ, Mintz A, Kumar JD. Radiosynthesis and evaluation of IGF1R PET ligand [ 11 C]GSK1838705A. Bioorg Med Chem Lett 2017; 27:2895-2897. [DOI: 10.1016/j.bmcl.2017.04.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
|
194
|
Liao J, Yu X, Hu X, Fan J, Wang J, Zhang Z, Zhao C, Zeng Z, Shu Y, Zhang R, Yan S, Li Y, Zhang W, Cui J, Ma C, Li L, Yu Y, Wu T, Wu X, Lei J, Wang J, Yang C, Wu K, Wu Y, Tang J, He BC, Deng ZL, Luu HH, Haydon RC, Reid RR, Lee MJ, Wolf JM, Huang W, He TC. lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget 2017; 8:53581-53601. [PMID: 28881833 PMCID: PMC5581132 DOI: 10.18632/oncotarget.18655] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can undergo self-renewal and differentiate into multiple lineages. Osteogenic differentiation from MSCs is a well-orchestrated process and regulated by multiple signaling pathways. We previously demonstrated that BMP9 is one of the most potent osteogenic factors. However, molecular mechanism through which BMP9 governs osteoblastic differentiation remains to be fully understood. Increasing evidence indicates noncoding RNAs (ncRNAs) may play important regulatory roles in many physiological and/or pathologic processes. In this study, we investigate the role of lncRNA H19 in BMP9-regulated osteogenic differentiation of MSCs. We demonstrated that H19 was sharply upregulated at the early stage of BMP9 stimulation of MSCs, followed by a rapid decease and gradual return to basal level. This process was correlated with BMP9-induced expression of osteogenic markers. Interestingly, either constitutive H19 expression or silencing H19 expression in MSCs significantly impaired BMP9-induced osteogenic differentiation in vitro and in vivo, which was effectively rescued by the activation of Notch signaling. Either constitutive H19 expression or silencing H19 expression led to the increased expression of a group of miRNAs that are predicted to target Notch ligands and receptors. Thus, these results indicate that lncRNA H19 functions as an important mediator of BMP9 signaling by modulating Notch signaling-targeting miRNAs. Our findings suggest that the well-coordinated biphasic expression of lncRNA H19 may be essential in BMP9-induced osteogenic differentiation of MSCs, and that dysregulated H19 expression may impair normal osteogenesis, leading to pathogenic processes, such as bone tumor development.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xinyi Yu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xue Hu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zhicai Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chen Zhao
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai, China
| | - Jing Cui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery, and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Yichun Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Emergency Medicine, Beijing Hospital, Beijing, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery, and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingye Wu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jiayan Lei
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jia Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Tang
- Cytate Institute for Precision Medicine & Innovation, Guangzhou Cytate Biomedical Technologies Inc., Guangzhou, China
| | - Bai-Cheng He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhong-Liang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Wei Huang
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| |
Collapse
|
195
|
Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines. Sci Rep 2017. [PMID: 28638122 PMCID: PMC5479850 DOI: 10.1038/s41598-017-04301-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Overexpression of HER2 has been reported in around 25% of human breast cancers. Despite recent advances in HER2 targeted therapy, many patients still experience primary and secondary resistance to such treatments, the mechanisms for which are poorly understood. Here, we investigated the sensitivity of a panel of breast cancer cell lines to treatment with various types of HER-family inhibitors alone or in combination with other tyrosine kinase inhibitors or chemotherapeutic agents. We found that treatment with the second-generation irreversible HER-family inhibitors, particularly afatinib and neratinib, were more effective than treatment with the first-generation reversible inhibitors in inhibiting growth, migration and downstream cell signalling in breast cancer cells. Of the three HER2 overexpressing cell lines in this panel, SKBr3 and BT474 were highly sensitive to treatment with HER-family inhibitors, while MDA-MB-453 was comparatively resistant. Combinations of HER-family inhibitors with NVP-AEW541, dasatinib or crizotinib (inhibitors of IGF-1R, Src and c-Met/ALK, respectively) led to synergistic effects in some of the cell lines examined. In particular, treatment with a combination of Src and HER-family member inhibitors resulted in synergistic growth inhibition of MDA-MB453 cells, implicating Src as a mediator of resistance to HER2-targeting agents. Our results suggest that combining HER-family inhibitors with other TKIs such as dasatinib may have therapeutic advantages in certain breast cancer subtypes and warrants further investigation.
Collapse
|
196
|
Iyer P, Radhakrishnan V, Vyas R, Trivedi S. Study on the Effect of Chemo-Radiation on the Serum Levels of IGF-I in Patients with Cancer Cervix Stage IIIB. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2017. [DOI: 10.1007/s40944-017-0127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
197
|
O'Flanagan CH, Smith LA, McDonell SB, Hursting SD. When less may be more: calorie restriction and response to cancer therapy. BMC Med 2017; 15:106. [PMID: 28539118 PMCID: PMC5442682 DOI: 10.1186/s12916-017-0873-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
Calorie restriction (CR) extends lifespan and has been shown to reduce age-related diseases including cancer, diabetes, and cardiovascular and neurodegenerative diseases in experimental models. Recent translational studies have tested the potential of CR or CR mimetics as adjuvant therapies to enhance the efficacy of chemotherapy, radiation therapy, and novel immunotherapies. Chronic CR is challenging to employ in cancer patients, and therefore intermittent fasting, CR mimetic drugs, or alternative diets (such as a ketogenic diet), may be more suitable. Intermittent fasting has been shown to enhance treatment with both chemotherapy and radiation therapy. CR and fasting elicit different responses in normal and cancer cells, and reduce certain side effects of cytotoxic therapy. Findings from preclinical studies of CR mimetic drugs and other dietary interventions, such as the ketogenic diet, are promising for improving the efficacy of anticancer therapies and reducing the side effects of cytotoxic treatments. Current and future clinical studies will inform on which cancers, and at which stage of the cancer process, CR, fasting, or CR mimetic regimens will prove most effective.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Laura A Smith
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Shannon B McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27517, USA. .,Nutrition Research Institute, University of North Carolina, Kannapolis, NC, 28081, USA. .,Department of Nutrition, University of North Carolina at Chapel Hill, 2100 Michael Hooker Research Center, Campus Box 7461, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
198
|
Identification of IGF-1-enhanced cytokine expressions targeted by miR-181d in glioblastomas via an integrative miRNA/mRNA regulatory network analysis. Sci Rep 2017; 7:732. [PMID: 28389653 PMCID: PMC5429683 DOI: 10.1038/s41598-017-00826-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/14/2017] [Indexed: 02/03/2023] Open
Abstract
The insulin-like growth factor (IGF)-1 signaling is relevant in regulating cell growth and cytokine secretions by glioblastomas. MicroRNAs determine the cell fate in glioblastomas. However, relationships between IGF-1 signaling and miRNAs in glioblastoma pathogenesis are still unclear. Our aim was to validate the IGF-1-mediated mRNA/miRNA regulatory network in glioblastomas. Using in silico analyses of mRNA array and RNA sequencing data from The Cancer Genome Atlas (TCGA), we identified 32 core enrichment genes that were highly associated with IGF-1-promoted cytokine-cytokine receptor interactions. To investigate the IGF-1-downregulated miRNA signature, microarray-based approaches with IGF-1-treated U87-MG cells and array data in TCGA were used. Four miRNAs, including microRNA (miR)-9-5p, miR-9-3p, miR-181d, and miR-130b, exhibited an inverse correlation with IGF-1 levels. The miR-181d, that targeted the most IGF-1-related cytokine genes, was significantly reduced in IGF-1-treated glioma cells. Statistical models incorporating both high-IGF-1 and low-miR-181d statuses better predicted poor patient survival, and can be used as an independent prognostic factor in glioblastomas. The C-C chemokine receptor type 1 (CCR1) and interleukin (IL)-1b demonstrated inverse correlations with miR-181d levels and associations with patient survival. miR-181d significantly attenuated IGF-1-upregulated CCR1 and IL-1b gene expressions. These findings demonstrate a distinct role for IGF-1 signaling in glioma progression via miR-181d/cytokine networks.
Collapse
|
199
|
Kim MH, Kim J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 2017; 74:1457-1474. [PMID: 27826640 PMCID: PMC11107740 DOI: 10.1007/s00018-016-2412-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/15/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
A diverse range of drug resistance mechanisms in cancer cells and their microenvironment significantly reduces the effectiveness of anti-cancer therapies. Growing evidence suggests that transcriptional effectors of the Hippo pathway, YAP and TAZ, promote resistance to various anti-cancer therapies, including cytotoxic chemotherapy, molecular targeted therapy, and radiation therapy. Here, we overview the role of YAP and TAZ as drug resistance mediators, and also discuss potential upstream regulators and downstream targets of YAP/TAZ in cancer. The widespread involvement of YAP and TAZ in resistance mechanisms suggests that therapeutic targeting of YAP and TAZ may expedite the development of effective anti-resistance therapies.
Collapse
Affiliation(s)
- Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea.
| |
Collapse
|
200
|
Shali H, Shabani M, Pourgholi F, Hajivalili M, Aghebati-Maleki L, Jadidi-Niaragh F, Baradaran B, Movassaghpour Akbari AA, Younesi V, Yousefi M. Co-delivery of insulin-like growth factor 1 receptor specific siRNA and doxorubicin using chitosan-based nanoparticles enhanced anticancer efficacy in A549 lung cancer cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:293-302. [DOI: 10.1080/21691401.2017.1307212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hajar Shali
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourgholi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Hajivalili
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Younesi
- Pishtaz Teb Diagnostics, Tehran, Iran
- Faculty of Paramedical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|